1
|
Zipser CM, Curt A. Disease-specific interventions using cell therapies for spinal cord disease/injury. HANDBOOK OF CLINICAL NEUROLOGY 2024; 205:263-282. [PMID: 39341658 DOI: 10.1016/b978-0-323-90120-8.00007-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Traumatic spinal cord injury (SCI) may occur across the lifespan and is of global relevance. Damage of the spinal cord results in para- or tetraplegia and is associated with neuropathic pain, spasticity, respiratory, and autonomic dysfunction (i.e., control of bladder-bowel function). While the acute surgical treatment aims at stabilizing the spine and decompressing the damaged spinal cord, SCI patients require neurorehabilitation to restore neural function and to compensate for any impairments including motor disability, pain treatment, and bladder/bowel management. However, the spinal cord has a limited capacity to regenerate and much of the disability may persist, depending on the initial lesion severity and level of injury. For this reason, and the lack of effective drug treatments, there is an emerging interest and urgent need in promoting axonal regeneration and remyelination after SCI through cell- and stem-cell based therapies. This review briefly summarizes the state-of the art management of acute SCI and its neurorehabilitation to critically appraise phase I/II trials from the last two decades that have investigated cell-based therapies (i.e., Schwann cells, macrophages, and olfactory ensheathing cells) and stem cell-based therapies (i.e., neural stem cells, mesenchymal, and hematopoietic stem cells). Recently, two large multicenter trials provided evidence for the safety and feasibility of neural stem cell transplantation into the injured cord, whilst two monocenter trials also showed this to be the case for the transplantation of Schwann cells into the posttraumatic cord cavity. These are milestone studies that will facilitate further interventional trials. However, the clinical adoption of such approaches remains unproven, as there is only limited encouraging data, often in single patients, and no proven trial evidence to support regulatory approval.
Collapse
Affiliation(s)
- Carl Moritz Zipser
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
| | - Armin Curt
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland.
| |
Collapse
|
2
|
Wang N, Tian B. Brain-derived neurotrophic factor in autoimmune inflammatory diseases (Review). Exp Ther Med 2021; 22:1292. [PMID: 34630647 PMCID: PMC8461510 DOI: 10.3892/etm.2021.10727] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/10/2021] [Indexed: 11/05/2022] Open
Abstract
Numerous recent studies reported that brain-derived neurotrophic factor (BDNF) also exists in the peripheral blood to regulate the proliferation, differentiation and survival of lymphocytes. Besides the role of BDNF in neuron repair, circulatory BDNF also enhances the proliferation and reduces apoptosis of lymphocytes. Peripheral lymphocytes express both BDNF and its receptors. Increasing evidence has indicated that altered BDNF serum levels significantly affect patients with autoimmune inflammatory diseases and may also be linked to the pathogenesis of diseases. For instance, systemic lupus erythematosus, an autoimmune inflammatory disease involving multiple organs, is frequently linked to altered B lymphocyte function, imbalance of T-cell subpopulations and loss of immune tolerance, which dysregulates the immune regulatory network with excessive secretion of inflammatory cytokines. The present review summarized studies that suggest a potential link between circulatory BDNF and autoimmune inflammatory diseases.
Collapse
Affiliation(s)
- Ningning Wang
- Department of Gastroenterology, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Bailing Tian
- Department of Rheumatology and Immunology, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
3
|
Yin H, Shen L, Xu C, Liu J. Lentivirus-Mediated Overexpression of miR-29a Promotes Axonal Regeneration and Functional Recovery in Experimental Spinal Cord Injury via PI3K/Akt/mTOR Pathway. Neurochem Res 2018; 43:2038-2046. [PMID: 30173324 DOI: 10.1007/s11064-018-2625-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 07/24/2018] [Accepted: 08/28/2018] [Indexed: 12/11/2022]
Abstract
MicroRNAs as a novel class of endogenous small non-coding RNAs, modulate negative gene expression at the post-transcriptional level. Our previous work has demonstrated that miR-29a reduces PTEN expression by directly targeting the 3'-UTRs (untranslated regions) of its mRNA, thus promoting neurite outgrowth. To further confirm the role of miR-29a in the recovery of SCI and its potential mechanisms, a recombinant lentiviral vector was used to promote miR-29a expression in the injured spinal cord. As compared with the LV-eGFP group and normal saline group, a significantly increased level of miR-29a expression and a markedly decreased level of PTEN expression were observed in the LV-miR-29a group. Overexpression of miR-29a increased the phosphorylation of two proteins (Akt and S6) of PI3K-AKT-mTOR signaling pathway and the expression of axonal regeneration associated key marker protein (neurofiament-200). Moreover, quantitative imaging analysis was performed to confirm that LV-miR-29a group expressed axonal regeneration at 4.0 ± 0.2-fold as much as the other two groups. Besides, miR-29a overexpression promoted hindlimb motor functional recovery. Collectively, these results suggested that miR-29a may be an important regulator for axon regeneration, and a potential therapeutic target for SCI recovery.
