1
|
Leitner DF, Kanshin E, Faustin A, Thierry M, Friedman D, Devore S, Ueberheide B, Devinsky O, Wisniewski T. Localized proteomic differences in the choroid plexus of Alzheimer's disease and epilepsy patients. Front Neurol 2023; 14:1221775. [PMID: 37521285 PMCID: PMC10379643 DOI: 10.3389/fneur.2023.1221775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/22/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction Alzheimer's disease (AD) and epilepsy are reciprocally related. Among sporadic AD patients, clinical seizures occur in 10-22% and subclinical epileptiform abnormalities occur in 22-54%. Cognitive deficits, especially short-term memory impairments, occur in most epilepsy patients. Common neurophysiological and molecular mechanisms occur in AD and epilepsy. The choroid plexus undergoes pathological changes in aging, AD, and epilepsy, including decreased CSF turnover, amyloid beta (Aβ), and tau accumulation due to impaired clearance and disrupted CSF amino acid homeostasis. This pathology may contribute to synaptic dysfunction in AD and epilepsy. Methods We evaluated control (n = 8), severe AD (n = 8; A3, B3, C3 neuropathology), and epilepsy autopsy cases (n = 12) using laser capture microdissection (LCM) followed by label-free quantitative mass spectrometry on the choroid plexus adjacent to the hippocampus at the lateral geniculate nucleus level. Results Proteomics identified 2,459 proteins in the choroid plexus. At a 5% false discovery rate (FDR), 616 proteins were differentially expressed in AD vs. control, 1 protein in epilepsy vs. control, and 438 proteins in AD vs. epilepsy. There was more variability in the epilepsy group across syndromes. The top 20 signaling pathways associated with differentially expressed proteins in AD vs. control included cell metabolism pathways; activated fatty acid beta-oxidation (p = 2.00 x 10-7, z = 3.00), and inhibited glycolysis (p = 1.00 x 10-12, z = -3.46). For AD vs. epilepsy, the altered pathways included cell metabolism pathways, activated complement system (p = 5.62 x 10-5, z = 2.00), and pathogen-induced cytokine storm (p = 2.19 x 10-2, z = 3.61). Of the 617 altered proteins in AD and epilepsy vs. controls, 497 (81%) were positively correlated (p < 0.0001, R2 = 0.27). Discussion We found altered signaling pathways in the choroid plexus of severe AD cases and many correlated changes in the protein expression of cell metabolism pathways in AD and epilepsy cases. The shared molecular mechanisms should be investigated further to distinguish primary pathogenic changes from the secondary ones. These mechanisms could inform novel therapeutic strategies to prevent disease progression or restore normal function. A focus on dual-diagnosed AD/epilepsy cases, specific epilepsy syndromes, such as temporal lobe epilepsy, and changes across different severity levels in AD and epilepsy would add to our understanding.
Collapse
Affiliation(s)
- Dominique F. Leitner
- Comprehensive Epilepsy Center, New York University Grossman School of Medicine, New York, NY, United States
- Center for Cognitive Neurology, Department of Neurology, New York University Grossman School of Medicine, New York, NY, United States
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, United States
| | - Evgeny Kanshin
- Proteomics Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY, United States
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, United States
| | - Arline Faustin
- Center for Cognitive Neurology, Department of Neurology, New York University Grossman School of Medicine, New York, NY, United States
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, United States
| | - Manon Thierry
- Center for Cognitive Neurology, Department of Neurology, New York University Grossman School of Medicine, New York, NY, United States
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, United States
| | - Daniel Friedman
- Comprehensive Epilepsy Center, New York University Grossman School of Medicine, New York, NY, United States
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, United States
| | - Sasha Devore
- Comprehensive Epilepsy Center, New York University Grossman School of Medicine, New York, NY, United States
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, United States
| | - Beatrix Ueberheide
- Center for Cognitive Neurology, Department of Neurology, New York University Grossman School of Medicine, New York, NY, United States
- Proteomics Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY, United States
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, United States
| | - Orrin Devinsky
- Comprehensive Epilepsy Center, New York University Grossman School of Medicine, New York, NY, United States
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, United States
| | - Thomas Wisniewski
- Center for Cognitive Neurology, Department of Neurology, New York University Grossman School of Medicine, New York, NY, United States
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, United States
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, United States
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
2
|
