1
|
Zhao S, Duan K, Ai Z, Niu B, Chen Y, Kong R, Li T. Generation of cortical neurons through large-scale expanding neuroepithelial stem cell from human pluripotent stem cells. Stem Cell Res Ther 2020; 11:431. [PMID: 33008480 PMCID: PMC7532602 DOI: 10.1186/s13287-020-01939-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/22/2020] [Accepted: 09/17/2020] [Indexed: 02/08/2023] Open
Abstract
Background Considerable progress has been made in converting human pluripotent stem cells (hPSCs) into cortical neurons for disease modeling and regenerative medicine. However, these procedures are hard to provide sufficient cells for their applications. Using a combination of small-molecules and growth factors, we previously identified one condition which can rapidly induce hPSCs into neuroepithelial stem cells (NESCs). Here, we developed a scalable suspension culture system, which largely yields high-quality NESC-spheres and subsequent cortical neurons. Methods The NESC medium was first optimized, and the suspension culture system was then enlarged from plates to stirred bioreactors for large-scale production of NESC-spheres by a stirring speed of 60 rpm. During the expansion, the quality of NESC-spheres was evaluated. The differentiation potential of NESC-spheres into cortical neurons was demonstrated by removing bFGF and two pathway inhibitors from the NESC medium. Cellular immunofluorescence staining, global transcriptome, and single-cell RNA sequencing analysis were used to identify the characteristics, identities, purities, or homogeneities of NESC-spheres or their differentiated cells, respectively. Results The optimized culture system is more conducive to large-scale suspension production of NESCs. These largely expanded NESC-spheres maintain unlimited self-renewal ability and NESC state by retaining their uniform sizes, high cell vitalities, and robust expansion abilities. After long-term expansion, NESC-spheres preserve high purity, homogeneity, and normal diploid karyotype. These expanded NESC-spheres on a large scale have strong differentiation potential and effectively produce mature cortical neurons. Conclusions We developed a serum-free, defined, and low-cost culture system for large-scale expansion of NESCs in stirred suspension bioreactors. The stable and controllable 3D system supports long-term expansion of high-quality and homogeneous NESC-spheres. These NESC-spheres can be used to efficiently give rise to cortical neurons for cell therapy, disease modeling, and drug screening in future.
Collapse
Affiliation(s)
- Shumei Zhao
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Kui Duan
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Zongyong Ai
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Baohua Niu
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Yanying Chen
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Ruize Kong
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Tianqing Li
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China. .,Xi'an ChaoYue Stem Cell Co, Ltd, Xi'an, China.
| |
Collapse
|
2
|
Roig-Puiggros S, Vigouroux RJ, Beckman D, Bocai NI, Chiou B, Davimes J, Gomez G, Grassi S, Hoque A, Karikari TK, Kiffer F, Lopez M, Lunghi G, Mazengenya P, Meier S, Olguín-Albuerne M, Oliveira MM, Paraíso-Luna J, Pradhan J, Radiske A, Ramos-Hryb AB, Ribeiro MC, Schellino R, Selles MC, Singh S, Theotokis P, Chédotal A. Construction and reconstruction of brain circuits: normal and pathological axon guidance. J Neurochem 2019; 153:10-32. [PMID: 31630412 DOI: 10.1111/jnc.14900] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/14/2019] [Accepted: 10/17/2019] [Indexed: 02/06/2023]
Abstract
Perception of our environment entirely depends on the close interaction between the central and peripheral nervous system. In order to communicate each other, both systems must develop in parallel and in coordination. During development, axonal projections from the CNS as well as the PNS must extend over large distances to reach their appropriate target cells. To do so, they read and follow a series of axon guidance molecules. Interestingly, while these molecules play critical roles in guiding developing axons, they have also been shown to be critical in other major neurodevelopmental processes, such as the migration of cortical progenitors. Currently, a major hurdle for brain repair after injury or neurodegeneration is the absence of axonal regeneration in the mammalian CNS. By contrasts, PNS axons can regenerate. Many hypotheses have been put forward to explain this paradox but recent studies suggest that hacking neurodevelopmental mechanisms may be the key to promote CNS regeneration. Here we provide a seminar report written by trainees attending the second Flagship school held in Alpbach, Austria in September 2018 organized by the International Society for Neurochemistry (ISN) together with the Journal of Neurochemistry (JCN). This advanced school has brought together leaders in the fields of neurodevelopment and regeneration in order to discuss major keystones and future challenges in these respective fields.