Collapse
Affiliation(s)
- Hua Yin
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China.,Department of Orthopedics, The Jintan Affiliated Hospital of Jiangsu University, Jintan, 213200, Jiangsu, China
| | - Liming Shen
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
| | - Chao Xu
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
| | - Jinbo Liu
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China.
| |
Collapse
|
4
|
Teissier A, Soiza-Reilly M, Gaspar P. Refining the Role of 5-HT in Postnatal Development of Brain Circuits. Front Cell Neurosci 2017; 11:139. [PMID: 28588453 PMCID: PMC5440475 DOI: 10.3389/fncel.2017.00139] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 04/26/2017] [Indexed: 11/30/2022] Open
Abstract
Changing serotonin (5-hydroxytryptamine, 5-HT) brain levels during critical periods in development has long-lasting effects on brain function, particularly on later anxiety/depression-related behaviors in adulthood. A large part of the known developmental effects of 5-HT occur during critical periods of postnatal life, when activity-dependent mechanisms remodel neural circuits. This was first demonstrated for the maturation of sensory brain maps in the barrel cortex and the visual system. More recently this has been extended to the 5-HT raphe circuits themselves and to limbic circuits. Recent studies overviewed here used new genetic models in mice and rats and combined physiological and structural approaches to provide new insights on the cellular and molecular mechanisms controlled by 5-HT during late stages of neural circuit maturation in the raphe projections, the somatosensory cortex and the visual system. Similar mechanisms appear to be also involved in the maturation of limbic circuits such as prefrontal circuits. The latter are of particular relevance to understand the impact of transient 5-HT dysfunction during postnatal life on psychiatric illnesses and emotional disorders in adult life.
Collapse
Affiliation(s)
- Anne Teissier
- Institut du Fer à Moulin, Institut National de la Santé et de la Recherche Médicale (INSERM), UMR-S839Paris, France.,Université Pierre et Marie CurieParis, France.,Institut du Fer à MoulinParis, France
| | - Mariano Soiza-Reilly
- Institut du Fer à Moulin, Institut National de la Santé et de la Recherche Médicale (INSERM), UMR-S839Paris, France.,Université Pierre et Marie CurieParis, France.,Institut du Fer à MoulinParis, France
| | - Patricia Gaspar
- Institut du Fer à Moulin, Institut National de la Santé et de la Recherche Médicale (INSERM), UMR-S839Paris, France.,Université Pierre et Marie CurieParis, France.,Institut du Fer à MoulinParis, France
| |
Collapse
|
5
|
Seo DK, Kim JH, Min J, Yoon HH, Shin ES, Kim SW, Jeon SR. Enhanced axonal regeneration by transplanted Wnt3a-secreting human mesenchymal stem cells in a rat model of spinal cord injury. Acta Neurochir (Wien) 2017; 159:947-957. [PMID: 28160063 DOI: 10.1007/s00701-017-3097-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 01/19/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND While pure mesenchymal stem cell (MSC) treatment for spinal cord injury (SCI) is known to be safe, its efficacy is insufficient. Therefore, gene-modified stem cells are being developed to enhance the effect of pure MSCs. We investigated the effect of stem cell therapy through the transfection of a Wnt3a-producing gene that stimulates axonal regeneration. METHOD MSCs obtained from the human umbilical cord blood (hMSCs) were multiplied, cultivated, and transfected with the pLenti-Wnt3a-GFP viral vector to produce Wnt3a-secreting hMSCs. A total of 50 rats were injured with an Infinite Horizon impactor at the level of the T7-8 vertebrae. Rats were divided into five groups according to the transplanted material: (1) phosphate-buffered saline injection group (sham group, n = 10); (Pertz et al. Proc Natl Acad Sci USA 105:1931-1936, 39) Wnt3a protein injection group (Wnt3a protein group, n = 10); (3) hMSC transplantation group (MSC group, n = 10); (4) hMSCs transfected with the pLenti vector transplantation group (pLenti-MSC group, n = 10); (5) hMSCs