Leclercq K, Afrikanova T, Langlois M, De Prins A, Buenafe OE, Rospo CC, Van Eeckhaut A, de Witte PAM, Crawford AD, Smolders I, Esguerra CV, Kaminski RM. Cross-species pharmacological characterization of the allylglycine seizure model in mice and larval zebrafish. Epilepsy Behav 2015; 45:53-63. [PMID: 25845493 DOI: 10.1016/j.yebeh.2015.03.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 03/16/2015] [Accepted: 03/17/2015] [Indexed: 01/29/2023]
Abstract
Treatment-resistant seizures affect about a third of patients suffering from epilepsy. To fulfill the need for new medications targeting treatment-resistant seizures, a number of rodent models offer the opportunity to assess a variety of potential treatment approaches. The use of such models, however, has proven to be time-consuming and labor-intensive. In this study, we performed pharmacological characterization of the allylglycine (AG) seizure model, a simple in vivo model for which we demonstrated a high level of treatment resistance. (d,l)-Allylglycine inhibits glutamic acid decarboxylase (GAD) - the key enzyme in γ-aminobutyric acid (GABA) biosynthesis - leading to GABA depletion, seizures, and neuronal damage. We performed a side-by-side comparison of mouse and zebrafish acute AG treatments including biochemical, electrographic, and behavioral assessments. Interestingly, seizure progression rate and GABA depletion kinetics were comparable in both species. Five mechanistically diverse antiepileptic drugs (AEDs) were used. Three out of the five AEDs (levetiracetam, phenytoin, and topiramate) showed only a limited protective effect (mainly mortality delay) at doses close to the TD50 (dose inducing motor impairment in 50% of animals) in mice. The two remaining AEDs (diazepam and sodium valproate) displayed protective activity against AG-induced seizures. Experiments performed in zebrafish larvae revealed behavioral AED activity profiles highly analogous to those obtained in mice. Having demonstrated cross-species similarities and limited efficacy of tested AEDs, we propose the use of AG in zebrafish as a convenient and high-throughput model of treatment-resistant seizures.
Collapse
Affiliation(s)
| | - Tatiana Afrikanova
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Leuven, Belgium
| | - Melanie Langlois
- Luxembourg Center for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - An De Prins
- Center for Neurosciences, C4N, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Olivia E Buenafe
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Leuven, Belgium
| | - Chiara C Rospo
- Neuroscience TA, UCB Biopharma, Braine-l'Alleud, Belgium
| | - Ann Van Eeckhaut
- Luxembourg Center for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Peter A M de Witte
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Leuven, Belgium
| | - Alexander D Crawford
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Leuven, Belgium; Luxembourg Center for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Ilse Smolders
- Center for Neurosciences, C4N, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Camila V Esguerra
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Leuven, Belgium; Chemical Neuroscience Group, Biotechnology Centre of Oslo, University of Oslo, Oslo, Norway.
| | | |
Collapse
|
3
|
Abstract
The constitutive isoform of heme oxygenase, HO-2, is highly expressed in the brain and in cerebral vessels. HO-2 functions in the brain have been evaluated using pharmacological inhibitors of the enzyme and HO-2 gene deletion in in vivo animal models and in cultured cells (neurons, astrocytes, cerebral vascular endothelial cells). Rapid activation of HO-2 via post-translational modifications without upregulation of HO-2 expression or HO-1 induction coincides with the increase in cerebral blood flow aimed at maintaining brain homeostasis and neuronal survival during seizures, hypoxia, and hypotension. Pharmacological inhibition or gene deletion of brain HO-2 exacerbates oxidative stress induced by seizures, glutamate, and inflammatory cytokines, and causes cerebral vascular injury. Carbon monoxide (CO) and bilirubin, the end products of HO-catalyzed heme degradation, have distinct cytoprotective functions. CO, by binding to a heme prosthetic group, regulates the key components of cell signaling, including BK(Ca) channels, guanylyl cyclase, NADPH oxidase, and the mitochondria respiratory chain. Cerebral vasodilator effects of CO are mediated via activation of BK(Ca) channels and guanylyl cyclase. CO, by inhibiting the major components of endogenous oxidant-generating machinery, NADPH oxidase and the cytochrome C oxidase of the mitochondrial respiratory chain, blocks formation of reactive oxygen species. Bilirubin, via redox cycling with biliverdin, is a potent oxidant scavenger that removes preformed oxidants. Overall, HO-2 has dual housekeeping cerebroprotective functions by maintaining autoregulation of cerebral blood flow aimed at improving neuronal survival in a changing environment, and by providing an effective defense mechanism that blocks oxidant formation and prevents cell death caused by oxidative stress.
