1
|
Abstract
Specialized pro-resolving mediators (SPMs), including resolvins, protectins, and maresins, are endogenous lipid mediators that are synthesized from omega-3 polyunsaturated fatty acids during the acute phase or resolution phase of inflammation. Synthetic SPMs possess broad safety profiles and exhibit potent actions in resolving inflammation in preclinical models. Accumulating evidence in the past decade has demonstrated powerful analgesia of exogenous SPMs in rodent models of inflammatory, neuropathic, and cancer pain. Furthermore, endogenous SPMs are produced by sham surgery and neuromodulation (e.g., vagus nerve stimulation). SPMs produce their beneficial actions through multiple G protein-coupled receptors, expressed by immune cells, glial cells, and neurons. Notably, loss of SPM receptors impairs the resolution of pain. I also highlight the emerging role of SPMs in the control of itch. Pharmacological targeting of SPMs or SPM receptors has the potential to lead to novel therapeutics for pain and itch as emerging approaches in resolution pharmacology.
Collapse
Affiliation(s)
- Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, and Departments of Neurobiology and Cell Biology, Duke University Medical Center, Durham, North Carolina, USA;
| |
Collapse
|
2
|
Cambruzzi M, Borgeat K, MacFarlane P. Anaesthetic management of a dog with severe pulmonary stenosis and R2A right coronary artery anomaly undergoing placement of a hybrid transventricular pulmonary stent. VETERINARY RECORD CASE REPORTS 2022. [DOI: 10.1002/vrc2.322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/10/2022]
Affiliation(s)
- Martina Cambruzzi
- Small Animal Hospital Langford Vets University of Bristol Langford UK
| | - Kieran Borgeat
- Small Animal Hospital Langford Vets University of Bristol Langford UK
| | - Paul MacFarlane
- Small Animal Hospital Langford Vets University of Bristol Langford UK
| |
Collapse
|
3
|
Skin-resident dendritic cells mediate postoperative pain via CCR4 on sensory neurons. Proc Natl Acad Sci U S A 2022; 119:2118238119. [PMID: 35046040 PMCID: PMC8794894 DOI: 10.1073/pnas.2118238119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 12/01/2021] [Indexed: 01/08/2023] Open
Abstract
Interactions between the nervous and immune systems control the generation and maintenance of inflammatory pain. However, the immune cells and mediators controlling this response remain poorly characterized. We identified the cytokines CCL22 and CCL17 as secreted mediators that act directly on sensory neurons to mediate postoperative pain via their shared receptor, CCR4. We also show that skin-resident dendritic cells are key contributors to the inflammatory pain response. Blocking the interaction between these dendritic cell–derived ligands and their receptor can abrogate the pain response, highlighting CCR4 antagonists as potentially effective therapies for postoperative pain. Our findings identify functions for these tissue-resident myeloid cells and uncover mechanisms underlying pain pathophysiology. Inflammatory pain, such as hypersensitivity resulting from surgical tissue injury, occurs as a result of interactions between the immune and nervous systems with the orchestrated recruitment and activation of tissue-resident and circulating immune cells to the site of injury. Our previous studies identified a central role for Ly6Clow myeloid cells in the pathogenesis of postoperative pain. We now show that the chemokines CCL17 and CCL22, with their cognate receptor CCR4, are key mediators of this response. Both chemokines are up-regulated early after tissue injury by skin-resident dendritic and Langerhans cells to act on peripheral sensory neurons that express CCR4. CCL22, and to a lesser extent CCL17, elicit acute mechanical and thermal hypersensitivity when administered subcutaneously; this response abrogated by pharmacological blockade or genetic silencing of CCR4. Electrophysiological assessment of dissociated sensory neurons from naïve and postoperative mice showed that CCL22 was able to directly activate neurons and enhance their excitability after injury. These responses were blocked using C 021 and small interfering RNA (siRNA)-targeting CCR4. Finally, our data show that acute postoperative pain is significantly reduced in mice lacking CCR4, wild-type animals treated with CCR4 antagonist/siRNA, as well as transgenic mice depleted of dendritic cells. Together, these results suggest an essential role for the peripheral CCL17/22:CCR4 axis in the genesis of inflammatory pain via direct communication between skin-resident dendritic cells and sensory neurons, opening therapeutic avenues for its control.
Collapse
|
4
|
Peigneur S, da Costa Oliveira C, de Sousa Fonseca FC, McMahon KL, Mueller A, Cheneval O, Cristina Nogueira Freitas A, Starobova H, Dimitri Gama Duarte I, Craik DJ, Vetter I, de Lima ME, Schroeder CI, Tytgat J. Small cyclic sodium channel inhibitors. Biochem Pharmacol 2020; 183:114291. [PMID: 33075312 DOI: 10.1016/j.bcp.2020.114291] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/15/2020] [Revised: 10/05/2020] [Accepted: 10/14/2020] [Indexed: 01/10/2023]
Abstract
Voltage-gated sodium (NaV) channels play crucial roles in a range of (patho)physiological processes. Much interest has arisen within the pharmaceutical industry to pursue these channels as analgesic targets following overwhelming evidence that NaV channel subtypes NaV1.7-NaV1.9 are involved in nociception. More recently, NaV1.1, NaV1.3 and NaV1.6 have also been identified to be involved in pain pathways. Venom-derived disulfide-rich peptide toxins, isolated from spiders and cone snails, have been used extensively as probes to investigate these channels and have attracted much interest as drug leads. However, few peptide-based leads have made it as drugs due to unfavourable physiochemical attributes including poor in vivo pharmacokinetics and limited oral bioavailability. The present work aims to bridge the gap in the development pipeline between drug leads and drug candidates by downsizing these larger venom-derived NaV inhibitors into smaller, more "drug-like" molecules. Here, we use molecular engineering of small cyclic peptides to aid in the determination of what drives subtype selectivity and molecular interactions of these downsized inhibitors across NaV subtypes. We designed a series of small, stable and novel NaV probes displaying NaV subtype selectivity and potency in vitro coupled with potent in vivo analgesic activity, involving yet to be elucidated analgesic pathways in addition to NaV subtype modulation.