transfected with the pLenti+Wnt3a vector transplantation group (Wnt3a-MSC group, n = 10). Behavioral tests were performed daily for the first 3 days after injury and then weekly for 8 weeks. The injured spinal cords were extracted, and axonal regeneration markers including choline acetyltransferase (ChAT), growth-associated protein 43 (GAP43), and microtubule-associated protein 2 (MAP2) were investigated by immunofluorescence, RT-PCR, and western blotting. RESULTS Seven weeks after the transplantation (8 weeks after SCI), rats in the Wnt3a-MSC group achieved significantly higher average scores in the motor behavior tests than those in the other groups (p < 0.05). Immunofluorescent stains showed greater immunoreactivity of ChAT, GAP43, and MAP2 in the Wnt3a-MSC group than in the other groups. RT-PCR and western blots revealed greater expression of these proteins in the Wnt3a-MSC group than in the other groups (p < 0.05). CONCLUSIONS Wnt3a-secreting hMSC transplantation considerably improved neurological recovery and axonal regeneration in a rat SCI model.
Collapse
|
6
|
Competition with Primary Sensory Afferents Drives Remodeling of Corticospinal Axons in Mature Spinal Motor Circuits. J Neurosci 2016; 36:193-203. [PMID: 26740661 DOI: 10.1523/jneurosci.3441-15.2016] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Injury to the mature motor system drives significant spontaneous axonal sprouting instead of axon regeneration. Knowing the circuit-level determinants of axonal sprouting is important for repairing motor circuits after injury to achieve functional rehabilitation. Competitive interactions are known to shape corticospinal tract axon outgrowth and withdrawal during development. Whether and how competition contributes to reorganization of mature spinal motor circuits is unclear. To study this question, we examined plastic changes in corticospinal axons in response to two complementary proprioceptive afferent manipulations: (1) enhancing proprioceptive afferents activity by electrical stimulation; or (2) diminishing their input by dorsal rootlet rhizotomy. Experiments were conducted in adult rats. Electrical stimulation produced proprioceptive afferent sprouting that was accompanied by significant corticospinal axon withdrawal and a decrease in corticospinal connections on cholinergic interneurons in the medial intermediate zone and C boutons on motoneurons. In contrast, dorsal rootlet rhizotomy led to a significant increase in corticospinal connections, including those on cholinergic interneurons; C bouton density increased correspondingly. Motor cortex-evoked muscle potentials showed parallel changes to those of corticospinal axons, suggesting that reciprocal corticospinal axon changes are functional. Using the two complementary models, we showed that competitive interactions between proprioceptive and corticospinal axons are an important determinant in the organization of mature corticospinal axons and spinal motor circuits. The activity- and synaptic space-dependent properties of the competition enables prediction of the remodeling of spared corticospinal connection and spinal motor circuits after injury and informs the target-specific control of corticospinal connections to promote functional recovery. SIGNIFICANCE STATEMENT Neuroplasticity is limited in maturity, but it is promoted after injury. Axons of the major descending motor pathway for motor skills, the corticospinal tract (CST), sprout after brain or spinal cord injury. This contributes to spontaneous spinal motor circuit repair and partial motor recovery. Knowing the determinants that enhance this plasticity is critical for functional rehabilitation. Here we examine the remodeling of CST axons directed by sensory fibers. We found that the CST projection is regulated dynamically in maturity by the competitive, activity-dependent actions of sensory fibers. Knowledge of the properties of this competition enables prediction of the remodeling of CST connections and spinal circuits after injury and informs ways to engineer target-specific control of CST connections to promote recovery.
