1
|
Sosnovtseva AO, Stepanova OV, Stepanenko AA, Voronova AD, Chadin AV, Valikhov MP, Chekhonin VP. Recombinant Adenoviruses for Delivery of Therapeutics Following Spinal Cord Injury. Front Pharmacol 2022; 12:777628. [PMID: 35082666 PMCID: PMC8784517 DOI: 10.3389/fphar.2021.777628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/22/2021] [Indexed: 11/30/2022] Open
Abstract
The regeneration of nerve tissue after spinal cord injury is a complex and poorly understood process. Medication and surgery are not very effective treatments for patients with spinal cord injuries. Gene therapy is a popular approach for the treatment of such patients. The delivery of therapeutic genes is carried out in a variety of ways, such as direct injection of therapeutic vectors at the site of injury, retrograde delivery of vectors, and ex vivo therapy using various cells. Recombinant adenoviruses are often used as vectors for gene transfer. This review discusses the advantages, limitations and prospects of adenovectors in spinal cord injury therapy.
Collapse
Affiliation(s)
- Anastasiia O Sosnovtseva
- Department of Fundamental and Applied Neurobiology, V.P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, Moscow, Russia
| | - Olga V Stepanova
- Department of Fundamental and Applied Neurobiology, V.P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, Moscow, Russia.,Department of Neurohumoral and Immunological Research, National Medical Research Center of Cardiology, The Ministry of Health of the Russian Federation, Moscow, Russia
| | - Aleksei A Stepanenko
- Department of Fundamental and Applied Neurobiology, V.P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, Moscow, Russia.,Department of Medical Nanobiotechnology, Institute of Translational Medicine, N.I. Pirogov Russian National Research Medical University, The Ministry of Health of the Russian Federation, Moscow, Russia
| | - Anastasia D Voronova
- Department of Fundamental and Applied Neurobiology, V.P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, Moscow, Russia
| | - Andrey V Chadin
- Department of Fundamental and Applied Neurobiology, V.P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, Moscow, Russia
| | - Marat P Valikhov
- Department of Fundamental and Applied Neurobiology, V.P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, Moscow, Russia.,Department of Neurohumoral and Immunological Research, National Medical Research Center of Cardiology, The Ministry of Health of the Russian Federation, Moscow, Russia.,Department of Medical Nanobiotechnology, Institute of Translational Medicine, N.I. Pirogov Russian National Research Medical University, The Ministry of Health of the Russian Federation, Moscow, Russia
| | - Vladimir P Chekhonin
- Department of Fundamental and Applied Neurobiology, V.P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, Moscow, Russia.,Department of Medical Nanobiotechnology, Institute of Translational Medicine, N.I. Pirogov Russian National Research Medical University, The Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
2
|
Sahib S, Sharma A, Menon PK, Muresanu DF, Castellani RJ, Nozari A, Lafuente JV, Bryukhovetskiy I, Tian ZR, Patnaik R, Buzoianu AD, Wiklund L, Sharma HS. Cerebrolysin enhances spinal cord conduction and reduces blood-spinal cord barrier breakdown, edema formation, immediate early gene expression and cord pathology after injury. PROGRESS IN BRAIN RESEARCH 2020; 258:397-438. [PMID: 33223040 DOI: 10.1016/bs.pbr.2020.09.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Spinal cord evoked potentials (SCEP) are good indicators of spinal cord function in health and disease. Disturbances in SCEP amplitudes and latencies during spinal cord monitoring predict spinal cord pathology following trauma. Treatment with neuroprotective agents preserves SCEP and reduces cord pathology after injury. The possibility that cerebrolysin, a balanced composition of neurotrophic factors improves spinal cord conduction, attenuates blood-spinal cord barrier (BSCB) disruption, edema formation, and cord pathology was examined in spinal cord injury (SCI). SCEP is recorded from epidural space over rat spinal cord T9 and T12 segments after peripheral nerves stimulation. SCEP consists of a small positive peak (MPP), followed by a prominent negative peak (MNP) that is stable before SCI. A longitudinal incision (2mm deep and 5mm long) into the right dorsal horn (T10 and T11 segments) resulted in an immediate long-lasting depression of the rostral MNP with an increase in the latencies. Pretreatment with either cerebrolysin (CBL 5mL/kg, i.v. 30min before) alone or TiO2 nanowired delivery of cerebrolysin (NWCBL 2.5mL/kg, i.v.) prevented the loss of MNP amplitude and even enhanced further from the pre-injury level after SCI without affecting latencies. At 5h, SCI induced edema, BSCB breakdown, and cell injuries were significantly reduced by CBL and NWCBL pretreatment. Interestingly this effect on SCEP and cord pathology was still prominent when the NWCBL was delivered 2min after SCI. Moreover, expressions of c-fos and c-jun genes that are prominent at 5h in untreated SCI are also considerably reduced by CBL and NWCBL treatment. These results are the first to show that CBL and NWCBL enhanced SCEP activity and thwarted the development of cord pathology after SCI. Furthermore, NWCBL in low doses has superior neuroprotective effects on SCEP and cord pathology, not reported earlier. The functional significance and future clinical potential of CBL and NWCBL in SCI are discussed.
Collapse
Affiliation(s)
- Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Preeti K Menon
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden; Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Igor Bryukhovetskiy
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
3
|
Leake PA, Akil O, Lang H. Neurotrophin gene therapy to promote survival of spiral ganglion neurons after deafness. Hear Res 2020; 394:107955. [PMID: 32331858 DOI: 10.1016/j.heares.2020.107955] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 03/16/2020] [Accepted: 03/26/2020] [Indexed: 12/13/2022]
Abstract
Hearing impairment is a major health and economic concern worldwide. Currently, the cochlear implant (CI) is the standard of care for remediation of severe to profound hearing loss, and in general, contemporary CIs are highly successful. But there is great variability in outcomes among individuals, especially in children, with many CI users deriving much less or even marginal benefit. Much of this variability is related to differences in auditory nerve survival, and there has been substantial interest in recent years in exploring potential therapies to improve survival of the cochlear spiral ganglion neurons (SGN) after deafness. Preclinical studies using osmotic pumps and other approaches in deafened animal models to deliver neurotrophic factors (NTs) directly to the cochlea have shown promising results, especially with Brain-Derived Neurotrophic Factor (BDNF). More recent studies have focused on the use of NT gene therapy to force expression of NTs by target cells within the cochlea. This could provide the means for a one-time treatment to promote long-term NT expression and improve neural survival after deafness. This review summarizes the evidence for the efficacy of exogenous NTs in preventing SGN degeneration after hearing loss and reviews the animal research to date suggesting that NT gene therapy can elicit long-term NT expression in the cochlea, resulting in significantly improved SGN and radial nerve fiber survival after deafness. In addition, we discuss NT gene therapy in other non-auditory applications and consider some of the remaining issues with regard to selecting optimal vectors, timing of treatment, and place/method of delivery, etc. that must be resolved prior to considering clinical application.
Collapse
Affiliation(s)
- Patricia A Leake
- S & I Epstein Laboratory, Dept. of Otolaryngology Head and Neck Surgery, University of California San Francisco, 2340 Sutter Street, Room N331, San Francisco, CA, 94115-1330, USA.
| | - Omar Akil
- S & I Epstein Laboratory, Dept. of Otolaryngology Head and Neck Surgery, University of California San Francisco, 2340 Sutter Street, Room N331, San Francisco, CA, 94115-1330, USA
| | - Hainan Lang
- Dept. of Pathology and Laboratory Medicine, Medical University of South Carolina, 165 Ashley Avenue, Room RS613, Charleston, SC, 29414, USA
| |
Collapse
|
4
|
Rosich K, Hanna BF, Ibrahim RK, Hellenbrand DJ, Hanna A. The Effects of Glial Cell Line-Derived Neurotrophic Factor after Spinal Cord Injury. J Neurotrauma 2017; 34:3311-3325. [DOI: 10.1089/neu.2017.5175] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Konstantin Rosich
- Department of Neurological Surgery, University of Wisconsin, Madison, Wisconsin
| | - Bishoy F. Hanna
- Department of Neurological Surgery, Ross University School of Medicine, Dominica, West Indies
| | - Rami K. Ibrahim
- Department of Neurological Surgery, University of Wisconsin, Madison, Wisconsin
| | - Daniel J. Hellenbrand
- Department of Neurological Surgery, University of Wisconsin, Madison, Wisconsin
- Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin
| | - Amgad Hanna
- Department of Neurological Surgery, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
5
|
Zhou Y, Wang Z, Li J, Li X, Xiao J. Fibroblast growth factors in the management of spinal cord injury. J Cell Mol Med 2017; 22:25-37. [PMID: 29063730 PMCID: PMC5742738 DOI: 10.1111/jcmm.13353] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/12/2017] [Indexed: 12/11/2022] Open
Abstract
Spinal cord injury (SCI) possesses a significant health and economic burden worldwide. Traumatic SCI is a devastating condition that evolves through two successive stages. Throughout each of these stages, disturbances in ionic homeostasis, local oedema, ischaemia, focal haemorrhage, free radicals stress and inflammatory response were observed. Although there are no fully restorative cures available for SCI patients, various molecular, cellular and rehabilitative therapies, such as limiting local inflammation, preventing secondary cell death and enhancing the plasticity of local circuits in the spinal cord, were described. Current preclinical studies have showed that fibroblast growth factors (FGFs) alone or combination therapies utilizing cell transplantation and biomaterial scaffolds are proven effective for treating SCI in animal models. More importantly, some studies further demonstrated a paucity of clinical transfer usage to promote functional recovery of numerous patients with SCI. In this review, we focus on the therapeutic capacity and pitfalls of the FGF family and its clinical application for treating SCI, including the signalling component of the FGF pathway and the role in the central nervous system, the pathophysiology of SCI and the targets for FGF treatment. We also discuss the challenges and potential for the clinical translation of FGF-based approaches into treatments for SCI.
