1
|
Capuz A, Karnoub MA, Osien S, Rose M, Mériaux C, Fournier I, Devos D, Vanden Abeele F, Rodet F, Cizkova D, Salzet M. The Antibody Dependant Neurite Outgrowth Modulation Response Involvement in Spinal Cord Injury. Front Immunol 2022; 13:882830. [PMID: 35784350 PMCID: PMC9245426 DOI: 10.3389/fimmu.2022.882830] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/02/2022] [Indexed: 12/25/2022] Open
Abstract
Spinal cord injury (SCI) represents a major medical challenge. At present, there is still no cure to treat it efficiently and enable functional recovery below the injury site. Previously, we demonstrated that inflammation determines the fate of the physiopathology. To decipher the molecular mechanisms involved in this process, we performed a meta-analysis of our spatio-temporal proteomic studies in the time course of SCI. This highlighted the presence of IgG isotypes in both spinal cord explants and their secretomes. These IgGs were detected in the spinal cord even if no SCI occurred. However, during the time course following SCI, abundance of IgG1 and IgG2 subclasses (a, b, c) varied according to the spatial repartition. IgG1 was clearly mostly abundant at 12 h, and a switch to IgG2a was observed after 24 h. This IgG stayed predominant 3, 7, and 10 days after SCI. A protein related to IgM as well as a variable heavy chain were only detected 12 h after lesion. Interestingly, treatment with RhoA inhibitor influenced the abundance of the various IgG isotypes and a preferential switch to IgG2c was observed. By data reuse of rat dorsal root ganglion (DRG) neurons RNAseq datasets and RT-PCR experiments performed on cDNA from DRG sensory neurons ND7/23 and N27 dopaminergic neural cell lines, we confirmed expression of immunoglobulin heavy and light chains (constant and variable) encoding genes in neurons. We then identified CD16 and CD32b as their specific receptors in sensory neuron cell line ND7/23 and their activation regulated neurites outgrowth. These results suggest that during SCI, neuronal IgG isotypes are released to modulate neurites outgrowth. Therefore, we propose a new view of the SCI response involving an antibody dependent neurite outgrowth modulation (ADNM) which could be a precursor to the neuroinflammatory response in pathological conditions.
Collapse
Affiliation(s)
- Alice Capuz
- Université de Lille, Inserm U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille, France
| | - Mélodie-Anne Karnoub
- Université de Lille, Inserm U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille, France
| | - Sylvain Osien
- Université de Lille, Inserm U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille, France
| | - Mélanie Rose
- Université de Lille, Inserm U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille, France
| | - Céline Mériaux
- Université de Lille, Inserm U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille, France
| | - Isabelle Fournier
- Université de Lille, Inserm U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille, France
- Institut Universitaire de France, Paris, France
| | - David Devos
- Université de Lille, Inserm U1172, CHU-Lille, Lille Neuroscience Cognition Research Centre, Lille, France
| | - Fabien Vanden Abeele
- Université de Lille, Inserm U1003, Laboratory of Cell Physiology, Villeneuve d’Ascq, France
| | - Franck Rodet
- Université de Lille, Inserm U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille, France
| | - Dasa Cizkova
- Université de Lille, Inserm U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille, France
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
- Centre for Experimental and Clinical Regenerative Medicine, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovakia
- *Correspondence: Michel Salzet, ; Dasa Cizkova,
| | - Michel Salzet
- Université de Lille, Inserm U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille, France
- Institut Universitaire de France, Paris, France
- *Correspondence: Michel Salzet, ; Dasa Cizkova,
| |
Collapse
|
2
|
The Neurovascular Unit Dysfunction in Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22042022. [PMID: 33670754 PMCID: PMC7922832 DOI: 10.3390/ijms22042022] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/06/2021] [Accepted: 01/11/2021] [Indexed: 02/06/2023] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disease worldwide. Histopathologically, AD presents with two hallmarks: neurofibrillary tangles (NFTs), and aggregates of amyloid β peptide (Aβ) both in the brain parenchyma as neuritic plaques, and around blood vessels as cerebral amyloid angiopathy (CAA). According to the vascular hypothesis of AD, vascular risk factors can result in dysregulation of the neurovascular unit (NVU) and hypoxia. Hypoxia may reduce Aβ clearance from the brain and increase its production, leading to both parenchymal and vascular accumulation of Aβ. An increase in Aβ amplifies neuronal dysfunction, NFT formation, and accelerates neurodegeneration, resulting in dementia. In recent decades, therapeutic approaches have attempted to decrease the levels of abnormal Aβ or tau levels in the AD brain. However, several of these approaches have either been associated with an inappropriate immune response triggering inflammation, or have failed to improve cognition. Here, we review the pathogenesis and potential therapeutic targets associated with dysfunction of the NVU in AD.