Collapse
|
7
|
Prakash YS, Martin RJ. Brain-derived neurotrophic factor in the airways. Pharmacol Ther 2014; 143:74-86. [PMID: 24560686 DOI: 10.1016/j.pharmthera.2014.02.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 02/10/2014] [Indexed: 12/13/2022]
Abstract
In addition to their well-known roles in the nervous system, there is increasing recognition that neurotrophins such as brain derived neurotrophic factor (BDNF) as well as their receptors are expressed in peripheral tissues including the lung, and can thus potentially contribute to both normal physiology and pathophysiology of several diseases. The relevance of this family of growth factors lies in emerging clinical data indicating altered neurotrophin levels and function in a range of diseases including neonatal and adult asthma, sinusitis, influenza, and lung cancer. The current review focuses on 1) the importance of BDNF expression and signaling mechanisms in early airway and lung development, critical to both normal neonatal lung function and also its disruption in prematurity and insults such as inflammation and infection; 2) how BDNF, potentially derived from airway nerves modulate neurogenic control of airway tone, a key aspect of airway reflexes as well as dysfunctional responses to allergic inflammation; 3) the emerging idea that local BDNF production by resident airway cells such as epithelium and airway smooth muscle can contribute to normal airway structure and function, and to airway hyperreactivity and remodeling in diseases such as asthma. Furthermore, given its pleiotropic effects in the airway, BDNF may be a novel and appealing therapeutic target.
Collapse
Affiliation(s)
- Y S Prakash
- Department of Anesthesiology, Mayo Clinic College of Medicine, Rochester, MN 55905, United States; Department of Physiology & Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN 55905, United States.
| | - Richard J Martin
- Department of Pediatrics, Rainbow Babies and Children's Hospital, Case Western Reserve University, Cleveland, OH 44106, United States
| |
Collapse
|
8
|
Fouad K, Tse A. Adaptive changes in the injured spinal cord and their role in promoting functional recovery. Neurol Res 2013; 30:17-27. [DOI: 10.1179/016164107x251781] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
9
|
Tannemaat MR, Verhaagen J, Malessy M. The application of viral vectors to enhance regeneration after peripheral nerve repair. Neurol Res 2013; 30:1039-46. [DOI: 10.1179/174313208x362514] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
10
|
Affiliation(s)
- Andrea Wizenmann
- Experimental Embryology, Institute of Anatomy, University of Tuebingen Tuebingen, Germany
| |
Collapse
|
11
|
Axonal regeneration effects of Wnt3a-secreting fibroblast transplantation in spinal cord-injured rats. Acta Neurochir (Wien) 2011; 153:1003-10. [PMID: 21249402 DOI: 10.1007/s00701-011-0945-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 01/06/2011] [Indexed: 12/29/2022]
Abstract
BACKGROUND Axonal regeneration is a prerequisite for recovery from spinal cord injury. Here, we investigated whether Wnt3a-secreting fibroblasts exert a favorable effect on spinal cord regeneration in spinal cord-injured rats. METHODS Spinal cord injury (SCI) was induced in rats (n = 21) using an NYU impactor. One week after SCI, rats were assigned to a Wnt3a-secreting fibroblast transplantation group (Wnt group, n = 7), a L929 fibroblast transplantation group (vehicle group, n = 7), and contusion only group (sham group, n = 7). Motor function was tested weekly for 6 weeks. Manganese-enhanced magnetic resonance imaging (ME-MRI) was performed twice, once before cell transplantation and again 5 weeks after cell transplantation. After ME-MRI, expression of the axonal regeneration marker GAP-43 was assessed by immunohistochemistry (IHC). RESULTS In the Wnt group, the mean Basso-Beattie-Bresnahan score was higher than that of the vehicle and sham groups throughout the observation period. The Wnt group also exhibited stronger signal intensity on ME-MRI, and IHC revealed that GAP-43 was highly expressed in the injured spinal cord in the Wnt group. CONCLUSIONS These results strongly suggest that transplanted Wnt3a secreting fibroblasts promote axonal regeneration and functional improvement after SCI. Although further investigation will be necessary to clarify the intracellular mechanism by which Wnt signaling promotes axonal regeneration and functional improvement, this approach could be a highly promising therapeutic strategy for SCI.