Collapse
Affiliation(s)
- Steve Peigneur
- Toxicology and Pharmacology, Katholieke Universiteit (KU) Leuven, Campus Gasthuisberg, Leuven, Belgium; Department de Bioquímica e Imunologia, Laboratório de Venenos e Toxinas Animais, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo-Horizonte, Brazil
| | - Cristina da Costa Oliveira
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Flávia Cristina de Sousa Fonseca
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Kirsten L McMahon
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Alexander Mueller
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Olivier Cheneval
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Ana Cristina Nogueira Freitas
- Department de Bioquímica e Imunologia, Laboratório de Venenos e Toxinas Animais, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo-Horizonte, Brazil
| | - Hana Starobova
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Igor Dimitri Gama Duarte
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - David J Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld 4072, Australia; School of Pharmacy, The University of Queensland, Woolloongabba, Qld 4102, Australia
| | - Maria Elena de Lima
- Department de Bioquímica e Imunologia, Laboratório de Venenos e Toxinas Animais, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo-Horizonte, Brazil; Santa Casa de Belo Horizonte: Instituto de Ensino e Pesquisa, Brazil
| | - Christina I Schroeder
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld 4072, Australia; National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA.
| | - Jan Tytgat
- Toxicology and Pharmacology, Katholieke Universiteit (KU) Leuven, Campus Gasthuisberg, Leuven, Belgium.
| |
Collapse
|
5
|
Pan Y, Xiao Y, Pei Z, Cummins TR. S-Palmitoylation of the sodium channel Nav1.6 regulates its activity and neuronal excitability. J Biol Chem 2020; 295:6151-6164. [PMID: 32161114 DOI: 10.1074/jbc.ra119.012423] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/23/2019] [Revised: 03/10/2020] [Indexed: 12/12/2022] Open
Abstract
S-Palmitoylation is a reversible post-translational lipid modification that dynamically regulates protein functions. Voltage-gated sodium channels are subjected to S-palmitoylation and exhibit altered functions in different S-palmitoylation states. Our aim was to investigate whether and how S-palmitoylation regulates Nav1.6 channel function and to identify S-palmitoylation sites that can potentially be pharmacologically targeted. Acyl-biotin exchange assay showed that Nav1.6 is modified by S-palmitoylation in the mouse brain and in a Nav1.6 stable HEK 293 cell line. Using whole-cell voltage clamp, we discovered that enhancing S-palmitoylation with palmitic acid increases Nav1.6 current, whereas blocking S-palmitoylation with 2-bromopalmitate reduces Nav1.6 current and shifts the steady-state inactivation in the hyperpolarizing direction. Three S-palmitoylation sites (Cys1169, Cys1170, and Cys1978) were identified. These sites differentially modulate distinct Nav1.6 properties. Interestingly, Cys1978 is exclusive to Nav1.6 among all Nav isoforms and is evolutionally conserved in Nav1.6 among most species. Cys1978 S-palmitoylation regulates current amplitude uniquely in Nav1.6. Furthermore, we showed that eliminating S-palmitoylation at specific sites alters Nav1.6-mediated excitability in dorsal root ganglion neurons. Therefore, our study reveals S-palmitoylation as a potential isoform-specific mechanism to modulate Nav activity and neuronal excitability in physiological and diseased conditions.
Collapse
Affiliation(s)
- Yanling Pan
- Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Yucheng Xiao
- Department of Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202
| | - Zifan Pei
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Theodore R Cummins
- Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202; Department of Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana 46202.
| |
Collapse
|
6
|
Expression and Role of Voltage-Gated Sodium Channels in Human Dorsal Root Ganglion Neurons with Special Focus on Nav1.7, Species Differences, and Regulation by Paclitaxel. Neurosci Bull 2017; 34:4-12. [PMID: 28424991 PMCID: PMC5648619 DOI: 10.1007/s12264-017-0132-3] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/13/2017] [Accepted: 03/08/2017] [Indexed: 12/20/2022] Open
Abstract
Voltage-gated sodium channels (Navs) play an important role in human pain sensation. However, the expression and role of Nav subtypes in native human sensory neurons are unclear. To address this issue, we obtained human dorsal root ganglion (hDRG) tissues from healthy donors. PCR analysis of seven DRG-expressed Nav subtypes revealed that the hDRG has higher expression of Nav1.7 (~50% of total Nav expression) and lower expression of Nav1.8 (~12%), whereas the mouse DRG has higher expression of Nav1.8 (~45%) and lower expression of Nav1.7 (~18%). To mimic Nav regulation in chronic pain, we treated hDRG neurons in primary cultures with paclitaxel (0.1–1 μmol/L) for 24 h. Paclitaxel increased the Nav1.7 but not Nav1.8 expression and also increased the transient Na+ currents and action potential firing frequency in small-diameter (<50 μm) hDRG neurons. Thus, the hDRG provides a translational model in which to study “human pain in a dish” and test new pain therapeutics.
Collapse
|
7
|
Barbosa C, Cummins TR. Unusual Voltage-Gated Sodium Currents as Targets for Pain. CURRENT TOPICS IN MEMBRANES 2016; 78:599-638. [PMID: 27586296 DOI: 10.1016/bs.ctm.2015.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/19/2022]
Abstract
Pain is a serious health problem that impacts the lives of many individuals. Hyperexcitability of peripheral sensory neurons contributes to both acute and chronic pain syndromes. Because voltage-gated sodium currents are crucial to the transmission of electrical signals in peripheral sensory neurons, the channels that underlie these currents are attractive targets for pain therapeutics. Sodium currents and channels in peripheral sensory neurons are complex. Multiple-channel isoforms contribute to the macroscopic currents in nociceptive sensory neurons. These different isoforms exhibit substantial variations in their kinetics and pharmacology. Furthermore, sodium current complexity is enhanced by an array of interacting proteins that can substantially modify the properties of voltage-gated sodium channels. Resurgent sodium currents, atypical currents that can enhance recovery from inactivation and neuronal firing, are increasingly being recognized as playing potentially important roles in sensory neuron hyperexcitability and pain sensations. Here we discuss unusual sodium channels and currents that have been identified in nociceptive sensory neurons, describe what is known about the molecular determinants of the complex sodium currents in these neurons. Finally, we provide an overview of therapeutic strategies to target voltage-gated sodium currents in nociceptive neurons.