Collapse
|
3
|
McDonald CL, Hennessy E, Rubio-Araiz A, Keogh B, McCormack W, McGuirk P, Reilly M, Lynch MA. Inhibiting TLR2 activation attenuates amyloid accumulation and glial activation in a mouse model of Alzheimer's disease. Brain Behav Immun 2016; 58:191-200. [PMID: 27422717 DOI: 10.1016/j.bbi.2016.07.143] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 07/08/2016] [Accepted: 07/09/2016] [Indexed: 12/11/2022] Open
Abstract
The effects of Toll-like receptor (TLR) activation in peripheral cells are well characterized but, although several TLRs are expressed on cells of the brain, the consequences of their activation on neuronal function remain to be fully investigated, particularly in the context of assessing their potential as therapeutic targets in neurodegenerative diseases. Several endogenous TLR ligands have been identified, many of which are soluble factors released from cells exposed to stressors. In addition, amyloid-β (Aβ) the main constituent of the amyloid plaques in Alzheimer's disease (AD), activates TLR2, although it has also been shown to bind to several other receptors. The objective of this study was to determine whether activation of TLR2 played a role in the developing inflammatory changes and Aβ accumulation in a mouse model of AD. Wild type and transgenic mice that overexpress amyloid precursor protein and presenilin 1 (APP/PS1 mice) were treated with anti-TLR2 antibody for 7months from the age of 7-14months. We demonstrate that microglial and astroglial activation, as assessed by MHCII, CD68 and GFAP immunoreactivity was decreased in anti-TLR2 antibody-treated compared with control (IgG)-treated mice. This was associated with reduced Aβ plaque burden and improved performance in spatial learning. The data suggest that continued TLR2 activation contributes to the developing neuroinflammation and pathology and may be provide a strategy for limiting the progression of AD.
Collapse
Affiliation(s)
- Claire L McDonald
- Trinity College Institute for Neuroscience, Trinity College, Dublin 2, Ireland
| | - Edel Hennessy
- Physical Therapy and Rehabilitation Science, Brain and Spinal Injury Center, University of California San Francisco, San Francisco General Hospital, 1001 Potrero av, Bld#1, Room#101, 94110 San Francisco, CA, United States
| | - Ana Rubio-Araiz
- Trinity College Institute for Neuroscience, Trinity College, Dublin 2, Ireland
| | - Brian Keogh
- Opsona Therapeutics LTD, 2nd Floor Ashford House, Tara Street, Dublin 2 D02 VX67, Ireland
| | - William McCormack
- Immune Regulation Research Group, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, Ireland
| | - Peter McGuirk
- Opsona Therapeutics LTD, 2nd Floor Ashford House, Tara Street, Dublin 2 D02 VX67, Ireland
| | - Mary Reilly
- Opsona Therapeutics LTD, 2nd Floor Ashford House, Tara Street, Dublin 2 D02 VX67, Ireland
| | - Marina A Lynch
- Trinity College Institute for Neuroscience, Trinity College, Dublin 2, Ireland.
| |
Collapse
|
4
|
Xu X, Denic A, Jordan LR, Wittenberg NJ, Warrington AE, Wootla B, Papke LM, Zoecklein LJ, Yoo D, Shaver J, Oh SH, Pease LR, Rodriguez M. A natural human IgM that binds to gangliosides is therapeutic in murine models of amyotrophic lateral sclerosis. Dis Model Mech 2015; 8:831-42. [PMID: 26035393 PMCID: PMC4527295 DOI: 10.1242/dmm.020727] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 05/18/2015] [Indexed: 12/21/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating, fatal neurological disease that primarily affects spinal cord anterior horn cells and their axons for which there is no treatment. Here we report the use of a recombinant natural human IgM that binds to the surface of neurons and supports neurite extension, rHIgM12, as a therapeutic strategy in murine models of human ALS. A single 200 µg intraperitoneal dose of rHIgM12 increases survival in two independent genetic-based mutant SOD1 mouse strains (SOD1G86R and SOD1G93A) by 8 and 10 days, delays the onset of neurological deficits by 16 days, delays the onset of weight loss by 5 days, and preserves spinal cord axons and anterior horn neurons. Immuno-overlay of thin layer chromatography and surface plasmon resonance show that rHIgM12 binds with high affinity to the complex gangliosides GD1a and GT1b. Addition of rHIgM12 to neurons in culture increases α-tubulin tyrosination levels, suggesting an alteration of microtubule dynamics. We previously reported that a single peripheral dose of rHIgM12 preserved neurological function in a murine model of demyelination with axon loss. Because rHIgM12 improves three different models of neurological disease, we propose that the IgM might act late in the cascade of neuronal stress and/or death by a broad mechanism. Summary: A single peripheral dose of a recombinant natural human IgM increases lifespan and delays neurological deficits in mouse models of human ALS.