Collapse
|
12
|
Roman JA, Niedzielko TL, Haddon RC, Parpura V, Floyd CL. Single-walled carbon nanotubes chemically functionalized with polyethylene glycol promote tissue repair in a rat model of spinal cord injury. J Neurotrauma 2011; 28:2349-62. [PMID: 21303267 DOI: 10.1089/neu.2010.1409] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Traumatic spinal cord injury (SCI) induces tissue damage and results in the formation of a cavity that inhibits axonal regrowth. Filling this cavity with a growth-permissive substrate would likely promote regeneration and repair. Single-walled carbon nanotubes functionalized with polyethylene glycol (SWNT-PEG) have been shown to increase the length of selected neurites in vitro. We hypothesized that administration of SWNT-PEG after experimental SCI will promote regeneration of axons into the lesion cavity and functional recovery of the hindlimbs. To evaluate this hypothesis, complete transection SCI was induced at the T9 vertebral level in adult female rats. One week after transection, the epicenter of the lesion was injected with 25??L of either vehicle (saline), or 1??g/mL, 10??g/mL, or 100??g/mL of SWNT-PEG. Behavioral analysis was conducted before injury, before treatment, and once every 7 days for 28 days after treatment. At 28 days post-injection the rats were euthanized and spinal cord tissue was extracted. Immunohistochemistry was used to detect the area of the cyst, the extent of the glial scar, and axonal morphology. We found that post-SCI administration of SWNT-PEG decreased lesion volume, increased neurofilament-positive fibers and corticospinal tract fibers in the lesion, and did not increase reactive gliosis. Additionally, post-SCI administration of SWNT-PEG induced a modest improvement in hindlimb locomotor recovery without inducing hyperalgesia. These data suggest that SWNT-PEG may be an effective material to promote axonal repair and regeneration after SCI.
Collapse
Affiliation(s)
- Jose A Roman
- Department of Physical Medicine and Rehabilitation, University of Alabama-Birmingham, Birmingham, Alabama 35249, USA
| | | | | | | | | |
Collapse
|
13
|
Casadio M, Pressman A, Fishbach A, Danziger Z, Acosta S, Chen D, Tseng HY, Mussa-Ivaldi FA. Functional reorganization of upper-body movement after spinal cord injury. Exp Brain Res 2010; 207:233-47. [PMID: 20972779 PMCID: PMC3534827 DOI: 10.1007/s00221-010-2427-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 09/12/2010] [Indexed: 01/15/2023]
Abstract
Survivors of spinal cord injury need to reorganize their residual body movements for interacting with assistive devices and performing activities that used to be easy and natural. To investigate movement reorganization, we asked subjects with high-level spinal cord injury (SCI) and unimpaired subjects to control a cursor on a screen by performing upper-body motions. While this task would be normally accomplished by operating a computer mouse, here shoulder motions were mapped into the cursor position. Both the control and the SCI subjects were rapidly able to reorganize their movements and to successfully control the cursor. The majority of the subjects in both groups were successful in reducing the movements that were not effective at producing cursor motions. This is inconsistent with the hypothesis that the control system is merely concerned with the accurate acquisition of the targets and is unconcerned with motions that are not relevant to this goal. In contrast, our findings suggest that subjects can learn to reorganize coordination so as to increase the correspondence between the subspace of their upper-body motions with the plane in which the controlled cursor moves. This is effectively equivalent to constructing an inverse internal model of the map from body motions to cursor motions, established by the experiment. These results are relevant to the development of interfaces for assistive devices that optimize the use of residual voluntary control and enhance the learning process in disabled users, searching for an easily learnable map between their body motor space and control space of the device.
Collapse
Affiliation(s)
- Maura Casadio
- Sensory Motor Performance Program, Rehabilitation Institute of Chicago, 345 E. Superior Street, Suite 1406, Chicago, IL 60611, USA.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Prakash Y, Thompson MA, Meuchel L, Pabelick CM, Mantilla CB, Zaidi S, Martin RJ. Neurotrophins in lung health and disease. Expert Rev Respir Med 2010; 4:395-411. [PMID: 20524922 DOI: 10.1586/ers.10.29] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Neurotrophins (NTs) are a family of growth factors that are well-known in the nervous system. There is increasing recognition that NTs (nerve growth factor, brain-derived neurotrophic factor and NT3) and their receptors (high-affinity TrkA, TrkB and TrkC, and low-affinity p75NTR) are expressed in lung components including the nasal and bronchial epithelium, smooth muscle, nerves and immune cells. NT signaling may be important in normal lung development, developmental lung disease, allergy and inflammation (e.g., rhinitis, asthma), lung fibrosis and even lung cancer. In this review, we describe the current status of our understanding of NT signaling in the lung, with hopes of using aspects of the NT signaling pathway in the diagnosis and therapy of lung diseases.