Collapse
Affiliation(s)
- Yulong Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhouguang Wang
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiawei Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaokun Li
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jian Xiao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
6
|
Margul DJ, Park J, Boehler RM, Smith DR, Johnson MA, McCreedy DA, He T, Ataliwala A, Kukushliev TV, Liang J, Sohrabi A, Goodman AG, Walthers CM, Shea LD, Seidlits SK. Reducing neuroinflammation by delivery of IL-10 encoding lentivirus from multiple-channel bridges. Bioeng Transl Med 2016; 1:136-148. [PMID: 27981242 PMCID: PMC5125399 DOI: 10.1002/btm2.10018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 06/24/2016] [Accepted: 07/01/2016] [Indexed: 12/25/2022] Open
Abstract
The spinal cord is unable to regenerate after injury largely due to growth‐inhibition by an inflammatory response to the injury that fails to resolve, resulting in secondary damage and cell death. An approach that prevents inhibition by attenuating the inflammatory response and promoting its resolution through the transition of macrophages to anti‐inflammatory phenotypes is essential for the creation of a growth permissive microenvironment. Viral gene delivery to induce the expression of anti‐inflammatory factors provides the potential to provide localized delivery to alter the host inflammatory response. Initially, we investigated the effect of the biomaterial and viral components of the delivery system to influence the extent of cell infiltration and the phenotype of these cells. Bridge implantation reduces antigen‐presenting cell infiltration at day 7, and lentivirus addition to the bridge induces a transient increase in neutrophils in the spinal cord at day 7 and macrophages at day 14. Delivery of a lentivirus encoding IL‐10, an anti‐inflammatory factor that inhibits immune cell activation and polarizes the macrophage population towards anti‐inflammatory phenotypes, reduced neutrophil infiltration at both day 7 and day 28. Though IL‐10 lentivirus did not affect macrophages number, it skewed the macrophage population toward an anti‐inflammatory M2 phenotype and altered macrophage morphology. Additionally, IL‐10 delivery resulted in improved motor function, suggesting reduced secondary damage and increased sparing. Taken together, these results indicate that localized expression of anti‐inflammatory factors, such as IL‐10, can modulate the inflammatory response following spinal cord injury, and may be a key component of a combinatorial approach that targets the multiple barriers to regeneration and functional recovery.
Collapse
Affiliation(s)
- Daniel J Margul
- Dept. of Biomedical Engineering Northwestern University Evanston IL, 48109; Dept. of Biomedical Engineering University of Michigan Ann Arbor MI, 48109
| | - Jonghyuck Park
- Dept. of Biomedical Engineering University of Michigan Ann Arbor MI, 48109
| | - Ryan M Boehler
- Dept. of Chemical and Biological Engineering Northwestern University Evanston IL, 48109
| | - Dominique R Smith
- Dept. of Biomedical Engineering Northwestern University Evanston IL, 48109; Dept. of Biomedical Engineering University of Michigan Ann Arbor MI, 48109
| | - Mitchell A Johnson
- Dept. of Biomedical Engineering University of Michigan Ann Arbor MI, 48109
| | - Dylan A McCreedy
- Dept. of Biomedical Engineering University of Michigan Ann Arbor MI, 48109; Dept. of Chemical and Biological Engineering Northwestern University Evanston IL, 48109
| | - Ting He
- Dept. of Chemical and Biological Engineering Northwestern University Evanston IL, 48109
| | - Aishani Ataliwala
- Dept. of Bioengineering University of California Los Angeles Los Angeles CA, 90095
| | - Todor V Kukushliev
- Dept. of Chemical and Biological Engineering Northwestern University Evanston IL, 48109
| | - Jesse Liang
- Dept. of Bioengineering University of California Los Angeles Los Angeles CA, 90095
| | - Alireza Sohrabi
- Dept. of Bioengineering University of California Los Angeles Los Angeles CA, 90095
| | - Ashley G Goodman
- Dept. of Chemical and Biological Engineering Northwestern University Evanston IL, 48109
| | | | - Lonnie D Shea
- Dept. of Biomedical Engineering University of Michigan Ann Arbor MI, 48109; Dept. of Chemical Engineering University of Michigan Ann Arbor MI, 48109
| | - Stephanie K Seidlits
- Dept. of Chemical and Biological Engineering Northwestern University EvanstonIL, 48109; Dept. of Bioengineering University of California Los Angeles Los Angeles CA, 90095; Brain Research Institute University of California Los Angeles Los Angeles CA, 90095; Jonsson Comprehensive Cancer Center University of California Los Angeles Los Angeles CA, 90024
| |
Collapse
|
7
|
Carwardine D, Wong LF, Fawcett JW, Muir EM, Granger N. Canine olfactory ensheathing cells from the olfactory mucosa can be engineered to produce active chondroitinase ABC. J Neurol Sci 2016; 367:311-8. [PMID: 27423610 DOI: 10.1016/j.jns.2016.06.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 06/01/2016] [Accepted: 06/03/2016] [Indexed: 11/26/2022]
Abstract
A multitude of factors must be overcome following spinal cord injury (SCI) in order to achieve clinical improvement in patients. It is thought that by combining promising therapies these diverse factors could be combatted with the aim of producing an overall improvement in function. Chondroitin sulphate proteoglycans (CSPGs) present in the glial scar that forms following SCI present a significant block to axon regeneration. Digestion of CSPGs by chondroitinase ABC (ChABC) leads to axon regeneration, neuronal plasticity and functional improvement in preclinical models of SCI. However, the enzyme activity decays at body temperature within 24-72h, limiting the translational potential of ChABC as a therapy. Olfactory ensheathing cells (OECs) have shown huge promise as a cell transplant therapy in SCI. Their beneficial effects have been demonstrated in multiple small animal SCI models as well as in naturally occurring SCI in canine patients. In the present study, we have genetically modified canine OECs from the mucosa to constitutively produce enzymatically active ChABC. We have developed a lentiviral vector that can deliver a mammalian modified version of the ChABC gene to mammalian cells, including OECs. Enzyme production was quantified using the Morgan-Elson assay that detects the breakdown products of CSPG digestion in cell supernatants. We confirmed our findings by immunolabelling cell supernatant samples using Western blotting. OECs normal cell function was unaffected by genetic modification as demonstrated by normal microscopic morphology and the presence of the low affinity neurotrophin receptor (p75(NGF)) following viral transduction. We have developed the means to allow production of active ChABC in combination with a promising cell transplant therapy for SCI repair.
Collapse
Affiliation(s)
- Darren Carwardine
- University of Bristol, School of Veterinary Sciences, Regenerative Medicine Laboratory, Biomedical Science Building, University Walk, Bristol BS8 1TD, United Kingdom.
| | - Liang-Fong Wong
- University of Bristol, School of Clinical Sciences, Regenerative Medicine Laboratory, Biomedical Science Building, University Walk, Bristol BS8 1TD, United Kingdom.
| | - James W Fawcett
- University of Cambridge, Department of Clinical Neurosciences, Cambridge Centre for Brain Repair, E.D. Adrian Building, Forvie Site, Robinson Way, Cambridge CB2 0PY, United Kingdom.
| | - Elizabeth M Muir
- University of Cambridge, Department of Physiology Development and Neuroscience, Anatomy Building, Downing St, Cambridge CB2 3DY, United Kingdom.
| | - Nicolas Granger
- University of Bristol, School of Veterinary Sciences, Langford House, Langford, North Somerset BS40 5DU, United Kingdom.
| |
Collapse
|
8
|
van Niekerk EA, Tuszynski MH, Lu P, Dulin JN. Molecular and Cellular Mechanisms of Axonal Regeneration After Spinal Cord Injury. Mol Cell Proteomics 2015; 15:394-408. [PMID: 26695766 DOI: 10.1074/mcp.r115.053751] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Indexed: 12/28/2022] Open
Abstract
Following axotomy, a complex temporal and spatial coordination of molecular events enables regeneration of the peripheral nerve. In contrast, multiple intrinsic and extrinsic factors contribute to the general failure of axonal regeneration in the central nervous system. In this review, we examine the current understanding of differences in protein expression and post-translational modifications, activation of signaling networks, and environmental cues that may underlie the divergent regenerative capacity of central and peripheral axons. We also highlight key experimental strategies to enhance axonal regeneration via modulation of intraneuronal signaling networks and the extracellular milieu. Finally, we explore potential applications of proteomics to fill gaps in the current understanding of molecular mechanisms underlying regeneration, and to provide insight into the development of more effective approaches to promote axonal regeneration following injury to the nervous system.