Collapse
Affiliation(s)
- Helena Parfenova
- Laboratory for Research in Neonatal Physiology, Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, USA.
| | | |
Collapse
|
4
|
Sierra-Paredes G, Oreiro-García MT, Vázquez-Illanes MD, Sierra-Marcuño G. Effect of eslicarbazepine acetate (BIA 2-093) on latrunculin A-induced seizures and extracellular amino acid concentrations in the rat hippocampus. Epilepsy Res 2007; 77:36-43. [PMID: 17890056 DOI: 10.1016/j.eplepsyres.2007.08.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2007] [Revised: 08/20/2007] [Accepted: 08/23/2007] [Indexed: 11/29/2022]
Abstract
PURPOSE Eslicarbazepine acetate (ESL, BIA 2-093) is a novel antiepileptic drug endowed with an anticonvulsant potency similar to that of carbamazepine, and shares with carbamazepine and oxcarbazepine the capability to inhibit voltage-gated sodium channels. ESL is efficacious against maximal electroshock seizure-induced seizures, protects against picrotoxin-induced seizures in mice and rats, and prevents development of kindling in rats. In vivo, latrunculin A microperfusion in the rat hippocampus induces acute epileptic seizures and long-term biochemical changes leading to decreased picrotoxin seizure threshold and spontaneous seizures. We have tested the effect of ESL on latrunculin A-induced seizures, and its effect on the changes in extracellular amino acid levels induced by latrunculin A. METHODS Rat hippocampus was continuously perfused with a latrunculin A solution (4 microM) through CMA/12 microdialysis probes at a flow rate of 2 microl/min during 8 h with continuous EEG and videotape recording for 3 consecutive days. The same protocol was repeated after oral administration of ESL (3, 10 and 30 mg/kg). Samples from the microdialysate were collected and analyzed by HPLC using pre-column derivatization with 6 aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) and fluorescence detection. RESULTS After the administration of 3 mg/kg of ESL, seizures were completely suppressed in the 66.7% of the rats. 10 and 30 mg/kg of ESL did completely suppressed seizures in the 100% of the animals studied. Hippocampal extracellular levels of glutamate, glycine and aspartate were significantly increased during latrunculin A microperfusion, while GABA levels remained unchanged. At the doses studied, ESL reversed the increases in extracellular glutamate and aspartate concentrations to basal levels and significantly reduced glycine levels. CONCLUSIONS ESL, at oral doses of 3, 10 and 30 mg/kg, shows an excellent anticonvulsant effect against seizures induced by latrunculin A microperfusion in the rat, and prevents the increases in glutamate and aspartate induced by latrunculin A.
Collapse
Affiliation(s)
- Germán Sierra-Paredes
- Neuroscience Division, Department of Biochemistry and Molecular Biology, School of Medicine, University of Santiago, San Francisco 1, 15782 Santiago de Compostela, Spain.