Collapse
Affiliation(s)
- Xiaohua Xu
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Luke R Jordan
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, USA Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Nathan J Wittenberg
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Bharath Wootla
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Louisa M Papke
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Daehan Yoo
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jonah Shaver
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sang-Hyun Oh
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, USA Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Larry R Pease
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Moses Rodriguez
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
5
|
Chen X, Sadowska GB, Zhang J, Kim JE, Cummings EE, Bodge CA, Lim YP, Makeyev O, Besio WG, Gaitanis J, Threlkeld SW, Banks WA, Stonestreet BS. Neutralizing anti-interleukin-1β antibodies modulate fetal blood-brain barrier function after ischemia. Neurobiol Dis 2015; 73:118-29. [PMID: 25258170 PMCID: PMC4252260 DOI: 10.1016/j.nbd.2014.09.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 08/15/2014] [Accepted: 09/12/2014] [Indexed: 02/08/2023] Open
Abstract
We have previously shown that increases in blood-brain barrier permeability represent an important component of ischemia-reperfusion related brain injury in the fetus. Pro-inflammatory cytokines could contribute to these abnormalities in blood-brain barrier function. We have generated pharmacological quantities of mouse anti-ovine interleukin-1β monoclonal antibody and shown that this antibody has very high sensitivity and specificity for interleukin-1β protein. This antibody also neutralizes the effects of interleukin-1β protein in vitro. In the current study, we hypothesized that the neutralizing anti-interleukin-1β monoclonal antibody attenuates ischemia-reperfusion related fetal blood-brain barrier dysfunction. Instrumented ovine fetuses at 127 days of gestation were studied after 30 min of carotid occlusion and 24h of reperfusion. Groups were sham operated placebo-control- (n=5), ischemia-placebo- (n=6), ischemia-anti-IL-1β antibody- (n=7), and sham-control antibody- (n=2) treated animals. Systemic infusions of placebo (0.154M NaCl) or anti-interleukin-1β monoclonal antibody (5.1±0.6 mg/kg) were given intravenously to the same sham or ischemic group of fetuses at 15 min and 4h after ischemia. Concentrations of interleukin-1β protein and anti-interleukin-1β monoclonal antibody were measured by ELISA in fetal plasma, cerebrospinal fluid, and parietal cerebral cortex. Blood-brain barrier permeability was quantified using the blood-to-brain transfer constant (Ki) with α-aminoisobutyric acid in multiple brain regions. Interleukin-1β protein was also measured in parietal cerebral cortices and tight junction proteins in multiple brain regions by Western immunoblot. Cerebral cortical interleukin-1β protein increased (P<0.001) after ischemia-reperfusion. After anti-interleukin-1β monoclonal antibody infusions, plasma anti-interleukin-1β monoclonal antibody was elevated (P<0.001), brain anti-interleukin-1β monoclonal antibody levels were higher (P<0.03), and interleukin-1β protein concentrations (P<0.03) and protein expressions (P<0.001) were lower in the monoclonal antibody-treated group than in placebo-treated-ischemia-reperfusion group. Monoclonal antibody infusions attenuated ischemia-reperfusion-related increases in Ki across the brain regions (P<0.04), and Ki showed an inverse linear correlation (r= -0.65, P<0.02) with anti-interleukin-1β monoclonal antibody concentrations in the parietal cortex, but had little effect on tight junction protein expression. We conclude that systemic anti-interleukin-1β monoclonal antibody infusions after ischemia result in brain anti-interleukin-1β antibody uptake, and attenuate ischemia-reperfusion-related interleukin-1β protein up-regulation and increases in blood-brain barrier permeability across brain regions in the fetus. The pro-inflammatory cytokine, interleukin-1β, contributes to impaired blood-brain barrier function after ischemia in the fetus.
