1
|
Kojima Y, Yoshino H, Ling L, Phillips JO. Comparison of adaptation characteristics between visually and memory-guided saccades. J Neurophysiol 2024; 132:335-346. [PMID: 38865580 PMCID: PMC11302833 DOI: 10.1152/jn.00050.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/14/2024] Open
Abstract
Saccade adaptation plays a crucial role in maintaining saccade accuracy. The behavioral characteristics and neural mechanisms of saccade adaptation for an externally cued movement, such as visually guided saccades (VGS), are well studied in nonhuman primates. In contrast, little is known about the saccade adaptation of an internally driven movement, such as memory-guided saccades (MGS), which are guided by visuospatial working memory. As the oculomotor plant changes because of growth, aging, or skeletomuscular problems, both types of saccades need to be adapted. Do both saccade types engage a common adaptation mechanism? In this study, we compared the characteristics of amplitude decrease adaptation in MGS with VGS in nonhuman primates. We found that the adaptation speed was faster for MGS than for VGS. Saccade duration changed during MGS adaptation, whereas saccade peak velocity changed during VGS adaptation. We also compared the adaptation field, that is, the gain change for saccade amplitudes other than the adapted. The gain change for MGS declines on both smaller and larger sides of adapted amplitude, more rapidly for larger than smaller amplitudes, whereas the decline in VGS was reversed. Thus, the differences between VGS and MGS adaptation characteristics support the previously suggested hypothesis that the adaptation mechanisms of VGS and MGS are distinct. Furthermore, the result suggests that the MGS adaptation site is a brain structure that influences saccade duration, whereas the VGS adaptation site influences saccade peak velocity. These results should be beneficial for future neurophysiological experiments.NEW & NOTEWORTHY Plasticity helps to overcome persistent motor errors. Such motor plasticity or adaptation can be investigated with saccades. Thus far our knowledge is primarily about visually guided saccades, an externally cued movement, which we can make only when the object is visible at the time of saccade. However, as the world is complex, we can make saccades even when the object is not visible. Here, we investigate the adaptation of an internally driven movement: the memory-guided saccade.
Collapse
Affiliation(s)
- Yoshiko Kojima
- Department of Otolaryngology-HNS, University of Washington, Seattle, Washington, United States
- Washington National Primate Research Center, University of Washington, Seattle, Washington, United States
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, Washington, United States
| | - Hidetaka Yoshino
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington, United States
- Washington National Primate Research Center, University of Washington, Seattle, Washington, United States
| | - Leo Ling
- Washington National Primate Research Center, University of Washington, Seattle, Washington, United States
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, Washington, United States
| | - James O Phillips
- Department of Otolaryngology-HNS, University of Washington, Seattle, Washington, United States
- Washington National Primate Research Center, University of Washington, Seattle, Washington, United States
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, Washington, United States
| |
Collapse
|
2
|
Stepniewska I, Kaas JH. The dorsal stream of visual processing and action-specific domains in parietal and frontal cortex in primates. J Comp Neurol 2023; 531:1897-1908. [PMID: 37118872 PMCID: PMC10611900 DOI: 10.1002/cne.25489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/24/2023] [Accepted: 03/31/2023] [Indexed: 04/30/2023]
Abstract
This review summarizes our findings obtained from over 15 years of research on parietal-frontal networks involved in the dorsal stream of cortical processing. We have presented considerable evidence for the existence of similar, partially independent, parietal-frontal networks involved in specific motor actions in a number of primates. These networks are formed by connections between action-specific domains representing the same complex movement evoked by electrical microstimulation. Functionally matched domains in the posterior parietal (PPC) and frontal (M1-PMC) motor regions are hierarchically related. M1 seems to be a critical link in these networks, since the outputs of M1 are essential to the evoked behavior, whereas PPC and PMC mediate complex movements mostly via their connections with M1. Thus, lesioning or deactivating M1 domains selectively blocks matching PMC and PPC domains, while having limited impact on other domains. When pairs of domains are stimulated together, domains within the same parietal-frontal network (matching domains) are cooperative in evoking movements, while they are mainly competitive with other domains (mismatched domains) within the same set of cortical areas. We propose that the interaction of different functional domains in each cortical region (as well as in striatum) occurs mainly via mutual suppression. Thus, the domains at each level are in competition with each other for mediating one of several possible behavioral outcomes.
Collapse
Affiliation(s)
- Iwona Stepniewska
- Department of Psychology, Vanderbilt University, Nashville, TN 37240
| | - Jon H. Kaas
- Department of Psychology, Vanderbilt University, Nashville, TN 37240
| |
Collapse
|
3
|
Behling S, Lisberger SG. A sensory-motor decoder that transforms neural responses in extrastriate area MT into smooth pursuit eye movements. J Neurophysiol 2023; 130:652-670. [PMID: 37584096 PMCID: PMC10648969 DOI: 10.1152/jn.00200.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/17/2023] [Accepted: 08/10/2023] [Indexed: 08/17/2023] Open
Abstract
Visual motion drives smooth pursuit eye movements through a sensory-motor decoder that uses multiple parallel neural pathways to transform the population response in extrastriate area MT into movement. We evaluated the decoder by challenging pursuit in monkeys with reduced motion reliability created by reducing coherence of motion in patches of dots. Our strategy was to determine how reduced dot coherence changes the population response in MT. We then predicted the properties of a decoder that transforms the MT population response into dot coherence-induced deficits in the initiation of pursuit and steady-state tracking. During pursuit initiation, decreased dot coherence reduces MT population response amplitude without changing the preferred speed at its peak. The successful decoder reproduces the measured eye movements by multiplication of 1) the estimate of target speed from the peak of the population response with 2) visual-motor gain based on the amplitude of the population response. During steady-state tracking, the decoder that worked for pursuit initiation failed to reproduce the paradox that steady-state eye speeds do not accelerate to the target speed despite persistent image motion. It predicted eye acceleration to target speed even when monkeys' eye speeds were steady at well below the target speed. To account for the effect of dot coherence on steady-state eye speed, we postulate that the decoder uses sensory-motor gain to modulate the eye velocity positive feedback that normally sustains perfect steady-state tracking. Then, poor steady-state tracking persists because of balance between eye deceleration caused by low positive feedback gain and acceleration driven by MT.NEW & NOTEWORTHY By challenging a sensory-motor system with degraded sensory stimuli, we reveal how the sensory-motor decoder transforms the population response in extrastriate area MT into commands for the initiation and steady-state behavior of smooth pursuit eye movements. Conclusions are based on measuring population responses in MT for multiple target speeds and different levels of motion reliability and evaluating a decoder with a biologically motivated architecture to determine the decoder properties that create the measured eye movements.
Collapse
Affiliation(s)
- Stuart Behling
- Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Stephen G Lisberger
- Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina, United States
| |
Collapse
|
4
|
Abstract
The frontal lobe is crucial and contributes to controlling truncal motion, postural responses, and maintaining equilibrium and locomotion. The rich repertoire of frontal gait disorders gives some indication of this complexity. For human walking, it is necessary to simultaneously achieve at least two tasks, such as maintaining a bipedal upright posture and locomotion. Particularly, postural control plays an extremely significant role in enabling the subject to maintain stable gait behaviors to adapt to the environment. To achieve these requirements, the frontal cortex (1) uses cognitive information from the parietal, temporal, and occipital cortices, (2) creates plans and programs of gait behaviors, and (3) acts on the brainstem and spinal cord, where the core posture-gait mechanisms exist. Moreover, the frontal cortex enables one to achieve a variety of gait patterns in response to environmental changes by switching gait patterns from automatic routine to intentionally controlled and learning the new paradigms of gait strategy via networks with the basal ganglia, cerebellum, and limbic structures. This chapter discusses the role of each area of the frontal cortex in behavioral control and attempts to explain how frontal lobe controls walking with special reference to postural control.
Collapse
Affiliation(s)
- Kaoru Takakusaki
- Department of Physiology, Division of Neuroscience, Asahikawa Medical University, Asahikawa, Japan.
| |
Collapse
|
5
|
Métais C, Nicolas J, Diarra M, Cheviet A, Koun E, Pélisson D. Neural substrates of saccadic adaptation: Plastic changes versus error processing and forward versus backward learning. Neuroimage 2022; 262:119556. [PMID: 35964865 DOI: 10.1016/j.neuroimage.2022.119556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/28/2022] Open
Abstract
Previous behavioral, clinical, and neuroimaging studies suggest that the neural substrates of adaptation of saccadic eye movements involve, beyond the central role of the cerebellum, several, still incompletely determined, cortical areas. Furthermore, no neuroimaging study has yet tackled the differences between saccade lengthening ("forward adaptation") and shortening ("backward adaptation") and neither between their two main components, i.e. error processing and oculomotor changes. The present fMRI study was designed to fill these gaps. Blood-oxygen-level-dependent (BOLD) signal and eye movements of 24 healthy volunteers were acquired while performing reactive saccades under 4 conditions repeated in short blocks of 16 trials: systematic target jump during the saccade and in the saccade direction (forward: FW) or in the opposite direction (backward: BW), randomly directed FW or BW target jump during the saccade (random: RND) and no intra-saccadic target jump (stationary: STA). BOLD signals were analyzed both through general linear model (GLM) approaches applied at the whole-brain level and through sensitive Multi-Variate Pattern Analyses (MVPA) applied to 34 regions of interest (ROIs) identified from independent 'Saccade Localizer' functional data. Oculomotor data were consistent with successful induction of forward and backward adaptation in FW and BW blocks, respectively. The different analyses of voxel activation patterns (MVPAs) disclosed the involvement of 1) a set of ROIs specifically related to adaptation in the right occipital cortex, right and left MT/MST, right FEF and right pallidum; 2) several ROIs specifically involved in error signal processing in the left occipital cortex, left PEF, left precuneus, Medial Cingulate cortex (MCC), left inferior and right superior cerebellum; 3) ROIs specific to the direction of adaptation in the occipital cortex and MT/MST (left and right hemispheres for FW and BW, respectively) and in the pallidum of the right hemisphere (FW). The involvement of the left PEF and of the (left and right) occipital cortex were further supported and qualified by the whole brain GLM analysis: clusters of increased activity were found in PEF for the RND versus STA contrast (related to error processing) and in the left (right) occipital cortex for the FW (BW) versus STA contrasts [related to the FW (BW) direction of error and/or adaptation]. The present study both adds complementary data to the growing literature supporting a role of the cerebral cortex in saccadic adaptation through feedback and feedforward relationships with the cerebellum and provides the basis for improving conceptual frameworks of oculomotor plasticity and of its link with spatial cognition.