| | | | | | | |
Collapse
|
5
|
Malfatti CRM, Perry MLS, Schweigert ID, Muller AP, Paquetti L, Rigo FK, Fighera MR, Garrido-Sanabria ER, Mello CF. Convulsions induced by methylmalonic acid are associated with glutamic acid decarboxylase inhibition in rats: A role for GABA in the seizures presented by methylmalonic acidemic patients? Neuroscience 2007; 146:1879-87. [PMID: 17467181 DOI: 10.1016/j.neuroscience.2007.03.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Revised: 02/25/2007] [Accepted: 03/17/2007] [Indexed: 11/30/2022]
Abstract
Methylmalonic acid (MMA) is an endogenous convulsing compound that accumulates in methylmalonic acidemia, an inborn error of the metabolism characterized by severe neurological dysfunction, including seizures. The mechanisms by which MMA causes seizures involves the activation of the N-methyl-D-aspartate (NMDA) receptors, but whether GABAergic mechanisms are involved in the convulsions induced by MMA is not known. Therefore, in the current study we investigated the involvement of GABAergic mechanisms in the convulsions induced by MMA. Adult rats were injected (i.c.v.) with muscimol (46 pmol/1 microl), baclofen (0.03, 0.1 and 0.3 micromol/1 microl), MK-801 (6 nmol/1 microl), pyridoxine (2 micromol/4 microl) or physiological saline (0.15 micromol/1 microl). After 30 min, MMA (0.3, 0.1 and 3 micromol/1 microl) or NaCl (6 micromol/1 microl, i.c.v.) was injected. The animals were immediately transferred to an open field and observed for the appearance of convulsions. After behavioral evaluation, glutamic acid decarboxylase (GAD) activity was determined in cerebral cortex homogenates by measuring the 14CO2 released from l-[14C]-glutamic acid. Convulsions were confirmed by electroencephalographic recording in a subset of animals. MMA caused the appearance of clonic convulsions in a dose-dependent manner and decreased GAD activity in the cerebral cortex ex vivo. GAD activity negatively correlated with duration of MMA-induced convulsions (r=-0.873, P<0.01), in an individual basis. Muscimol, baclofen, MK-801 and pyridoxine prevented MMA-induced convulsions, but only MK-801 and pyridoxine prevented MMA-induced GAD inhibition. These data suggest GABAergic mechanisms are involved in the convulsive action of MMA, and that GAD inhibition by MMA depends on the activation of NMDA receptors. While in this study we present novel data about the role of the GABAergic system in MMA-induced convulsions, the central role of NMDA receptors in the neurochemical actions of MMA is further reinforced since they seem to trigger GABAergic failure.
Collapse
Affiliation(s)
- C R M Malfatti
- Departamento de Educação Física e Saúde, Universidade de Santa Cruz do Sul, Santa Cruz do Sul, RS, 96815-900, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Alexander GM, Godwin DW. Metabotropic glutamate receptors as a strategic target for the treatment of epilepsy. Epilepsy Res 2006; 71:1-22. [PMID: 16787741 DOI: 10.1016/j.eplepsyres.2006.05.012] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2006] [Accepted: 05/16/2006] [Indexed: 12/31/2022]
Abstract
Epilepsy is a chronic neurological disorder that has many known types, including generalized epilepsies that involve cortical and subcortical structures. A proportion of patients have seizures that are resistant to traditional anti-epilepsy drugs, which mainly target ion channels or postsynaptic receptors. This resistance to conventional therapies makes it important to identify novel targets for the treatment of epilepsy. Given the involvement of the neurotransmitter glutamate in the etiology of epilepsy, targets that control glutamatergic neurotransmission are of special interest. The metabotropic glutamate receptors (mGluRs) are of a family of eight G-protein-coupled receptors that serve unique regulatory functions at synapses that use the neurotransmitter glutamate. Their distribution within the central nervous system provides a platform for both presynaptic control of glutamate release, as well as postsynaptic control of neuronal responses to glutamate. In recent years, substantial efforts have been made towards developing selective agonists and antagonists which may be useful for targeting specific receptor subtypes in an attempt to harness the therapeutic potential of these receptors. We examine the possibility of intervening at these receptors by considering the specific example of absence seizures, a form of generalized, non-convulsive seizure that involves the thalamus. Views of the etiology of absence seizures have evolved over time from the "centrencephalic" concept of a diffuse subcortical pacemaker toward the "cortical focus" theory in which cortical hyperexcitability leads the thalamus into the 3-4 Hz rhythms that are characteristic of absence seizures. Since the cortex communicates with the thalamus via a massive glutamatergic projection, ionotropic glutamate receptor (iGluR) blockade has held promise, but the global nature of iGluR intervention has precluded the clinical effectiveness of drugs that block iGluRs. In contrast, mGluRs, because they modulate iGluRs at glutamatergic synapses only under certain conditions, may quell seizure activity by selectively reducing hyperactive glutamatergic synaptic communication within the cortex and thalamus without significantly affecting normal response rates. In this article, we review the circuitry and events leading to absence seizure generation within the corticothalamic network, we present a comprehensive review of the synaptic location and function of mGluRs within the thalamus and cerebral cortex, and review the current knowledge of mGluR modulation and seizure generation. We conclude by reviewing the potential advantages of Group II mGluRs, specifically mGluR2, in the treatment of both convulsive and non-convulsive seizures.