Collapse
Affiliation(s)
- Ys Prakash
- Department of Anesthesiology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| | | | | | | | | | | | | |
Collapse
|
15
|
|
16
|
Fumagalli F, Madaschi L, Brenna P, Caffino L, Marfia G, Di Giulio AM, Racagni G, Gorio A. Single exposure to erythropoietin modulates Nerve Growth Factor expression in the spinal cord following traumatic injury: Comparison with methylprednisolone. Eur J Pharmacol 2008; 578:19-27. [PMID: 17936749 DOI: 10.1016/j.ejphar.2007.09.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Revised: 08/31/2007] [Accepted: 09/24/2007] [Indexed: 11/30/2022]
|
17
|
Chen Q, Zhou L, Shine HD. Expression of neurotrophin-3 promotes axonal plasticity in the acute but not chronic injured spinal cord. J Neurotrauma 2006; 23:1254-60. [PMID: 16928183 DOI: 10.1089/neu.2006.23.1254] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Previously, we reported that over-expression of neurotrophin-3 (NT-3) promoted sprouting of axons in the injured but not uninjured spinal cord, suggesting that processes associated with the injury such as Wallerian degeneration (WD) participated to induce the neuroplasticity. To determine whether NT-3-induced axonal sprouting depends upon processes associated with an acute injury, we uncoupled the injury and NT-3 over-expression in time. Rats were treated with a replicationdefective adenoviral vector carrying the NT-3 gene (Adv.NT-3) 2 weeks or 4 months after receiving a unilateral lesion of their corticospinal tract (CST). Adv.LacZ was used as a control vector. Morphometric analysis of axonal sprouting was performed to measure the number of CST axons that arise from the intact CST, traverse the midline, and grow into the gray matter of the lesioned side of the spinal cord where the NT-3 was over-expressed. The number of axons sprouting across the midline was greater in the rats treated with Adv.NT-3 than in the control groups when the Adv.NT-3 was delivered 2 weeks after injury. These axons persisted for at least 6 months after Adv.NT-3 delivery. In contrast, when Adv.NT-3 was delivered 4 months after lesion, there was no significant difference in the number of CST axons that crossed the midline compared to controls. Since the processes of WD would have resolved within 4 months after injury, these data demonstrate that products of WD are a potential source of the co-inducing signals that support neuroplasticity in the presence of NT-3.
Collapse
Affiliation(s)
- Qin Chen
- Center for Cell and Gene Therapy and Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|
18
|
Maier IC, Schwab ME. Sprouting, regeneration and circuit formation in the injured spinal cord: factors and activity. Philos Trans R Soc Lond B Biol Sci 2006; 361:1611-34. [PMID: 16939978 PMCID: PMC1664674 DOI: 10.1098/rstb.2006.1890] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Central nervous system (CNS) injuries are particularly traumatic, owing to the limited capabilities of the mammalian CNS for repair. Nevertheless, functional recovery is observed in patients and experimental animals, but the degree of recovery is variable. We review the crucial characteristics of mammalian spinal cord function, tract development, injury and the current experimental therapeutic approaches for repair. Regenerative or compensatory growth of neurites and the formation of new, functional circuits require spontaneous and experimental reactivation of developmental mechanisms, suppression of the growth-inhibitory properties of the adult CNS tissue and specific targeted activation of new connections by rehabilitative training.