Collapse
Affiliation(s)
- Camille Métais
- IMPACT Team, Lyon Neuroscience Research Center, INSERM U1028; CNRS UMR5292; University Claude Bernard Lyon 1; 16, av. du Doyen Lépine, 69676, Bron cedex, France
| | - Judith Nicolas
- IMPACT Team, Lyon Neuroscience Research Center, INSERM U1028; CNRS UMR5292; University Claude Bernard Lyon 1; 16, av. du Doyen Lépine, 69676, Bron cedex, France; Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, 3001, Leuven, Belgium
| | - Moussa Diarra
- IMPACT Team, Lyon Neuroscience Research Center, INSERM U1028; CNRS UMR5292; University Claude Bernard Lyon 1; 16, av. du Doyen Lépine, 69676, Bron cedex, France; Université Bourgogne Franche-Comté, LEAD - CNRS UMR5022, Université de Bourgogne, Pôle AAFE, 11 Esplanade Erasme, 21000, Dijon, France
| | - Alexis Cheviet
- IMPACT Team, Lyon Neuroscience Research Center, INSERM U1028; CNRS UMR5292; University Claude Bernard Lyon 1; 16, av. du Doyen Lépine, 69676, Bron cedex, France
| | - Eric Koun
- IMPACT Team, Lyon Neuroscience Research Center, INSERM U1028; CNRS UMR5292; University Claude Bernard Lyon 1; 16, av. du Doyen Lépine, 69676, Bron cedex, France
| | - Denis Pélisson
- IMPACT Team, Lyon Neuroscience Research Center, INSERM U1028; CNRS UMR5292; University Claude Bernard Lyon 1; 16, av. du Doyen Lépine, 69676, Bron cedex, France.
| |
Collapse
|
6
|
Caspers S, Axer M, Gräßel D, Amunts K. Additional fiber orientations in the sagittal stratum-noise or anatomical fine structure? Brain Struct Funct 2022; 227:1331-1345. [PMID: 35113243 PMCID: PMC9046345 DOI: 10.1007/s00429-021-02439-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 12/08/2021] [Indexed: 01/13/2023]
Abstract
The sagittal stratum is a prominent and macroscopically clearly visible white-matter structure within occipital and parietal lobes with a highly organized structure of parallel fibers running in rostro-caudal direction. Apart from the major tract running through, i.e., the optic radiation, the source and arrangement of other fibers within the sagittal stratum is only partially understood. Recent diffusion imaging studies in-vivo suggest additional minor fiber directions, perpendicular to the major rostro-caudal ones, but the spatial resolution does not allow to resolve them, and to unambiguously distinguish it from noise. Taking this previous evidence as motivation, the present study used 3D polarized light imaging (3D-PLI) for micrometer resolution analysis of nerve fibers in postmortem specimens of a vervet monkey brain. The analysis of coronal occipital and parietal sections revealed that the sagittal stratum consisted of an external and an internal layer, which are joined and crossed by fibers from the surrounding white matter and the tapetum. Fibers from different parietal and occipital regions entered the sagittal stratum in the dorsal, ventral or middle sector, as solid large bundles or as several small fiber aggregations. These patterns were remarkably similar to published results of tracer experiments in macaques. Taking this correspondence as external validation of 3D-PLI enabled translation to the human brain, where a similarly complex fiber architecture within the sagittal stratum could be exemplified in a human hemisphere in our study. We thus argue in favor of a dedicated fiber microstructure within the sagittal stratum as a correlate of the additional fiber directions typically seen in in-vivo diffusion imaging studies.
Collapse
Affiliation(s)
- Svenja Caspers
- Institute for Anatomy I, Medical Faculty & University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany.
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425, Jülich, Germany.
| | - Markus Axer
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425, Jülich, Germany
| | - David Gräßel
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425, Jülich, Germany
| | - Katrin Amunts
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425, Jülich, Germany
- C. and O. Vogt Institute for Brain Research, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| |
Collapse
|
7
|
Ferrari C, Ciricugno A, Urgesi C, Cattaneo Z. Cerebellar contribution to emotional body language perception: a TMS study. Soc Cogn Affect Neurosci 2022; 17:81-90. [PMID: 31588511 PMCID: PMC8824541 DOI: 10.1093/scan/nsz074] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/23/2019] [Accepted: 09/06/2019] [Indexed: 11/14/2022] Open
Abstract
Consistent evidence suggests that the cerebellum contributes to the processing of emotional facial expressions. However, it is not yet known whether the cerebellum is recruited when emotions are expressed by body postures or movements, or whether it is recruited differently for positive and negative emotions. In this study, we asked healthy participants to discriminate between body postures (with masked face) expressing emotions of opposite valence (happiness vs anger, Experiment 1), or of the same valence (negative: anger vs sadness; positive: happiness vs surprise, Experiment 2). While performing the task, participants received online transcranial magnetic stimulation (TMS) over a region of the posterior left cerebellum and over two control sites (early visual cortex and vertex). We found that TMS over the cerebellum affected participants' ability to discriminate emotional body postures, but only when one of the emotions was negatively valenced (i.e. anger). These findings suggest that the cerebellar region we stimulated is involved in processing the emotional content conveyed by body postures and gestures. Our findings complement prior evidence on the role of the cerebellum in emotional face processing and have important implications from a clinical perspective, where non-invasive cerebellar stimulation is a promising tool for the treatment of motor, cognitive and affective deficits.
Collapse
Affiliation(s)
- Chiara Ferrari
- Department of Psychology, University of Milano–Bicocca, Milan 20126, Italy
| | - Andrea Ciricugno
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia 27100, Italy
- IRCCS Mondino Foundation, Pavia 27100, Italy
| | - Cosimo Urgesi
- Laboratory of Cognitive Neuroscience, Department of Languages and Literatures, Communication, Education and Society University of Udine, Udine 33100, Italy
- Scientific Institute, IRCCS E. Medea, Neuropsychiatry and Neurorehabilitation Unit, Bosisio Parini, Lecco 23900, Italy
| | - Zaira Cattaneo
- Department of Psychology, University of Milano–Bicocca, Milan 20126, Italy
- IRCCS Mondino Foundation, Pavia 27100, Italy
| |
Collapse
|
8
|
Wen M, Dong Z, Zhang L, Li B, Zhang Y, Li K. Depression and Cognitive Impairment: Current Understanding of Its Neurobiology and Diagnosis. Neuropsychiatr Dis Treat 2022; 18:2783-2794. [PMID: 36471744 PMCID: PMC9719265 DOI: 10.2147/ndt.s383093] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/15/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Eye movement is critical for obtaining precise visual information and providing sensorimotor processes and advanced cognitive functions to the brain behavioral indicator. METHODS In this article, we present a narrative review of the eye-movement paradigms (such as fixation, smooth pursuit eye movements, and memory-guided saccade tasks) in major depression. RESULTS Characteristics of eye movement are considered to reflect several aspects of cognitive deficits regarded as an aid to diagnosis. Findings regarding depressive disorders showed differences from the healthy population in paradigms, the characteristics of eye movement may reflect cognitive deficits in depression. Neuroimaging studies have demonstrated the effectiveness of different eye movement paradigms for MDD screening. CONCLUSION Depression can be distinguished from other mental illnesses based on eye movements. Eye movement reflects cognitive deficits that can help diagnose depression, and it can make the entire diagnostic process more accurate.
Collapse
Affiliation(s)
- Min Wen
- School of Psychology and Mental Health, North China University of Science and Technology, Tangshan, People's Republic of China.,Hebei Provincial Mental Health Center, Baoding, People's Republic of China.,Hebei Provincial Key Laboratory of Major Mental and Behavioral Disorders, Baoding, People's Republic of China
| | - Zhen Dong
- Hebei Provincial Mental Health Center, Baoding, People's Republic of China
| | - Lili Zhang
- Hebei Provincial Mental Health Center, Baoding, People's Republic of China
| | - Bing Li
- Hebei Provincial Mental Health Center, Baoding, People's Republic of China.,Hebei Provincial Key Laboratory of Major Mental and Behavioral Disorders, Baoding, People's Republic of China
| | - Yunshu Zhang
- Hebei Provincial Mental Health Center, Baoding, People's Republic of China.,Hebei Provincial Key Laboratory of Major Mental and Behavioral Disorders, Baoding, People's Republic of China
| | - Keqing Li
- Hebei Provincial Mental Health Center, Baoding, People's Republic of China.,Hebei Provincial Key Laboratory of Major Mental and Behavioral Disorders, Baoding, People's Republic of China
| |
Collapse
|
9
|
Battaglini L, Ghiani A. Motion behind occluder: Amodal perception and visual motion extrapolation. VISUAL COGNITION 2021. [DOI: 10.1080/13506285.2021.1943094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Luca Battaglini
- Department of General Psychology, University of Padova, Padova, Italy
- Department of Physics and Astronomy “Galileo Galilei”, University of Padova, Padova, Italy
| | - Andrea Ghiani
- Department of General Psychology, University of Padova, Padova, Italy
| |
Collapse
|
10
|
Zhang B, Kan JYY, Yang M, Wang X, Tu J, Dorris MC. Transforming absolute value to categorical choice in primate superior colliculus during value-based decision making. Nat Commun 2021; 12:3410. [PMID: 34099726 PMCID: PMC8184840 DOI: 10.1038/s41467-021-23747-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/23/2021] [Indexed: 11/09/2022] Open
Abstract
Value-based decision making involves choosing from multiple options with different values. Despite extensive studies on value representation in various brain regions, the neural mechanism for how multiple value options are converted to motor actions remains unclear. To study this, we developed a multi-value foraging task with varying menu of items in non-human primates using eye movements that dissociates value and choice, and conducted electrophysiological recording in the midbrain superior colliculus (SC). SC neurons encoded "absolute" value, independent of available options, during late fixation. In addition, SC neurons also represent value threshold, modulated by available options, different from conventional motor threshold. Electrical stimulation of SC neurons biased choices in a manner predicted by the difference between the value representation and the value threshold. These results reveal a neural mechanism directly transforming absolute values to categorical choices within SC, supporting highly efficient value-based decision making critical for real-world economic behaviors.
Collapse
Affiliation(s)
- Beizhen Zhang
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Janis Ying Ying Kan
- Department of Biomedical and Molecular Sciences, Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Mingpo Yang
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Beijing, China
| | - Xiaochun Wang
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Beijing, China
| | - Jiahao Tu
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Beijing, China
| | - Michael Christopher Dorris
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
11
|
Souto D, Kerzel D. Visual selective attention and the control of tracking eye movements: a critical review. J Neurophysiol 2021; 125:1552-1576. [DOI: 10.1152/jn.00145.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
People’s eyes are directed at objects of interest with the aim of acquiring visual information. However, processing this information is constrained in capacity, requiring task-driven and salience-driven attentional mechanisms to select few among the many available objects. A wealth of behavioral and neurophysiological evidence has demonstrated that visual selection and the motor selection of saccade targets rely on shared mechanisms. This coupling supports the premotor theory of visual attention put forth more than 30 years ago, postulating visual selection as a necessary stage in motor selection. In this review, we examine to which extent the coupling of visual and motor selection observed with saccades is replicated during ocular tracking. Ocular tracking combines catch-up saccades and smooth pursuit to foveate a moving object. We find evidence that ocular tracking requires visual selection of the speed and direction of the moving target, but the position of the motion signal may not coincide with the position of the pursuit target. Further, visual and motor selection can be spatially decoupled when pursuit is initiated (open-loop pursuit). We propose that a main function of coupled visual and motor selection is to serve the coordination of catch-up saccades and pursuit eye movements. A simple race-to-threshold model is proposed to explain the variable coupling of visual selection during pursuit, catch-up and regular saccades, while generating testable predictions. We discuss pending issues, such as disentangling visual selection from preattentive visual processing and response selection, and the pinpointing of visual selection mechanisms, which have begun to be addressed in the neurophysiological literature.
Collapse
Affiliation(s)
- David Souto
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, United Kingdom
| | - Dirk Kerzel
- Faculté de Psychologie et des Sciences de l’Education, University of Geneva, Geneva, Switzerland
| |
Collapse
|
12
|
Borra E, Luppino G. Comparative anatomy of the macaque and the human frontal oculomotor domain. Neurosci Biobehav Rev 2021; 126:43-56. [PMID: 33737106 DOI: 10.1016/j.neubiorev.2021.03.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/19/2021] [Accepted: 03/12/2021] [Indexed: 11/15/2022]
Abstract
In non-human primates, at the junction of the prefrontal with the premotor cortex, there is a sector designated as frontal eye field (FEF), involved in controlling oculomotor behavior and spatial attention. Evidence for at least two FEFs in humans is at the basis of the still open issue of the possible homologies between the macaque and the human frontal oculomotor system. In this review article we address this issue suggesting a new view solidly grounded on evidence from the last decade showing that, in macaques, the FEF is at the core of an oculomotor domain in which several distinct areas, including areas 45A and 45B, provide the substrate for parallel processing of different aspects of oculomotor behavior. Based on comparative considerations, we will propose a correspondence between some of the macaque and the human oculomotor fields, thus suggesting sharing of neural substrate for oculomotor control, gaze processing, and orienting attention in space. Accordingly, this article could contribute to settle some aspects of the so-called "enigma" of the human FEF anatomy.