Collapse
Affiliation(s)
- Xiaodi Chen
- Department of Pediatrics, The Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, RI, USA
| | - Grazyna B Sadowska
- Department of Pediatrics, The Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, RI, USA
| | - Jiyong Zhang
- Department of Pediatrics, The Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, RI, USA
| | - Jeong-Eun Kim
- Department of Pediatrics, The Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, RI, USA
| | - Erin E Cummings
- Department of Pediatrics, The Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, RI, USA
| | - Courtney A Bodge
- Department of Pediatrics, The Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, RI, USA
| | - Yow-Pin Lim
- ProThera Biologics, Inc., Providence, RI, USA
| | - Oleksandr Makeyev
- Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, Kingston, RI, USA
| | - Walter G Besio
- Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, Kingston, RI, USA
| | - John Gaitanis
- Department of Neurology, The Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI, USA
| | - Steven W Threlkeld
- Department of Pediatrics, The Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, RI, USA
| | - William A Banks
- Geriatric Research Educational, and Clinical Center, Veterans Affairs Puget Sound Health Care System, Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Barbara S Stonestreet
- Department of Pediatrics, The Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, RI, USA.
| |
Collapse
|
6
|
Abstract
INTRODUCTION Natural autoantibodies are part of the normal human immunoglobulin repertoire. These antibodies react to self-antigens, are usually polyreactive with relatively low affinity, and typically are of the IgM isotype. Natural IgMs in mice that stimulated remyelination in central nervous system (CNS) demyelinating disease all shared the characteristics of binding to the surface of live oligodendrocytes and myelinated tracts in living slices of CNS tissue. METHODS A screen for human IgMs with similar character resulted in two human natural antibodies, which when injected peripherally into animal models of demyelination induced remyelination. A recombinant human IgM (rHIgM22) that also promoted remyelination in vivo was constructed. RESULTS Very small doses of this IgM are required for the promotion of remyelination (EC50 is 460 ng per 20-g mouse). It is clear that after peripheral delivery, rHIgM22 enters the CNS and accumulates in CNS lesions. rHIgM22 was tracked in living mice using ferritin-labeled antihuman mu chain antibodies visualized by magnetic resonance imaging and traditional immunocytochemistry. Although the exact antigen recognized by rHIgM22 is not known, all mouse IgMs that promote remyelination bind to myelin membrane lipids, suggesting the antigen for rHIgM22 is similar. CONCLUSIONS We propose that the IgMs bind to CNS cells and reorganize the membrane, initiating a signal that results in oligodendrocyte proliferation and/or protection with an end result of increased myelin. Recombinant natural human antibodies are potentially important therapeutic molecules that may modulate a wide spectrum of human disease.
Collapse
|
7
|
Banks WA. Immunotherapy and neuroimmunology in Alzheimer's disease: a perspective from the blood-brain barrier. Immunotherapy 2010; 2:1-3. [PMID: 20635884 DOI: 10.2217/imt.09.72] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
8
|
Steinitz M. Developing injectable immunoglobulins to treat cognitive impairment in Alzheimer's disease. Expert Opin Biol Ther 2008; 8:633-42. [PMID: 18407766 DOI: 10.1517/14712598.8.5.633] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Alzheimer's disease is a devastating disorder, clinically characterized by a comprehensive cognitive decline. The novel strategy of anti-amyloid-beta immunotherapy has been suggested following encouraging results obtained in murine models of Alzheimer's disease, in non-human primates, and in small-scale clinical trials. OBJECTIVE To examine the choice between active or passive anti-amyloid-beta immunization and the choice of the molecule to which the immune machinery should be targeted, which are central issues in future immune therapy of Alzheimer's disease. METHODS Research into the new area of Alzheimer's disease immune therapy is primarily based on in vivo and in vitro studies of murine models of Alzheimer's disease. The studies are hence limited to defined genetic deficiencies. RESULTS/CONCLUSIONS In humans, infusion of anti-amyloid-beta antibodies is considered a safer approach than active anti-amyloid-beta vaccination. Alzheimer's-disease-protective anti-amyloid-beta monoclonal antibodies should target specific epitopes within the amyloid beta(1 42) peptide, avoiding possibly harmful binding to the ubiquitous normal amyloid precursor protein. Since Alzheimer's disease immunotherapy requires repeated infusion of antibodies over a prolonged period of time, Alzheimer's disease patients will tolerate such antibodies provided the latter are exclusively of human origin. Human monoclonal antibodies that correspond to ubiquitous anti-amyloid-beta, present in all healthy humans, might bear important protective characteristics.