Collapse
Affiliation(s)
- Georgia M Alexander
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | | |
Collapse
|
7
|
Sills GJ. Excitable but Lacking in Energy: Contradictions in the Human Epileptic Hippocampus. Epilepsy Curr 2006; 6:6-7. [PMID: 16477314 PMCID: PMC1363369 DOI: 10.1111/j.1535-7511.2005.00078.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Extracellular Metabolites in the Cortex and Hippocampus of Epileptic Patients Cavus I, Kasoff WS, Cassaday MP, Jacob R, Gueorguieva R, Sherwin RS, Krystal JH, Spencer DD, Abi-Saab WM Ann Neurol 2005 Feb;57(2):226–235 Interictal brain energy metabolism and glutamate–glutamine cycling are impaired in epilepsy and may contribute to seizure generation. We used the zero-flow microdialysis method to measure the extracellular levels of glutamate, glutamine, and the major energy substrates glucose and lactate in the epileptogenic and the nonepileptogenic cortex and hippocampus of 38 awake epileptic patients during the interictal period. Depth electrodes attached to microdialysis probes were used to identify the epileptogenic and the nonepileptogenic sites. The epileptogenic hippocampus had surprisingly high basal glutamate levels, low glutamine/glutamate ratio, high lactate levels, and indication for poor glucose utilization. The epileptogenic cortex had only marginally increased glutamate levels. We propose that interictal energy deficiency in the epileptogenic hippocampus could contribute to impaired glutamate reuptake and glutamate-glutamine cycling, resulting in persistently increased extracellular glutamate, glial and neuronal toxicity, increased lactate production together with poor lactate and glucose utilization, and ultimately worsening energy metabolism. Our data suggest that a different neurometabolic process underlies the neocortical epilepsies.
Collapse
|
8
|
Dunlop J, Zaleska MM, Eliasof S, Moyer JA. Excitatory amino acid transporters as emerging targets for central nervous system therapeutics. ACTA ACUST UNITED AC 2005. [DOI: 10.1517/14728222.3.4.543] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
9
|
Carratu P, Pourcyrous M, Fedinec A, Leffler CW, Parfenova H. Endogenous heme oxygenase prevents impairment of cerebral vascular functions caused by seizures. Am J Physiol Heart Circ Physiol 2003; 285:H1148-57. [PMID: 12915392 DOI: 10.1152/ajpheart.00091.2003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In newborn pigs, the mechanism of seizure-induced cerebral hyperemia involves carbon monoxide (CO), the vasodilator product of heme catabolism by heme oxygenase (HO). We hypothesized that seizures cause cerebral vascular dysfunction when HO activity is inhibited. With the use of cranial window techniques, we examined cerebral vascular responses to endothelium-dependent (hypercapnia and bradykinin) and endothelium-independent (isoproterenol and sodium nitroprusside) dilators during the recovery from bicuculline-induced seizures in saline controls and in animals pretreated with a HO inhibitor, tin protoporphyrin (SnPP). SnPP (3 mg/kg iv) blocked dilation to heme and reduced the CO level in cortical periarachnoid cerebrospinal fluid, indicating HO inhibition in the cerebral microcirculation. In saline control piglets, seizures increased the CO level, which correlated with the time-dependent cerebral vasodilation; during the recovery (2 h after seizure induction), responses to all vasodilators were preserved. In SnPP-treated animals, cerebral vasodilation and the CO responses to seizures were greatly reduced, and cerebral vascular reactivity was severely impaired during the recovery. These findings suggest that HO in the cerebral microcirculation is rapidly activated during seizures and provides endogenous protection against seizure-induced vascular injury.