Collapse
Affiliation(s)
- Elena Borra
- University of Parma, Department of Medicine and Surgery, Neuroscience Unit, Italy.
| | - Giuseppe Luppino
- University of Parma, Department of Medicine and Surgery, Neuroscience Unit, Italy
| |
Collapse
|
13
|
Sajad A, Sadeh M, Crawford JD. Spatiotemporal transformations for gaze control. Physiol Rep 2020; 8:e14533. [PMID: 32812395 PMCID: PMC7435051 DOI: 10.14814/phy2.14533] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 12/13/2022] Open
Abstract
Sensorimotor transformations require spatiotemporal coordination of signals, that is, through both time and space. For example, the gaze control system employs signals that are time-locked to various sensorimotor events, but the spatial content of these signals is difficult to assess during ordinary gaze shifts. In this review, we describe the various models and methods that have been devised to test this question, and their limitations. We then describe a new method that can (a) simultaneously test between all of these models during natural, head-unrestrained conditions, and (b) track the evolving spatial continuum from target (T) to future gaze coding (G, including errors) through time. We then summarize some applications of this technique, comparing spatiotemporal coding in the primate frontal eye field (FEF) and superior colliculus (SC). The results confirm that these areas preferentially encode eye-centered, effector-independent parameters, and show-for the first time in ordinary gaze shifts-a spatial transformation between visual and motor responses from T to G coding. We introduce a new set of spatial models (T-G continuum) that revealed task-dependent timing of this transformation: progressive during a memory delay between vision and action, and almost immediate without such a delay. We synthesize the results from our studies and supplement it with previous knowledge of anatomy and physiology to propose a conceptual model where cumulative transformation noise is realized as inaccuracies in gaze behavior. We conclude that the spatiotemporal transformation for gaze is both local (observed within and across neurons in a given area) and distributed (with common signals shared across remote but interconnected structures).
Collapse
Affiliation(s)
- Amirsaman Sajad
- Centre for Vision ResearchYork UniversityTorontoONCanada
- Psychology DepartmentVanderbilt UniversityNashvilleTNUSA
| | - Morteza Sadeh
- Centre for Vision ResearchYork UniversityTorontoONCanada
- Department of NeurosurgeryUniversity of Illinois at ChicagoChicagoILUSA
| | - John Douglas Crawford
- Centre for Vision ResearchYork UniversityTorontoONCanada
- Vision: Science to Applications Program (VISTA)Neuroscience Graduate Diploma ProgramDepartments of Psychology, Biology, Kinesiology & Health SciencesYork UniversityTorontoONCanada
| |
Collapse
|
14
|
Kazemi R, Rostami R, Dehghan S, Nasiri Z, Lotfollahzadeh S, L Hadipour A, Khomami S, Ishii R, Ikeda S. Alpha frequency rTMS modulates theta lagged nonlinear connectivity in dorsal attention network. Brain Res Bull 2020; 162:271-281. [PMID: 32619694 DOI: 10.1016/j.brainresbull.2020.06.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/14/2020] [Accepted: 06/26/2020] [Indexed: 11/24/2022]
Abstract
Dorsolateral prefrontal cortex (DLPFC) is a key structure in dorsal attention network (DAN) that facilitates sustained attention by modulating activity in task related and unrelated regions of the brain. Alpha and theta frequency bands enhance connectivity among different parts of the attention network and these connections are facilitated by long-range nonlinear connectivity in theta and alpha frequency bands. This study is an investigation of the behavioral and electrophysiological effects of alpha and theta frequency repetitive transcranial magnetic stimulation (rTMS) over RDLPFC. 20 healthy participants were randomly assigned to two groups of theta (n = 11, f = 6 Hz) and alpha (n = 9, f = 10 Hz) rTMS. Electroencephalogram (EEG) was recorded before and after each session while resting and performing tasks. Current source density (CSD) and functional connectivity (FC) in DAN and default mode network (DMN) and their correlations with rapid visual information processing task (RVIP) scores were calculated . Alpha frequency rTMS resulted in significant changes in RVIP scores. Active theta rTMS caused an increase in CSD in Postcentral gyrus and active alpha rTMS resulted in significant CSD changes in inferior parietal lobule (IPL). Theta lagged nonlinear connectivity was mudulated by alpha rTMSand FC changes were observed in DAN and DMN. Positive correlations were observed between DAN regions and RVIP scores in the alpha rTMS group. Increased activity in theta frequency band in left aPFC and left DLPFC correlated positively with higher total hits in RVIP. This study showed for the first time that theta and alpha frequency rTMS are able to modulate FC in DAN and DMN in a way that results in better performance in a sustained attention task.
Collapse
Affiliation(s)
- Reza Kazemi
- Cognitive Lab, Department of Psychology, University of Tehran, Tehran, Iran; Atieh Clinical Neuroscience Center, Tehran, Iran.
| | - Reza Rostami
- Department of Psychology, University of Tehran, Tehran, Iran
| | | | - Zahra Nasiri
- Atieh Clinical Neuroscience Center, Tehran, Iran
| | | | - Abed L Hadipour
- Atieh Clinical Neuroscience Center, Tehran, Iran; Department of Psychology, University of Tehran, Tehran, Iran
| | | | - Ryouhei Ishii
- Smart Rehabilitation Research Center, Osaka Prefecture University, Graduate School of Comprehensive Rehabilitation, Habikino, Japan; Department of Psychiatry, Osaka University, Graduate School of Medicine, Osaka, Japan
| | - Shunichiro Ikeda
- Department of Neuropsychiatry, Kansai Medical University, Osaka, Japan
| |
Collapse
|
15
|
Zerr P, Ossandón JP, Shareef I, Van der Stigchel S, Kekunnaya R, Röder B. Successful visually guided eye movements following sight restoration after congenital cataracts. J Vis 2020; 20:3. [PMID: 38755792 PMCID: PMC7424140 DOI: 10.1167/jov.20.7.3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 04/09/2020] [Indexed: 11/24/2022] Open
Abstract
Sensitive periods have previously been identified for several human visual system functions. Yet, it is unknown to what degree the development of visually guided oculomotor control depends on early visual experience-for example, whether and to what degree humans whose sight was restored after a transient period of congenital visual deprivation are able to conduct visually guided eye movements. In the present study, we developed new calibration and analysis techniques for eye tracking data contaminated with pervasive nystagmus, which is typical for this population. We investigated visually guided eye movements in sight recovery individuals with long periods of visual pattern deprivation (3-36 years) following birth due to congenital, dense, total, bilateral cataracts. As controls we assessed (1) individuals with nystagmus due to causes other than cataracts, (2) individuals with developmental cataracts after cataract removal, and (3) individuals with normal vision. Congenital cataract reversal individuals were able to perform visually guided gaze shifts, even when their blindness had lasted for decades. The typical extensive nystagmus of this group distorted eye movement trajectories, but measures of latency and accuracy were as expected from their prevailing nystagmus-that is, not worse than in the nystagmus control group. To the best of our knowledge, the present quantitative study is the first to investigate the characteristics of oculomotor control in congenital cataract reversal individuals, and it indicates a remarkable effectiveness of visually guided eye movements despite long-lasting periods of visual deprivation.
Collapse
Affiliation(s)
- Paul Zerr
- Biological Psychology and Neuropsychology, Hamburg University, Hamburg, Germany
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands
| | - José Pablo Ossandón
- Biological Psychology and Neuropsychology, Hamburg University, Hamburg, Germany
| | - Idris Shareef
- Child Sight Institute, Jasti V Ramanamma Children's Eye Care Center, LV Prasad Eye Institute, Hyderabad, India
| | | | - Ramesh Kekunnaya
- Child Sight Institute, Jasti V Ramanamma Children's Eye Care Center, LV Prasad Eye Institute, Hyderabad, India
| | - Brigitte Röder
- Biological Psychology and Neuropsychology, Hamburg University, Hamburg, Germany
| |
Collapse
|
16
|
Borra E, Luppino G. Large-scale temporo–parieto–frontal networks for motor and cognitive motor functions in the primate brain. Cortex 2019; 118:19-37. [DOI: 10.1016/j.cortex.2018.09.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 09/21/2018] [Accepted: 09/28/2018] [Indexed: 10/28/2022]
|
17
|
Abstract
Smooth pursuit eye movements maintain the line of sight on smoothly moving targets. Although often studied as a response to sensory motion, pursuit anticipates changes in motion trajectories, thus reducing harmful consequences due to sensorimotor processing delays. Evidence for predictive pursuit includes (a) anticipatory smooth eye movements (ASEM) in the direction of expected future target motion that can be evoked by perceptual cues or by memory for recent motion, (b) pursuit during periods of target occlusion, and (c) improved accuracy of pursuit with self-generated or biologically realistic target motions. Predictive pursuit has been linked to neural activity in the frontal cortex and in sensory motion areas. As behavioral and neural evidence for predictive pursuit grows and statistically based models augment or replace linear systems approaches, pursuit is being regarded less as a reaction to immediate sensory motion and more as a predictive response, with retinal motion serving as one of a number of contributing cues.
Collapse
Affiliation(s)
- Eileen Kowler
- Department of Psychology, Rutgers University, Piscataway, New Jersey 08854, USA; , ,
| | - Jason F Rubinstein
- Department of Psychology, Rutgers University, Piscataway, New Jersey 08854, USA; , ,
| | - Elio M Santos
- Department of Psychology, Rutgers University, Piscataway, New Jersey 08854, USA; , , .,Current affiliation: Department of Psychology, State University of New York, College at Oneonta, Oneonta, New York 13820, USA;
| | - Jie Wang
- Department of Psychology, Rutgers University, Piscataway, New Jersey 08854, USA; , ,
| |
Collapse
|
18
|
Crapse TB, Lau H, Basso MA. A Role for the Superior Colliculus in Decision Criteria. Neuron 2019; 97:181-194.e6. [PMID: 29301100 DOI: 10.1016/j.neuron.2017.12.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 09/27/2017] [Accepted: 12/01/2017] [Indexed: 10/18/2022]
Abstract
Simple decisions arise from the evaluation of sensory evidence. But decisions are determined by more than just evidence. Individuals establish internal decision criteria that influence how they respond. Where or how decision criteria are established in the brain remains poorly understood. Here, we show that neuronal activity in the superior colliculus (SC) predicts changes in decision criteria. Using a novel "Yes-No" task that isolates changes in decision criterion from changes in decision sensitivity, and computing neuronal measures of sensitivity and criterion, we find that SC neuronal activity correlates with the decision criterion regardless of the location of the choice report. We also show that electrical manipulation of activity within the SC produces changes in decisions consistent with changes in decision criteria and are largely independent of the choice report location. Our correlational and causal results together provide strong evidence that SC activity signals the position of a decision criterion. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Trinity B Crapse
- Fuster Laboratory of Cognitive Neuroscience, UCLA, Los Angeles, CA 90095, USA; Departments of Psychiatry and Biobehavioral Sciences and Neurobiology, UCLA, Los Angeles, CA 90095, USA; Semel Institute of Neuroscience and Human Behavior , UCLA, Los Angeles, CA 90095, USA; Brain Research Institute , UCLA, Los Angeles, CA 90095, USA; David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Hakwan Lau
- Department of Psychology, UCLA, Los Angeles, CA 90095, USA
| | - Michele A Basso
- Fuster Laboratory of Cognitive Neuroscience, UCLA, Los Angeles, CA 90095, USA; Departments of Psychiatry and Biobehavioral Sciences and Neurobiology, UCLA, Los Angeles, CA 90095, USA; Semel Institute of Neuroscience and Human Behavior , UCLA, Los Angeles, CA 90095, USA; Brain Research Institute , UCLA, Los Angeles, CA 90095, USA; David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
19
|
Drissi NM, Warntjes M, Wessén A, Szakacs A, Darin N, Hallböök T, Landtblom AM, Gauffin H, Engström M. Structural anomaly in the reticular formation in narcolepsy type 1, suggesting lower levels of neuromelanin. NEUROIMAGE-CLINICAL 2019; 23:101875. [PMID: 31174102 PMCID: PMC6551567 DOI: 10.1016/j.nicl.2019.101875] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 04/04/2019] [Accepted: 05/25/2019] [Indexed: 12/18/2022]
Abstract
The aim of this study was to investigate structural changes in the brain stem of adolescents with narcolepsy, a disorder characterized by excessive daytime sleepiness, fragmented night-time sleep, and cataplexy. For this purpose, we used quantitative magnetic resonance imaging to obtain R1 and R2 relaxation rates, proton density, and myelin maps in adolescents with narcolepsy (n = 14) and healthy controls (n = 14). We also acquired resting state functional magnetic resonance imaging (fMRI) for brainstem connectivity analysis. We found a significantly lower R2 in the rostral reticular formation near the superior cerebellar peduncle in narcolepsy patients, family wise error corrected p = .010. Narcolepsy patients had a mean R2 value of 1.17 s-1 whereas healthy controls had a mean R2 of 1.31 s-1, which was a large effect size with Cohen d = 4.14. We did not observe any significant differences in R1 relaxation, proton density, or myelin content. The sensitivity of R2 to metal ions in tissue and the transition metal ion chelating property of neuromelanin indicate that the R2 deviant area is one of the neuromelanin containing nuclei of the brain stem. The close proximity and its demonstrated involvement in sleep-maintenance, specifically through orexin projections from the hypothalamus regulating sleep stability, as well as the results from the connectivity analysis, suggest that the observed deviant area could be the locus coeruleus or other neuromelanin containing nuclei in the proximity of the superior cerebellar peduncle. Hypothetically, the R2 differences described in this paper could be due to lower levels of neuromelanin in this area of narcolepsy patients.