Collapse
Affiliation(s)
- C Barbosa
- Indiana University School of Medicine, Indianapolis, IN, United States
| | - T R Cummins
- Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
8
|
Barbosa C, Tan ZY, Wang R, Xie W, Strong JA, Patel RR, Vasko MR, Zhang JM, Cummins TR. Navβ4 regulates fast resurgent sodium currents and excitability in sensory neurons. Mol Pain 2015; 11:60. [PMID: 26408173 PMCID: PMC4582632 DOI: 10.1186/s12990-015-0063-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/10/2015] [Accepted: 09/10/2015] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Increased electrical activity in peripheral sensory neurons including dorsal root ganglia (DRG) and trigeminal ganglia neurons is an important mechanism underlying pain. Voltage gated sodium channels (VGSC) contribute to the excitability of sensory neurons and are essential for the upstroke of action potentials. A unique type of VGSC current, resurgent current (INaR), generates an inward current at repolarizing voltages through an alternate mechanism of inactivation referred to as open-channel block. INaRs are proposed to enable high frequency firing and increased INaRs in sensory neurons are associated with pain pathologies. While Nav1.6 has been identified as the main carrier of fast INaR, our understanding of the mechanisms that contribute to INaR generation is limited. Specifically, the open-channel blocker in sensory neurons has not been identified. Previous studies suggest Navβ4 subunit mediates INaR in central nervous system neurons. The goal of this study was to determine whether Navβ4 regulates INaR in DRG sensory neurons. RESULTS Our immunocytochemistry studies show that Navβ4 expression is highly correlated with Nav1.6 expression predominantly in medium-large diameter rat DRG neurons. Navβ4 knockdown decreased endogenous fast INaR in medium-large diameter neurons as measured with whole-cell voltage clamp. Using a reduced expression system in DRG neurons, we isolated recombinant human Nav1.6 sodium currents in rat DRG neurons and found that overexpression of Navβ4 enhanced Nav1.6 INaR generation. By contrast neither overexpression of Navβ2 nor overexpression of a Navβ4-mutant, predicted to be an inactive form of Navβ4, enhanced Nav1.6 INaR generation. DRG neurons transfected with wild-type Navβ4 exhibited increased excitability with increases in both spontaneous activity and evoked activity. Thus, Navβ4 overexpression enhanced INaR and excitability, whereas knockdown or expression of mutant Navβ4 decreased INaR generation. CONCLUSION INaRs are associated with inherited and acquired pain disorders. However, our ability to selectively target and study this current has been hindered due to limited understanding of how it is generated in sensory neurons. This study identified Navβ4 as an important regulator of INaR and excitability in sensory neurons. As such, Navβ4 is a potential target for the manipulation of pain sensations.
Collapse
Affiliation(s)
- Cindy Barbosa
- Department of Pharmacology and Toxicology, Indiana University, Indianapolis, IN, USA. .,Department of Pharmacology and Toxicology, Stark Neurosciences Research Institute, 320 West 25th Street, NB-414F, Indianapolis, IN, 46202-2266, USA.
| | - Zhi-Yong Tan
- Department of Pharmacology and Toxicology, Indiana University, Indianapolis, IN, USA. .,Department of Pharmacology and Toxicology, Stark Neurosciences Research Institute, 320 West 25th Street, NB-414F, Indianapolis, IN, 46202-2266, USA.
| | - Ruizhong Wang
- Department of Pharmacology and Toxicology, Indiana University, Indianapolis, IN, USA.
| | - Wenrui Xie
- Department of Anesthesiology, University of Cincinnati, Cincinnati, OH, USA.
| | - Judith A Strong
- Department of Anesthesiology, University of Cincinnati, Cincinnati, OH, USA.
| | - Reesha R Patel
- Medical Neuroscience Graduate Program, Indiana University School of Medicine, Indianapolis, IN, USA. .,Department of Pharmacology and Toxicology, Stark Neurosciences Research Institute, 320 West 25th Street, NB-414F, Indianapolis, IN, 46202-2266, USA.
| | - Michael R Vasko
- Department of Pharmacology and Toxicology, Indiana University, Indianapolis, IN, USA. .,Department of Pharmacology and Toxicology, Stark Neurosciences Research Institute, 320 West 25th Street, NB-414F, Indianapolis, IN, 46202-2266, USA.
| | - Jun-Ming Zhang
- Department of Anesthesiology, University of Cincinnati, Cincinnati, OH, USA.
| | - Theodore R Cummins
- Department of Pharmacology and Toxicology, Indiana University, Indianapolis, IN, USA. .,Department of Pharmacology and Toxicology, Stark Neurosciences Research Institute, 320 West 25th Street, NB-414F, Indianapolis, IN, 46202-2266, USA.
| |
Collapse
|
9
|
Goyal S, Singla S, Kumar D, Menaria G. Comparison of the Effects of Zonisamide, Ethosuximide and Pregabalin in the Chronic Constriction Injury Induced Neuropathic Pain in Rats. Ann Med Health Sci Res 2015; 5:189-96. [PMID: 26097761 PMCID: PMC4455009 DOI: 10.4103/2141-9248.157501] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/23/2022] Open
Abstract
Background: Evidence has been generated that various anticonvulsant agents provide relief of several chronic pain syndromes and therefore as an alternative to opioids, nonsteroidal anti-inflammatory, and tricyclic antidepressant drugs in the treatment of neuropathic pain. The results of these studies thus raise the question of whether all anticonvulsant drugs or particular mechanistic classes may be efficacious in the treatment of neuropathic pain syndromes. Aim: The aim was to compare the clinically used anticonvulsant drugs which are differ in their mechanism of action in a chronic pain model, the chronic constriction injury, in order to determine if all anticonvulsants or only particular mechanistic classes of anticonvulsants are analgesic. Materials and Methods: The study included zonisamide, ethosuximide and pregabalin. All compounds were anticonvulsant with diverse mechanism of actions. The peripheral neuropathic pain was induced by chronic constriction injury of the sciatic nerve in male Sprague-Dawley rats. Zonisamide (80 and 40 mg/kg), ethosuximide (300 and 100 mg/kg), pregabalin (50 and 20 mg/kg), and saline was administered intraperitoneally in respective groups in a blinded, randomized manner from postoperative day (POD) 7-13. Paw withdrawal duration to spontaneous pain, chemical allodynia and mechanical hyperalgesia and paw withdrawal latency to mechanical allodynia and thermal hyperalgesia were tested before drug administration on POD7 and after administration on POD 7, 9, 11 and 13. Results: The present study suggests that these drugs could provide an effective alternative in the treatment of neuropathic pain. However, zonisamide and pregabalin appears to have suitable efficacy to treat a wide spectrum of neuropathic pain condition. Conclusion: The present findings suggest that the inhibition of N-type calcium channels or voltage-gated sodium and T-type calcium channels provides better analgesic potential instead of inhibition of T-type calcium channels alone.