Collapse
Affiliation(s)
- Erna A van Niekerk
- From the ‡Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093;
| | - Mark H Tuszynski
- From the ‡Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093; §Veterans Administration Medical Center, San Diego, CA 92161
| | - Paul Lu
- From the ‡Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093; §Veterans Administration Medical Center, San Diego, CA 92161
| | - Jennifer N Dulin
- From the ‡Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093
| |
Collapse
|
9
|
Human ciliary neurotrophic factor–overexpressing stable bone marrow stromal cells in the treatment of a rat model of traumatic spinal cord injury. Cytotherapy 2015; 17:912-21. [DOI: 10.1016/j.jcyt.2015.03.689] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 03/23/2015] [Accepted: 03/26/2015] [Indexed: 11/22/2022]
|
10
|
Therapeutical Strategies for Spinal Cord Injury and a Promising Autologous Astrocyte-Based Therapy Using Efficient Reprogramming Techniques. Mol Neurobiol 2015; 53:2826-2842. [DOI: 10.1007/s12035-015-9157-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 03/19/2015] [Indexed: 01/01/2023]
|
11
|
Walthers CM, Seidlits SK. Gene delivery strategies to promote spinal cord repair. Biomark Insights 2015; 10:11-29. [PMID: 25922572 PMCID: PMC4395076 DOI: 10.4137/bmi.s20063] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/02/2015] [Accepted: 03/04/2015] [Indexed: 12/21/2022] Open
Abstract
Gene therapies hold great promise for the treatment of many neurodegenerative disorders and traumatic injuries in the central nervous system. However, development of effective methods to deliver such therapies in a controlled manner to the spinal cord is a necessity for their translation to the clinic. Although essential progress has been made to improve efficiency of transgene delivery and reduce the immunogenicity of genetic vectors, there is still much work to be done to achieve clinical strategies capable of reversing neurodegeneration and mediating tissue regeneration. In particular, strategies to achieve localized, robust expression of therapeutic transgenes by target cell types, at controlled levels over defined time periods, will be necessary to fully regenerate functional spinal cord tissues. This review summarizes the progress over the last decade toward the development of effective gene therapies in the spinal cord, including identification of appropriate target genes, improvements to design of genetic vectors, advances in delivery methods, and strategies for delivery of multiple transgenes with synergistic actions. The potential of biomaterials to mediate gene delivery while simultaneously providing inductive scaffolding to facilitate tissue regeneration is also discussed.
Collapse
|
12
|
Majidi S, Zeinali Sehrig F, Samiei M, Milani M, Abbasi E, Dadashzadeh K, Akbarzadeh A. Magnetic nanoparticles: Applications in gene delivery and gene therapy. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2015; 44:1186-93. [DOI: 10.3109/21691401.2015.1014093] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
13
|
Abstract
Spinal cord injury is a complex pathology often resulting in functional impairment and paralysis. Gene therapy has emerged as a possible solution to the problems of limited neural tissue regeneration through the administration of factors promoting axonal growth, while also offering long-term local delivery of therapeutic molecules at the injury site. Of note, gene therapy is our response to the requirements of neural and glial cells following spinal cord injury, providing, in a time-dependent manner, growth substances for axonal regeneration and eliminating axonal growth inhibitors. Herein, we explore different gene therapy strategies, including targeting gene expression to modulate the presence of neurotrophic growth or survival factors and increase neural tissue plasticity. Special attention is given to describing advances in viral and non-viral gene delivery systems, as well as the available routes of gene delivery. Finally, we discuss the future of combinatorial gene therapies and give consideration to the implementation of gene therapy in humans.
Collapse
|
14
|
Leng Z, He X, Li H, Wang D, Cao K. Olfactory ensheathing cell transplantation for spinal cord injury: An 18-year bibliometric analysis based on the Web of Science. Neural Regen Res 2014; 8:1286-96. [PMID: 25206423 PMCID: PMC4107648 DOI: 10.3969/j.issn.1673-5374.2013.14.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Accepted: 02/22/2013] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE Olfactory ensheathing cell (OEC) transplantation is a promising new approach for the treatment of spinal cord injury (SCI), and an increasing number of scientific publications are devoted to this treatment strategy. This bibliometric analysis was conducted to assess global research trends in OEC transplantation for SCI. DATA SOURCE All of the data in this study originate from the Web of Science maintained by the Institute for Scientific Information, USA, and includes SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, CCR-EXPANDED and IC. The Institute for Scientific Information's Web of Science was searched using the keywords "olfactory ensheathing cells" or "OECs" or "olfactory ensheathing glia" or "OEG" or "olfactory ensheathing glial cells" or "OEGs" and "spinal cord injury" or "SCI" or "spinal injury" or "spinal transection" for literature published from January 1898 to May 2012. DATA SELECTION Original articles, reviews, proceedings papers and meeting abstracts, book chapters and editorial materials on OEC transplantation for SCI were included. Simultaneously, unpublished literature and literature for which manual information retrieval was required were excluded. MAIN OUTCOME MEASURES ALL SELECTED LITERATURES ADDRESSING OEC TRANSPLANTATION FOR SCI WERE EVALUATED IN THE FOLLOWING ASPECTS: publication year, document type, language, author, institution, times cited, Web of Science category, core source title, countries/territories and funding agency. RESULTS In the Web of Science published by the Institute for Scientific Information, the earliest literature record was in April, 1995. Four hundred and fourteen publications addressing OEC transplantation for SCI were added to the data library in the past 18 years, with an annually increasing trend. Of 415 records, 405 publications were in English. Two hundred and fifty-nine articles ranked first in the distribution of document type, followed by 141 reviews. Thirty articles and 20 reviews, cited more than 55 times by the date the publication data were downloaded by us, can be regarded as the most classical references. The journal Experimental Neurology published the most literature (32 records), followed by Glia. The United States had the most literature, followed by China. In addition, Yale University was the most productive institution in the world, while The Second Military Medical University contributed the most in China. The journal Experimental Neurology published the most OEC transplantation literature in the United States, while Neural Regeneration Research published the most in China. CONCLUSION This analysis provides insight into the current state and trends in OEC transplantation for SCI research. Furthermore, we anticipate that this analysis will help encourage international cooperation and teamwork on OEC transplantation for SCI to facilitate the development of more effective treatments for SCI.
Collapse
Affiliation(s)
- Zikuan Leng
- Department of Orthopedics, the Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Xijing He
- Department of Orthopedics, the Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Haopeng Li
- Department of Orthopedics, the Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Dong Wang
- Department of Orthopedics, the Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Kai Cao
- Department of Orthopedics, the Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| |
Collapse
|
15
|
Receptor for advanced glycation end products (RAGE) and its ligands: focus on spinal cord injury. Int J Mol Sci 2014; 15:13172-91. [PMID: 25068700 PMCID: PMC4159787 DOI: 10.3390/ijms150813172] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 07/07/2014] [Accepted: 07/21/2014] [Indexed: 12/11/2022] Open
Abstract
Spinal cord injury (SCI) results in neuronal and glial death and the loss of axons at the injury site. Inflammation after SCI leads to the inhibition of tissue regeneration and reduced neuronal survival. In addition, the loss of axons after SCI results in functional loss below the site of injury accompanied by neuronal cell body’s damage. Consequently, reducing inflammation and promoting axonal regeneration after SCI is a worthy therapeutic goal. The receptor for advanced glycation end products (RAGE) is a transmembrane protein and receptor of the immunoglobulin superfamily. RAGE is implicated in inflammation and neurodegeneration. Several recent studies demonstrated an association between RAGE and central nervous system disorders through various mechanisms. However, the relationship between RAGE and SCI has not been shown. It is imperative to elucidate the association between RAGE and SCI, considering that RAGE relates to inflammation and axonal degeneration following SCI. Hence, the present review highlights recent research regarding RAGE as a compelling target for the treatment of SCI.
Collapse
|
16
|
Dizaj SM, Jafari S, Khosroushahi AY. A sight on the current nanoparticle-based gene delivery vectors. NANOSCALE RESEARCH LETTERS 2014; 9:252. [PMID: 24936161 PMCID: PMC4046008 DOI: 10.1186/1556-276x-9-252] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 04/25/2014] [Indexed: 05/17/2023]
Abstract
Nowadays, gene delivery for therapeutic objects is considered one of the most promising strategies to cure both the genetic and acquired diseases of human. The design of efficient gene delivery vectors possessing the high transfection efficiencies and low cytotoxicity is considered the major challenge for delivering a target gene to specific tissues or cells. On this base, the investigations on non-viral gene vectors with the ability to overcome physiological barriers are increasing. Among the non-viral vectors, nanoparticles showed remarkable properties regarding gene delivery such as the ability to target the specific tissue or cells, protect target gene against nuclease degradation, improve DNA stability, and increase the transformation efficiency or safety. This review attempts to represent a current nanoparticle based on its lipid, polymer, hybrid, and inorganic properties. Among them, hybrids, as efficient vectors, are utilized in gene delivery in terms of materials (synthetic or natural), design, and in vitro/in vivo transformation efficiency.
Collapse
Affiliation(s)
- Solmaz Maleki Dizaj
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samira Jafari
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Yari Khosroushahi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmacognosy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Daneshgah Street, P.O.Box 51664, 14766 Tabriz, Iran
| |
Collapse
|
17
|
El-Abassi R, England JD, Carter GT. Charcot-Marie-Tooth disease: an overview of genotypes, phenotypes, and clinical management strategies. PM R 2014; 6:342-55. [PMID: 24434692 DOI: 10.1016/j.pmrj.2013.08.611] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 08/10/2013] [Accepted: 08/31/2013] [Indexed: 11/30/2022]
Abstract
Charcot-Marie-Tooth (CMT) disease, which encompasses several hereditary motor and sensory neuropathies, is one of the most common neuromuscular disorders. Our understanding of the molecular genotypes of CMT and the resultant clinical and electrophysiological phenotypes has increased greatly in the past decade. Characterized by electrodiagnostic studies into demyelinating (type 1) and axonal (type 2) forms, subsequent genetic testing often provides an exact diagnosis of a specific subtype of CMT. These advancements have made diagnostic paradigms fairly straightforward. Still, the nature and extent of neuromuscular disability is often complex in persons with CMT, and no curative treatments are yet available. Genotypically homologous animal models of CMT have improved exploration of disease-modifying treatments, of which molecular genetic manipulation and stem cell therapies appear to be the most promising. Research is also needed to develop better rehabilitative strategies that may limit disease burden and improve physical performance and psychosocial integration. Clinical management should be multidisciplinary, including neurologists, physiatrists, neurogeneticists, neuromuscular nurse practitioners, and orthopedists, along with physical and occupational therapists, speech-language pathologists, orthotists, vocational counselors, social workers, and other rehabilitation clinicians. Goals should include maximizing functional independence and quality of life while minimizing disability and secondary morbidity.