Collapse
Affiliation(s)
- Natasha Morales Drissi
- Department of Medical and Health Sciences (IMH), Linköping University, 581 83 Linköping, Sweden; Center for Medical Image Science and Visualization, Linköping University, 581 83 Linköping, Sweden
| | - Marcel Warntjes
- Department of Medical and Health Sciences (IMH), Linköping University, 581 83 Linköping, Sweden; Center for Medical Image Science and Visualization, Linköping University, 581 83 Linköping, Sweden
| | | | - Attila Szakacs
- Department of Pediatrics, Queen Silvia Children's Hospital, Institute of Clinical Sciences, The Sahlgrenska Academy at the University of Gothenburg, 416 50 Gothenburg, Sweden
| | - Niklas Darin
- Department of Pediatrics, Queen Silvia Children's Hospital, Institute of Clinical Sciences, The Sahlgrenska Academy at the University of Gothenburg, 416 50 Gothenburg, Sweden
| | - Tove Hallböök
- Department of Pediatrics, Queen Silvia Children's Hospital, Institute of Clinical Sciences, The Sahlgrenska Academy at the University of Gothenburg, 416 50 Gothenburg, Sweden
| | - Anne-Marie Landtblom
- Center for Medical Image Science and Visualization, Linköping University, 581 83 Linköping, Sweden; Department of Clinical and Experimental Medicine (IKE), Linköping University, 581 83 Linköping, Sweden; Department of Neuroscience, Uppsala University, 752 36 Uppsala, Sweden
| | - Helena Gauffin
- Department of Clinical and Experimental Medicine (IKE), Linköping University, 581 83 Linköping, Sweden
| | - Maria Engström
- Department of Medical and Health Sciences (IMH), Linköping University, 581 83 Linköping, Sweden; Center for Medical Image Science and Visualization, Linköping University, 581 83 Linköping, Sweden.
| |
Collapse
|
20
|
Mustari MJ. Nonhuman Primate Studies to Advance Vision Science and Prevent Blindness. ILAR J 2018; 58:216-225. [PMID: 28575309 DOI: 10.1093/ilar/ilx009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 03/03/2017] [Indexed: 02/05/2023] Open
Abstract
Most primate behavior is dependent on high acuity vision. Optimal visual performance in primates depends heavily upon frontally placed eyes, retinal specializations, and binocular vision. To see an object clearly its image must be placed on or near the fovea of each eye. The oculomotor system is responsible for maintaining precise eye alignment during fixation and generating eye movements to track moving targets. The visual system of nonhuman primates has a similar anatomical organization and functional capability to that of humans. This allows results obtained in nonhuman primates to be applied to humans. The visual and oculomotor systems of primates are immature at birth and sensitive to the quality of binocular visual and eye movement experience during the first months of life. Disruption of postnatal experience can lead to problems in eye alignment (strabismus), amblyopia, unsteady gaze (nystagmus), and defective eye movements. Recent studies in nonhuman primates have begun to discover the neural mechanisms associated with these conditions. In addition, genetic defects that target the retina can lead to blindness. A variety of approaches including gene therapy, stem cell treatment, neuroprosthetics, and optogenetics are currently being used to restore function associated with retinal diseases. Nonhuman primates often provide the best animal model for advancing fundamental knowledge and developing new treatments and cures for blinding diseases.
Collapse
Affiliation(s)
- Michael J Mustari
- Washington National Primate Research Center, University of Washington, Seattle, WA.,Department of Ophthalmology, University of Washington, Seattle, WA
| |
Collapse
|
21
|
Ruehl RM, Hoffstaedter F, Reid A, Eickhoff S, zu Eulenburg P. Functional hierarchy of oculomotor and visual motion subnetworks within the human cortical optokinetic system. Brain Struct Funct 2018; 224:567-582. [DOI: 10.1007/s00429-018-1788-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/02/2018] [Indexed: 01/26/2023]
|
22
|
Guillaume A, Fuller JR, Srimal R, Curtis CE. Cortico-cerebellar network involved in saccade adaptation. J Neurophysiol 2018; 120:2583-2594. [PMID: 30207858 PMCID: PMC6295533 DOI: 10.1152/jn.00392.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/07/2018] [Accepted: 09/08/2018] [Indexed: 01/10/2023] Open
Abstract
Saccade adaptation is the learning process that ensures that vision and saccades remain calibrated. The central nervous system network involved in these adaptive processes remains unclear because of difficulties in isolating the learning process from the correlated visual and motor processes. Here we imaged the human brain during a novel saccade adaptation paradigm that allowed us to isolate neural signals involved in learning independent of the changes in the amplitude of corrective saccades usually correlated with adaptation. We show that the changes in activation in the ipsiversive cerebellar vermis that track adaptation are not driven by the changes in corrective saccades and thus provide critical supporting evidence for previous findings. Similarly, we find that activation in the dorsomedial wall of the contraversive precuneus mirrors the pattern found in the cerebellum. Finally, we identify dorsolateral and dorsomedial cortical areas in the frontal and parietal lobes that encode the retinal errors following inaccurate saccades used to drive recalibration. Together, these data identify a distributed network of cerebellar and cortical areas and their specific roles in oculomotor learning. NEW & NOTEWORTHY The central nervous system constantly learns from errors and adapts to keep visual targets and saccades in registration. We imaged the human brain while the gain of saccades adapted to a visual target that was displaced while the eye was in motion, inducing retinal error. Activity in the cerebellum and precuneus tracked learning, whereas parts of the dorsolateral and dorsomedial frontal and parietal cortex encoded the retinal error used to drive learning.
Collapse
Affiliation(s)
- Alain Guillaume
- CNRS, Laboratoire de Neurosciences Cognitives, Aix Marseille Université , Marseille , France
- Department of Psychology, New York University , New York, New York
| | - Jason R Fuller
- Department of Psychology, New York University , New York, New York
| | - Riju Srimal
- Center for Neural Science, New York University , New York, New York
| | - Clayton E Curtis
- Department of Psychology, New York University , New York, New York
- Center for Neural Science, New York University , New York, New York
| |
Collapse
|
23
|
Deravet N, Blohm G, de Xivry JJO, Lefèvre P. Weighted integration of short-term memory and sensory signals in the oculomotor system. J Vis 2018; 18:16. [PMID: 29904791 DOI: 10.1167/18.5.16] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Oculomotor behaviors integrate sensory and prior information to overcome sensory-motor delays and noise. After much debate about this process, reliability-based integration has recently been proposed and several models of smooth pursuit now include recurrent Bayesian integration or Kalman filtering. However, there is a lack of behavioral evidence in humans supporting these theoretical predictions. Here, we independently manipulated the reliability of visual and prior information in a smooth pursuit task. Our results show that both smooth pursuit eye velocity and catch-up saccade amplitude were modulated by visual and prior information reliability. We interpret these findings as the continuous reliability-based integration of a short-term memory of target motion with visual information, which support modeling work. Furthermore, we suggest that saccadic and pursuit systems share this short-term memory. We propose that this short-term memory of target motion is quickly built and continuously updated, and constitutes a general building block present in all sensorimotor systems.
Collapse
Affiliation(s)
- Nicolas Deravet
- Institute of Information and Communication Technologies, Electronics, and Applied Mathematics and Institute of Neuroscience, Université catholique de Louvain, B-1348 Louvain-La-Neuve, Belgium
| | - Gunnar Blohm
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada.,Canadian Action and Perception Network (CAPnet)
| | - Jean-Jacques Orban de Xivry
- Department of Kinesiology, Movement Control and Neuroplasticity Research Group, and Leuven Brain Institute, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Philippe Lefèvre
- Institute of Information and Communication Technologies, Electronics, and Applied Mathematics and Institute of Neuroscience, Université catholique de Louvain, B-1348 Louvain-La-Neuve, Belgium
| |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW The purpose was to review the most recent literature on neuroimaging in the Kleine-Levin syndrome (KLS). We aimed to investigate if frontotemporal and thalamic dysfunction are key KLS signatures, and if recent research indicates other brain networks of interest that elucidate KLS symptomatology and aetiology. RECENT FINDINGS In a comprehensive literature search, we found 12 original articles published 2013-2018. Most studies report deviations related to cerebral perfusion, glucose metabolism, or blood-oxygen-level-dependent responses in frontotemporal areas and/or the thalamus. Studies also report dysfunction in the temporoparietal junction and the oculomotor network that also were related to clinical parameters. We discuss these findings based on recent research on thalamocortical networks and brain stem white matter tracts. The hypothesis of frontotemporal and thalamic involvement in KLS was confirmed, and additional findings in the temporoparietal junction and the oculomotor system suggest a broader network involvement, which can be investigated by future high-resolution and multimodal imaging.
Collapse
Affiliation(s)
- Maria Engström
- Department of Medicine and Health Sciences, Linköping University, Linköping, Sweden.
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden.
- CMIV, Linköpings universitet/US, 581 83, Linköping, Sweden.
| | - Francesco Latini
- Department of Neuroscience, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Anne-Marie Landtblom
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- Department of Neuroscience, Section of Neurology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
25
|
Bourrelly C, Quinet J, Goffart L. Pursuit disorder and saccade dysmetria after caudal fastigial inactivation in the monkey. J Neurophysiol 2018; 120:1640-1654. [PMID: 29995606 DOI: 10.1152/jn.00278.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The caudal fastigial nuclei (cFN) are the output nuclei by which the medio-posterior cerebellum influences the production of saccadic and pursuit eye movements. We investigated the consequences of unilateral inactivation on the pursuit eye movement made immediately after an interceptive saccade toward a centrifugal target. We describe here the effects when the target moved along the horizontal meridian with a 10 or 20°/s speed. After muscimol injection, the monkeys were unable to track the present location of the moving target. During contralesional tracking, the velocity of postsaccadic pursuit was reduced. This slowing was associated with a hypometria of interceptive saccades such that gaze direction always lagged behind the moving target. No correlation was found between the sizes of saccade undershoot and the decreases in pursuit speed. During ipsilesional tracking, the effects on postsaccadic pursuit were variable across the injection sessions, whereas the interceptive saccades were consistently hypermetric. Here also, the ipsilesional pursuit disorder was not correlated with the saccade hypermetria either. The lack of correlation between the sizes of saccade dysmetria and changes of postsaccadic pursuit speed suggests that cFN activity exerts independent influences on the neural processes generating the saccadic and slow eye movements. It also suggests that the cFN is one locus where the synergy between the two motor categories develops in the context of tracking a moving visual target. We explain how the different fastigial output channels can account for these oculomotor tracking disorders. NEW & NOTEWORTHY Inactivation of the caudal fastigial nucleus impairs the ability to track a moving target. The accuracy of interceptive saccades and the velocity of postsaccadic pursuit movements are both altered, but these changes are not correlated. This absence of correlation is not compatible with an impaired common command feeding the circuits producing saccadic and pursuit eye movements. However, it suggests an involvement of caudal fastigial nuclei in their synergy to accurately track a moving target.