Collapse
Affiliation(s)
- S Goyal
- Department of Pharmacology, Pacific College of Pharmacy, Pacific University, Udaipur, Rajasthan, India
| | - S Singla
- Department of Pharmacology, Pacific College of Pharmacy, Pacific University, Udaipur, Rajasthan, India
| | - D Kumar
- Department of Pharmacology, Pacific College of Pharmacy, Pacific University, Udaipur, Rajasthan, India
| | - G Menaria
- Department of Pharmacology, Pacific College of Pharmacy, Pacific University, Udaipur, Rajasthan, India
| |
Collapse
|
10
|
Abstract
Voltage-gated sodium channels (VGSC) are the primary mediators of electrical signal amplification and propagation in excitable cells. VGSC subtypes are diverse, with different biophysical and pharmacological properties, and varied tissue distribution. Altered VGSC expression and/or increased VGSC activity in sensory neurons is characteristic of inflammatory and neuropathic pain states. Therefore, VGSC modulators could be used in prospective analgesic compounds. VGSCs have specific binding sites for four conotoxin families: μ-, μO-, δ- and ί-conotoxins. Various studies have identified that the binding site of these peptide toxins is restricted to well-defined areas or domains. To date, only the μ- and μO-family exhibit analgesic properties in animal pain models. This review will focus on conotoxins from the μ- and μO-families that act on neuronal VGSCs. Examples of how these conotoxins target various pharmacologically important neuronal ion channels, as well as potential problems with the development of drugs from conotoxins, will be discussed.
Collapse
Affiliation(s)
- Oliver Knapp
- Health Innovations Research Institute, RMIT University, Melbourne, Victoria 3083, Australia.
| | | | | |
Collapse
|
11
|
Davis CG. Mechanisms of chronic pain from whiplash injury. J Forensic Leg Med 2012; 20:74-85. [PMID: 23357391 DOI: 10.1016/j.jflm.2012.05.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/21/2011] [Revised: 05/03/2012] [Accepted: 05/30/2012] [Indexed: 10/28/2022]
Abstract
This article is to provide insights into the mechanisms underlying chronic pain from whiplash injury. Studies show that injury produces plasticity changes of different neuronal structures that are responsible for amplification of nociception and exaggerated pain responses. There is consistent evidence for hypersensitivity of the central nervous system to sensory stimulation in chronic pain after whiplash injury. Tissue damage, detected or not by the available diagnostic methods, is probably the main determinant of central hypersensitivity. Different mechanisms underlie and co-exist in the chronic whiplash condition. Spinal cord hyperexcitability in patients with chronic pain after whiplash injury can cause exaggerated pain following low intensity nociceptive or innocuous peripheral stimulation. Spinal hypersensitivity may explain pain in the absence of detectable tissue damage. Whiplash is a heterogeneous condition with some individuals showing features suggestive of neuropathic pain. A predominantly neuropathic pain component is related to a higher pain/disability level.
Collapse
|
12
|
Delaney A, Colvin LA, Fallon MT, Dalziel RG, Mitchell R, Fleetwood-Walker SM. Postherpetic neuralgia: from preclinical models to the clinic. Neurotherapeutics 2009; 6:630-7. [PMID: 19789068 PMCID: PMC5084285 DOI: 10.1016/j.nurt.2009.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/02/2009] [Accepted: 07/09/2009] [Indexed: 01/12/2023] Open
Abstract
Postherpetic neuralgia (PHN), a common complication of herpes zoster, which results from reactivation of varicella zoster virus, is a challenging neuropathic pain syndrome. The incidence and severity of herpes zoster and PHN increases with immune impairment or age and may become a greater burden both in terms of health economics and individual suffering. A clearer understanding of the underlying mechanisms of this disease and translation of preclinical outcomes to the clinic may lead to more efficacious treatment options. Here we give an overview of recent findings from preclinical models and clinical research on PHN.
Collapse
Affiliation(s)
- Ada Delaney
- grid.4305.20000000419367988Centre for Neuroregeneration, University of Edinburgh, Chancellor’s Building, 49 Little France Crescent, EH16 4SB UK
| | - Lesley A. Colvin
- grid.4305.20000000419367988Department of Anaesthesia, Critical Care, and Pain Medicine, University of Edinburgh, Edinburgh, UK
| | - Marie T. Fallon
- grid.4305.20000000419367988Edinburgh Cancer Research Centre, Western General Hospital, University of Edinburgh, Edinburgh, UK
| | - Robert G. Dalziel
- grid.4305.20000000419367988The Roslin Institute and Centre for Infectious Diseases, University of Edinburgh, Edinburgh, UK
| | - Rory Mitchell
- grid.4305.20000000419367988Centre for Integrative Physiology, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, UK
| | - Susan M. Fleetwood-Walker
- grid.4305.20000000419367988Centre for Neuroregeneration, University of Edinburgh, Chancellor’s Building, 49 Little France Crescent, EH16 4SB UK
| |
Collapse
|
13
|
Schwartzman RJ, Patel M, Grothusen JR, Alexander GM. Efficacy of 5-Day Continuous Lidocaine Infusion for the Treatment of Refractory Complex Regional Pain Syndrome. PAIN MEDICINE 2009; 10:401-412. [DOI: 10.1111/j.1526-4637.2009.00573.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 08/30/2023]
|
14
|
Abstract
BACKGROUND In clinical practice, the analgesic effects of epidurally administered local anesthetics on chronic pain sometimes outlast the duration of drug action expected from their pharmacokinetics. To investigate the underlying mechanisms of this prolonged effect, we examined the effects of ropivacaine, a local anesthetic, on pain-related behavior in a rat model of neuropathic pain. We also analyzed changes in the expression of nerve growth factor (NGF), which is involved in plasticity of the nociceptive circuit after nerve injury. METHODS In a rat model of neuropathic pain produced by chronic constrictive injury (CCI) of the sciatic nerve, thermal hyperalgesia, and mechanical allodynia were observed from Day 3 after surgery. Ropivacaine or saline was administered through an epidural catheter once a day, every day, and from Days 7-13 after the CCI operation. NGF content was measured in the L4 dorsal root ganglion, the hindpaw skin, the L4/5 dorsal spinal cord, and the sciatic nerve, using enzyme immunoassay. RESULTS The latency to withdrawal from thermal stimuli on the ipsilateral paw pads of CCI rats was significantly increased 4 days after the beginning of ropivacaine treatment, and thermal hyperalgesia was almost fully relieved. Similarly, mechanical allodynia was partially reduced after ropivacaine treatment. NGF content was increased in the L4 dorsal root ganglion on the ipsilateral, but not the contralateral, side, in CCI rats treated with ropivacaine. CONCLUSION Repetitive administration of ropivacaine into the epidural space in CCI rats exerts an analgesic effect, possibly by inducing a plastic change in the nociceptive circuit.