Collapse
Affiliation(s)
- Michael Steinitz
- The Hebrew University-Hadassah Medical School, Department of Pathology, Jerusalem, 91120, POB 12272, Israel.
| |
Collapse
|
9
|
Abstract
Neurodegenerative and infectious disorders including Alzheimer's and Parkinson's diseases, amyotrophic lateral sclerosis, and stroke are rapidly increasing as population's age. Alzheimer's disease alone currently affects 4.5 million Americans, and more than $100 billion is spent per year on medical and institutional care for affected people. Such numbers will double in the ensuing decades. Currently disease diagnosis for all disorders is made, in large measure, on clinical grounds as laboratory and neuroimaging tests confirm what is seen by more routine examination. Achieving early diagnosis would enable improved disease outcomes. Drugs, vaccines or regenerative proteins present "real" possibilities for positively affecting disease outcomes, but are limited in that their entry into the brain is commonly restricted across the blood-brain barrier. This review highlights how these obstacles can be overcome by polymer science and nanotechnology. Such approaches may improve diagnostic and therapeutic outcomes. New developments in polymer science coupled with cell-based delivery strategies support the notion that diseases that now have limited therapeutic options can show improved outcomes by advances in nanomedicine.
Collapse
|
10
|
Banks WA, Farr SA, Morley JE, Wolf KM, Geylis V, Steinitz M. Anti-amyloid beta protein antibody passage across the blood-brain barrier in the SAMP8 mouse model of Alzheimer's disease: an age-related selective uptake with reversal of learning impairment. Exp Neurol 2007; 206:248-56. [PMID: 17582399 PMCID: PMC2080786 DOI: 10.1016/j.expneurol.2007.05.005] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Revised: 05/02/2007] [Accepted: 05/03/2007] [Indexed: 11/26/2022]
Abstract
Amyloid beta protein (Abeta) levels are elevated in the brain of Alzheimer's disease patients. Anti-Abeta antibodies can reverse the histologic and cognitive impairments in mice which overexpress Abeta. Passive immunization appears safer than vaccination and treatment of patients will likely require human rather than xenogenic antibodies. Effective treatment will likely require antibody to cross the blood-brain barrier (BBB). Unfortunately, antibodies typically cross the BBB very poorly and accumulate less well in brain than even albumin, a substance nearly totally excluded from the brain. We compared the ability of two anti-Abeta human monoclonal IgM antibodies, L11.3 and HyL5, to cross the BBB of young CD-1 mice to that of young and aged SAMP8 mice. The SAMP8 mouse has a spontaneous mutation that induces an age-related, Abeta-dependent cognitive deficit. There was preferential uptake of intravenously administered L11.3 in comparison to HyL5, albumin, and a control human monoclonal IgM (RF), especially by hippocampus and olfactory bulb in aged SAMP8 mice. Injection of L11.3 into the brains of aged SAMP8 mice reversed both learning and memory impairments in aged SAMP8 mice, whereas IgG and IgM controls were ineffective. Pharmacokinetic analysis predicted that an intravenous dose 1000 times higher than the brain injection dose would reverse cognitive impairments. This predicted intravenous dose reversed the impairment in learning, but not memory, in aged SAMP8 mice. In conclusion, an IgM antibody was produced that crosses the BBB to reverse cognitive impairment in a murine model of Alzheimer's disease.