Collapse
Affiliation(s)
- Clara Bourrelly
- Institut de Neurosciences de la Timone, UMR 7289 Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France.,Laboratoire Psychologie de la Perception, UMR 8242 Centre National de la Recherche Scientifique, Université Paris Descartes, Paris, France
| | - Julie Quinet
- Institut de Neurosciences de la Timone, UMR 7289 Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France
| | - Laurent Goffart
- Institut de Neurosciences de la Timone, UMR 7289 Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France
| |
Collapse
|
26
|
Shaikh AG, Antoniades C, Fitzgerald J, Ghasia FF. Effects of Deep Brain Stimulation on Eye Movements and Vestibular Function. Front Neurol 2018; 9:444. [PMID: 29946295 PMCID: PMC6005881 DOI: 10.3389/fneur.2018.00444] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 05/25/2018] [Indexed: 12/20/2022] Open
Abstract
Discovery of inter-latching circuits in the basal ganglia and invention of deep brain stimulation (DBS) for their modulation is a breakthrough in basic and clinical neuroscience. The DBS not only changes the quality of life of hundreds of thousands of people with intractable movement disorders, but it also offers a unique opportunity to understand how the basal ganglia interacts with other neural structures. An attractive yet less explored area is the study of DBS on eye movements and vestibular function. From the clinical perspective such studies provide valuable guidance in efficient programming of stimulation profile leading to optimal motor outcome. From the scientific standpoint such studies offer the ability to assess the outcomes of basal ganglia stimulation on eye movement behavior in cognitive as well as in motor domains. Understanding the influence of DBS on ocular motor function also leads to analogies to interpret its effects on complex appendicular and axial motor function. This review focuses on the influence of globus pallidus, subthalamic nucleus, and thalamus DBS on ocular motor and vestibular functions. The anatomy and physiology of basal ganglia, pertinent to the principles of DBS and ocular motility, is discussed. Interpretation of the effects of electrical stimulation of the basal ganglia in Parkinson's disease requires understanding of baseline ocular motor function in the diseased brain. Therefore we have also discussed the baseline ocular motor deficits in these patients and how the DBS changes such functions.
Collapse
Affiliation(s)
- Aasef G Shaikh
- Department of Neurology, University Hospitals, Case Western Reserve University, Cleveland, OH, United States.,Daroff-Dell'Osso Ocular Motility Laboratory, Cleveland VA Medical Center, Cleveland, OH, United States
| | - Chrystalina Antoniades
- NeuroMetrology Lab, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - James Fitzgerald
- NeuroMetrology Lab, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.,Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Fatema F Ghasia
- Daroff-Dell'Osso Ocular Motility Laboratory, Cleveland VA Medical Center, Cleveland, OH, United States.,Cole Eye Institute, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
27
|
Ferrari C, Oldrati V, Gallucci M, Vecchi T, Cattaneo Z. The role of the cerebellum in explicit and incidental processing of facial emotional expressions: A study with transcranial magnetic stimulation. Neuroimage 2017; 169:256-264. [PMID: 29246845 DOI: 10.1016/j.neuroimage.2017.12.026] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 12/11/2017] [Accepted: 12/11/2017] [Indexed: 01/05/2023] Open
Abstract
Growing evidence suggests that the cerebellum plays a critical role in non-motor functions, contributing to cognitive and affective processing. In particular, the cerebellum might represent an important node of the "limbic" network, underlying not only emotion regulation but also emotion perception and recognition. Here, we used transcranial magnetic stimulation (TMS) to shed further light on the role of the cerebellum in emotional perception by specifically testing cerebellar contribution to explicit and incidental emotional processing. In particular, in three different experiments, we found that TMS over the (left) cerebellum impaired participants' ability to categorize facial emotional expressions (explicit task) and to classify the gender of emotional faces (incidental emotional processing task), but not the gender of neutral faces. Overall, our results indicate that the cerebellum is involved in perceiving the emotional content of facial stimuli, even when this is task irrelevant.
Collapse
Affiliation(s)
- Chiara Ferrari
- Department of Psychology, University of Milano-Bicocca, Milan 20126, Italy
| | - Viola Oldrati
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia 27100, Italy; Brain Connectivity Center, National Neurological Institute C. Mondino, Pavia 27100, Italy
| | - Marcello Gallucci
- Department of Psychology, University of Milano-Bicocca, Milan 20126, Italy
| | - Tomaso Vecchi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia 27100, Italy; Brain Connectivity Center, National Neurological Institute C. Mondino, Pavia 27100, Italy
| | - Zaira Cattaneo
- Department of Psychology, University of Milano-Bicocca, Milan 20126, Italy; Brain Connectivity Center, National Neurological Institute C. Mondino, Pavia 27100, Italy.
| |
Collapse
|
28
|
Borra E, Ferroni CG, Gerbella M, Giorgetti V, Mangiaracina C, Rozzi S, Luppino G. Rostro-caudal Connectional Heterogeneity of the Dorsal Part of the Macaque Prefrontal Area 46. Cereb Cortex 2017; 29:485-504. [DOI: 10.1093/cercor/bhx332] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/20/2017] [Indexed: 11/13/2022] Open
Affiliation(s)
- Elena Borra
- Department of Medicine and Surgery, Neuroscience Unit, University of Parma, via Volturno 39, Parma, Italy
| | - Carolina Giulia Ferroni
- Department of Medicine and Surgery, Neuroscience Unit, University of Parma, via Volturno 39, Parma, Italy
| | - Marzio Gerbella
- Istituto Italiano di Tecnologia (IIT), Center for Biomolecular Nanotechnologies, via Eugenio Barsanti, Arnesano, Lecce, Italy
| | - Valentina Giorgetti
- Department of Medicine and Surgery, Neuroscience Unit, University of Parma, via Volturno 39, Parma, Italy
| | - Chiara Mangiaracina
- Department of Medicine and Surgery, Neuroscience Unit, University of Parma, via Volturno 39, Parma, Italy
| | - Stefano Rozzi
- Department of Medicine and Surgery, Neuroscience Unit, University of Parma, via Volturno 39, Parma, Italy
| | - Giuseppe Luppino
- Department of Medicine and Surgery, Neuroscience Unit, University of Parma, via Volturno 39, Parma, Italy
| |
Collapse
|
29
|
Stepniewska I, Pouget P, Kaas JH. Frontal eye field in prosimian galagos: Intracortical microstimulation and tracing studies. J Comp Neurol 2017; 526:626-652. [PMID: 29127718 DOI: 10.1002/cne.24355] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 10/26/2017] [Accepted: 10/30/2017] [Indexed: 11/09/2022]
Abstract
The frontal eye field (FEF) in prosimian primates was identified as a small cortical region, above and anterior to the anterior frontal sulcus, from which saccadic eye movements were evoked with electrical stimulation. Tracer injections revealed FEF connections with cortical and subcortical structures participating in higher order visual processing. Ipsilateral cortical connections were the densest with adjoining parts of the dorsal premotor and prefrontal cortex (PFC). Label in a region corresponding to supplementary eye field (SEF) of other primates, suggests the existence of SEF in galagos. Other connections were with ventral premotor cortex (PMV), the caudal half of posterior parietal cortex, cingulate cortex, visual areas within the superior temporal sulcus, and inferotemporal cortex. Callosal connections were mostly with the region of the FEF of another hemisphere, SEF, PFC, and PMV. Most subcortical connections were ipsilateral, but some were bilateral. Dense bilateral connections were to caudate nuclei. Densest reciprocal ipsilateral connections were with the paralamellar portion of mediodorsal nucleus, intralaminar nuclei and magnocellular portion of ventral anterior nucleus. Other FEF connections were with the claustrum, reticular nucleus, zona incerta, lateral posterior and medial pulvinar nuclei, nucleus limitans, pretectal area, nucleus of Darkschewitsch, mesencephalic and pontine reticular formation and pontine nuclei. Surprisingly, the superior colliculus (SC) contained only sparse anterograde label. Although most FEF connections in galagos are similar to those in monkeys, the FEF-SC connections appear to be much less. This suggests that a major contribution of the FEF to visuomotor functions of SC emerged with the evolution of anthropoid primates.
Collapse
Affiliation(s)
- Iwona Stepniewska
- Department of Psychology, Vanderbilt University, Nashville, Tennessee
| | - Pierre Pouget
- Department of Psychology, Vanderbilt University, Nashville, Tennessee
| | - Jon H Kaas
- Department of Psychology, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
30
|
Yang L, Gu Y. Distinct spatial coordinate of visual and vestibular heading signals in macaque FEFsem and MSTd. eLife 2017; 6. [PMID: 29134944 PMCID: PMC5685470 DOI: 10.7554/elife.29809] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 11/03/2017] [Indexed: 11/17/2022] Open
Abstract
Precise heading estimate requires integration of visual optic flow and vestibular inertial motion originating from distinct spatial coordinates (eye- and head-centered, respectively). To explore whether the two heading signals may share a common reference frame along the hierarchy of cortical stages, we explored two multisensory areas in macaques: the smooth pursuit area of the frontal eye field (FEFsem) closer to the motor side, and the dorsal portion of medial superior temporal area (MSTd) closer to the sensory side. In both areas, vestibular signals are head-centered, whereas visual signals are mainly eye-centered. However, visual signals in FEFsem are more shifted towards the head coordinate compared to MSTd. These results are robust being largely independent on: (1) smooth pursuit eye movement, (2) motion parallax cue, and (3) behavioral context for active heading estimation, indicating that the visual and vestibular heading signals may be represented in distinct spatial coordinate in sensory cortices.
Collapse
Affiliation(s)
- Lihua Yang
- Key Laboratory of Primate Neurobiology, Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yong Gu
- Key Laboratory of Primate Neurobiology, Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
31
|
Walton MMG, Pallus A, Fleuriet J, Mustari MJ, Tarczy-Hornoch K. Neural mechanisms of oculomotor abnormalities in the infantile strabismus syndrome. J Neurophysiol 2017; 118:280-299. [PMID: 28404829 DOI: 10.1152/jn.00934.2016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 04/03/2017] [Accepted: 04/07/2017] [Indexed: 02/08/2023] Open
Abstract
Infantile strabismus is characterized by numerous visual and oculomotor abnormalities. Recently nonhuman primate models of infantile strabismus have been established, with characteristics that closely match those observed in human patients. This has made it possible to study the neural basis for visual and oculomotor symptoms in infantile strabismus. In this review, we consider the available evidence for neural abnormalities in structures related to oculomotor pathways ranging from visual cortex to oculomotor nuclei. These studies provide compelling evidence that a disturbance of binocular vision during a sensitive period early in life, whatever the cause, results in a cascade of abnormalities through numerous brain areas involved in visual functions and eye movements.
Collapse
Affiliation(s)
- Mark M G Walton
- Washington National Primate Research Center, University of Washington, Seattle, Washington;
| | - Adam Pallus
- Washington National Primate Research Center, University of Washington, Seattle, Washington.,Department of Ophthalmology, University of Washington, Seattle, Washington
| | - Jérome Fleuriet
- Washington National Primate Research Center, University of Washington, Seattle, Washington.,Department of Ophthalmology, University of Washington, Seattle, Washington
| | - Michael J Mustari
- Washington National Primate Research Center, University of Washington, Seattle, Washington.,Department of Ophthalmology, University of Washington, Seattle, Washington.,Department of Biological Structure, University of Washington, Seattle, Washington; and
| | - Kristina Tarczy-Hornoch
- Department of Ophthalmology, University of Washington, Seattle, Washington.,Seattle Children's Hospital, Seattle, Washington
| |
Collapse
|
32
|
Fukushima K, Fukushima J, Barnes GR. Clinical application of eye movement tasks as an aid to understanding Parkinson's disease pathophysiology. Exp Brain Res 2017; 235:1309-1321. [PMID: 28258438 DOI: 10.1007/s00221-017-4916-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 02/13/2017] [Indexed: 11/29/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder of the basal ganglia. Most PD patients suffer from somatomotor and oculomotor disorders. The oculomotor system facilitates obtaining accurate information from the visual world. If a target moves slowly in the fronto-parallel plane, tracking eye movements occur that consist primarily of smooth-pursuit interspersed with corrective saccades. Efficient smooth-pursuit requires appropriate target selection and predictive compensation for inherent processing delays. Although pursuit impairment, e.g. as latency prolongation or low gain (eye velocity/target velocity), is well known in PD, normal aging alone results in such changes. In this article, we first briefly review some basic features of smooth-pursuit, then review recent results showing the specific nature of impaired pursuit in PD using a cue-dependent memory-based smooth-pursuit task. This task was initially used for monkeys to separate two major components of prediction (image-motion direction memory and movement preparation), and neural correlates were examined in major pursuit pathways. Most PD patients possessed normal cue-information memory but extra-retinal mechanisms for pursuit preparation and execution were dysfunctional. A minority of PD patients had abnormal cue-information memory or difficulty in understanding the task. Some PD patients with normal cue-information memory changed strategy to initiate smooth tracking. Strategy changes were also observed to compensate for impaired pursuit during whole body rotation while the target moved with the head. We discuss PD pathophysiology by comparing eye movement task results with neuropsychological and motor symptom evaluations of individual patients and further with monkey results, and suggest possible neural circuits for these functions/dysfunctions.