Collapse
|
15
|
Cheng JK, Ji RR. Intracellular signaling in primary sensory neurons and persistent pain. Neurochem Res 2008; 33:1970-8. [PMID: 18427980 DOI: 10.1007/s11064-008-9711-z] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/06/2007] [Accepted: 04/07/2008] [Indexed: 02/08/2023]
Abstract
During evolution, living organisms develop a specialized apparatus called nociceptors to sense their environment and avoid hazardous situations. Intense stimulation of high threshold C- and Adelta-fibers of nociceptive primary sensory neurons will elicit pain, which is acute and protective under normal conditions. A further evolution of the early pain system results in the development of nociceptor sensitization under injury or disease conditions, leading to enhanced pain states. This sensitization in the peripheral nervous system is also called peripheral sensitization, as compared to its counterpart, central sensitization. Inflammatory mediators such as proinflammatory cytokines (TNF-alpha, IL-1beta), PGE(2), bradykinin, and NGF increase the sensitivity and excitability of nociceptors by enhancing the activity of pronociceptive receptors and ion channels (e.g., TRPV1 and Na(v)1.8). We will review the evidence demonstrating that activation of multiple intracellular signal pathways such as MAPK pathways in primary sensory neurons results in the induction and maintenance of peripheral sensitization and produces persistent pain. Targeting the critical signaling pathways in the periphery will tackle pain at the source.
Collapse
Affiliation(s)
- Jen-Kun Cheng
- Department of Anesthesiology, Pain Research Center, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, MRB 611, Boston, MA 02115, USA
| | | |
Collapse
|
16
|
Hogan QH, Poroli M. Hyperpolarization-activated current (I(h)) contributes to excitability of primary sensory neurons in rats. Brain Res 2008; 1207:102-10. [PMID: 18377879 DOI: 10.1016/j.brainres.2008.02.066] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/21/2007] [Revised: 02/17/2008] [Accepted: 02/19/2008] [Indexed: 11/19/2022]
Abstract
In various excitable tissues, the hyperpolarization-activated, cyclic nucleotide-gated current (I(h)) contributes to burst firing by depolarizing the membrane after a period of hyperpolarization. Alternatively, conductance through open channels I(h) channels of the resting membrane may impede excitability. Since primary sensory neurons of the dorsal root ganglion show both loss of I(h) and elevated excitability after peripheral axonal injury, we examined the contribution of I(h) to excitability of these neurons. We used a sharp electrode intracellular technique to record from neurons in nondissociated ganglia to avoid potential artefacts due to tissue dissociation and cytosolic dialysis. Neurons were categorized by conduction velocity. I(h) induced by hyperpolarizing voltage steps was completely blocked by ZD7288 (approximately 10 microM), which concurrently eliminated the depolarizing sag of transmembrane potential during hyperpolarizing current injection. I(h) was most prominent in rapidly conducting Aalpha/beta neurons, in which ZD7288 produced resting membrane hyperpolarization, slowed conduction velocity, prolonged action potential (AP) duration, and elevated input resistance. The rheobase current necessary to trigger an AP was elevated and repetitive firing was inhibited by ZD7288, indicating an excitatory influence of I(h). Less I(h) was evident in more slowly conducting Adelta neurons, resulting in diminished effects of ZD7288 on AP parameters. Repetitive firing in these neurons was also inhibited by ZD7288, and the peak frequency of AP transmission during tetanic bursts was diminished by ZD7288. Slowly conducting C-type neurons showed minimal I(h), and no effect of ZD7288 on excitability was seen. After spinal nerve ligation, axotomized neurons had less I(h) compared to control neurons and showed minimal effects of ZD7288 application. We conclude that I(h) supports sensory neuron excitability, and loss of I(h) is not a factor contributing to increased neuronal excitability after peripheral axonal injury.
Collapse
Affiliation(s)
- Quinn H Hogan
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | | |
Collapse
|
17
|
Prescott SA, Sejnowski TJ, De Koninck Y. Reduction of anion reversal potential subverts the inhibitory control of firing rate in spinal lamina I neurons: towards a biophysical basis for neuropathic pain. Mol Pain 2006; 2:32. [PMID: 17040565 PMCID: PMC1624821 DOI: 10.1186/1744-8069-2-32] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/25/2006] [Accepted: 10/13/2006] [Indexed: 01/24/2023] Open
Abstract
Background Reduction of the transmembrane chloride gradient in spinal lamina I neurons contributes to the cellular hyperexcitability producing allodynia and hyperalgesia after peripheral nerve injury. The resultant decrease in anion reversal potential (i.e. shift in Eanion to less negative potentials) reduces glycine/GABAA receptor-mediated hyperpolarization, but the large increase in membrane conductance caused by inhibitory input can nonetheless shunt concurrent excitatory input. Without knowing the relative contribution of hyperpolarization and shunting to inhibition's modulation of firing rate, it is difficult to predict how much net disinhibition results from reduction of Eanion. We therefore used a biophysically accurate lamina I neuron model to investigate quantitatively how changes in Eanion affect firing rate modulation. Results Simulations reveal that even a small reduction of Eanion compromises inhibitory control of firing rate because reduction of Eanion not only decreases glycine/GABAA receptor-mediated hyperpolarization, but can also indirectly compromise the capacity of shunting to reduce spiking. The latter effect occurs because shunting-mediated modulation of firing rate depends on a competition between two biophysical phenomena: shunting reduces depolarization, which translates into reduced spiking, but shunting also shortens the membrane time constant, which translates into faster membrane charging and increased spiking; the latter effect predominates when average depolarization is suprathreshold. Disinhibition therefore occurs as both hyperpolarization- and shunting-mediated modulation of firing rate are subverted by reduction of Eanion. Small reductions may be compensated for by increased glycine/GABAA receptor-mediated input, but the system decompensates (i.e. compensation fails) as reduction of Eanion exceeds a critical value. Hyperexcitability necessarily develops once disinhibition becomes incompensable. Furthermore, compensation by increased glycine/GABAA receptor-mediated input introduces instability into the system, rendering it increasingly prone to abrupt decompensation and even paradoxical excitation. Conclusion Reduction of Eanion dramatically compromises the inhibitory control of firing rate and, if compensation fails, is likely to contribute to the allodynia and hyperalgesia associated with neuropathic pain. These data help explain the relative intractability of neuropathic pain and illustrate how it is important to choose therapies not only based on disease mechanism, but based on quantitative understanding of that mechanism.