Collapse
Affiliation(s)
| | - Robin J Vigouroux
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Danielle Beckman
- California National Primate Research Center, UC Davis, Davis, California, USA
| | - Nadia I Bocai
- Laboratory of Amyloidosis and Neurodegeneration, Fundación Instituto Leloir, Buenos Aires, Argentina.,Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Brian Chiou
- Department of Pediatrics, University of California - San Francisco, San Francisco, California, USA
| | - Joshua Davimes
- Faculty of Health Sciences School of Anatomical Sciences, University of the Witwatersrand, Parktown Johannesburg, South Africa
| | - Gimena Gomez
- Laboratorio de Parkinson Experimental, Instituto de Investigaciones Farmacológicas (ININFA-CONICET-UBA), Ciudad Autónoma de Buenos Aires, Argentina
| | - Sara Grassi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Ashfaqul Hoque
- Metabolic Signalling Laboratory, St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Thomas K Karikari
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,School of Life Sciences, University of Warwick, Coventry, UK.,Midlands Integrative Biosciences Training Partnership, University of Warwick, Coventry, UK
| | - Frederico Kiffer
- Division of Radiation Health, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.,Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.,Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Mary Lopez
- Institute for Stroke and Dementia Research, LMU Munich, Munich, Germany
| | - Giulia Lunghi
- Department of Medical Biotechnology and Translational Medicin, University of Milano, Segrate, Italy
| | - Pedzisai Mazengenya
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Sonja Meier
- Queensland Brain Institute, The University of Queensland, St Lucia, Queensland, Australia
| | - Mauricio Olguín-Albuerne
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Mauricio M Oliveira
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juan Paraíso-Luna
- Ramón y Cajal Institute of Health Research (IRYCIS), Department of Biochemistry and Molecular Biology and University Research Institute in Neurochemistry (IUIN), Complutense University, Madrid, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Jonu Pradhan
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Andressa Radiske
- Memory Research Laboratory, Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Ana Belén Ramos-Hryb
- Instituto de Biología y Medicina Experimental (IBYME)-CONICET, Buenos Aires, Argentina.,Grupo de Neurociencia de Sistemas, Instituto de Fisiología y Biofísica (IFIBIO) Bernardo Houssay, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Mayara C Ribeiro
- Department of Biology, Program in Neuroscience, Syracuse University, Syracuse, New York, USA
| | - Roberta Schellino
- Neuroscience Department "Rita Levi-Montalcini" and Neuroscience Institute Cavalieri Ottolenghi, University of Torino, Torino, Italy
| | - Maria Clara Selles
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Shripriya Singh
- System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Paschalis Theotokis
- Department of Neurology, Laboratory of Experimental Neurology and Neuroimmunology, AHEPA University Hospital, Thessaloniki, Macedonia, Greece
| | - Alain Chédotal
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| |
Collapse
|
3
|
Efficient Generation of Corticofugal Projection Neurons from Human Embryonic Stem Cells. Sci Rep 2016; 6:28572. [PMID: 27346302 PMCID: PMC4921908 DOI: 10.1038/srep28572] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 06/03/2016] [Indexed: 11/08/2022] Open
Abstract
Efforts to study development and function of corticofugal projection neurons (CfuPNs) in the human cerebral cortex for health and disease have been limited by the unavailability of highly enriched CfuPNs. Here, we develop a robust, two-step process for generating CfuPNs from human embryonic stem cells (hESCs): directed induction of neuroepithelial stem cells (NESCs) from hESCs and efficient differentiation of NESCs to about 80% of CfuPNs. NESCs or a NESC faithfully maintain unlimitedly self-renewal and self-organized abilities to develop into miniature neural tube-like structures. NESCs retain a stable propensity toward neuronal differentiation over culture as fate-restricted progenitors of CfuPNs and interneurons. When grafted into mouse brains, NESCs successfully integrate into the host brains, differentiate into CfuPNs and effectively reestablish specific patterns of subcortical projections and synapse structures. Efficient generation of CfuPNs in vitro and in vivo will facilitate human cortex development and offer sufficient CfuPNs for cell therapy.
Collapse
|
4
|
Mortazavi Y, Sheikhsaran F, Khamisipour GK, Soleimani M, Teimuri A, Shokri S. The Evaluation of Nerve Growth Factor Over Expression on Neural Lineage Specific Genes in Human Mesenchymal Stem Cells. CELL JOURNAL 2016; 18:189-96. [PMID: 27540523 PMCID: PMC4988417 DOI: 10.22074/cellj.2016.4313] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 12/27/2015] [Indexed: 12/12/2022]
Abstract
Objective Treatment and repair of neurodegenerative diseases such as brain tumors,
spinal cord injuries, and functional disorders, including Alzheimer’s disease, are challenging problems. A common treatment approach for such disorders involves the use of
mesenchymal stem cells (MSCs) as an alternative cell source to replace injured cells.
However, use of these cells in hosts may potentially cause adverse outcomes such as tumorigenesis and uncontrolled differentiation. In attempt to generate mesenchymal derived
neural cells, we have infected MSCs with recombinant lentiviruses that expressed nerve
growth factor (NGF) and assessed their neural lineage genes.
Materials and Methods In this experimental study, we cloned the NGF gene sequence
into a helper dependent lentiviral vector that contained the green fluorescent protein (GFP)
gene. The recombinant vector was amplified in DH5 bacterial cells. Recombinant viruses
were generated in the human embryonic kidney 293 (HEK-293) packaging cell line with
the helper vectors and analyzed under fluorescent microscopy. Bone marrow mesenchymal cells were infected by recombinant viruses for three days followed by assessment of
neural differentiation. We evaluated expression of NGF through measurement of the NGF
protein in culture medium by ELISA; neural specific genes were quantified by real-time
polymerase chain reaction (PCR).
Results We observed neural morphological changes after three days. Quantitative PCR
showed that expressions of NESTIN, glial derived neurotrophic factor (GDNF), glial fibrillary acidic protein (GFAP) and Microtubule-associated protein 2 (MAP2) genes increased
following induction of NGF overexpression, whereas expressions of endogenous NGF
and brain derived neural growth factor (BDNF) genes reduced.
Conclusion Ectopic expression of NGF can induce neurogenesis in MSCs. Direct injection of MSCs may cause tumorigenesis and an undesirable outcome. Therefore an
alternative choice to overcome this obstacle may be the utilization of differentiated neural
stem cells.