Collapse
Affiliation(s)
- Irin C Maier
- Brain Research Institute, University and ETH Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| | | |
Collapse
|
19
|
Gonzalez AM, Berry M, Greenlees L, Logan A, Baird A. Matrix-mediated gene transfer to brain cortex and dorsal root ganglion neurones by retrograde axonal transport after dorsal column lesion. J Gene Med 2006; 8:901-9. [PMID: 16718733 DOI: 10.1002/jgm.919] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND In previous studies, we showed that the immobilisation of DNAs encoding basic fibroblast growth factor, neurotrophin-3 and brain-derived neurotrophic factor in a gene-activated matrix (GAM) promotes sustained survival of axotomised retinal ganglion cells after optic nerve injury. Here, we evaluated if the immobilisation of DNAs in a GAM could be an effective approach to deliver genes to axotomised dorsal root ganglion (DRG) neurones after spinal cord injury and if the matrix component of the GAM would modulate the deposition of a dense scar at the injury site. METHODS We evaluated the expression of the thymidine kinase (TK) reporter gene in brain cortex and DRG after a bilateral T8 dorsal column (DC) lesion using PCR, RT-PCR and in situ hybridisation analyses. Collagen-based GAMs were implanted at the lesion site and the cellular response to the GAM was assessed using cell-specific markers. RESULTS At 1 week post-injury, PCR analyses confirmed that DNATK was retrogradely transported from the DC lesion where the GAM was implanted to the brain cortex and to caudal DRG neurones, and RT-PCR analyses showed expression of mRNATK. At 7 weeks post-injury, DNATK was still be detected in the GAM and DRG. In situ hybridisation localised DNATK and mRNATK within fibroblasts, glia, endothelial and inflammatory cells invading the GAM and in DRG neurones. Interestingly, the presence of a GAM also reduced secondary cavitation and scar deposition at the lesion site. CONCLUSIONS These results establish that GAMs act as bridging scaffolds in DC lesions limiting cavitation and scarring and delivering genes both locally to injury-reactive cells and distally to the cerebral cortex and to DRG neuronal somata through retrograde axonal transport.
Collapse
Affiliation(s)
- Ana Maria Gonzalez
- Molecular Neuroscience Group, Division of Medical Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| | | | | | | | | |
Collapse
|
20
|
Schwab JM, Brechtel K, Mueller CA, Failli V, Kaps HP, Tuli SK, Schluesener HJ. Experimental strategies to promote spinal cord regeneration--an integrative perspective. Prog Neurobiol 2006; 78:91-116. [PMID: 16487649 DOI: 10.1016/j.pneurobio.2005.12.004] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2005] [Revised: 12/13/2005] [Accepted: 12/13/2005] [Indexed: 11/17/2022]
Abstract
Detailed pathophysiological findings of secondary damage phenomena after spinal cord injury (SCI) as well as the identification of inhibitory and neurotrophic proteins have yielded a plethora of experimental therapeutic approaches. Main targets are (i) to minimize secondary damage progression (neuroprotection), (ii) to foster axon conduction (neurorestoration) and (iii) to supply a permissive environment to promote axonal sprouting (neuroregenerative therapies). Pre-clinical studies have raised hope in functional recovery through the antagonism of growth inhibitors, application of growth factors, cell transplantation, and vaccination strategies. To date, even though based on successful pre-clinical animal studies, results of clinical trials are characterized by dampened effects attributable to difficulties in the study design (patient heterogeneity) and species differences. A combination of complementary therapeutic strategies might be considered pre-requisite for future synergistic approaches. Here, we line out pre-clinical interventions resulting in improved functional neurological outcome after spinal cord injury and track them on their intended way to bedside.
Collapse
Affiliation(s)
- Jan M Schwab
- Institute of Brain Research, Calwer Str. 3, University of Tuebingen, Medical School, Calwerstr. 3, 72076 Tuebingen, Germany.
| | | | | | | | | | | | | |
Collapse
|
21
|
Desouches C, Alluin O, Mutaftschiev N, Dousset E, Magalon G, Boucraut J, Feron F, Decherchi P. La réparation nerveuse périphérique : 30 siècles de recherche. Rev Neurol (Paris) 2005; 161:1045-59. [PMID: 16288170 DOI: 10.1016/s0035-3787(05)85172-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Nerve injury compromises sensory and motor functions. Techniques of peripheral nerve repair are based on our knowledge regarding regeneration. Microsurgical techniques introduced in the late 1950s and widely developed for the past 20 years have improved repairs. However, functional recovery following a peripheral mixed nerve injury is still incomplete. STATE OF ART Good motor and sensory function after nerve injury depends on the reinnervation of the motor end plates and sensory receptors. Nerve regeneration does not begin if the cell body has not survived the initial injury or if it is unable to initiate regeneration. The regenerated axons must reach and reinnervate the appropriate target end-organs in a timely fashion. Recovery of motor function requires a critical number of motor axons reinnervating the muscle fibers. Sensory recovery is possible if the delay in reinnervation is short. Many additional factors influence the success of nerve repair or reconstruction. The timing of the repair, the level of injury, the extent of the zone of injury, the technical skill of the surgeon, and the method of repair and reconstruction contribute to the functional outcome after nerve injury. CONCLUSION This review presents the recent advances in understanding of neural regeneration and their application to the management of primary repairs and nerve gaps.