Collapse
Affiliation(s)
- Steven A Prescott
- Computational Neurobiology Laboratory, Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Terrence J Sejnowski
- Computational Neurobiology Laboratory, Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yves De Koninck
- Division de Neurobiologie Cellulaire, Centre de Recherche Université Laval Robert-Giffard, Québec, Québec, Canada G1J 2G3
| |
Collapse
|
18
|
Abstract
Complex regional pain syndrome (CRPS) most often follows injury to peripheral nerves or their endings in soft tissue. A combination of prostanoids, kinins and cytokines cause peripheral nociceptive sensitization. In time, the Mg(2+) block of the N-methyl-D-aspartate receptor is removed, pain transmission neurons (PTN) are altered by an influx of Ca(2+) that activates kinases for excitation and phosphatases for depression, activity-dependent plasticity that alters the firing of PTN. In time, these neurons undergo central sensitization that lead to a major physiological change of the autonomic, pain and motor systems. The role of the immune system and the sickness response is becoming clearer as microglia are activated following injury and can induce central sensitization while astrocytes may maintain the process.
Collapse
Affiliation(s)
- Robert J Schwartzman
- Drexel University College of Medicine, Department of Neurology, 245 N. 15 Street, MS 423 Philadelphia, PA 19102, USA.
| | | | | |
Collapse
|
19
|
Ko SH, Jochnowitz N, Lenkowski PW, Batts TW, Davis GC, Martin WJ, Brown ML, Patel MK. Reversal of neuropathic pain by α-hydroxyphenylamide: A novel sodium channel antagonist. Neuropharmacology 2006; 50:865-73. [PMID: 16464480 DOI: 10.1016/j.neuropharm.2005.12.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/04/2005] [Revised: 12/06/2005] [Accepted: 12/14/2005] [Indexed: 01/31/2023]
Abstract
Sodium (Na) channel blockers are known to possess antihyperalgesic properties. We have designed and synthesized a novel Na channel antagonist, alpha-hydroxyphenylamide, and determined its ability to inhibit both TTX-sensitive (TTX-s) and TTX-resistant (TTX-r) Na currents from small dorsal root ganglion (DRG) neurons. alpha-Hydroxyphenylamide tonically inhibited both TTX-s and TTX-r Na currents yielding an IC(50) of 8.2+/-2.2 microM (n=7) and 28.9+/-1.8 microM (n=8), respectively. In comparison, phenytoin was less potent inhibiting TTX-s and TTX-r currents by 26.2+/-4.0% (n=8) and 25.5+/-2.0%, respectively, at 100 microM. alpha-Hydroxyphenylamide (10 microM) also shifted equilibrium gating parameters of TTX-s Na channels to greater hyperpolarized potentials, slowed recovery from inactivation, accelerated the development of inactivation and exhibited use-dependent block. In the chronic constriction injury (CCI) rat model of neuropathic pain, intraperitoneal administration of alpha-hydroxyphenylamide attenuated the hyperalgesia by 53% at 100mg/kg, without affecting motor coordination in the Rotorod test. By contrast, the reduction in pain behavior produced by phenytoin (73%; 100mg/kg) was associated with significant motor impairment. In summary, we report that alpha-hydroxyphenylamide, a sodium channel antagonist, exhibits antihyperalgesic properties in a rat model of neuropathic pain, with favorable sedative and ataxic side effects compared with phenytoin.
Collapse
Affiliation(s)
- Seong-Hoon Ko
- Department of Anesthesiology, University of Virginia Health System, 1 Hospital Drive, Box 800710, Charlottesville, VA 22908-0710, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Eriksson J, Jablonski A, Persson AK, Hao JX, Kouya PF, Wiesenfeld-Hallin Z, Xu XJ, Fried K. Behavioral changes and trigeminal ganglion sodium channel regulation in an orofacial neuropathic pain model. Pain 2005; 119:82-94. [PMID: 16297558 DOI: 10.1016/j.pain.2005.09.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/17/2005] [Revised: 09/02/2005] [Accepted: 09/12/2005] [Indexed: 10/25/2022]
Abstract
We used a photochemical method to generate a partial ischemic injury to the infraorbital branch of the trigeminal nerve in rats. Following injury, rats developed a bilateral persistent hypersensitivity to mechanical stimulation in the territory innervated by the infraorbital nerve. In addition, spread of mechanical hypersensitivity beyond the facial region was noted. Heat hypersensitivity was also present, although to a lesser extent and of a shorter duration. In some rats, excessive facial grooming/scratching were observed. Morphological examination revealed a graded damage to the irradiated portion of the infraorbital nerve that was related to the duration of laser irradiation. Investigations of gene expression changes in injured trigeminal ganglion neurons of animals with behavioral signs of neuropathic pain demonstrated that the sodium channel alpha-subunit Na(v)1.3-absent in sham-operated animals-was expressed to a limited extent. mRNAs for Na(v)1.8 and Na(v)1.9 were reduced both with respect to proportions of expressing neurons and to intensities, whereas the beta 3 subunit was markedly upregulated. mRNA levels of p11, a regulatory factor that facilitates the surface expression of Na(v)1.8, were unchanged. Previous findings have shown that injury to the trigeminal nerve branches may elicit responses that differ from those of segmental spinal nerves. Despite this we conclude that the key sodium channel regulations that are reported as consequences of nerve damage in the dorsal root ganglia seem to appear also in the trigeminal ganglion. Thus, novel analgesic drugs designed to target the sodium channel subtypes involved could be of use for the treatment of orofacial pain.