Collapse
Affiliation(s)
- Yousef Mortazavi
- Department of Molecular Medicine and Genetics, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Fatemeh Sheikhsaran
- Department of Molecular Medicine and Genetics, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | | | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Teimuri
- Health Research Institute, Infectious and Tropical Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Somayeh Shokri
- Department of Molecular Medicine and Genetics, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
5
|
Michelsen KA, Acosta-Verdugo S, Benoit-Marand M, Espuny-Camacho I, Gaspard N, Saha B, Gaillard A, Vanderhaeghen P. Area-specific reestablishment of damaged circuits in the adult cerebral cortex by cortical neurons derived from mouse embryonic stem cells. Neuron 2015; 85:982-97. [PMID: 25741724 DOI: 10.1016/j.neuron.2015.02.001] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 12/18/2014] [Accepted: 01/27/2015] [Indexed: 01/09/2023]
Abstract
Pluripotent stem-cell-derived neurons constitute an attractive source for replacement therapies, but their utility remains unclear for cortical diseases. Here, we show that neurons of visual cortex identity, differentiated in vitro from mouse embryonic stem cells (ESCs), can be transplanted successfully following a lesion of the adult mouse visual cortex. Reestablishment of the damaged pathways included long-range and reciprocal axonal projections and synaptic connections with targets of the damaged cortex. Electrophysiological recordings revealed that some grafted neurons were functional and responsive to visual stimuli. No significant integration was observed following grafting of the same neurons in motor cortex, or transplantation of embryonic motor cortex in visual cortex, indicating that successful transplantation required a match in the areal identity of grafted and lesioned neurons. These findings demonstrate that transplantation of mouse ESC-derived neurons of appropriate cortical areal identity can contribute to the reconstruction of an adult damaged cortical circuit.
Collapse
Affiliation(s)
- Kimmo A Michelsen
- Institut de Recherches en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Campus Erasme, 808 Route de Lennik, 1070 Brussels, Belgium; ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Campus Erasme, 808 Route de Lennik, 1070 Brussels, Belgium
| | - Sandra Acosta-Verdugo
- Institut de Recherches en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Campus Erasme, 808 Route de Lennik, 1070 Brussels, Belgium; ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Campus Erasme, 808 Route de Lennik, 1070 Brussels, Belgium
| | - Marianne Benoit-Marand
- INSERM U1084, Experimental and Clinical Neurosciences Laboratory, Cellular Therapies in Brain Diseases Group, University of Poitiers, 1 rue Georges Bonnet, BP 633, 86022 Poitiers Cedex, France
| | - Ira Espuny-Camacho
- Institut de Recherches en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Campus Erasme, 808 Route de Lennik, 1070 Brussels, Belgium; ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Campus Erasme, 808 Route de Lennik, 1070 Brussels, Belgium
| | - Nicolas Gaspard
- Institut de Recherches en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Campus Erasme, 808 Route de Lennik, 1070 Brussels, Belgium; ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Campus Erasme, 808 Route de Lennik, 1070 Brussels, Belgium
| | - Bhaskar Saha
- INSERM U1084, Experimental and Clinical Neurosciences Laboratory, Cellular Therapies in Brain Diseases Group, University of Poitiers, 1 rue Georges Bonnet, BP 633, 86022 Poitiers Cedex, France
| | - Afsaneh Gaillard
- INSERM U1084, Experimental and Clinical Neurosciences Laboratory, Cellular Therapies in Brain Diseases Group, University of Poitiers, 1 rue Georges Bonnet, BP 633, 86022 Poitiers Cedex, France.
| | - Pierre Vanderhaeghen
- Institut de Recherches en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Campus Erasme, 808 Route de Lennik, 1070 Brussels, Belgium; ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Campus Erasme, 808 Route de Lennik, 1070 Brussels, Belgium; WELBIO, Université Libre de Bruxelles (ULB), Campus Erasme, 808 Route de Lennik, 1070 Brussels, Belgium.
| |
Collapse
|
6
|
Becker D, McDonald JW. Approaches to repairing the damaged spinal cord: overview. HANDBOOK OF CLINICAL NEUROLOGY 2012; 109:445-61. [PMID: 23098730 DOI: 10.1016/b978-0-444-52137-8.00028-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Affecting young people during the most productive period of their lives, spinal cord injury (SCI) is a devastating problem for modern society. In the past, treating SCI seemed frustrating and hopeless because of the tremendous morbidity and mortality, life-shattering impact, and limited therapeutic options associated with the condition. Today, however, an understanding of the underlying pathophysiological mechanisms, the development of neuroprotective interventions, and progress toward regenerative interventions are increasing hope for functional restoration. In this chapter, we provide an overview of various repair strategies for the injured spinal cord. Special attention will be paid to strategies that promote spontaneous regeneration, including functional electrical stimulation, cell replacement, neuroprotection, and remyelination. The concept that limited rebuilding can provide a disproportionate improvement in quality of life is emphasized throughout. New surgical procedures, pharmacological treatments, and functional neuromuscular stimulation methods have evolved over the last decades and can improve functional outcomes after spinal cord injury; however, limiting secondary injury remains the primary goal. Tissue replacement strategies, including the use of embryonic stem cells, become an important tool and can restore function in animal models. Controlled clinical trials are now required to confirm these observations. The ultimate goal is to harness the body's own potential to replace lost central nervous system cells by activation of endogenous progenitor cell repair mechanisms.