Collapse
Affiliation(s)
- C Desouches
- Service de Chirurgie de la Main, Chirurgie Plastique et Réparatrice des Membres, Assistance Publique, Hôpitaux de Marseille, Hôpital de la Conception, Marseille
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Buchli AD, Schwab ME. Inhibition of Nogo: a key strategy to increase regeneration, plasticity and functional recovery of the lesioned central nervous system. Ann Med 2005; 37:556-67. [PMID: 16338758 DOI: 10.1080/07853890500407520] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In the adult central nervous system (CNS) myelin and oligodendrocytes, Nogo-A exerts a growth inhibitory function leading to restricted axonal regeneration. After development of different anti-Nogo-A antibodies and other Nogo-A blocking reagents their application has recently been studied in various in vivo animal models of spinal cord injury and stroke. These studies show that intracerebral application of Nogo-A-inactivating reagents leads to enhanced regeneration and compensatory sprouting, structural reorganization or plasticity, and functional recovery as seen in different behavioural analyses.
Collapse
Affiliation(s)
- Anita D Buchli
- Brain Research Institute, University of Zurich and Department of Biology, Swiss Federal Institute of Technology-Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | |
Collapse
|
23
|
Alberch J, Pérez-Navarro E, Canals JM. Neurotrophic factors in Huntington's disease. PROGRESS IN BRAIN RESEARCH 2004; 146:195-229. [PMID: 14699966 DOI: 10.1016/s0079-6123(03)46014-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Huntington's disease is a neurodegenerative disorder characterized by the selective loss of striatal neurons and, to a lesser extent, cortical neurons. The neurodegenerative process is caused by the mutation of huntingtin gene. Recent studies have established a link between mutant huntingtin, excitotoxicity and neurotrophic factors. Neurotrophic factors prevent cell death in degenerative processes but they can also enhance growth and function of neurons that are affected in Huntington's disease. The endogenous regulation of the expression of neurotrophic factors and their receptors in the striatum and its connections can be important to protect striatal cells and maintains basal ganglia connectivity. The administration of exogenous neurotrophic factors, in animal models of Huntington's disease, has been used to characterize the trophic requirements of striatal and cortical neurons. Neurotrophins, glial cell line-derived neurotrophic factor family members and ciliary neurotrophic factor have shown a potent neuroprotective effects on different neuronal populations of the striatum. Furthermore, they are also useful to maintain the integrity of the corticostriatal pathway. Thus, these neurotrophic factors may be suitable for the development of a neuroprotective therapy for neurodegenerative disorders of the basal ganglia.
Collapse
Affiliation(s)
- Jordi Alberch
- Department of Cell Biology and Pathology, Medical School, IDIBAPS, University of Barcelona, Casanova 143, E-08036 Barcelona, Spain.
| | | | | |
Collapse
|
24
|
Abstract
Long regarded as impossible, spinal cord repair is approaching the realm of reality as efforts to bridge the gap between bench and bedside point to novel approaches to treatment. It is important to recognize that the research playing field is rapidly changing and that new mechanisms of resource development are required to effectively make the transition from basic science discoveries to effective clinical treatments. This article reviews recent laboratory studies and phase 1 clinical trials in neural and nonneural cell transplantation, stressing that the transition from basic science to clinical applications requires a parallel rather than serial approach, with continuous, two-way feedback to most efficiently translate basic science findings, through evaluation and optimization, to clinical treatments. An example of mobilizing endogenous stem cells for repair is reviewed, with emphasis on the rapid application of basic science to clinical therapy. Successful and efficient transition from basic science to clinical applications requires (1) a parallel rather than a serial approach; (2) development of centers that integrate three spheres of science, translational, transitional, and clinical trials; and (3) development of novel resources to fund the most critically limited step of transitional to clinical trials.
Collapse
Affiliation(s)
- John W McDonald
- Department of Neurology and Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| | | |
Collapse
|