Collapse
Affiliation(s)
- Jonas Eriksson
- Center for Oral Biology, Novum, Karolinska Institutet, P.O. Box 4064, S-141 04 Huddinge, Sweden Department of Clinical Neuroscience, Section of Clinical Neurophysiology, Karolinska University Hospital Huddinge, S-141 86 Huddinge, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Garry EM, Delaney A, Anderson HA, Sirinathsinghji EC, Clapp RH, Martin WJ, Kinchington PR, Krah DL, Abbadie C, Fleetwood-Walker SM. Varicella zoster virus induces neuropathic changes in rat dorsal root ganglia and behavioral reflex sensitisation that is attenuated by gabapentin or sodium channel blocking drugs. Pain 2005; 118:97-111. [PMID: 16213091 DOI: 10.1016/j.pain.2005.08.003] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/29/2004] [Revised: 07/22/2005] [Accepted: 08/01/2005] [Indexed: 11/25/2022]
Abstract
Reactivation of latent varicella zoster virus (VZV) within sensory trigeminal and dorsal root ganglia (DRG) neurons produces shingles (zoster), often accompanied by a chronic neuropathic pain state, post-herpetic neuralgia (PHN). PHN persists despite latency of the virus within human sensory ganglia and is often unresponsive to current analgesic or antiviral agents. To study the basis of varicella zoster-induced pain, we have utilised a recently developed model of chronic VZV infection in rodents. Immunohistochemical analysis of DRG following VZV infection showed the presence of a viral immediate early gene protein (IE62) co-expressed with markers of A- (neurofilament-200; NF-200) and C- (peripherin) afferent sensory neurons. There was increased expression of neuropeptide Y (NPY) in neurons co-expressing NF-200. In addition, there was an increased expression of alpha2delta1 calcium channel, Na(v)1.3 and Na(v)1.8 sodium channels, the neuropeptide galanin and the nerve injury marker, Activating Transcription Factor-3 (ATF-3) as determined by Western blotting in DRG of VZV-infected rats. VZV infection induced increased behavioral reflex responsiveness to both noxious thermal and mechanical stimuli ipsilateral to injection (lasting up to 10 weeks post-infection) that is mediated by spinal NMDA receptors. These changes were reversed by systemic administration of gabapentin or the sodium channel blockers, mexiletine and lamotrigine, but not by the non-steroidal anti-inflammatory agent, diclofenac. This is the first time that the profile of VZV infection-induced phenotypic changes in DRG has been shown in rodents and reveals that this profile appears to be broadly similar (but not identical) to changes in other neuropathic pain models.
Collapse
MESH Headings
- Amines/pharmacology
- Amines/therapeutic use
- Animals
- Anticonvulsants/pharmacology
- Anticonvulsants/therapeutic use
- Behavior, Animal/drug effects
- Behavior, Animal/physiology
- Cyclohexanecarboxylic Acids/pharmacology
- Cyclohexanecarboxylic Acids/therapeutic use
- Disease Models, Animal
- Fluorescent Antibody Technique
- Gabapentin
- Galanin/metabolism
- Ganglia, Spinal/metabolism
- Ganglia, Spinal/physiopathology
- Ganglia, Spinal/virology
- Herpes Zoster/metabolism
- Herpes Zoster/prevention & control
- Herpes Zoster/virology
- Herpesvirus 3, Human/drug effects
- Herpesvirus 3, Human/physiology
- Immediate-Early Proteins/metabolism
- Immunohistochemistry
- Lamotrigine
- Mexiletine/pharmacology
- Mexiletine/therapeutic use
- Neuralgia/etiology
- Neuralgia/prevention & control
- Neuralgia, Postherpetic/prevention & control
- Neuralgia, Postherpetic/virology
- Neurons, Afferent/metabolism
- Neuropeptide Y/metabolism
- Rats
- Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
- Receptors, N-Methyl-D-Aspartate/physiology
- Reflex/drug effects
- Reflex/physiology
- Sodium Channels/drug effects
- Sodium Channels/metabolism
- Trans-Activators/metabolism
- Triazines/pharmacology
- Triazines/therapeutic use
- Viral Envelope Proteins/metabolism
- Virus Latency/physiology
- gamma-Aminobutyric Acid/pharmacology
- gamma-Aminobutyric Acid/therapeutic use
Collapse
Affiliation(s)
- Emer M Garry
- Division of Veterinary Biomedical Sciences, Centre for Neuroscience Research, University of Edinburgh, Summerhall, Edinburgh EH9 1QH, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Hord AH, Denson DD, Chalfoun AG, Azevedo MI. The effect of systemic zonisamide (Zonegran) on thermal hyperalgesia and mechanical allodynia in rats with an experimental mononeuropathy. Anesth Analg 2003; 96:1700-1706. [PMID: 12761000 DOI: 10.1213/01.ane.0000062652.66661.97] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/05/2022]
Abstract
UNLABELLED We studied the ability of zonisamide (Zonegran) to relieve thermal hyperalgesia and/or mechanical allodynia in the chronic constriction injury model of neuropathic pain. Zonisamide (25, 50, or 100 mg/kg) or saline was administered in a blinded, randomized manner by intraperitoneal injection on postoperative days (PODs) 4, 5, and 6. Paw withdrawal latency (PWL) to heat, paw withdrawal response to von Frey monofilaments, and pain scores based on weight-bearing were tested: before surgery; before and after zonisamide or saline (PODs 4, 5, and 6); and on POD 9. Systemic zonisamide relieved thermal hyperalgesia in a dose-dependent manner. All PWLs were significantly increased after zonisamide administration compared with pre-zonisamide measurements, except with the 100 mg/kg dose on POD 5. After zonisamide 100 mg/kg administration, there was a sustained increase in PWL on PODs 5 and 9, with significant carryover effect from the previous dose. However, zonisamide had little effect on mechanical allodynia, except at the 100 mg/kg dose, which was sedating in the rat. At the 100 mg/kg dose, paw withdrawal response was increased on PODs 4 and 5, whereas pain scores were reduced on PODs 4, 5, and 6. Pain scores were inconsistently reduced after 50 mg/kg or 25 mg/kg doses. IMPLICATIONS Zonisamide causes a dose-related decrease in heat sensitivity in a rat model of neuropathic pain, but relieves mechanical sensitivity only in a dose that is sedating to the rat. Zonisamide may be useful in the treatment of some types of neuropathic pain.