Collapse
Affiliation(s)
- Daniel Becker
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
7
|
Sun D, Gugliotta M, Rolfe A, Reid W, McQuiston AR, Hu W, Young H. Sustained survival and maturation of adult neural stem/progenitor cells after transplantation into the injured brain. J Neurotrauma 2011; 28:961-72. [PMID: 21332258 DOI: 10.1089/neu.2010.1697] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Multipotent neural stem/progenitor cells (NS/NPCs) that are capable of generating neurons and glia offer enormous potential for treating neurological diseases. Adult NS/NPCs that reside in the mature mammalian brain can be isolated and expanded in vitro, and could be a potential source for autologous transplantation to replace cells lost to brain injury or disease. When these cells are transplanted into the normal brain, they can survive and become region-specific cells. However, it has not been reported whether these cells can survive for an extended period and become functional cells in an injured heterotypic environment. In this study, we tested survival, maturation fate, and electrophysiological properties of adult NS/NPCs after transplantation into the injured rat brain. NS/NPCs were isolated from the subventricular zone of adult Fisher 344 rats and cultured as a monolayer. Recipient adult Fisher 344 rats were first subjected to a moderate fluid percussive injury. Two days later, cultured NS/NPCs were injected into the injured brain in an area between the white matter tracts and peri-cortical region directly underneath the injury impact. The animals were sacrificed 2 or 4 weeks after transplantation for immunohistochemical staining or patch-clamp recording. We found that transplanted cells survived well at 2 and 4 weeks. Many cells migrated out of the injection site into surrounding areas expressing astrocyte or oligodendrocyte markers. Whole cell patch-clamp recording at 4 weeks showed that transplanted cells possessed typical mature glial cell properties. These data demonstrate that adult NS/NPCs can survive in an injured heterotypic environment for an extended period and become functional cells.
Collapse
Affiliation(s)
- Dong Sun
- Department of Neurosurgery, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia 23298-0631, USA.
| | | | | | | | | | | | | |
Collapse
|
8
|
Yu G, Borlongan CV, Stahl CE, Hess DC, Ou Y, Kaneko Y, Yu SJ, Yang T, Fang L, Xie X. Systemic delivery of umbilical cord blood cells for stroke therapy: a review. Restor Neurol Neurosci 2009; 27:41-54. [PMID: 19164852 DOI: 10.3233/rnn-2009-0460] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE This review paper summarizes relevant studies, discusses potential mechanisms of transplanted cell-mediated neuroprotection, and builds a case for the need to establish outcome parameters that are critical for transplantation success. In particular, we outline the advantages and disadvantages of systemic delivery of human umbilical cord blood (HUCB) cells in the field of cellular transplantation for treating ischemic stroke. METHODS A MEDLINE/PubMed systematic search of published articles in peer-reviewed journals over the last 25 years was performed focusing on the theme of HUCB as donor graft source for transplantation therapy in neurological disorders with emphasis on stroke. RESULTS Ischemic stroke remains a leading cause of human death and disability. Although stroke survivors may gain spontaneous partial functional recovery, they often suffer from sensory-motor dysfunction, behavioral/neurological alterations, and various degrees of paralysis. Currently, limited clinical intervention is available to prevent ischemic damage and restore lost function in stroke victims. Stem cells from fetal tissues, bone marrow, and HUCB has emerged in the last few years as a potential cell transplant cell source for ischemic stroke, because of their capability to differentiate into multiple cell types and the possibility that they may provide trophic support for cell survival, tissue repair, and functional recovery. CONCLUSION A growing number of studies highlight the potential of systemic delivery of HUCB cells as a novel therapeutic approach for stroke. However, additional preclinical studies are warranted to reveal the optimal HUCB transplant regimen that is safe and efficacious prior to proceeding to large-scale clinical application of these cells for stroke therapy.
Collapse
Affiliation(s)
- Guolong Yu
- Department of Cardiology, Xiangya Hospital, Southern Central University, Changsha, PR China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Gaillard A, Prestoz L, Dumartin B, Cantereau A, Morel F, Roger M, Jaber M. Reestablishment of damaged adult motor pathways by grafted embryonic cortical neurons. Nat Neurosci 2007; 10:1294-9. [PMID: 17828256 DOI: 10.1038/nn1970] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Accepted: 07/27/2007] [Indexed: 11/09/2022]
Abstract
Damage to the adult motor cortex leads to severe and frequently irreversible deficits in motor function. Transplantation of embryonic cortical neurons into the damaged adult motor cortex was previously shown to induce partial recovery, but reports on graft efferents have varied from no efferent projections to sparse innervation. Here, we grafted embryonic cortical tissue from transgenic mice overexpressing a green fluorescent protein into the damaged motor cortex of adult mice. Grafted neurons developed efferent projections to appropriate cortical and subcortical host targets, including the thalamus and spinal cord. These projections were not a result of cell fusion between the transplant and the host neurons. Host and transplanted neurons formed synaptic contacts and numerous graft efferents were myelinated. These findings demonstrate that there is substantial anatomical reestablishment of cortical circuitry following embryonic cortex grafting into the adult brain. They suggest that there is an unsuspected potential for neural cell transplantation to promote reconstruction after brain injury.
Collapse
Affiliation(s)
- Afsaneh Gaillard
- Institut de Physiologie et Biologie Cellulaires, Université de Poitiers, Centre National de la Recherche Scientifique (CNRS), 40 avenue du recteur Pineau, Poitiers, F-86022, France.
| | | | | | | | | | | | | |
Collapse
|
10
|
Harvey AR. Combined Therapies in the Treatment of Neurotrauma: Polymers, Bridges and Gene Therapy in Visual System Repair. NEURODEGENER DIS 2007; 4:300-5. [PMID: 17627133 DOI: 10.1159/000101886] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The mature central nervous system (CNS) has limited capacity for self-renewal and repair after injury or neurodegeneration, and therapeutic strategies are needed to promote the viability of damaged neurons and the regrowth of their axons. The retina and optic nerve (ON) are part of the CNS, and the visual system is widely used in experimental studies on injury and repair. OBJECTIVE To test various cellular and molecular approaches in attempts to replace retinal ganglion cells (RGCs) in depleted retinas or, more usually, promote the survival of endogenous injured RGCs and stimulate axonal regeneration after ON or intracranial optic tract (OT) injury. METHODS AND RESULTS Intraocular injections of brain-derived neurotrophic factor and ciliary neurotrophic factor (CNTF) temporarily increase RGC survival after ON injury. More sustained neuroprotection is obtained using adeno-associated viral vectors to transfect RGCs with brain-derived neurotrophic factor or CNTF genes. After ON crush, intravitreal adeno-associated viral CNTF injections also increase RGC axonal regrowth. Additional protective and growth effects are obtained after intraocular elevation of cAMP and by manipulation of protein kinase signalling pathways in RGCs. Regeneration is increased by transplanting a segment of peripheral nerve onto the cut ON. Schwann cells in peripheral nerve grafts can be genetically modified using lentiviral vectors to over-express CNTF, resulting in increased regrowth of RGC axons. After OT lesions, hydrogels have been used to bridge the injury, sometimes with the incorporation of signalling peptides or cells genetically modified to express neurotrophic factors. CONCLUSIONS There is now a general consensus that combinatorial approaches are needed to elicit sustained and effective regenerative responses in injured adult CNS neurons.