Collapse
MESH Headings
- Aging/immunology
- Alzheimer Disease/drug therapy
- Alzheimer Disease/immunology
- Alzheimer Disease/physiopathology
- Amyloid beta-Peptides/antagonists & inhibitors
- Amyloid beta-Peptides/immunology
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/metabolism
- Antibodies, Monoclonal/pharmacokinetics
- Blood-Brain Barrier/drug effects
- Blood-Brain Barrier/immunology
- Brain/drug effects
- Brain/immunology
- Brain/physiopathology
- Cell Line, Transformed
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Genetic Predisposition to Disease/genetics
- Humans
- Immunoglobulin M/immunology
- Immunoglobulin M/metabolism
- Immunoglobulin M/pharmacology
- Immunoglobulins, Intravenous/immunology
- Immunoglobulins, Intravenous/pharmacokinetics
- Immunoglobulins, Intravenous/therapeutic use
- Injections, Intravenous
- Learning Disabilities/drug therapy
- Learning Disabilities/genetics
- Learning Disabilities/immunology
- Mice
- Mice, Neurologic Mutants
- Mutation/genetics
- Treatment Outcome
Collapse
Affiliation(s)
- William A Banks
- Geriatrics Research Educational and Clinical Center, Veterans Affairs Medical Center-St. Louis, MO 63106, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Ankeny DP, Lucin KM, Sanders VM, McGaughy VM, Popovich PG. Spinal cord injury triggers systemic autoimmunity: evidence for chronic B lymphocyte activation and lupus-like autoantibody synthesis. J Neurochem 2007; 99:1073-87. [PMID: 17081140 DOI: 10.1111/j.1471-4159.2006.04147.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Clinical and experimental data indicate that spinal cord injury (SCI) elicits pathological T-cell responses. Implicit in these data, but poorly understood, is that B lymphocytes (B cells) also contribute to the delayed pathophysiology of spinal trauma. Here, for the first time, we show that experimental spinal contusion injury elicits chronic systemic and intraspinal B cell activation with the emergence of a B cell-dependent organ-specific and systemic autoimmune response. Specifically, using sera from spinal cord injured mice, immunoblots reveal oligoclonal IgG reactivity against multiple CNS proteins. We also show SCI-induced synthesis of autoantibodies that bind nuclear antigens including DNA and RNA. Elevated levels of anti-DNA antibodies are a distinguishing feature of systemic lupus erythematosus and, via their ability to cross-react with neuronal antigens, can cause neuropathology. We show a similar pathologic potential for the autoantibodies produced after SCI. Thus, mammalian SCI produces marked dysregulation of B cell function (i.e. autoimmunity) with pathological potential.
Collapse
Affiliation(s)
- Daniel P Ankeny
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University College of Medicine, Columbus, Ohio 43210, USA
| | | | | | | | | |
Collapse
|
12
|
Banks WA, Pagliari P, Nakaoke R, Morley JE. Effects of a behaviorally active antibody on the brain uptake and clearance of amyloid beta proteins. Peptides 2005; 26:287-94. [PMID: 15629540 DOI: 10.1016/j.peptides.2004.09.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2004] [Revised: 09/22/2004] [Accepted: 09/24/2004] [Indexed: 10/26/2022]
Abstract
Antibodies directed against amyloid beta protein (AssP) have been suggested to be effective in the treatment of Alzheimer's disease (AD). Here, we used in vivo and in vitro models to test some of the mechanisms by which antibodies may produce their effects. We found that the blood-to-brain uptake of murine AssP1-42 was significantly reduced when co-injected peripherally with an antibody known to reverse cognitive defects in the SAMP8, an mouse model of AD. This antibody was not effective when tested against the more slowly transported human AssP1-42. Antibody given by intracerebroventricular (icv) injection did not improve the clearance of murine AssP1-42 from the brains of young healthy mice, which already rapidly clear AssP by saturable and non-saturable mechanisms. Antibody given icv also did not improve the clearance of human AssP1-42 from the brains of aged SAMP8 mice, a combination in which the AssP is only poorly cleared from brain. IV antibody also did not affect retention of murine AssP in young mice. In vitro transwell studies with monolayers of mouse brain endothelial cells (MBEC) found no evidence that antibody in the vascular chamber would retard the reuptake of AssP which had been effluxed from the brain-side chamber. A statistical trend suggested that antibody might decrease the association of AssP with brain vasculature. In conclusion, we found that icv administration of antibody was not effective in aiding clearance of AssP already in brain, but that blood-borne antibody can inhibit the entry of AssP into brain and might prevent AssP from associating with the brain vasculature.
Collapse
Affiliation(s)
- William A Banks
- GRECC, Veterans Affairs Medical Center, 915 N. Grand Blvd., St. Louis, MO 63106, USA.
| | | | | | | |
Collapse
|
13
|
Abstract
The interaction of bedside and basic science has led to the identification ofa short list of pathological proteins as causal in Alzheimer's disease. AI3P has received the most attention, and work with animal models has reinforced the evidence that overproduction of ABP causes cognitive impairments. Animal models are now being used to discover and develop unique therapeutics directed at reversing the deleterious effects of ABP. These models strongly suggest that established Alzheimer's disease might be reversible, not just preventable. Animal models are also demonstrating that other peptides and proteins can enhance or impair cognitive function. These peptides and proteins add further to the list of possible therapeutic candidates. Approaches such as these, and not the commercial antiaging remedies that have no scientific basis, will eventually provide medicine for memory enhancement.