Collapse
Affiliation(s)
- Kikuro Fukushima
- Hokkaido University, West 5, North 8, Kita-ku, Sapporo, 060-0808, Japan.
| | - Junko Fukushima
- Hokusei Gakuen University, Atsubetsu-ku, Sapporo, 004-8631, Japan
| | - Graham R Barnes
- Faculty of Life Sciences, University of Manchester, Dover Street, Manchester, M13 9PL, UK
| |
Collapse
|
33
|
Computational Architecture of the Parieto-Frontal Network Underlying Cognitive-Motor Control in Monkeys. eNeuro 2017; 4:eN-NWR-0306-16. [PMID: 28275714 PMCID: PMC5329620 DOI: 10.1523/eneuro.0306-16.2017] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 01/31/2017] [Accepted: 02/01/2017] [Indexed: 11/21/2022] Open
Abstract
The statistical structure of intrinsic parietal and parieto-frontal connectivity in monkeys was studied through hierarchical cluster analysis. Based on their inputs, parietal and frontal areas were grouped into different clusters, including a variable number of areas that in most instances occupied contiguous architectonic fields. Connectivity tended to be stronger locally: that is, within areas of the same cluster. Distant frontal and parietal areas were targeted through connections that in most instances were reciprocal and often of different strength. These connections linked parietal and frontal clusters formed by areas sharing basic functional properties. This led to five different medio-laterally oriented pillar domains spanning the entire extent of the parieto-frontal system, in the posterior parietal, anterior parietal, cingulate, frontal, and prefrontal cortex. Different information processing streams could be identified thanks to inter-domain connectivity. These streams encode fast hand reaching and its control, complex visuomotor action spaces, hand grasping, action/intention recognition, oculomotor intention and visual attention, behavioral goals and strategies, and reward and decision value outcome. Most of these streams converge on the cingulate domain, the main hub of the system. All of them are embedded within a larger eye–hand coordination network, from which they can be selectively set in motion by task demands.
Collapse
|
34
|
Zhang W, Liu X, Zuo L, Guo Q, Chen Q, Wang Y. Ipsiversive ictal eye deviation in inferioposterior temporal lobe epilepsy-Two SEEG cases report. BMC Neurol 2017; 17:38. [PMID: 28222686 PMCID: PMC5320722 DOI: 10.1186/s12883-017-0811-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 01/26/2017] [Indexed: 11/25/2022] Open
Abstract
Background Versive seizure characterized by conjugate eye movement during epileptic seizure has been considered commonly as one of the most valuable semiological signs for epilepsy localization, especially for frontal lobe epilepsy. However, thelateralizing and localizing significance of ictaleye deviation has been questioned by clinical observation of a series of focal epilepsy studies, including frontal, central, temporal, parietal and occipital epilepsy. Case presentation Two epileptic cases characterized by ipsiversive eye deviation as initial clinical sign during the habitual epileptic seizures are presented in this paper. The localization of the epileptogenic zone of both of the cases has been confirmed as inferioposterior temporal region by the findings of ictalstereoelectroencephalography (SEEG) and a good result after epileptic surgery. Detailed analysis of the exact position of the key contacts of the SEEG electrodes identified the overlap between the location of the epileptogenic zone and human MT/MST complex, which play a crucial role in the control of smooth pursuit eye movement. Conclusion Ipsiversive eye deviation could be the initial clinical sign of inferioposterior temporal lobe epilepsy and attribute to the involvement of human MT/MST complex, especially human MST whichwas located on the anterior/dorsal bank of the anterior occipital sulcus (AOS).
Collapse
Affiliation(s)
- Wei Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Epilepsy Center, Guangdong Sanjiu Brain Hospital, Jinan University, No. 578, Sha Tai Nan Lu, Guangzhou, 510510, China
| | - Xingzhou Liu
- Epilepsy Center, Guangdong Sanjiu Brain Hospital, Jinan University, No. 578, Sha Tai Nan Lu, Guangzhou, 510510, China
| | - Lijun Zuo
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qiang Guo
- Epilepsy Center, Guangdong Sanjiu Brain Hospital, Jinan University, No. 578, Sha Tai Nan Lu, Guangzhou, 510510, China
| | - Qi Chen
- School of Psychology, South China Normal University, Guangzhou, China
| | - Yongjun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China. .,China National Clinical Research Center for Neurological Diseases, Beijing, China. .,Department of Neurology, Tiantan Clinical Trial and Research Center for Stroke, Beijing Tiantan Hospital, Capital Medical University, Beijing, China. .,Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
35
|
Bakst L, Fleuriet J, Mustari MJ. Temporal dynamics of retinal and extraretinal signals in the FEFsem during smooth pursuit eye movements. J Neurophysiol 2017; 117:1987-2003. [PMID: 28202571 DOI: 10.1152/jn.00786.2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 02/10/2017] [Accepted: 02/10/2017] [Indexed: 01/09/2023] Open
Abstract
Neurons in the smooth eye movement subregion of the frontal eye field (FEFsem) are known to play an important role in voluntary smooth pursuit eye movements. Underlying this function are projections to parietal and prefrontal visual association areas and subcortical structures, all known to play vital but differing roles in the execution of smooth pursuit. Additionally, the FEFsem has been shown to carry a diverse array of signals (e.g., eye velocity, acceleration, gain control). We hypothesized that distinct subpopulations of FEFsem neurons subserve these diverse functions and projections, and that the relative weights of retinal and extraretinal signals could form the basis for categorization of units. To investigate this, we used a step-ramp tracking task with a target blink to determine the relative contributions of retinal and extraretinal signals in individual FEFsem neurons throughout pursuit. We found that the contributions of retinal and extraretinal signals to neuronal activity and behavior change throughout the time course of pursuit. A clustering algorithm revealed three distinct neuronal subpopulations: cluster 1 was defined by a higher sensitivity to eye velocity, acceleration, and retinal image motion; cluster 2 had greater activity during blinks; and cluster 3 had significantly greater eye position sensitivity. We also performed a comparison with a sample of medial superior temporal neurons to assess similarities and differences between the two areas. Our results indicate the utility of simple tests such as the target blink for parsing the complex and multifaceted roles of cortical areas in behavior.NEW & NOTEWORTHY The frontal eye field (FEF) is known to play a critical role in volitional smooth pursuit, carrying a variety of signals that are distributed throughout the brain. This study used a novel application of a target blink task during step ramp tracking to determine, in combination with a clustering algorithm, the relative contributions of retinal and extraretinal signals to FEF activity and the extent to which these contributions could form the basis for a categorization of neurons.
Collapse
Affiliation(s)
- Leah Bakst
- Graduate Program in Neuroscience, University of Washington, Seattle, Washington.,Washington National Primate Research Center, University of Washington, Seattle, Washington
| | - Jérome Fleuriet
- Washington National Primate Research Center, University of Washington, Seattle, Washington.,Department of Ophthalmology, University of Washington, Seattle, Washington; and
| | - Michael J Mustari
- Graduate Program in Neuroscience, University of Washington, Seattle, Washington; .,Washington National Primate Research Center, University of Washington, Seattle, Washington.,Department of Ophthalmology, University of Washington, Seattle, Washington; and.,Department of Biological Structure, University of Washington, Seattle, Washington
| |
Collapse
|
36
|
Zivi I, Bertelli E, Bilotti G, Clemente IA, Saltuari L, Frazzitta G. Blink-associated contralateral eccentric saccades as a rare sign of unilateral brain injury. Neurology 2017; 88:160-163. [PMID: 27903814 DOI: 10.1212/wnl.0000000000003484] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 09/28/2016] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To describe a rare sign of unilateral brain injury as a form of unwanted blink-associated contralateral eccentric saccades. METHODS A 62-year-old patient who underwent an ischemic stroke affecting the entire right middle cerebral artery territory came to our attention 1 year after stroke, manifesting with transient contralateral conjugate gaze deviations associated with spontaneous blinking. We complemented the regular neurologic evaluation with brain MRI, study of evoked potentials, electroneurography of the facial nerve, and infrared video-oculoscopy. RESULTS The patient had left-sided hemiparesis, hypoesthesia, hemianopia, and hemispatial neglect. He also showed the occurrence of a rapid leftward conjugate deviation of the eyes, followed by a corrective movement to the primary ocular position. MRI showed a wide malacic area spanning the right frontal, temporal, and parietal cortical and subcortical regions, with signs of wallerian degeneration of the descending right corticospinal tract. Motor and somatosensory evoked potentials were centrally altered on the right side. Electroneurography of the facial nerves was normal. Infrared video-oculoscopy indicated persistence of the same blink-related saccades even in darkness. CONCLUSIONS It is known that unilateral cerebral lesions may manifest with a contralateral conjugate gaze deviation evoked by closure of the lids. This sign, known as spasticity of conjugate gaze, may be due to the suppression of the fixation reflex. In our case, the persistence of this sign in the darkness allowed us to exclude this diagnosis. We hypothesized that the blink-related neural pathways may improperly activate the oculomotor circuitry at both the cortical and subcortical levels.
Collapse
Affiliation(s)
- Ilaria Zivi
- From the Department of Brain Injury and Parkinson's Disease Rehabilitation (I.Z., G.B., G.F.) and Otorhinolaryngology Unit (I.A.C.), Ospedale "Moriggia-Pelascini," Gravedona ed Uniti; Department of Molecular and Developmental Medicine (E.B.), Università degli Studi di Siena, Italy; and Research Unit for Neurorehabilitation South Tyrol (L.S.), Landeskrankenhaus Hochzirl-Natters, Austria.
| | - Eugenio Bertelli
- From the Department of Brain Injury and Parkinson's Disease Rehabilitation (I.Z., G.B., G.F.) and Otorhinolaryngology Unit (I.A.C.), Ospedale "Moriggia-Pelascini," Gravedona ed Uniti; Department of Molecular and Developmental Medicine (E.B.), Università degli Studi di Siena, Italy; and Research Unit for Neurorehabilitation South Tyrol (L.S.), Landeskrankenhaus Hochzirl-Natters, Austria
| | - Giacinta Bilotti
- From the Department of Brain Injury and Parkinson's Disease Rehabilitation (I.Z., G.B., G.F.) and Otorhinolaryngology Unit (I.A.C.), Ospedale "Moriggia-Pelascini," Gravedona ed Uniti; Department of Molecular and Developmental Medicine (E.B.), Università degli Studi di Siena, Italy; and Research Unit for Neurorehabilitation South Tyrol (L.S.), Landeskrankenhaus Hochzirl-Natters, Austria
| | - Ignazio Alessandro Clemente
- From the Department of Brain Injury and Parkinson's Disease Rehabilitation (I.Z., G.B., G.F.) and Otorhinolaryngology Unit (I.A.C.), Ospedale "Moriggia-Pelascini," Gravedona ed Uniti; Department of Molecular and Developmental Medicine (E.B.), Università degli Studi di Siena, Italy; and Research Unit for Neurorehabilitation South Tyrol (L.S.), Landeskrankenhaus Hochzirl-Natters, Austria
| | - Leopold Saltuari
- From the Department of Brain Injury and Parkinson's Disease Rehabilitation (I.Z., G.B., G.F.) and Otorhinolaryngology Unit (I.A.C.), Ospedale "Moriggia-Pelascini," Gravedona ed Uniti; Department of Molecular and Developmental Medicine (E.B.), Università degli Studi di Siena, Italy; and Research Unit for Neurorehabilitation South Tyrol (L.S.), Landeskrankenhaus Hochzirl-Natters, Austria
| | - Giuseppe Frazzitta
- From the Department of Brain Injury and Parkinson's Disease Rehabilitation (I.Z., G.B., G.F.) and Otorhinolaryngology Unit (I.A.C.), Ospedale "Moriggia-Pelascini," Gravedona ed Uniti; Department of Molecular and Developmental Medicine (E.B.), Università degli Studi di Siena, Italy; and Research Unit for Neurorehabilitation South Tyrol (L.S.), Landeskrankenhaus Hochzirl-Natters, Austria
| |
Collapse
|
37
|
Kahn AE, Mattar MG, Vettel JM, Wymbs NF, Grafton ST, Bassett DS. Structural Pathways Supporting Swift Acquisition of New Visuomotor Skills. Cereb Cortex 2017; 27:173-184. [PMID: 27920096 PMCID: PMC5939211 DOI: 10.1093/cercor/bhw335] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Human skill learning requires fine-scale coordination of distributed networks of brain regions linked by white matter tracts to allow for effective information transmission. Yet how individual differences in these anatomical pathways may impact individual differences in learning remains far from understood. Here, we test the hypothesis that individual differences in structural organization of networks supporting task performance predict individual differences in the rate at which humans learn a visuomotor skill. Over the course of 6 weeks, 20 healthy adult subjects practiced a discrete sequence production task, learning a sequence of finger movements based on discrete visual cues. We collected structural imaging data, and using deterministic tractography generated structural networks for each participant to identify streamlines connecting cortical and subcortical brain regions. We observed that increased white matter connectivity linking early visual regions was associated with a faster learning rate. Moreover, the strength of multiedge paths between motor and visual modules was also correlated with learning rate, supporting the potential role of extended sets of polysynaptic connections in successful skill acquisition. Our results demonstrate that estimates of anatomical connectivity from white matter microstructure can be used to predict future individual differences in the capacity to learn a new motor-visual skill, and that these predictions are supported both by direct connectivity in visual cortex and indirect connectivity between visual cortex and motor cortex.