Collapse
Affiliation(s)
- Alan R Harvey
- School of Anatomy and Human Biology, The University of Western Australia, Crawley, Australia.
| |
Collapse
|
11
|
Abstract
No treatment currently exists to restore lost neurological function after stroke. A growing number of studies highlight the potential of stem cell transplantation as a novel therapeutic approach for stroke. In this review we summarize these studies, discuss potential mechanisms of action of the transplanted cells, and emphasize the need to determine parameters that are critical for transplantation success.
Collapse
Affiliation(s)
- Tonya Bliss
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | | | | | | |
Collapse
|
12
|
Harvey AR, Hu Y, Leaver SG, Mellough CB, Park K, Verhaagen J, Plant GW, Cui Q. Gene therapy and transplantation in CNS repair: The visual system. Prog Retin Eye Res 2006; 25:449-89. [PMID: 16963308 DOI: 10.1016/j.preteyeres.2006.07.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Normal visual function in humans is compromised by a range of inherited and acquired degenerative conditions, many of which affect photoreceptors and/or retinal pigment epithelium. As a consequence the majority of experimental gene- and cell-based therapies are aimed at rescuing or replacing these cells. We provide a brief overview of these studies, but the major focus of this review is on the inner retina, in particular how gene therapy and transplantation can improve the viability and regenerative capacity of retinal ganglion cells (RGCs). Such studies are relevant to the development of new treatments for ocular conditions that cause RGC loss or dysfunction, for example glaucoma, diabetes, ischaemia, and various inflammatory and neurodegenerative diseases. However, RGCs and associated central visual pathways also serve as an excellent experimental model of the adult central nervous system (CNS) in which it is possible to study the molecular and cellular mechanisms associated with neuroprotection and axonal regeneration after neurotrauma. In this review we present the current state of knowledge pertaining to RGC responses to injury, neurotrophic and gene therapy strategies aimed at promoting RGC survival, and how best to promote the regeneration of RGC axons after optic nerve or optic tract injury. We also describe transplantation methods being used in attempts to replace lost RGCs or encourage the regrowth of RGC axons back into visual centres in the brain via peripheral nerve bridges. Cooperative approaches including novel combinations of transplantation, gene therapy and pharmacotherapy are discussed. Finally, we consider a number of caveats and future directions, such as problems associated with compensatory sprouting and the reformation of visuotopic maps, the need to develop efficient, regulatable viral vectors, and the need to develop different but sequential strategies that target the cell body and/or the growth cone at appropriate times during the repair process.
Collapse
Affiliation(s)
- Alan R Harvey
- School of Anatomy and Human Biology, The University of Western Australia, Crawley, WA 6009, Australia
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Molnár Z, Cheung AFP. Towards the classification of subpopulations of layer V pyramidal projection neurons. Neurosci Res 2006; 55:105-15. [PMID: 16542744 DOI: 10.1016/j.neures.2006.02.008] [Citation(s) in RCA: 214] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Revised: 02/06/2006] [Accepted: 02/08/2006] [Indexed: 01/17/2023]
Abstract
The nature of cerebral cortical circuitry has been increasingly clarified by markers for the identification of precise cell types with specific morphology, connectivity and distinct physiological properties. Molecular markers are not only helpful in dissecting cortical circuitry, but also give insight into the mechanisms of cortical neuronal specification and differentiation. The two principal neuronal types of the cerebral cortex are the pyramidal and GABAergic cells. Pyramidal cells are excitatory and project to distant targets, while GABAergic neurons are mostly inhibitory non-pyramidal interneurons. Reliable markers for specific subtypes of interneurons are available and have been employed in the classification and functional analysis of cortical circuitry. Until recently, cortical pyramidal neurons have been considered a homogeneous class of cells. This concept is now changing as the powerful tools of molecular biology and genetics identify molecular tags for subtypes of pyramidal cells such as: Otx-1 [Frantz, G.D., Bohner, A.P., Akers, R.M., McConnell, S.K., 1994. Regulation of the POU domain gene SCIP during cerebral cortical development. J. Neurosci. 14, 472-485; Weimann, J.M., Zhang, Y.A., Levin, M.E., Devine, W.P., Brulet, P., McConnell, S.K., 1999. Cortical neurons require Otx1 for the refinement of exuberant axonal projections to subcortical targets. Neuron 24, 819-831]; SMI-32, N200 and FNP-7 [Voelker, C.C., Garin, N., Taylor, J.S., Gahwiler, B.H., Hornung, J.P., Molnár, Z., 2004. Selective neurofilament (SMI-32, FNP-7 and N200) expression in subpopulations of layer V pyramidal neurons in vivo and in vitro. Cereb. Cortex 14, 1276-1286]; ER81 [Hevner, R.F., Daza, R.A., Rubenstein, J.L., Stunnenberg, H., Olavarria, J.F., Englund, C., 2003. Beyond laminar fate: toward a molecular classification of cortical projection/pyramidal neurons. Dev. Neurosci. 