Collapse
Affiliation(s)
- Rima El-Abassi
- Department of Neurology at the Louisiana State University School of Medicine, New Orleans, LA(∗)
| | - John D England
- Department of Neurology at the Louisiana State University School of Medicine, New Orleans, LA(†)
| | | |
Collapse
|
18
|
Abstract
A major challenge in repairing the injured spinal cord is to assure survival of damaged cells and to encourage regrowth of severed axons. Because neurotrophins are known to affect these processes during development, many experimental approaches to improving function of the injured spinal cord have made use of these agents, particularly Brain derived neurotrophic factor (BDNF) and Neurotrophin-3 (NT-3). More recently, neurotrophins have also been shown to affect the physiology of cells and synapses in the spinal cord. The effect of neurotrophins on circuit performance adds an important dimension to their consideration as agents for repairing the injured spinal cord. In this chapter we discuss the role of neurotrophins in promoting recovery after spinal cord injury from both a structural and functional perspective.
Collapse
Affiliation(s)
- Vanessa S Boyce
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794-5230, USA
| | | |
Collapse
|
19
|
Wan H, Zhang L, Blanchard S, Bigou S, Bohl D, Wang C, Liu S. Combination of hypoglossal-facial nerve surgical reconstruction and neurotrophin-3 gene therapy for facial palsy. J Neurosurg 2013; 119:739-50. [DOI: 10.3171/2013.1.jns121176] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object
Facial nerve injury results in facial palsy that has great impact on the psychosocial conditions of affected patients. Reconstruction of the facial nerve to restore facial symmetry and expression is still a significant surgical challenge. In this study, the authors assessed a hypoglossal-facial nerve anastomosis method combined with neurotrophic factor gene therapy to treat facial palsy in adult rats after facial nerve injury.
Methods
Surgery consisted of the interposition of a predegenerated nerve graft (PNG) that was anastomosed with the hypoglossal and facial nerves at each of its extremities. The hypoglossal nerve was cut approximately 50% for this anastomosis to conserve partial hypoglossal function. Before their transplantation, the PNGs were genetically engineered using lentiviral vectors to induce overexpression of the neurotrophic factor neurotrophin-3 (NT-3) to improve axonal regrowth in the reconstructed nerve pathway. Reconstruction was performed after facial nerve injury, either immediately or after a delay of 9 weeks. The rats were followed up for 4 months postoperatively, and treatment outcomes were then assessed.
Results
Compared with the functional innervation in control rats that underwent facial nerve injury without subsequent treatment, functional innervation of the paralyzed whisker pad by hypoglossal motoneurons in rats treated 4 months after nerve reconstruction was evidenced by the retrograde transport of neuronal tracers, the recording of muscle action potentials conducted by the PNG, and the recovery of facial symmetry. Although a better outcome was observed when reconstruction was performed immediately after facial nerve injury, reconstruction with NT3-treated PNGs significantly improved functional reinnervation of the paralyzed whisker pad even when implantation occurred 9 weeks posttrauma.
Conclusions
Results demonstrated that hypoglossal-facial nerve anastomosis facilitates innervation of paralyzed facial muscle via hypoglossal motoneurons without sacrificing ipsilateral hemitongue function. Neurotrophin-3 treatment through gene therapy could effectively improve such innervation, even after delayed reconstruction. These findings suggest that the combination of surgical reconstruction and NT-3 gene therapy is promising for its potential application in treating facial palsy in humans.
Collapse
Affiliation(s)
- Hong Wan
- 1Beijing Neurosurgical Institute
| | - Liwei Zhang
- 2Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China; and
| | - Stephane Blanchard
- 3Unité Rétrovirus et Transfert Génétique, Institut National de la Santé et de la Recherche Médicale U622, Department of Neuroscience, Institut Pasteur, Paris, France
| | - Stephanie Bigou
- 3Unité Rétrovirus et Transfert Génétique, Institut National de la Santé et de la Recherche Médicale U622, Department of Neuroscience, Institut Pasteur, Paris, France
| | - Delphine Bohl
- 3Unité Rétrovirus et Transfert Génétique, Institut National de la Santé et de la Recherche Médicale U622, Department of Neuroscience, Institut Pasteur, Paris, France
| | | | - Song Liu
- 1Beijing Neurosurgical Institute
- 2Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China; and
- 3Unité Rétrovirus et Transfert Génétique, Institut National de la Santé et de la Recherche Médicale U622, Department of Neuroscience, Institut Pasteur, Paris, France
| |
Collapse
|
20
|
Kelamangalath L, Smith GM. Neurotrophin treatment to promote regeneration after traumatic CNS injury. ACTA ACUST UNITED AC 2013; 8:486-495. [PMID: 25419214 DOI: 10.1007/s11515-013-1269-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Neurotrophins are a family of growth factors that have been found to be central for the development and functional maintenance of the nervous system, participating in neurogenesis, neuronal survival, axonal growth, synaptogenesis and activity-dependent forms of synaptic plasticity. Trauma in the adult nervous system can disrupt the functional circuitry of neurons and result in severe functional deficits. The limitation of intrinsic growth capacity of adult nervous system and the presence of an inhospitable environment are the major hurdles for axonal regeneration of lesioned adult neurons. Neurotrophic factors have been shown to be excellent candidates in mediating neuronal repair and establishing functional circuitry via activating several growth signaling mechanisms including neuron-intrinsic regenerative programs. Here, we will review the effects of various neurotrophins in mediating recovery after injury to the adult spinal cord.
Collapse
Affiliation(s)
- Lakshmi Kelamangalath
- Center for Neural Repair and Rehabilitation, Department of Neuroscience, & Shriners Hospitals for Pediatric Research, Temple University, School of Medicine, Philadelphia, PA 19140-4106, USA
| | - George M Smith
- Center for Neural Repair and Rehabilitation, Department of Neuroscience, & Shriners Hospitals for Pediatric Research, Temple University, School of Medicine, Philadelphia, PA 19140-4106, USA
| |
Collapse
|
21
|
Sakiyama-Elbert S, Johnson PJ, Hodgetts SI, Plant GW, Harvey AR. Scaffolds to promote spinal cord regeneration. HANDBOOK OF CLINICAL NEUROLOGY 2013; 109:575-94. [PMID: 23098738 DOI: 10.1016/b978-0-444-52137-8.00036-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Substantial research effort in the spinal cord injury (SCI) field is directed towards reduction of secondary injury changes and enhancement of tissue sparing. However, pathway repair after complete transections, large lesions, or after chronic injury may require the implantation of some form of oriented bridging structure to restore tissue continuity across a trauma zone. These matrices or scaffolds should be biocompatible and create an environment that facilitates tissue growth and vascularization, and allow axons to regenerate through and beyond the implant in order to reconnect with "normal" tissue distal to the injury. The myelination of regrown axons is another important requirement. In this chapter, we describe recent advances in biomaterial technology designed to provide a terrain for regenerating axons to grow across the site of injury and/or create an environment for endogenous repair. Many different types of scaffold are under investigation; they can be biodegradable or nondegradable, natural or synthetic. Scaffolds can be designed to incorporate immobilized signaling molecules and/or used as devices for controlled release of therapeutic agents, including growth factors. These bridging structures can also be infiltrated with specific cell types deemed suitable for spinal cord repair.
Collapse
Affiliation(s)
- S Sakiyama-Elbert
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| | | | | | | | | |
Collapse
|
22
|
Tannemaat MR, Verhaagen J, Malessy M. The application of viral vectors to enhance regeneration after peripheral nerve repair. Neurol Res 2013; 30:1039-46. [DOI: 10.1179/174313208x362514] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
23
|
Thompson CD, Zurko JC, Hanna BF, Hellenbrand DJ, Hanna A. The therapeutic role of interleukin-10 after spinal cord injury. J Neurotrauma 2013; 30:1311-24. [PMID: 23731227 DOI: 10.1089/neu.2012.2651] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating condition affecting 270,000 people in the United States. A potential treatment for decreasing the secondary inflammation, excitotoxic damage, and neuronal apoptosis associated with SCI, is the anti-inflammatory cytokine interleukin-10. The best characterized effects of IL-10 are anti-inflammatory-it downregulates pro-inflammatory species interleukin-1β (IL-1β), interleukin-2 (IL-2), interleukin-6 (IL-6), tumor necrosis factor-α, interferon-γ, matrix metalloproteinase-9, nitric oxide synthase, myeloperoxidase, and reactive oxygen species. Pro-apoptotic factors cytochrome c, caspase 3, and Bax are downregulated by IL-10, whereas anti-apoptotic factors B-cell lymphoma 2 (Bcl-2) and Bcl-2-associated X, B-cell lymphoma-extra large (Bcl-xl) are upregulated by IL-10. IL-10 also provides trophic support to neurons through the IL-10 receptor. Increased tissue sparing, functional recovery, and neuroprotection are seen with an immediate post-SCI systemic administration of IL-10. Treatment of SCI with IL-10 has been used successfully in combination with Schwann cell and olfactory glial cell grafts, as well as methylprednisolone. Minocycline, tetramethylpyrazine, and hyperbaric oxygen treatment all increase IL-10 levels in a SCI models and result in increased tissue sparing and functional recovery. A chronic systemic administration of IL-10 does not appear to be beneficial to SCI recovery and causes increased susceptibility to septicemia, pneumonia, and peripheral neuropathy. However, a localized upregulation of IL-10 has been shown to be beneficial and can be achieved by herpes simplex virus gene therapy, injection of poliovirus replicons, or surgical placement of a slow-release compound. IL-10 shows promise as a treatment for SCI, although research on local IL-10 delivery timeline and dosage needs to be expanded.