Collapse
Affiliation(s)
- Ari E. Kahn
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Human Research and Engineering Directorate, U.S. Army Research Laboratory, Aberdeen, MD 21001, USA
| | - Marcelo G. Mattar
- Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jean M. Vettel
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Human Research and Engineering Directorate, U.S. Army Research Laboratory, Aberdeen, MD 21001, USA
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA 93106, USA
| | - Nicholas F. Wymbs
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Scott T. Grafton
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA 93106, USA
| | - Danielle S. Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
38
|
Gu Y, Cheng Z, Yang L, DeAngelis GC, Angelaki DE. Multisensory Convergence of Visual and Vestibular Heading Cues in the Pursuit Area of the Frontal Eye Field. Cereb Cortex 2016; 26:3785-801. [PMID: 26286917 PMCID: PMC5004753 DOI: 10.1093/cercor/bhv183] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Both visual and vestibular sensory cues are important for perceiving one's direction of heading during self-motion. Previous studies have identified multisensory, heading-selective neurons in the dorsal medial superior temporal area (MSTd) and the ventral intraparietal area (VIP). Both MSTd and VIP have strong recurrent connections with the pursuit area of the frontal eye field (FEFsem), but whether FEFsem neurons may contribute to multisensory heading perception remain unknown. We characterized the tuning of macaque FEFsem neurons to visual, vestibular, and multisensory heading stimuli. About two-thirds of FEFsem neurons exhibited significant heading selectivity based on either vestibular or visual stimulation. These multisensory neurons shared many properties, including distributions of tuning strength and heading preferences, with MSTd and VIP neurons. Fisher information analysis also revealed that the average FEFsem neuron was almost as sensitive as MSTd or VIP cells. Visual and vestibular heading preferences in FEFsem tended to be either matched (congruent cells) or discrepant (opposite cells), such that combined stimulation strengthened heading selectivity for congruent cells but weakened heading selectivity for opposite cells. These findings demonstrate that, in addition to oculomotor functions, FEFsem neurons also exhibit properties that may allow them to contribute to a cortical network that processes multisensory heading cues.
Collapse
Affiliation(s)
- Yong Gu
- Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Institute of Neuroscience, Shanghai, China
| | - Zhixian Cheng
- Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Institute of Neuroscience, Shanghai, China
| | - Lihua Yang
- Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Institute of Neuroscience, Shanghai, China
| | - Gregory C. DeAngelis
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY, USA
| | - Dora E. Angelaki
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
39
|
Falcon MI, Gomez CM, Chen EE, Shereen A, Solodkin A. Early Cerebellar Network Shifting in Spinocerebellar Ataxia Type 6. Cereb Cortex 2016; 26:3205-18. [PMID: 26209844 PMCID: PMC4898673 DOI: 10.1093/cercor/bhv154] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Spinocerebellar ataxia 6 (SCA6), an autosomal dominant degenerative disease, is characterized by diplopia, gait ataxia, and incoordination due to severe progressive degeneration of Purkinje cells in the vestibulo- and spinocerebellum. Ocular motor deficits are common, including difficulty fixating on moving objects, nystagmus and disruption of smooth pursuit movements. In presymptomatic SCA6, there are alterations in saccades and smooth-pursuit movements. We sought to assess functional and structural changes in cerebellar connectivity associated with a visual task, hypothesizing that gradual changes would parallel disease progression. We acquired functional magnetic resonance imaging and diffusion tensor imaging data during a passive smooth-pursuit task in 14 SCA6 patients, representing a range of disease duration and severity, and performed a cross-sectional comparison of cerebellar networks compared with healthy controls. We identified a shift in activation from vermis in presymptomatic individuals to lateral cerebellum in moderate-to-severe cases. Concomitantly, effective connectivity between regions of cerebral cortex and cerebellum was at its highest in moderate cases, and disappeared in severe cases. Finally, we noted structural differences in the cerebral and cerebellar peduncles. These unique results, spanning both functional and structural domains, highlight widespread changes in SCA6 and compensatory mechanisms associated with cerebellar physiology that could be utilized in developing new therapies.
Collapse
Affiliation(s)
| | - C M Gomez
- Department of Neurology, University of Chicago, Chicago, IL 60637, USA
| | - E E Chen
- Department of Anatomy and Neurobiology
| | - A Shereen
- Department of Anatomy and Neurobiology
| | - A Solodkin
- Department of Anatomy and Neurobiology Department of Neurology, UC Irvine School of Medicine, Irvine, CA 92697, USA
| |
Collapse
|
40
|
Testosterone Administration Moderates Effect of Social Environment on Trust in Women Depending on Second-to-Fourth Digit Ratio. Sci Rep 2016; 6:27655. [PMID: 27282952 PMCID: PMC4901316 DOI: 10.1038/srep27655] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 05/16/2016] [Indexed: 11/12/2022] Open
Abstract
Animal research has established that effects of hormones on social behaviour depend on characteristics of both individual and environment. Insight from research on humans into this interdependence is limited, though. Specifically, hardly any prior testosterone experiments in humans scrutinized the interdependency of testosterone with the social environment. Nonetheless, recent testosterone administration studies in humans repeatedly show that a proxy for individuals’ prenatal testosterone-to-estradiol ratio, second-to-fourth digit-ratio (2D:4D ratio), influences effects of testosterone administration on human social behaviour. Here, we systematically vary the characteristics of the social environment and show that, depending on prenatal sex hormone priming, testosterone administration in women moderates the effect of the social environment on trust. We use the economic trust game and compare one-shot games modelling trust problems in relations between strangers with repeated games modelling trust problems in ongoing relations between partners. As expected, subjects are more trustful in repeated than in one-shot games. In subjects prenatally relatively highly primed by testosterone, however, this effect disappears after testosterone administration. We argue that impairments in cognitive empathy may reduce the repeated game effect on trust after testosterone administration in subjects with relatively high prenatal testosterone exposure and propose a neurobiological explanation for this effect.
Collapse
|
41
|
Bos PA, Hofman D, Hermans EJ, Montoya ER, Baron-Cohen S, van Honk J. Testosterone reduces functional connectivity during the 'Reading the Mind in the Eyes' Test. Psychoneuroendocrinology 2016; 68:194-201. [PMID: 26994483 PMCID: PMC6345363 DOI: 10.1016/j.psyneuen.2016.03.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 03/07/2016] [Accepted: 03/08/2016] [Indexed: 10/22/2022]
Abstract
Women on average outperform men in cognitive-empathic abilities, such as the capacity to infer motives from the bodily cues of others, which is vital for effective social interaction. The steroid hormone testosterone is thought to play a role in this sexual dimorphism. Strikingly, a previous study shows that a single administration of testosterone in women impairs performance on the 'Reading the Mind in Eyes' Test (RMET), a task in which emotions have to be inferred from the eye-region of a face. This effect was mediated by the 2D:4D ratio, the ratio between the length of the index and ring finger, a proxy for fetal testosterone. Research in typical individuals, in individuals with autism spectrum conditions (ASC), and in individuals with brain lesions has established that performance on the RMET depends on the left inferior frontal gyrus (IFG). Using functional magnetic resonance imaging (fMRI), we found that a single administration of testosterone in 16 young women significantly altered connectivity of the left IFG with the anterior cingulate cortex (ACC) and the supplementary motor area (SMA) during RMET performance, independent of 2D:4D ratio. This IFG-ACC-SMA network underlies the integration and selection of sensory information, and for action preparation during cognitive empathic behavior. Our findings thus reveal a neural mechanism by which testosterone can impair emotion-recognition ability, and may link to the symptomatology of ASC, in which the same neural network is implicated.
Collapse
Affiliation(s)
- Peter A. Bos
- Department of Experimental Psychology, Utrecht University, Utrecht, The Netherlands,Department of Psychiatry, University of Cape Town, Cape Town, South Africa,Corresponding author at: Department of Experimental Psychology, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht, The Netherlands. (P.A. Bos)
| | - Dennis Hofman
- Department of Experimental Psychology, Utrecht University, Utrecht, The Netherlands
| | - Erno J. Hermans
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands,Department for Cognitive Neuroscience, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Estrella R. Montoya
- Department of Experimental Psychology, Utrecht University, Utrecht, The Netherlands
| | - Simon Baron-Cohen
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Jack van Honk
- Department of Experimental Psychology, Utrecht University, Utrecht, The Netherlands,Department of Psychiatry, University of Cape Town, Cape Town, South Africa,Department of Psychiatry and Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| |
Collapse
|
42
|
Engström M, Landtblom AM, Karlsson T. New hypothesis on pontine-frontal eye field connectivity in Kleine-Levin syndrome. J Sleep Res 2016; 25:716-719. [DOI: 10.1111/jsr.12428] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 04/13/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Maria Engström
- Department of Medical and Health Sciences (IMH); Linköping University; Linköping Sweden
- Center for Medical Image Science and Visualization (CMIV); Linköping University; Linköping Sweden
| | - Anne-Marie Landtblom
- Center for Medical Image Science and Visualization (CMIV); Linköping University; Linköping Sweden
- Department of Neurology; Department of Clinical and Experimental Medicine (IKE); Linköping University; Linköping Sweden
- Department of Medical Specialist; Department of Clinical and Experimental Medicine (IKE); Linköping University; Linköping Sweden
- Department of Neuroscience/Neurology; Uppsala University; Uppsala Sweden
| | - Thomas Karlsson
- Center for Medical Image Science and Visualization (CMIV); Linköping University; Linköping Sweden
- Department of Behavioral Science and Learning; Linköping University; Linköping Sweden
| |
Collapse
|
43
|
Cieslik EC, Seidler I, Laird AR, Fox PT, Eickhoff SB. Different involvement of subregions within dorsal premotor and medial frontal cortex for pro- and antisaccades. Neurosci Biobehav Rev 2016; 68:256-269. [PMID: 27211526 DOI: 10.1016/j.neubiorev.2016.05.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 04/01/2016] [Accepted: 05/17/2016] [Indexed: 01/22/2023]
Abstract
The antisaccade task has been widely used to investigate cognitive action control. While the general network for saccadic eye movements is well defined, the exact location of eye fields within the frontal cortex strongly varies between studies. It is unknown whether this inconsistency reflects spatial uncertainty or is the result of different involvement of subregions for specific aspects of eye movement control. The aim of the present study was to examine functional differentiations within the frontal cortex by integrating results from neuroimaging studies analyzing pro- and antisaccade behavior using meta-analyses. The results provide evidence for a differential functional specialization of neighboring oculomotor frontal regions, with lateral frontal eye fields (FEF) and supplementary eye field (SEF) more often involved in prosaccades while medial FEF and anterior midcingulate cortex (aMCC) revealed consistent stronger involvement for antisaccades. This dissociation was furthermore mirrored by functional connectivity analyses showing that the lateral FEF and SEF are embedded in a motor output network, while medial FEF and aMCC are integrated in a multiple demand network.