25 (2-4), 139-151; Yoneshima, H., Yamasaki, S., Voelker, C., Molnár, Z., Christophe, E., Audinat, E., Takemoto, M., Tsuji, S., Fujita, I., Yamamoto, N., 2006. ER81 is expressed in a subpopulation of layer 5 projection neurons in rodent cerebral cortices. Neuroscience, 137, 401-412]; Lmo4 [Bulchand, S., Subramanian, L., Tole, S., 2003. Dynamic spatiotemporal expression of LIM genes and cofactors in the embryonic and postnatal cerebral cortex. Dev. Dyn. 226, 460-469; Arlotta, P., Molyneaux, B.J., Chen, J., Inoue, J., Kominami, R., Macklis, J.D., 2005. Neuronal subtype-specific genes that control corticospinal motor neuron development in vivo. Neuron 45 (2), 207-221]; CTIP2 [Arlotta, P., Molyneaux, B.J., Chen, J., Inoue, J., Kominami, R., Macklis, J.D., 2005. Neuronal subtype-specific genes that control corticospinal motor neuron development in vivo. Neuron 45 (2), 207-221]; Fez1 [Molyneaux, B.J., Arlotta, P., Hirata, T., Hibi, M., Macklis, J.D., 2005. Fez1 is required for the birth and specification of corticospinal motor neurons. Neuron 47 (6), 817-831; Chen, B., Schaevitz, L.R., McConnell, S.K., 2005. Fez1 regulates the differentiation and axon targeting of layer 5 subcortical projection neurons in cerebral cortex. Proc. Natl. Acad. Sci. U.S.A. 102 (47), 17184-17189]. These genes outline the numerous subtypes of pyramidal cells and are increasingly refining our previous classifications. They also indicate specific developmental programs operate in cell fate decisions. This review will describe the progress made on the correlation of these markers to each other within a specific subtype of layer V neurons with identified, stereotypic projections. Further work is needed to link these data with observations on somatodendritic morphology and physiological properties. The integrated molecular, anatomical and physiological characterisation of pyramidal neurons will lead to a much better appreciation of functional cortical circuits.
Collapse
Affiliation(s)
- Zoltán Molnár
- Department of Physiology, Anatomy and Genetics, Le Gros Clark Building, University of Oxford, South Parks Road, Oxford OX1 3QX, UK.
| | | |
Collapse
|
14
|
Bliss TM, Kelly S, Shah AK, Foo WC, Kohli P, Stokes C, Sun GH, Ma M, Masel J, Kleppner SR, Schallert T, Palmer T, Steinberg GK. Transplantation of hNT neurons into the ischemic cortex: Cell survival and effect on sensorimotor behavior. J Neurosci Res 2006; 83:1004-14. [PMID: 16496370 DOI: 10.1002/jnr.20800] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cell transplantation offers a potential new treatment for stroke. Animal studies using models that produce ischemic damage in both the striatum and the frontal cortex have shown beneficial effects when hNT cells (postmitotic immature neurons) were transplanted into the ischemic striatum. In this study, we investigated the effect of hNT cells in a model of stroke in which the striatum remains intact and damage is restricted to the cortex. hNT cells were transplanted into the ischemic cortex 1 week after stroke induced by distal middle cerebral artery occlusion (dMCAo). The cells exhibited robust survival at 4 weeks posttransplant even at the lesion border. hNT cells did not migrate, but they did extend long neurites into the surrounding parenchyma mainly through the white matter. Neurite extension was predominantly toward the lesion in ischemic animals but was bidirectional in uninjured animals. Extension of neurites through the cortex toward the lesion was also seen when there was some surviving cortical tissue between the graft and the infarct. Prolonged deficits were obtained in four tests of sensory-motor function. hNT-transplanted animals showed a significant improvement in functional recovery on one motor test, but there was no effect on the other three tests relative to control animals. Thus, despite clear evidence of graft survival and neurite extension, the functional benefit of hNT cells after ischemia is not guaranteed. Functional benefit could depend on other variables, such as infarct location, whether the cells mature, the behavioral tests employed, rehabilitation training, or as yet unidentified factors.
Collapse
Affiliation(s)
- T M Bliss
- Department of Neurosurgery, Stanford University, Stanford, California, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Emsley JG, Mitchell BD, Magavi SSP, Arlotta P, Macklis JD. The repair of complex neuronal circuitry by transplanted and endogenous precursors. NeuroRx 2005; 1:452-71. [PMID: 15717047 PMCID: PMC534952 DOI: 10.1602/neurorx.1.4.452] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
During the past three decades, research exploring potential neuronal replacement therapies has focused on replacing lost neurons by transplanting cells or grafting tissue into diseased regions of the brain. However, in the last decade, the development of novel approaches has resulted in an explosion of new research showing that neurogenesis, the birth of new neurons, normally occurs in two limited and specific regions of the adult mammalian brain, and that there are significant numbers of multipotent neural precursors in many parts of the adult mammalian brain. Recent advances in our understanding of related events of neural development and plasticity, including the role of radial glia in developmental neurogenesis, and the ability of endogenous precursors present in the adult brain to be induced to produce neurons and partially repopulate brain regions affected by neurodegenerative processes, have led to fundamental changes in the views about how the brain develops, as well as to approaches by which transplanted or endogenous precursors might be used to repair the adult brain. For example, recruitment of new neurons can be induced in a region-specific, layer-specific, and neuronal type-specific manner, and, in some cases, newly recruited neurons can form long-distance connections to appropriate targets. Elucidation of the relevant molecular controls may both allow control over transplanted precursor cells and potentially allow for the development of neuronal replacement therapies for neurodegenerative disease and other CNS injuries that might not require transplantation of exogenous cells.