Collapse
Affiliation(s)
- Colton D Thompson
- Department of Neurological Surgery, University of Wisconsin , Madison, Wisconsin, USA
| | | | | | | | | |
Collapse
|
24
|
Lin WP, Chen XW, Zhang LQ, Wu CY, Huang ZD, Lin JH. Effect of neuroglobin genetically modified bone marrow mesenchymal stem cells transplantation on spinal cord injury in rabbits. PLoS One 2013; 8:e63444. [PMID: 23658829 PMCID: PMC3642116 DOI: 10.1371/journal.pone.0063444] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Accepted: 03/29/2013] [Indexed: 12/12/2022] Open
Abstract
Objective This study aims to investigate the potentially protective effect of neuroglobin (Ngb) gene-modified bone marrow mesenchymal stem cells (BMSCs) on traumatic spinal cord injury (SCI) in rabbits. Methods A lentiviral vector containing an Ngb gene was constructed and used to deliver Ngb to BMSCs. Ngb gene-modified BMSCs were then injected at the SCI sites 24 hours after SCI. The motor functions of the rabbits were evaluated by the Basso–Beattie–Bresnahan rating scale. Fluorescence microscopy, quantitative real-time PCRs, Western blots, malondialdehyde (MDA) tests, and terminal deoxynucleotidyltransferase-mediated UTP end labeling assays were also performed. Results Ngb expression in the Ngb-BMSC group increased significantly. A more significant functional improvement was observed in the Ngb-BMSC group compared with those in the other groups. Traumatic SCI seemingly led to an increase in MDA level and number of apoptotic cells, which can be prevented by Ngb-BMSC treatment. Conclusion This study demonstrates that Ngb gene-modified BMSCs can strengthen the therapeutic benefits of BMSCs in reducing secondary damage and improving the neurological outcome after traumatic SCI. Therefore, the combined strategy of BMSC transplantation and Ngb gene therapy can be used to treat traumatic SCI.
Collapse
Affiliation(s)
- Wen-Ping Lin
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, Fujian Province, People's Republic of China
| | - Xuan-Wei Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China
| | - Li-Qun Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China
| | - Chao-Yang Wu
- Department of Orthopedic Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China
| | - Zi-Da Huang
- Department of Orthopedic Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China
| | - Jian-Hua Lin
- Department of Orthopedic Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China
- * E-mail:
| |
Collapse
|
25
|
The retrograde delivery of adenovirus vector carrying the gene for brain-derived neurotrophic factor protects neurons and oligodendrocytes from apoptosis in the chronically compressed spinal cord of twy/twy mice. Spine (Phila Pa 1976) 2012; 37:2125-35. [PMID: 22648027 DOI: 10.1097/brs.0b013e3182600ef7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN The twy/twy mouse undergoes spontaneous chronic mechanical compression of the spinal cord; this in vivo model system was used to examine the effects of retrograde adenovirus (adenoviral vector [AdV])-mediated brain-derived neurotrophic factor (BDNF) gene delivery to spinal neural cells. OBJECTIVE To investigate the targeting and potential neuroprotective effect of retrograde AdV-mediated BDNF gene transfection in the chronically compressed spinal cord in terms of prevention of apoptosis of neurons and oligodendrocytes. SUMMARY OF BACKGROUND DATA Several studies have investigated the neuroprotective effects of neurotrophins, including BDNF, in spinal cord injury. However, no report has described the effects of retrograde neurotrophic factor gene delivery in compressed spinal cords, including gene targeting and the potential to prevent neural cell apoptosis. METHODS AdV-BDNF or AdV-LacZ (as a control gene) was injected into the bilateral sternomastoid muscles of 18-week old twy/twy mice for retrograde gene delivery via the spinal accessory motor neurons. Heterozygous Institute of Cancer Research mice (+/twy), which do not undergo spontaneous spinal compression, were used as a control for the effects of such compression on gene delivery. The localization and cell specificity of β-galactosidase expression (produced by LacZ gene transfection) and BDNF expression in the spinal cord were examined by coimmunofluorescence staining for neural cell markers (NeuN, neurons; reactive immunology protein, oligodendrocytes; glial fibrillary acidic protein, astrocytes; OX-42, microglia) 4 weeks after gene injection. The possible neuroprotection afforded by retrograde AdV-BDNF gene delivery versus AdV-LacZ-transfected control mice was assessed by scoring the prevalence of apoptotic cells (terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling-positive cells) and immunoreactivity to active caspases -3, -8, and -9, p75, neurofilament 200 kD (NF), and for the oligodendroglial progenitor marker, NG2. RESULTS.: Four weeks after injection, the retrograde delivery of the LacZ marker gene was identified in cervical spinal neurons and some glial cells, including oligodendrocytes in the white matter of the spinal cord, in both the twy/twy mouse and the heterozygous Institute of Cancer Research mouse (+/twy). In the compressed spinal cord of twy/twy mouse, AdV-BDNF gene transfection resulted in a significant decrease in the number of terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling-positive cells present in the spinal cord and a downregulation in the caspase apoptotic pathway compared with AdV-LacZ (control) gene transfection. There was a marked and significant increase in the areas of the spinal cord of AdV-BDNF-injected mice that were NF- and NG2-immunopositive compared with AdV-LacZ-injected mice, indicating the increased presence of neurons and oligodendrocytes in response to BDNF transfection. CONCLUSION Our results demonstrate that targeted retrograde BDNF gene delivery suppresses apoptosis in neurons and oligodendrocytes in the chronically compressed spinal cord of twy/twy mouse. Further work is required to establish whether this method of gene delivery may provide neuroprotective effects in other situations of compressive spinal cord injury.
Collapse
|
26
|
Pêgo AP, Kubinova S, Cizkova D, Vanicky I, Mar FM, Sousa MM, Sykova E. Regenerative medicine for the treatment of spinal cord injury: more than just promises? J Cell Mol Med 2012; 16:2564-82. [PMID: 22805417 PMCID: PMC4118226 DOI: 10.1111/j.1582-4934.2012.01603.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 07/09/2012] [Indexed: 01/01/2023] Open
Abstract
Spinal cord injury triggers a complex set of events that lead to tissue healing without the restoration of normal function due to the poor regenerative capacity of the spinal cord. Nevertheless, current knowledge about the intrinsic regenerative ability of central nervous system axons, when in a supportive environment, has made the prospect of treating spinal cord injury a reality. Among the range of strategies under investigation, cell-based therapies offer the most promising results, due to the multifactorial roles that these cells can fulfil. However, the best cell source is still a matter of debate, as are clinical issues that include the optimal cell dose as well as the timing and route of administration. In this context, the role of biomaterials is gaining importance. These can not only act as vehicles for the administered cells but also, in the case of chronic lesions, can be used to fill the permanent cyst, thus creating a more favourable and conducive environment for axonal regeneration in addition to serving as local delivery systems of therapeutic agents to improve the regenerative milieu. Some of the candidate molecules for the future are discussed in view of the knowledge derived from studying the mechanisms that facilitate the intrinsic regenerative capacity of central nervous system neurons. The future challenge for the multidisciplinary teams working in the field is to translate the knowledge acquired in basic research into effective combinatorial therapies to be applied in the clinic.
Collapse
Affiliation(s)
- Ana Paula Pêgo
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.
| | | | | | | | | | | | | |
Collapse
|
27
|
Teng YD, Yu D, Ropper AE, Li J, Kabatas S, Wakeman DR, Wang J, Sullivan MP, Redmond DE, Langer R, Snyder EY, Sidman RL. Functional multipotency of stem cells: a conceptual review of neurotrophic factor-based evidence and its role in translational research. Curr Neuropharmacol 2012; 9:574-85. [PMID: 22654717 PMCID: PMC3263453 DOI: 10.2174/157015911798376299] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 09/28/2010] [Accepted: 09/28/2010] [Indexed: 12/14/2022] Open
Abstract
We here propose an updated concept of stem cells (SCs), with an emphasis on neural stem cells (NSCs). The conventional view, which has touched principally on the essential property of lineage multipotency (e.g., the ability of NSCs to differentiate into all neural cells), should be broadened to include the emerging recognition of biofunctional multipotency of SCs to mediate systemic homeostasis, evidenced in NSCs in particular by the secretion of neurotrophic factors. Under this new conceptual context and taking the NSC as a leading example, one may begin to appreciate and seek the “logic” behind the wide range of molecular tactics the NSC appears to serve at successive developmental stages as it integrates into and prepares, modifies, and guides the surrounding CNS micro- and macro-environment towards the formation and self-maintenance of a functioning adult nervous system. We suggest that embracing this view of the “multipotency” of the SCs is pivotal for correctly, efficiently, and optimally exploiting stem cell biology for therapeutic applications, including reconstitution of a dysfunctional CNS.