Collapse
Affiliation(s)
- William A Banks
- Department of Internal Medicine, Saint Louis University School of Medicine, MO 63104, USA.
| | | |
Collapse
|
14
|
Banks WA, Terrell B, Farr SA, Robinson SM, Nonaka N, Morley JE. Passage of amyloid beta protein antibody across the blood-brain barrier in a mouse model of Alzheimer's disease. Peptides 2002; 23:2223-6. [PMID: 12535702 DOI: 10.1016/s0196-9781(02)00261-9] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Vaccinations against amyloid beta protein (A beta P) reduce amyloid deposition and reverse learning and memory deficits in mouse models of Alzheimer's disease. This has raised the question of whether circulating antibodies, normally restricted by the blood-brain barrier (BBB), can enter the brain [Nat. Med. 7 (2001) 369-372]. Here, we show that antibody directed against A beta P does cross the BBB at a very low rate. Entry is by way of the extracellular pathways with about 0.11% of an intravenous (i.v.) dose entering the brain by 1h. Clearance of antibody from brain increasingly dominates over time, but antibody is still detectable in brain 72 h after i.v. injection. Uptake and clearance is not altered in mice overexpressing A beta P. This ability to enter and exit the brain even in the presence of increased brain ligand supports the use of antibody in the treatment of Alzheimer's and other diseases of the brain.
Collapse
Affiliation(s)
- William A Banks
- GRECC, Division of Geriatrics, Department of Internal Medicine, Veterans Affairs Medical Center-St. Louis and Saint Louis University School of Medicine, St. Louis, MO 63106, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Rabchevsky AG, Degos JD, Dreyfus PA. Peripheral injections of Freund's adjuvant in mice provoke leakage of serum proteins through the blood-brain barrier without inducing reactive gliosis. Brain Res 1999; 832:84-96. [PMID: 10375654 DOI: 10.1016/s0006-8993(99)01479-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Breakdown of the blood-brain barrier (BBB) and ensuing gliosis are common events following physical trauma to the central nervous system (CNS) or during autoimmune diseases such as experimental allergic encephalomyelitis (EAE). Some studies of EAE in rodents report that peripheral injections of complete Freund's adjuvant (CFA), which contains heat-inactivated Mycobacterium to provoke peripheral inflammation without adversely affecting the CNS, can itself lead to increased BBB permeability to small tracer molecules and certain serum proteins. To study the equivocal relationship between serum protein extravasation and reactive gliosis, we injected C57BL/6 mice with CFA and histologically assessed the permeability of various serum proteins and the reactivity of proximal microglia and astrocytes in the uninjured brainstem and spinal cord enlargements after 1-4 weeks. Our results confirm that CFA injections induce progressive increases in the perivascular extravasation of serum IgG, albumin, IgM, and exogenous horseradish peroxidase, all to varying degrees, most prominently in the brainstem and cervical spinal cord after 2-3 weeks. More importantly, neither microglial cells nor astrocytes in regions of focal serum protein leakage appeared morphologically reactive based on immunoreactivity for CR3 receptors (Mac-1) or glial fibrillary acidic protein (GFAP), respectively. Because we found no evidence of T cell infiltration accompanying the exudates, our results indicate that in the absence of physical trauma or inflammatory cells resident CNS neuroglia remain quiescent upon exposure to extravasated serum proteins.
Collapse
Affiliation(s)
- A G Rabchevsky
- INSERM U421, IM3, Faculté de Médecine, 94010, Créteil, France.
| | | | | |
Collapse
|
16
|
Garzón J, DeFelipe J, Rodríguez JR, DeAntonio I, García-España A, Sánchez-Blázquez P. Transport of CSF antibodies to Galpha subunits across neural membranes requires binding to the target protein and protein kinase C activity. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 65:151-66. [PMID: 10064886 DOI: 10.1016/s0169-328x(98)00350-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In the light of functional studies, it has been suggested that antibodies directed to alpha subunits of G-proteins delivered into cerebrospinal fluid (CSF) reached and blocked the function of neural transducer proteins. Current understanding indicates that IgGs do not move freely across plasma membranes. Therefore, to characterize the uptake of these antibodies by neural cells, anti-Gi2alpha IgGs were labeled with 125I, fluorescein or with gold particles. The expression of Galpha subunits was also reduced by blocking their mRNA with antisense oligodeoxynucleotides (ODN). Following intracerebroventricular (icv) injection of gold-conjugated anti-Gi2alpha IgGs, electrondense particles entered and became distributed in the cytoplasm and plasma membranes of neural cells. Scattered particles were also found in dendrites and nuclei. Unlabeled IgGs diminished cerebral signals of fluorescein-labeled anti-Galpha IgGs, indicating that this uptake can be saturated. Cerebral radiostaining promoted by in vivo anti-Gi2alpha 125I-IgGs was almost absent in Gi2alpha knocked-down mice, but not after decreasing the quantity of Gzalpha subunits. The immunosignals of CSF anti-Galpha 125I-IgGs, as well as the impairment of opioid-evoked antinociception, were increased by agonist-induced activation of G protein-coupled receptors. The impairing effect of the antibodies on opioid-evoked antinociception was prevented by agents blocking the cellular uptake of proteins, i.e., cytochalasin B, BSA, DMSO, H7, and by down regulation of protein kinase Cbeta1 (PKCbeta1). In mice treated with an ODN to PKCbeta1 mRNA, 125I-IgGs to Gi2alpha subunits remained bound to periventricular structures and did not spread to deeper areas of the CNS. These results indicate that IgGs delivered into the CSF show a saturable binding to Galpha subunits that translocate to the external side of the neural membrane before being internalized by a PKCbeta1-dependent mechanism.