Collapse
Affiliation(s)
- Jason G Emsley
- Massachusetts General Hospital/Harvard Medical School Center for Nervous System Repair, Department of Neurosurgery, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | | | | | |
Collapse
|
16
|
Mitchell BD, Emsley JG, Magavi SSP, Arlotta P, Macklis JD. Constitutive and induced neurogenesis in the adult mammalian brain: manipulation of endogenous precursors toward CNS repair. Dev Neurosci 2005; 26:101-17. [PMID: 15711054 DOI: 10.1159/000082131] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2004] [Accepted: 03/07/2004] [Indexed: 12/31/2022] Open
Abstract
Over most of the past century of modern neuroscience, it was thought that the adult brain was completely incapable of generating new neurons. During the past 3 decades, research exploring potential neuronal replacement therapies has focused on replacing lost neurons by transplanting cells or grafting tissue into diseased regions of the brain. However, in the last decade, the development of new techniques has resulted in an explosion of new research showing that neurogenesis, the birth of new neurons, normally occurs in two limited and specific regions of the adult mammalian brain and that there are significant numbers of multipotent neural precursors in many parts of the adult mammalian brain. Recent advances in our understanding of related events of neural development and plasticity, including the role of radial glia in developmental neurogenesis and the ability of endogenous precursors present in the adult brain to be induced to produce neurons and partially repopulate brain regions affected by neurodegenerative processes, have led to fundamental changes in the views about how the brain develops as well as to approaches by which endogenous precursors might be recruited to repair the adult brain. Recruitment of new neurons can be induced in a region-specific, layer-specific and neuronal-type-specific manner, and, in some cases, newly recruited neurons can form long-distance connections to appropriate targets. Elucidation of the relevant molecular controls may both allow control over transplanted precursor cells and potentially allow the development of neuronal replacement therapies for neurodegenerative disease and other CNS injuries that do not require transplantation of exogenous cells.
Collapse
Affiliation(s)
- Bartley D Mitchell
- MGH-HMS Center for Nervous System Repair, Department of Neurosurgery, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | | | |
Collapse
|
17
|
Emsley JG, Mitchell BD, Magavi SSP, Arlotta P, Macklis JD. The repair of complex neuronal circuitry by transplanted and endogenous precursors. Neurotherapeutics 2004. [DOI: 10.1007/bf03206630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
18
|
Lindvall O, Kokaia Z, Martinez-Serrano A. Stem cell therapy for human neurodegenerative disorders-how to make it work. Nat Med 2004; 10 Suppl:S42-50. [PMID: 15272269 DOI: 10.1038/nm1064] [Citation(s) in RCA: 669] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2004] [Accepted: 03/30/2004] [Indexed: 02/08/2023]
Abstract
Recent progress shows that neurons suitable for transplantation can be generated from stem cells in culture, and that the adult brain produces new neurons from its own stem cells in response to injury. These findings raise hope for the development of stem cell therapies in human neurodegenerative disorders. Before clinical trials are initiated, we need to know much more about how to control stem cell proliferation and differentiation into specific phenotypes, induce their integration into existing neural and synaptic circuits, and optimize functional recovery in animal models closely resembling the human disease.
Collapse
Affiliation(s)
- Olle Lindvall
- Laboratory of Neurogenesis and Cell Therapy, Section of Restorative Neurology, Department of Clinical Neuroscience, Wallenberg Neuroscience Center, University Hospital, SE-221 84 Lund, Sweden.
| | | | | |
Collapse
|
19
|
McDonald JW, Becker D, Holekamp TF, Howard M, Liu S, Lu A, Lu J, Platik MM, Qu Y, Stewart T, Vadivelu S. Repair of the Injured Spinal Cord and the Potential of Embryonic Stem Cell Transplantation. J Neurotrauma 2004; 21:383-93. [PMID: 15115588 DOI: 10.1089/089771504323004539] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Traditionally, treatment of spinal cord injury seemed frustrating and hopeless because of the remarkable morbidity and mortality, and restricted therapeutic options. Recent advances in neural injury and repair, and the progress towards development of neuroprotective and regenerative interventions are basis for increased optimism. Neural stem cells have opened a new arena of discovery for the field of regenerative science and medicine. Embryonic stem (ES) cells can give rise to all neural progenitors and they represent an important scientific tool for approaching neural repair. The growing number of dedicated regeneration centers worldwide exemplifies the changing perception towards the do-ability of spinal cord repair and this review was born from a presentation at one such leading center, the Kentucky Spinal Cord Injury Research Center. Current concepts of the pathophysiology, repair, and restoration of function in the damaged spinal cord are presented with an overlay of how neural stem cells, particularly ES cells, fit into the picture as important scientific tools and therapeutic targets. We focus on the use of genetically tagged and selectable ES cell lines for neural induction and transplantation. Unique features of ES cells, including indefinite replication, pluripotency, and genetic flexibility, provide strong tools to address questions of neural repair. Selective marker expression in transplanted ES cell derived neural cells is providing new insights into transplantation and repair not possible previously. These features of ES cells will produce a predictable and explosive growth in scientific tools that will translate into discoveries and rapid progress in neural repair.