Collapse
Affiliation(s)
- Yang D Teng
- Division of SCI Research, Veterans Affairs Boston Healthcare System, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Huang J, Lu L, Zhang J, Hu X, Zhang Y, Liang W, Wu S, Luo Z. Electrical stimulation to conductive scaffold promotes axonal regeneration and remyelination in a rat model of large nerve defect. PLoS One 2012; 7:e39526. [PMID: 22737243 PMCID: PMC3380893 DOI: 10.1371/journal.pone.0039526] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 05/23/2012] [Indexed: 02/02/2023] Open
Abstract
Background Electrical stimulation (ES) has been shown to promote nerve regeneration when it was applied to the proximal nerve stump. However, the possible beneficial effect of establishing a local electrical environment between a large nerve defect on nerve regeneration has not been reported in previous studies. The present study attempted to establish a local electrical environment between a large nerve defect, and examined its effect on nerve regeneration and functional recovery. Methodology/Findings In the present study, a conductive scaffold was constructed and used to bridge a 15 mm sciatic nerve defect in rats, and intermittent ES (3 V, 20 Hz) was applied to the conductive scaffold to establish an electrical environment at the site of nerve defect. Nerve regeneration and functional recovery were examined after nerve injury repair and ES. We found that axonal regeneration and remyelination of the regenerated axons were significantly enhanced by ES which was applied to conductive scaffold. In addition, both motor and sensory functional recovery was significantly improved and muscle atrophy was partially reversed by ES localized at the conductive scaffold. Further investigations showed that the expression of S-100, BDNF (brain-derived neurotrophic factor), P0 and Par-3 was significantly up-regulated by ES at the conductive scaffold. Conclusions/Significance Establishing an electrical environment with ES localized at the conductive scaffold is capable of accelerating nerve regeneration and promoting functional recovery in a 15 mm nerve defect in rats. The findings provide new directions for exploring regenerative approaches to achieve better functional recovery in the treatment of large nerve defect.
Collapse
Affiliation(s)
- Jinghui Huang
- Institute of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Lei Lu
- Department of oral anatomy and physiology, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| | - Jianbin Zhang
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi’an, China
| | - Xueyu Hu
- Institute of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Yongguang Zhang
- Institute of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
- Fuzhou General Hospital, Fuzhou, China
| | - Wei Liang
- Institute of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Siyu Wu
- Department of Orthopaedics, Daping Hospital, The Third Military Medical University, Chongqing, China
| | - Zhuojing Luo
- Institute of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
- * E-mail:
| |
Collapse
|
29
|
Zhao T, Li Y, Dai X, Wang J, Qi Y, Wang J, Xu K. Effects of retrograde gene transfer of brain-derived neurotrophic factor in the rostral spinal cord of a compression model in rat. Mol Biol Rep 2012; 39:8045-51. [PMID: 22531936 DOI: 10.1007/s11033-012-1651-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 04/16/2012] [Indexed: 12/22/2022]
Abstract
Recovery after spinal cord injury (SCI) is rare in humans and experimental animals. Following SCI in adults, changes in gene expression and the regulation of these genes are associated with the pathological development of the injury. High levels of brain-derived neurotrophic factor (BDNF) in the injury area during the post-injury period contribute to enhanced neuroprotection and axonal regeneration. Intervention at the level of gene regulation has the potential to promote SCI repair. In this study, the injection of adenovirus-mediated BDNF in the lesion area (rostral spinal cord) up-regulated the expression of BDNF in the injury zone of a compression model in rat, thereby protecting neurons and enhancing behavioral function.
Collapse
Affiliation(s)
- Tengfei Zhao
- The Second Affiliated Hospital (Binjiang Branch), Hangzhou Binjiang Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | | | | | | | | | | | | |
Collapse
|
30
|
Chew DJ, Fawcett JW, Andrews MR. The challenges of long-distance axon regeneration in the injured CNS. PROGRESS IN BRAIN RESEARCH 2012. [PMID: 23186719 DOI: 10.1016/b978-0-444-59544-7.00013-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Injury to the central nervous system (CNS) that results in long-tract axonal damage typically leads to permanent functional deficits in areas innervated at, and below, the level of the lesion. The initial ischemia, inflammation, and neurodegeneration are followed by a progressive generation of scar tissue, dieback of transected axons, and demyelination, creating an area inhibitory to regrowth and recovery. Two ways to combat this inhibition is to therapeutically target the extrinsic and intrinsic properties of the axon-scar environment. Scar tissue within and surrounding the lesion site can be broken down using an enzyme known as chondroitinase. Negative regulators of adult neuronal growth, such as Nogo, can be neutralized with antibodies. Both therapies greatly improve functional recovery in animal models. Alternatively, modifying the intrinsic growth properties of CNS neurons through gene therapy or pharmacotherapy has also shown promising axonal regeneration after injury. Despite these promising therapies, the main challenge of long-distance axon regeneration still remains; achieving a level of functional and organized connectivity below the level of the lesion that mimics the intact CNS.
Collapse
Affiliation(s)
- Daniel J Chew
- Centre for Brain Repair, University of Cambridge, Forvie Site, Robinson Way, Cambridge, UK
| | | | | |
Collapse
|
31
|
Reier PJ, Lane MA, Hall ED, Teng YD, Howland DR. Translational spinal cord injury research: preclinical guidelines and challenges. HANDBOOK OF CLINICAL NEUROLOGY 2012; 109:411-33. [PMID: 23098728 PMCID: PMC4288927 DOI: 10.1016/b978-0-444-52137-8.00026-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Advances in the neurobiology of spinal cord injury (SCI) have prompted increasing attention to opportunities for moving experimental strategies towards clinical applications. Preclinical studies are the centerpiece of the translational process. A major challenge is to establish strategies for achieving optimal translational progression while minimizing potential repetition of previous disappointments associated with clinical trials. This chapter reviews and expands upon views pertaining to preclinical design reported in recently published opinion surveys. Subsequent discussion addresses other preclinical considerations more specifically related to current and potentially imminent cellular and pharmacological approaches to acute/subacute and chronic SCI. Lastly, a retrospective and prospective analysis examines how guidelines currently under discussion relate to select examples of past, current, and future clinical translations. Although achieving definition of the "perfect" preclinical scenario is difficult to envision, this review identifies therapeutic robustness and independent replication of promising experimental findings as absolutely critical prerequisites for clinical translation. Unfortunately, neither has been fully embraced thus far. Accordingly, this review challenges the notion "everything works in animals and nothing in humans", since more rigor must first be incorporated into the bench-to-bedside translational process by all concerned, whether in academia, clinical medicine, or corporate circles.
Collapse
Affiliation(s)
- Paul J Reier
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, USA.
| | | | | | | | | |
Collapse
|
32
|
Boyce VS, Park J, Gage FH, Mendell LM. Differential effects of brain-derived neurotrophic factor and neurotrophin-3 on hindlimb function in paraplegic rats. Eur J Neurosci 2011; 35:221-32. [PMID: 22211901 PMCID: PMC3509221 DOI: 10.1111/j.1460-9568.2011.07950.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We compared the effect of viral administration of brain-derived neurotrophic factor (BDNF) or neurotrophin 3 (NT-3) on locomotor recovery in adult rats with complete thoracic (T10) spinal cord transection injuries, in order to determine the effect of chronic neurotrophin expression on spinal plasticity. At the time of injury, BDNF, NT-3 or green fluorescent protein (GFP) (control) was delivered to the lesion via adeno-associated virus (AAV) constructs. AAV–BDNF was significantly more effective than AAV–NT-3 in eliciting locomotion. In fact, AAV–BDNF-treated rats displayed plantar, weight-supported hindlimb stepping on a stationary platform, that is, without the assistance of a moving treadmill and without step training. Rats receiving AAV–NT-3 or AAV–GFP were incapable of hindlimb stepping during this task, despite provision of balance support. AAV–NT-3 treatment did promote the recovery of treadmill-assisted stepping, but this required continuous perineal stimulation. In addition, AAV–BDNF-treated rats were sensitized to noxious heat, whereas AAV–NT-3-treated and AAV–GFP-treated rats were not. Notably, AAV–BDNF-treated rats also developed hindlimb spasticity, detracting from its potential clinical applicability via the current viral delivery method. Intracellular recording from triceps surae motoneurons revealed that AAV–BDNF significantly reduced motoneuron rheobase, suggesting that AAV–BDNF promoted the recovery of over-ground stepping by enhancing neuronal excitability. Elevated nuclear c-Fos expression in interneurons located in the L2 intermediate zone after AAV–BDNF treatment indicated increased activation of interneurons in the vicinity of the locomotor central pattern generator. AAV–NT-3 treatment reduced motoneuron excitability, with little change in c-Fos expression. These results support the potential for BDNF delivery at the lesion site to reorganize locomotor circuits.
Collapse
Affiliation(s)
- Vanessa S Boyce
- Department of Neurobiology and Behavior, Life Sciences Building, Room 532, State University of New York at Stony Brook, Stony Brook, NY 11794-5230, USA
| | | | | | | |
Collapse
|
33
|
Blesch A, Lu P, Tsukada S, Alto LT, Roet K, Coppola G, Geschwind D, Tuszynski MH. Conditioning lesions before or after spinal cord injury recruit broad genetic mechanisms that sustain axonal regeneration: superiority to camp-mediated effects. Exp Neurol 2011; 235:162-73. [PMID: 22227059 DOI: 10.1016/j.expneurol.2011.12.037] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 12/14/2011] [Accepted: 12/17/2011] [Indexed: 11/24/2022]
Abstract
Previous studies indicate that peripheral nerve conditioning lesions significantly enhance central axonal regeneration via modulation of cAMP-mediated mechanisms. To gain insight into the nature and temporal dependence of neural mechanisms underlying conditioning lesion effects on central axonal regeneration, we compared the efficacy of peripheral sciatic nerve crush lesions to cAMP elevations (in lumbar dorsal root ganglia) on central sensory axonal regeneration when administered either before or after cervical spinal cord lesions. We found significantly greater effects of conditioning lesions compared to cAMP elevations on central axonal regeneration when combined with cellular grafts at the lesion site and viral neurotrophin delivery; further, these effects persisted whether conditioning lesions were applied prior to or shortly after spinal cord injury. Indeed, conditioning lesions recruited extensively greater sets of genetic mechanisms of possible relevance to axonal regeneration compared to cAMP administration, and sustained these changes for significantly greater time periods through the post-lesion period. We conclude that cAMP-mediated mechanisms account for only a portion of the potency of conditioning lesions on central axonal regeneration, and that recruitment of broader genetic mechanisms can extend the effect and duration of cellular events that support axonal growth.