Collapse
Affiliation(s)
- Allen H Hord
- Department of Anesthesiology, Division of Pain Medicine, Emory University School of Medicine, Atlanta, Georgia
| | | | | | | |
Collapse
|
23
|
Abstract
Current treatment options in neuropathic pain include antidepressants, antiepileptics, antiarrhythmics, and analgesics. However, stratification of treatments based on their original therapeutic class is inadequate, as drugs belonging to a particular class may have distinct antineuralgic modes of action. It is therefore useful to review the mechanisms of action of these drugs and determine which of these mechanisms is most likely responsible for the drugs' efficacy in the symptomatic treatment of neuropathic pain. Switching from the traditional therapeutic class stratification to one based on putative antineuralgic mechanisms of action will allow more rational selection of therapies, and aid evaluation of the additive or synergistic effects of drugs when used in combination.
Collapse
Affiliation(s)
- Ahmad Beydoun
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
24
|
Eriksson J, Fried K. Expression of the sodium channel transcripts Na(v)1.8 and Na(v)1.9 in injured dorsal root ganglion neurons of interferon-gamma or interferon-gamma receptor deficient mice. Neurosci Lett 2003; 338:242-6. [PMID: 12581841 DOI: 10.1016/s0304-3940(02)01407-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/25/2022]
Abstract
Changes in the dorsal root ganglion (DRG) expression of the sodium channels Na(v)1.8 and Na(v)1.9 may contribute to injury-induced hyperexcitability and pain. Interferon (IFN)-gamma receptor -/- mice display a reduced pain-related behavior after nerve injury as compared to wild-type mice (NeuroReport 8 (1997) 1311). To elucidate a possible role for IFN-gamma in the regulation of sodium channels, we have studied the DRG mRNA expression of Na(v)1.8/Na(v)1.9 in IFN-gamma- or IFN-gamma receptor-deficient mice. In both types of mice, nerve damage induced a downregulation of Na(v)1.8 as well as Na(v)1.9. The magnitude of this reduction was similar to that observed in wild-type animals. These results indicate that the downregulation of Na(v)1.8/Na(v)1.9 in damaged DRG neurons is not influenced by IFN-gamma. Thus, the reduced pain-related behavior of nerve-injured IFN-gamma receptor null mice is not due to differential changes in the regulation of Na(v)1.8/Na(v)1.9 mRNA.
Collapse
Affiliation(s)
- Jonas Eriksson
- Center for Oral Biology, Novum, Karolinska Institutet, PO Box 4064, S-141 04, Huddinge, Sweden
| | | |
Collapse
|
25
|
Saab CY, Cummins TR, Dib-Hajj SD, Waxman SG. Molecular determinant of Na(v)1.8 sodium channel resistance to the venom from the scorpion Leiurus quinquestriatus hebraeus. Neurosci Lett 2002; 331:79-82. [PMID: 12361845 DOI: 10.1016/s0304-3940(02)00860-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/27/2022]
Abstract
The scorpion venom from Leiurus quinquestriatus (LQTX) alters the kinetics of tetrodotoxin (TTX)-sensitive channels such as the skeletal muscle sodium channel Na(v)1.4. In this study, we tested the effects of LQTX on the TTX-resistant sodium current generated by Na(v)1.8 channels in sensory neurons. Na(v)1.8 current was found to be resistant to LQTX, whereas LQTX slowed inactivation of the current generated by Na(v)1.4 and induced a persistent current. LQTX has been shown to bind the S3-S4 linker of domain four (D4S3-S4) of rat brain Na(v)1.2 sodium channels. Sequence analysis shows that the D4S3-S4 linker is longer in Na(v)1.8 than in Na(v)1.4 by four amino acids: Serine; Leucine; Glutamic acid; and Aspargine (SLEN). Na(v)1.4-SLEN, a chimera construct carrying SLEN at the analogous position in the D4S3-S4 linker, was also found to be resistant to LQTX. Therefore, we conclude that the tetrapeptide SLEN at the D4S3-S4 linker region is sufficient to make Na(v)1.8 resistant to LQTX.
Collapse
Affiliation(s)
- Carl Y Saab
- Department of Neurology and PVA/EPVA Neuroscience Research Center, Yale Medical School, CT New Haven 06510, USA
| | | | | | | |
Collapse
|
26
|
Hodges DD, Lee D, Preston CF, Boswell K, Hall LM, O'Dowd DK. tipE regulates Na+-dependent repetitive firing in Drosophila neurons. Mol Cell Neurosci 2002; 19:402-16. [PMID: 11906212 DOI: 10.1006/mcne.2001.1088] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022] Open
Abstract
The tipE gene, originally identified by a temperature-sensitive paralytic mutation in Drosophila, encodes a transmembrane protein that dramatically influences sodium channel expression in Xenopus oocytes. There is evidence that tipE also modulates sodium channel expression in the fly; however, its role in regulating neuronal excitability remains unclear. Here we report that the majority of neurons in both wild-type and tipE mutant (tipE-) embryo cultures fire sodium-dependent action potentials in response to depolarizing current injection. However, the percentage of tipE- neurons capable of firing repetitively during a sustained depolarization is significantly reduced. Expression of a tipE+ transgene, in tipE- neurons, restores repetitive firing to wild-type levels. Analysis of underlying currents reveals a slower rate of repolarization-dependent recovery of voltage-gated sodium currents during repeated activation in tipE- neurons. This phenotype is also rescued by expression of the tipE+ transgene. These data demonstrate that tipE regulates sodium-dependent repetitive firing and recovery of sodium currents during repeated activation. Furthermore, the duration of the interstimulus interval necessary to fire a second full-sized action potential is significantly longer in single- versus multiple-spiking transgenic neurons, suggesting that a slow rate of recovery of sodium currents contributes to the decrease in repetitive firing in tipE- neurons.
Collapse
Affiliation(s)
- Dianne D Hodges
- Department of Anatomy and Neurobiology, University of California at Irvine, Irvine, California 92697-1280, USA
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
New animal models of peripheral nerve injury have facilitated our understanding of neuropathic pain mechanisms. Nerve injury increases expression and redistribution of newly discovered sodium channels from sensory neuron somata to the injury site; accumulation at both loci contributes to spontaneous ectopic discharge. Large myelinated neurons begin to express nociceptive substances, and their central terminals sprout into nociceptive regions of the dorsal horn. Descending facilitation from the brain stem to the dorsal horn also increases in the setting of nerve injury. These and other mechanisms drive various pathologic states of central sensitization associated with distinct clinical symptoms, such as touch-evoked pain.
Collapse
Affiliation(s)
- B K Taylor
- Division of Pharmacology, School of Pharmacy, University of Missouri-Kansas City, 64108, USA.
| |
Collapse
|