Collapse
Affiliation(s)
- John W McDonald
- Department of Neurology and Neurological Surgery, Washington University School of Medicine, St Louis, Missouri, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Sayles M, Jain M, Barker RA. The cellular repair of the brain in Parkinson's disease—past, present and future. Transpl Immunol 2004; 12:321-42. [PMID: 15157925 DOI: 10.1016/j.trim.2003.12.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Damage to the central nervous system was once considered irreparable. However, there is now growing optimism that neural transplant therapies may one day enable complete circuit reconstruction and thus functional benefit for patients with neurodegenerative conditions such as Parkinson's disease (PD), and perhaps even those with more widespread damage such as stroke patients. Indeed, since the late 1980s hundreds of patients with Parkinson's disease have received allografts of dopamine-rich embryonic human neural tissue. The grafted tissue has been shown to survive and ameliorate many of the symptoms of the disease, both in the clinical setting and in animal models of the disease. However, practical problems associated with tissue procurement and storage, and ethical concerns over using aborted human fetal tissue have fuelled a search for alternative sources of suitable material for grafting. In particular, stem cells and xenogeneic embryonic dopamine-rich neural tissue are being explored, both of which bring their own practical and ethical dilemmas. Here we review the progress made in neural transplantation, both in the laboratory and in the clinic with particular attention to the development of stem cell and xenogeneic tissue based therapy.
Collapse
Affiliation(s)
- Mark Sayles
- Cambridge Centre for Brain Repair, University of Cambridge, Forvie Site, Robinson Way, Cambridge, CB2 2PY, UK
| | | | | |
Collapse
|
21
|
Gates MA, Coupe VM, Torres EM, Fricker-Gates RA, Dunnett SB. Spatially and temporally restricted chemoattractive and chemorepulsive cues direct the formation of the nigro-striatal circuit. Eur J Neurosci 2004; 19:831-44. [PMID: 15009130 DOI: 10.1111/j.1460-9568.2004.03213.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Identifying cellular and molecular mechanisms that direct the formation of circuits during development is thought to be the key to reconstructing circuitry lost in adulthood to neurodegenerative disorders or common traumatic injuries. Here we have tested whether brain regions situated in and around the developing nigro-striatal pathway have particular chemoattractive or chemorepulsive effects on mesencephalic dopamine axons, and whether these effects are temporally restricted. Mesencephalic explants from embryonic day (E)12 rats were either cultured alone or with coexplants from the embryonic, postnatal or adult medial forebrain bundle region (MFB), striatum, cortex, brain stem or thalamus. Statistical analysis of axon growth responses revealed a potent chemoattraction to the early embryonic MFB (i.e. E12-15) that diminished (temporally) in concert with the emergence of chemoattraction to the striatum in the late embryonic period (i.e. E19+). Repulsive responses by dopaminergic axons were obvious in cocultures with embryonic brain stem and cortex, however, there was no effect by the thalamus. Such results suggest that the nigro-striatal circuit is formed via spatially and temporally distributed chemoattractive and chemorepulsive elements that: (i) orientate the circuit in a rostral direction (via brain stem repulsion); (ii) initiate outgrowth (via MFB attraction); (iii) prevent growth beyond the target region (via cortical repulsion); and (iv) facilitate target innervation (via striatal chemoattraction). Subsequent studies will focus on identifying genes responsible for these events so that their products may be exploited to increase the integration of neuronal transplants to the mature brain, or provide a means to (re)establish the nigro-striatal circuit in vivo.
Collapse
Affiliation(s)
- Monte A Gates
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, Wales, CF10 3US, UK.
| | | | | | | | | |
Collapse
|
22
|
Late-stage immature neocortical neurons reconstruct interhemispheric connections and form synaptic contacts with increased efficiency in adult mouse cortex undergoing targeted neurodegeneration. J Neurosci 2002. [PMID: 12019324 DOI: 10.1523/jneurosci.22-10-04045.2002] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the neocortex, the effectiveness of potential cellular repopulation therapies for diseases involving neuronal loss may depend critically on whether newly incorporated cells can differentiate appropriately into precisely the right kind of neuron, re-establish precise long-distance connections, and reconstruct complex functional circuitry. Here, we test the hypothesis that increased efficiency of connectivity could be achieved if precursors could be more fully differentiated toward desired phenotypes. We compared embryonic neuroblasts and immature murine neurons subregionally dissected from either embryonic day 17 (E17) (Shin et al., 2000) or E19 primary somatosensory (S1) cortex and postnatal day 3 (P3) purified callosal projection neurons (CPNs) with regard to neurotransmitter and receptor phenotype and afferent synapse formation after transplantation into adult mouse S1 cortex undergoing targeted apoptotic degeneration of layer II/III and V CPNs. Two weeks after transplantation, neurons from all developmental stages were found dispersed within layers II/III and V, many with morphological features typical of large pyramidal neurons. Retrograde labeling with FluoroGold revealed that 42 +/- 2% of transplanted E19 immature S1 neurons formed connections with the contralateral S1 cortex by 12 weeks after transplantation, compared with 23 +/- 7% of E17 neurons. A greater percentage of E19-derived neurons received synapses (77 +/- 1%) compared with E17-derived neurons (67 +/- 2%). Similar percentages of both E17 and E19 donor-derived neurons expressed neurotransmitters and receptors [glutamate, aspartate, GABA, GABA receptor (GABA-R), NMDA-R, AMPA-R, and kainate-R] appropriate for endogenous adult CPNs progressively over a period of 2-12 weeks after transplantation. Although P3 fluorescence-activated cell sorting-purified neurons also expressed these mature phenotypic markers after transplantation, their survival in vivo was poor. We conclude that later-stage and region-specific immature neurons develop a mature CPN phenotype and make appropriate connections with recipient circuitry with increased efficiency. However, at postnatal stages of development, limitations in survival outweigh this increased efficiency. These results suggest that efforts to direct the differentiation of earlier precursors precisely along specific desired neuronal lineages could potentially make possible the highly efficient reconstruction of complex neocortical and other CNS circuitry.
Collapse
|