Collapse
Affiliation(s)
- Armin Blesch
- Spinal Cord Injury Center, University Hospital Heidelberg, 69118 Heidelberg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
After central nervous system (CNS) injury axons fail to regenerate often leading to persistent neurologic deficit although injured peripheral nervous system (PNS) axons mount a robust regenerative response that may lead to functional recovery. Some of the failures of CNS regeneration arise from the many glial-based inhibitory molecules found in the injured CNS, whereas the intrinsic regenerative potential of some CNS neurons is actively curtailed during CNS maturation and limited after injury. In this review, the molecular basis for extrinsic and intrinsic modulation of axon regeneration within the nervous system is evaluated. A more complete understanding of the factors limiting axonal regeneration will provide a rational basis, which is used to develop improved treatments for nervous system injury.
Collapse
Affiliation(s)
- Toby A Ferguson
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | |
Collapse
|
35
|
Tao YJ, Gao DW, Yu M. TGF-β(1) in retinal ganglion cells in rats with chronic ocular hypertension: its expression and anti-apoptotic effect. Int J Ophthalmol 2011; 4:396-401. [PMID: 22553689 DOI: 10.3980/j.issn.2222-3959.2011.04.15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 07/02/2011] [Indexed: 02/02/2023] Open
Abstract
AIM To investigate the anti-apoptotic effect of transforming growth factor beta-1 (TGF-β(1)) on chronic ocular hypertension. METHODS The expression of TGF-β(1) in retinal ganglion cells (RCGs) was measured using the immunohistochemiscal S-P method and real-time PCR in the normally control group, the ocular hypertension group (experimental group A), the ocular hypertension plus antibody intervention group (experimental group B) and the ocular hypertension plus antigen intervention group (experimental group C) at 1, 2, 3 and 4 weeks postoperatively. The count of apoptotic RCGs was measured using the TUNEL method. RESULTS The expression of TGF-β(1 )was significantly higher in experimental group C than that in other three groups (P<0.05). The expression was the lowest in experimental group B (4.17%). A statistically significant difference was noted between the four groups (P<0.01). The count of apoptotic RCGs was statistically significantly lower in experimental group C than that in the experimental groups A and B (P<0.01). A statistically significant difference was noted in the count of apoptotic RCGs between these three experimental groups (P<0.01). CONCLUSION TGF-β(1) can inhibit the apoptosis of RCGs in rats with chronic ocular hypertension.
Collapse
Affiliation(s)
- Yong-Jian Tao
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | | | | |
Collapse
|
36
|
Jin Y, Ketschek A, Jiang Z, Smith G, Fischer I. Chondroitinase activity can be transduced by a lentiviral vector in vitro and in vivo. J Neurosci Methods 2011; 199:208-13. [PMID: 21600922 DOI: 10.1016/j.jneumeth.2011.05.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 04/18/2011] [Accepted: 05/04/2011] [Indexed: 12/11/2022]
Abstract
The bacterial enzyme chondroitinase ABC (ChABC), which cleaves chondroitin sulfate glycosaminoglycan chains, can degrade inhibitory scar tissue formed following spinal cord injury, thereby promoting axonal growth and regeneration. However, delivering the active enzyme for prolonged periods presents practical limitations. To overcome these problems, we prepared a lentiviral vector (LV) encoding chondroitinase AC (Chase) together with the green fluorescent protein (GFP) reporter (Chase/LV) and demonstrated its expression and enzymatic activity in vitro and in vivo. Neural precursor cells infected with Chase/LV expressed the GFP reporter at levels that increased dramatically with time in culture. Enzymatic activity from the supernatant of the infected cells was demonstrated by dot blot assay using an antibody that recognizes the digested form of CSPG and was compared with the bacterial ChABC enzyme. Chick DRG cultures plated adjacent to the CSPG border and incubated with supernatant from Chase/LV-infected cells showed neurites growing into the CSPG area, a response similar to that after treatment with ChABC. In contrast, in control cultures, the neurites turned to avoid the inhibitory CSPG interface. Degradation of CSPG in these cultures was confirmed by specific CSPG antibodies. A single injection of Chase/LV into the spinal cord resulted in sustained secretion of the enzyme, whose activity was detected for 8 weeks by expression of GFP and evidence of the digested form of CSPG. This study demonstrates the efficacy of the Chase/LV vector and its potential as a therapeutic tool to reduce scar inhibition and promote axonal growth and repair following central nervous system injury.
Collapse
Affiliation(s)
- Ying Jin
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, United States.
| | | | | | | | | |
Collapse
|
37
|
Lentiviral Vector-Mediated Gene Transfer and RNA Silencing Technology in Neuronal Dysfunctions. Mol Biotechnol 2010; 47:169-87. [DOI: 10.1007/s12033-010-9334-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
38
|
Silva GA. Nanotechnology applications and approaches for neuroregeneration and drug delivery to the central nervous system. Ann N Y Acad Sci 2010; 1199:221-30. [PMID: 20633128 DOI: 10.1111/j.1749-6632.2009.05361.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Nanotechnology is the science and engineering concerned with the design, synthesis, and characterization of materials and devices that have a functional organization in at least one dimension on the nanometer (i.e., one billionth of a meter) scale. The potential impact of bottom up self-assembling nanotechnology, custom made molecules that self-assemble or self-organize into higher ordered structures in response to a defined chemical or physical cue, and top down lithographic type technologies where detail is engineered at smaller scales starting from bulk materials, stems from the fact that these nanoengineered materials and devices exhibit emergent mesocale and macroscale chemical and physical properties that are often different than their constituent nanoscale building block molecules or materials. As such, applications of nanotechnology to medicine and biology allow the interaction and integration of cells and tissues with nanoengineered substrates at a molecular (i.e., subcellular) level with a very high degree of functional specificity and control. This review considers applications of nanotechnology aimed at the neuroprotection and functional regeneration of the central nervous system (CNS) following traumatic or degenerative insults, and nanotechnology approaches for delivering drugs and other small molecules across the blood-brain barrier. It also discusses developing platform technologies that may prove to have broad applications to medicine and physiology, including some being developed for rescuing or replacing anatomical and/or functional CNS structures.
Collapse
Affiliation(s)
- Gabriel A Silva
- Departments of Bioengineering, Ophthalmology and Neurosciences Program, University of California, San Diego, California, USA.
| |
Collapse
|
39
|
Madduri S, Gander B. Schwann cell delivery of neurotrophic factors for peripheral nerve regeneration. J Peripher Nerv Syst 2010; 15:93-103. [DOI: 10.1111/j.1529-8027.2010.00257.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
40
|
Huang J, Hu X, Lu L, Ye Z, Zhang Q, Luo Z. Electrical regulation of Schwann cells using conductive polypyrrole/chitosan polymers. J Biomed Mater Res A 2010; 93:164-74. [PMID: 19536828 DOI: 10.1002/jbm.a.32511] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Electrical stimulation (ES) can dramatically enhance neurite outgrowth through conductive polymers and accelerate peripheral nerve regeneration in animal models of nerve injury. Therefore, conductive tissue engineering graft in combination with ES is a potential treatment for neural injuries. Conductive tissue engineering graft can be obtained by seeding Schwann cells on conductive scaffold. However, when ES is applied through the conductive scaffold, the impact of ES on Schwann cells has never been investigated. In this study, a biodegradable conductive composite made of conductive polypyrrole (PPy, 2.5%) and biodegradable chitosan (97.5%) was prepared in order to electrically stimulate Schwann cells. The tolerance of Schwann cells to ES was examined by a cell apoptosis assay. The growth of the cells was characterized using DAPI staining and a MTT assay. mRNA and protein levels of nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) in Schwann cells were assayed by RT-PCR and Western blotting, and the amount of NGF and BDNF secreted was determined by an ELISA assay. The results showed that the PPy/chitosan membranes supported cell adhesion, spreading, and proliferation with or without ES. Interestingly, ES applied through the PPy/chitosan composite dramatically enhanced the expression and secretion of NGF and BDNF when compared with control cells without ES. These findings highlight for the first time the possibility of enhancing nerve regeneration in conductive scaffolds through ES-increased neurotrophin secretion.
Collapse
Affiliation(s)
- Jinghui Huang
- Institute of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | | | | | | | | | | |
Collapse
|
41
|
Cheng FC, Tai MH, Sheu ML, Chen CJ, Yang DY, Su HL, Ho SP, Lai SZ, Pan HC. Enhancement of regeneration with glia cell line-derived neurotrophic factor-transduced human amniotic fluid mesenchymal stem cells after sciatic nerve crush injury. J Neurosurg 2010; 112:868-79. [PMID: 19817545 DOI: 10.3171/2009.8.jns09850] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECT Human amniotic fluid-derived mesenchymal stem cells (AFMSCs) have been shown to promote peripheral nerve regeneration, and the local delivery of neurotrophic factors may additionally enhance nerve regeneration capacity. The present study evaluates whether the transplantation of glia cell line-derived neurotrophic factor (GDNF)-modified human AFMSCs may enhance regeneration of sciatic nerve after a crush injury. METHODS Peripheral nerve injury was produced in Sprague-Dawley rats by crushing the left sciatic nerve using a vessel clamp. Either GDNF-modified human AFMSCs or human AFMSCs were embedded in Matrigel and delivered to the injured nerve. Motor function and electrophysiological studies were conducted after 1 and 4 weeks. Early or later nerve regeneration markers were used to evaluate nerve regeneration. The expression of GDNF in the transplanted human AFMSCs and GDNF-modified human AFMSCs was monitored at 7-day intervals. RESULTS Human AFMSCs were successfully transfected with adenovirus, and a significant amount of GDNF was detected in human AFMSCs or the culture medium supernatant. Increases in the sciatic nerve function index, the compound muscle action potential ratio, conduction latency, and muscle weight were found in the groups treated with human AFMSCs or GDNF-modified human AFMSCs. Importantly, the GDNF-modified human AFMSCs induced the greatest improvement. Expression of markers of early nerve regeneration, such as increased expression of neurofilament and BrdU and reduced Schwann cell apoptosis, as well as late regeneration markers, consisting of reduced vacuole counts, increased expression of Luxol fast blue and S100 protein, paralleled the results of motor function. The expression of GDNF in GDNF-modified human AFMSCs was demonstrated up to 4 weeks; however, the expression decreased over time. CONCLUSIONS The GDNF-modified human AFMSCs appeared to promote nerve regeneration. The consecutive expression of GDNF was demonstrated in GDNF-modified human AFMSCs up to 4 weeks. These findings support a nerve regeneration scenario involving cell transplantation with additional neurotrophic factor secretion.