Collapse
Affiliation(s)
- Edna C Cieslik
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany; Institute of Neuroscience and Medicine (INM-1) Research Centre Jülich, Jülich, Germany.
| | - Isabelle Seidler
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Angela R Laird
- Department of Physics, Florida International University, Miami, FL, USA; Department of Psychology, Florida International University, Miami, FL, USA
| | - Peter T Fox
- Research Imaging Institute, University of Texas Health Science Center San Antonio, TX, USA; Research Service, South Texas Veterans Administration Medical Center, San Antonio, TX, USA; State Key Laboratory for Brain and Cognitive Sciences, University of Hong Kong, Hong Kong
| | - Simon B Eickhoff
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany; Institute of Neuroscience and Medicine (INM-1) Research Centre Jülich, Jülich, Germany
| |
Collapse
|
44
|
Montemurro N, Herbet G, Duffau H. Right Cortical and Axonal Structures Eliciting Ocular Deviation During Electrical Stimulation Mapping in Awake Patients. Brain Topogr 2016; 29:561-71. [DOI: 10.1007/s10548-016-0490-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 04/04/2016] [Indexed: 11/24/2022]
|
45
|
Affiliation(s)
- Stephen G. Lisberger
- Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina 27710;
| |
Collapse
|
46
|
Costello MG, Zhu D, May PJ, Salinas E, Stanford TR. Task dependence of decision- and choice-related activity in monkey oculomotor thalamus. J Neurophysiol 2015; 115:581-601. [PMID: 26467516 DOI: 10.1152/jn.00592.2015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 10/13/2015] [Indexed: 11/22/2022] Open
Abstract
Oculomotor signals circulate within putative recurrent feedback loops that include the frontal eye field (FEF) and the oculomotor thalamus (OcTh). To examine how OcTh contributes to visuomotor control, and perceptually informed saccadic choices in particular, neural correlates of perceptual judgment and motor selection in OcTh were evaluated and compared with those previously reported for FEF in the same subjects. Monkeys performed three tasks: a choice task in which perceptual decisions are urgent, a choice task in which identical decisions are made without time pressure, and a single-target, delayed saccade task. The OcTh yielded far fewer task-responsive neurons than the FEF, but across responsive pools, similar neuron types were found, ranging from purely visual to purely saccade related. Across such types, the impact of the perceptual information relevant to saccadic choices was qualitatively the same in FEF and OcTh. However, distinct from that in FEF, activity in OcTh was strongly task dependent, typically being most vigorous in the urgent task, less so in the easier choice task, and least in the single-target task. This was true for responsive and nonresponsive cells alike. Neurons with exclusively motor-related activity showed strong task dependence, fired less, and differed most patently from their FEF counterparts, whereas those that combined visual and motor activity fired most similarly to their FEF counterparts. The results suggest that OcTh activity is more distantly related to saccade production per se, because its degree of commitment to a motor choice varies markedly as a function of ongoing cognitive or behavioral demands.
Collapse
Affiliation(s)
- M Gabriela Costello
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, North Carolina; and
| | - Dantong Zhu
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, North Carolina; and
| | - Paul J May
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi
| | - Emilio Salinas
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, North Carolina; and
| | - Terrence R Stanford
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, North Carolina; and
| |
Collapse
|
47
|
Mapping the macaque superior temporal sulcus: functional delineation of vergence and version eye-movement-related activity. J Neurosci 2015; 35:7428-42. [PMID: 25972171 DOI: 10.1523/jneurosci.4203-14.2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
It is currently thought that the primate oculomotor system has evolved distinct but interrelated subsystems to generate different types of visually guided eye movements (e.g., saccades/smooth pursuit/vergence). Although progress has been made in elucidating the neural basis of these movement types, no study to date has investigated all three movement types on a large scale and within the same animals. Here, we used fMRI in rhesus macaque monkeys to map the superior temporal sulcus (STS) for BOLD modulation associated with visually guided eye movements. Further, we ascertained whether modulation in a given area was movement type specific and, if not, the modulation each movement type elicited relative to the others (i.e., dominance). Our results show that multiple areas within STS modulate during all movement types studied, including the middle temporal, medial superior temporal, fundus of the superior temporal, lower superior temporal, and dorsal posterior inferotemporal areas. Our results also reveal an area in dorsomedial STS that is modulated almost exclusively by vergence movements. In contrast, we found that ventrolateral STS is driven preferentially during versional movements. These results illuminate an STS network involved in processes associated with multiple eye movement types, illustrate unique patterns of modulation within said network as a function of movement type, and provide evidence for a vergence-specific area within dorsomedial STS. We conclude that producing categorically different eye movement types requires access to a common STS network and that individual network nodes are recruited differentially based upon the type of movement generated.
Collapse
|
48
|
Kojima Y, Fuchs AF, Soetedjo R. Adaptation and adaptation transfer characteristics of five different saccade types in the monkey. J Neurophysiol 2015; 114:125-37. [PMID: 25855693 DOI: 10.1152/jn.00212.2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 04/03/2015] [Indexed: 11/22/2022] Open
Abstract
Shifts in the direction of gaze are accomplished by different kinds of saccades, which are elicited under different circumstances. Saccade types include targeting saccades to simple jumping targets, delayed saccades to visible targets after a waiting period, memory-guided (MG) saccades to remembered target locations, scanning saccades to stationary target arrays, and express saccades after very short latencies. Studies of human cases and neurophysiological experiments in monkeys suggest that separate pathways, which converge on a common locus that provides the motor command, generate these different types of saccade. When behavioral manipulations in humans cause targeting saccades to have persistent dysmetrias as might occur naturally from growth, aging, and injury, they gradually adapt to reduce the dysmetria. Although results differ slightly between laboratories, this adaptation generalizes or transfers to all the other saccade types mentioned above. Also, when one of the other types of saccade undergoes adaptation, it often transfers to another saccade type. Similar adaptation and transfer experiments, which allow inferences to be drawn about the site(s) of adaptation for different saccade types, have yet to be done in monkeys. Here we show that simian targeting and MG saccades adapt more than express, scanning, and delayed saccades. Adaptation of targeting saccades transfers to all the other saccade types. However, the adaptation of MG saccades transfers only to delayed saccades. These data suggest that adaptation of simian targeting saccades occurs on the pathway common to all saccade types. In contrast, only the delayed saccade command passes through the adaptation site of the MG saccade.
Collapse
Affiliation(s)
- Yoshiko Kojima
- Department of Physiology and Biophysics and Washington National Primate Research Center, University of Washington, Seattle, Washington
| | - Albert F Fuchs
- Department of Physiology and Biophysics and Washington National Primate Research Center, University of Washington, Seattle, Washington
| | - Robijanto Soetedjo
- Department of Physiology and Biophysics and Washington National Primate Research Center, University of Washington, Seattle, Washington
| |
Collapse
|
49
|
Fukushima K, Ito N, Barnes GR, Onishi S, Kobayashi N, Takei H, Olley PM, Chiba S, Inoue K, Warabi T. Impaired smooth-pursuit in Parkinson's disease: normal cue-information memory, but dysfunction of extra-retinal mechanisms for pursuit preparation and execution. Physiol Rep 2015; 3:3/3/e12361. [PMID: 25825544 PMCID: PMC4393177 DOI: 10.14814/phy2.12361] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
While retinal image motion is the primary input for smooth-pursuit, its efficiency depends on cognitive processes including prediction. Reports are conflicting on impaired prediction during pursuit in Parkinson's disease. By separating two major components of prediction (image motion direction memory and movement preparation) using a memory-based pursuit task, and by comparing tracking eye movements with those during a simple ramp-pursuit task that did not require visual memory, we examined smooth-pursuit in 25 patients with Parkinson's disease and compared the results with 14 age-matched controls. In the memory-based pursuit task, cue 1 indicated visual motion direction, whereas cue 2 instructed the subjects to prepare to pursue or not to pursue. Based on the cue-information memory, subjects were asked to pursue the correct spot from two oppositely moving spots or not to pursue. In 24/25 patients, the cue-information memory was normal, but movement preparation and execution were impaired. Specifically, unlike controls, most of the patients (18/24 = 75%) lacked initial pursuit during the memory task and started tracking the correct spot by saccades. Conversely, during simple ramp-pursuit, most patients (83%) exhibited initial pursuit. Popping-out of the correct spot motion during memory-based pursuit was ineffective for enhancing initial pursuit. The results were similar irrespective of levodopa/dopamine agonist medication. Our results indicate that the extra-retinal mechanisms of most patients are dysfunctional in initiating memory-based (not simple ramp) pursuit. A dysfunctional pursuit loop between frontal eye fields (FEF) and basal ganglia may contribute to the impairment of extra-retinal mechanisms, resulting in deficient pursuit commands from the FEF to brainstem.
Collapse
Affiliation(s)
- Kikuro Fukushima
- Department of Neurology, Sapporo Yamanoue Hospital, Sapporo, Japan
| | - Norie Ito
- Department of Neurology, Sapporo Yamanoue Hospital, Sapporo, Japan
| | - Graham R Barnes
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Sachiyo Onishi
- Department of Neurology, Sapporo Yamanoue Hospital, Sapporo, Japan
| | | | - Hidetoshi Takei
- Department of Radiology, Sapporo Yamanoue Hospital, Sapporo, Japan
| | - Peter M Olley
- Department of Neurology, Sapporo Yamanoue Hospital, Sapporo, Japan
| | - Susumu Chiba
- Department of Neurology, Sapporo Yamanoue Hospital, Sapporo, Japan
| | - Kiyoharu Inoue
- Department of Neurology, Sapporo Yamanoue Hospital, Sapporo, Japan
| | - Tateo Warabi
- Department of Neurology, Sapporo Yamanoue Hospital, Sapporo, Japan
| |
Collapse
|
50
|
Xu L, Fan T, Wu X, Chen K, Guo X, Zhang J, Yao L. A pooling-LiNGAM algorithm for effective connectivity analysis of fMRI data. Front Comput Neurosci 2014; 8:125. [PMID: 25339895 PMCID: PMC4186480 DOI: 10.3389/fncom.2014.00125] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 09/17/2014] [Indexed: 11/13/2022] Open
Abstract
The Independent Component Analysis (ICA)-linear non-Gaussian acyclic model (LiNGAM), an algorithm that can be used to estimate the causal relationship among non-Gaussian distributed data, has the potential value to detect the effective connectivity of human brain areas. Under the assumptions that (a): the data generating process is linear, (b) there are no unobserved confounders, and (c) data have non-Gaussian distributions, LiNGAM can be used to discover the complete causal structure of data. Previous studies reveal that the algorithm could perform well when the data points being analyzed is relatively long. However, there are too few data points in most neuroimaging recordings, especially functional magnetic resonance imaging (fMRI), to allow the algorithm to converge. Smith's study speculates a method by pooling data points across subjects may be useful to address this issue (Smith et al., 2011). Thus, this study focus on validating Smith's proposal of pooling data points across subjects for the use of LiNGAM, and this method is named as pooling-LiNGAM (pLiNGAM). Using both simulated and real fMRI data, our current study demonstrates the feasibility and efficiency of the pLiNGAM on the effective connectivity estimation.
Collapse
Affiliation(s)
- Lele Xu
- College of Information Science and Technology, Beijing Normal UniversityBeijing, China
| | - Tingting Fan
- College of Information Science and Technology, Beijing Normal UniversityBeijing, China
| | - Xia Wu
- College of Information Science and Technology, Beijing Normal UniversityBeijing, China
- State Key Laboratories of Transducer Technology, Shanghai Institute of Technical Physics, Chinese Academy of SciencesShanghai, China
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijing, China
- Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal UniversityBeijing, China
| | - KeWei Chen
- Department of Mathematics and Statistics, Banner Good Samaritan PET Center, Banner Alzheimer's Institute, Arizona State UniversityPhoenix, AZ, USA
| | - Xiaojuan Guo
- College of Information Science and Technology, Beijing Normal UniversityBeijing, China
| | - Jiacai Zhang
- College of Information Science and Technology, Beijing Normal UniversityBeijing, China
| | - Li Yao
- College of Information Science and Technology, Beijing Normal UniversityBeijing, China
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijing, China
- Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal UniversityBeijing, China
| |
Collapse
|