Collapse
Affiliation(s)
- Pierluigi Carratu
- Department of Physiology, University of Tennessee Health Science Center, 894 Union Avenue, Memphis, TN 38163, USA
| | | | | | | | | |
Collapse
|
10
|
|
11
|
Bernard S, Enayati A, Redwood L, Roger H, Binstock T. Autism: a novel form of mercury poisoning. Med Hypotheses 2001; 56:462-71. [PMID: 11339848 DOI: 10.1054/mehy.2000.1281] [Citation(s) in RCA: 231] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Autism is a syndrome characterized by impairments in social relatedness and communication, repetitive behaviors, abnormal movements, and sensory dysfunction. Recent epidemiological studies suggest that autism may affect 1 in 150 US children. Exposure to mercury can cause immune, sensory, neurological, motor, and behavioral dysfunctions similar to traits defining or associated with autism, and the similarities extend to neuroanatomy, neurotransmitters, and biochemistry. Thimerosal, a preservative added to many vaccines, has become a major source of mercury in children who, within their first two years, may have received a quantity of mercury that exceeds safety guidelines. A review of medical literature and US government data suggests that: (i) many cases of idiopathic autism are induced by early mercury exposure from thimerosal; (ii) this type of autism represents an unrecognized mercurial syndrome; and (iii) genetic and non-genetic factors establish a predisposition whereby thimerosal's adverse effects occur only in some children.
Collapse
Affiliation(s)
- S Bernard
- ARC Research, Cranford, New Jersey 07901, USA
| | | | | | | | | |
Collapse
|
12
|
Dooley DJ, Mieske CA, Borosky SA. Inhibition of K(+)-evoked glutamate release from rat neocortical and hippocampal slices by gabapentin. Neurosci Lett 2000; 280:107-10. [PMID: 10686389 DOI: 10.1016/s0304-3940(00)00769-2] [Citation(s) in RCA: 160] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Gabapentin (Neurontin((R))) has preclinical and clinical efficacy as an anticonvulsant, antihyperalgesic, anxiolytic, and neuroprotective drug. Since L-glutamic acid (GLU) is involved in various CNS (central nervous system) disorders, gabapentin may attenuate the release of this neurotransmitter possibly by interacting with the auxiliary alpha(2)delta subunit of voltage-sensitive calcium channels (VSCC). The effects of gabapentin, pregabalin (S-(+)-3-isobutylgaba) and its enantiomer R-(-)-3-isobutylgaba, and N- and P/Q-type VSCC-targeting peptide ligands (omega-conotoxin MVIIA, omega-conotoxin MVIIC, omega-agatoxin TK) were assessed in vitro on K(+)-evoked (endogenous) GLU release from rat neocortical and hippocampal slices. Gabapentin and pregabalin decreased GLU release by 11-26% with R-(-)-3-isobutylgaba being less effective than pregabalin. The reference N- and P/Q-type VSCC-targeting ligands reduced GLU release by 19-55% to implicate these VSCC in this Ca(2+)-dependent process. The inhibitory effect of gabapentin and related compounds on GLU release may reflect a subtle modulation of VSCC function which normalizes pathological changes in neurotransmitter release.
Collapse
Affiliation(s)
- D J Dooley
- Department of Neuroscience Therapeutics, Parke-Davis Pharmaceutical Research, Division of Warner-Lambert Co., Ann Arbor, MI 48105, USA.
| | | | | |
Collapse
|
13
|
Abstract
Glutamatergic synapses play a critical role in all epileptic phenomena. Broadly enhanced activation of post-synaptic glutamate receptors (ionotropic and metabotropic) is proconvulsant. Antagonists of NMDA receptors and AMPA receptors are powerful anticonvulsants in many animal models of epilepsy. A clinical application of pure specific glutamate antagonists has not yet been established. Many different alterations in glutamate receptors or transporters can potentially contribute to epileptogenesis. Several genetic alterations have been shown to be epileptogenic in animal models but no specific mutation relating to glutamatergic function has yet been linked to a human epilepsy syndrome. There is clear evidence for altered NMDA receptor function in acquired epilepsy in animal models and in man. Changes in metabotropic receptor function may also play a key role in epileptogenesis.
Collapse
Affiliation(s)
- A G Chapman
- Department of Clinical Neuroscience, Institute of Psychiatry, London, UK
| |
Collapse
|