Collapse
Affiliation(s)
- Fu-Chou Cheng
- Stem Cell Center, Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Targeted retrograde gene delivery of brain-derived neurotrophic factor suppresses apoptosis of neurons and oligodendroglia after spinal cord injury in rats. Spine (Phila Pa 1976) 2010; 35:497-504. [PMID: 20190624 DOI: 10.1097/brs.0b013e3181b8e89b] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Histologic and immunohistochemical studies after targeted retrograde adenovirus (AdV)-mediated brain-derived neurotrophic factor (BDNF) gene delivery via intramuscular injection in rats with injured spinal cord. OBJECTIVE To investigate the neuroprotective effect of targeted retrograde AdV-BDNF gene transfection in the traumatically injured spinal cord in terms of prevention of apoptosis of neurons and oligodendrocytes. SUMMARY OF BACKGROUND DATA Several studies investigated the neuroprotective effects of neurotrophins including BDNF on spinal cord injury, with respect to prevention of neural cell apoptosis in injured spinal cord. However, no report has described the potential effect of targeted retrograde neurotrophic factor gene delivery in injured spinal cord on prevention of neural cell apoptosis. METHODS AdV-BDNF or AdV-LacZ was used for retrograde delivery via bilateral sternomastoid muscles to the spinal accessory motoneurons immediately after spinal cord injury in rats. Localization of beta-galactosidase expression produced by LacZ gene or AdV-BDNF gene transfection was examined by immunofluorescence staining and double staining of cell markers (NeuN, RIP, GFAP, OX-42, and NG2) in the injured spinal cord. TUNEL-positive cells were counted and immunoreactivity to active caspase-3 and NG2 was examined after gene injection. RESULTS Retrograde delivery of LacZ marker gene was identified in cervical spinal neurons and glial cells including oligodendrocytes in the white matter.AdV-BDNF transfection resulted in a significant decrease in the number of TUNEL-positive apoptotic cells by downregulating the caspase apoptotic pathway, with significant promotion of NG2 expression in injured spinal cord, compared with AdV-LacZ injection. CONCLUSION Our results suggest that targeted retrograde BDNF gene delivery suppresses apoptosis of neurons and oligodendrocytes in the injured rat spinal cord.
Collapse
|
43
|
Dreyer JL. Lentiviral vector-mediated gene transfer and RNA silencing technology in neuronal dysfunctions. Methods Mol Biol 2010; 614:3-35. [PMID: 20225033 DOI: 10.1007/978-1-60761-533-0_1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Lentiviral-mediated gene transfer in vivo or in cultured mammalian neurons can be used to address a wide variety of biological questions, to design animal models for specific neurodegenerative pathologies, or to test potential therapeutic approaches in a variety of brain disorders. Lentiviruses can infect nondividing cells, thereby allowing stable gene transfer in postmitotic cells such as mature neurons. An important contribution has been the use of inducible vectors: the same animal can thus be used repeatedly in the doxycycline-on or -off state, providing a powerful mean for assessing the function of a gene candidate in a disorder within a specific neuronal circuit. Furthermore, lentivirus vectors provide a unique tool to integrate siRNA expression constructs with the aim to locally knockdown expression of a specific gene, enabling to assess the function of a gene in a very specific neuronal pathway. Lentiviral vector-mediated delivery of short hairpin RNA results in persistent knockdown of gene expression in the brain. Therefore, the use of lentiviruses for stable expression of siRNA in brain is a powerful aid to probe gene functions in vivo and for gene therapy of diseases of the central nervous system. In this chapter, I review the applications of lentivirus-mediated gene transfer in the investigation of specific gene candidates involved in major brain disorders and neurodegenerative processes. Major applications have been in polyglutamine disorders, such as synucleinopathies and Parkinson's disease, or in investigating gene function in Huntington's disease, dystonia, or muscular dystrophy. Recently, lentivirus gene transfer has been an invaluable tool for evaluation of gene function in behavioral disorders such as drug addiction and attention-deficit hyperactivity disorder or in learning and cognition.
Collapse
Affiliation(s)
- Jean-Luc Dreyer
- Division of Biochemistry, Department of Medicine, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
44
|
Abstract
Animal models of neurodegenerative disease are excellent tools for studying pathogenesis and therapies including cellular transplantation. In this chapter, we describe different models of Huntington's disease and Parkinson's disease, stereotactic surgery (used in creation of lesion models and transplantation) and finally transplantation studies in these models.
Collapse
|
45
|
Tannemaat MR, Eggers R, Hendriks WT, de Ruiter GCW, van Heerikhuize JJ, Pool CW, Malessy MJA, Boer GJ, Verhaagen J. Differential effects of lentiviral vector-mediated overexpression of nerve growth factor and glial cell line-derived neurotrophic factor on regenerating sensory and motor axons in the transected peripheral nerve. Eur J Neurosci 2008; 28:1467-79. [DOI: 10.1111/j.1460-9568.2008.06452.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
Nakajima H, Uchida K, Kobayashi S, Inukai T, Yayama T, Sato R, Mwaka E, Baba H. Target muscles for retrograde gene delivery to specific spinal cord segments. Neurosci Lett 2008; 435:1-6. [DOI: 10.1016/j.neulet.2008.01.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Revised: 01/06/2008] [Accepted: 01/11/2008] [Indexed: 10/22/2022]
|
47
|
Lai Y, Drobinskaya I, Kolossov E, Chen C, Linn T. Genetic modification of cells for transplantation. Adv Drug Deliv Rev 2008; 60:146-59. [PMID: 18037530 DOI: 10.1016/j.addr.2007.08.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Accepted: 08/02/2007] [Indexed: 01/16/2023]
Abstract
Progress in gene therapy has produced promising results that translate experimental research into clinical treatment. Gene modification has been extensively employed in cell transplantation. The main barrier is an effective gene delivery system. Several viral vectors were utilized in end-stage differentiated cells. Recently, successful applications were described with adenovirus-associated vectors. As an alternative, embryonic stem cell- and stem cell-like systems were established for generation of tissue-specified gene-modified cells. Owing to the feasibility for genetic manipulations and the self-renewing potency of these cells they can be used in a way enabling large-scale in vitro production. This approach offers the establishment of in vitro cell culture systems that will deliver sufficient amounts of highly purified, immunoautologous cells suitable for application in regenerative medicine. In this review, the current technology of gene delivery systems to cells is recapitulated and the latest developments for cell transplantation are discussed.
Collapse
|
48
|
Pettingill LN, Minter RL, Shepherd RK. Schwann cells genetically modified to express neurotrophins promote spiral ganglion neuron survival in vitro. Neuroscience 2008; 152:821-8. [PMID: 18304740 DOI: 10.1016/j.neuroscience.2007.11.057] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Revised: 11/26/2007] [Accepted: 01/09/2008] [Indexed: 01/16/2023]
Abstract
The intracochlear infusion of neurotrophic factors via a mini-osmotic pump has been shown to prevent deafness-induced spiral ganglion neuron (SGN) degeneration; however, the use of pumps may increase the incidence of infection within the cochlea, making this technique unsuitable for neurotrophin administration in a clinical setting. Cell- and gene-based therapies are potential therapeutic options. This study investigated whether Schwann cells which were genetically modified to over-express the neurotrophins brain-derived neurotrophic factor (BDNF) or neurotrophin 3 (Ntf3, formerly NT-3) could support SGN survival in an in vitro model of deafness. Co-culture of either BDNF over-expressing Schwann cells or Ntf3 over-expressing Schwann cells with SGNs from early postnatal rats significantly enhanced neuronal survival in comparison to both control Schwann cells and conventional recombinant neurotrophin proteins. Transplantation of neurotrophin over-expressing Schwann cells into the cochlea may provide an alternative means of delivering neurotrophic factors to the deaf cochlea for therapeutic purposes.
Collapse
Affiliation(s)
- L N Pettingill
- The Bionic Ear Institute, 384 Albert Street, East Melbourne, Australia 3002.
| | | | | |
Collapse
|
49
|
Ishii K, Nakamura K, Kawaguchi S, Li R, Hirai S, Sakuragi N, Wada T, Kato K, Yamashita T, Hamada H. Selective gene transfer into neurons via Na,K-ATPase β1. Targeting gene transfer with monoclonal antibody and adenovirus vector. J Gene Med 2008; 10:597-609. [DOI: 10.1002/jgm.1164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
50
|
Uchida K, Nakajima H, Inukai T, Takamura T, Kobayashi S, Furukawa S, Baba H. Adenovirus-mediated retrograde transfer of neurotrophin-3 gene enhances survival of anterior horn neurons oftwy/twy mice with chronic mechanical compression of the spinal cord. J Neurosci Res 2008; 86:1789-800. [DOI: 10.1002/jnr.21627] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|