Collapse
MESH Headings
- Analgesics/pharmacology
- Analgesics, Opioid/pharmacology
- Animals
- Autoantibodies/metabolism
- Autoantibodies/pharmacology
- Biological Transport/drug effects
- Biological Transport/immunology
- Brain Chemistry/drug effects
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-
- Enkephalin, D-Penicillamine (2,5)-
- Enkephalin, Leucine-2-Alanine/pharmacology
- Enkephalins/pharmacology
- Epitopes
- GTP-Binding Protein alpha Subunits, Gi-Go/immunology
- GTP-Binding Protein alpha Subunits, Gi-Go/metabolism
- GTP-Binding Protein alpha Subunits, Gi-Go/ultrastructure
- Immunoblotting
- Immunoglobulin G/immunology
- Immunoglobulin G/metabolism
- Immunoglobulin G/pharmacology
- Injections, Intraventricular
- Iodine Radioisotopes
- Male
- Mice
- Mice, Inbred Strains
- Microscopy, Immunoelectron
- Morphine/pharmacology
- Neurons/drug effects
- Neurons/enzymology
- Neurons/ultrastructure
- Nociceptors/drug effects
- Nociceptors/immunology
- Oligopeptides/pharmacology
- Pain/drug therapy
- Pain/immunology
- Protein Kinase C/metabolism
- Signal Transduction/drug effects
- Signal Transduction/immunology
Collapse
Affiliation(s)
- J Garzón
- Instituto de Neurobiología Santiago Ramón y Cajal, Consejo Superior de Investigaciones Científicas, Dr. Arce 37, E-28002, Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
17
|
Tamada K, Fujinaga S, Watanabe R, Yamashita R, Takeuchi Y, Osano M. Specific deposition of passively transferred monoclonal antibodies against herpes simplex virus type 1 in rat brain infected with the virus. Microbiol Immunol 1995; 39:861-71. [PMID: 8657013 DOI: 10.1111/j.1348-0421.1995.tb03283.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The kinetics of human monoclonal antibody (anti-gB) to herpes simplex virus type 1 (HSV-1) were investigated after intravenous injection of anti-gB into an HSV-1 encephalitis animal model. Immunohistochemical study revealed specific deposition of passively transferred anti-gB in the hippocampus and thalamus of the infected rat brain, and it bound to the same neurons in which HSV-1 antigen was positively stained. To examine the macroscopic distribution of anti-gB in the infected brain, we undertook an 125I-labeled anti-gB injection study, and the same distribution of 125I-labeled anti-gB deposition was observed by brain semimicroautoradiography as in the immunohistochemical study. These results suggest that anti-gB easily permeates the capillary wall and is deposited in the inflammatory site where HSV-1-specific antigen is detectable. The use of radioisotope-labeled anti-gB injection and external brain imaging could lead to a noninvasive diagnostic tool for the early detection of HSV-1 antigen in cases of suspected HSV-1 encephalitis.
Collapse
Affiliation(s)
- K Tamada
- Division of Pediatrics, Tachikawa Kyosai Hospital, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Aihara N, Tanno H, Hall JJ, Pitts LH, Noble LJ. Immunocytochemical localization of immunoglobulins in the rat brain: relationship to the blood-brain barrier. J Comp Neurol 1994; 342:481-96. [PMID: 8040362 DOI: 10.1002/cne.903420402] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The central nervous system has been traditionally regarded as an immunologically privileged area. This feature has been in part attributed to the blood-brain barrier, which provides a restrictive interface to circulating immunoglobulins (IgG). Recent kinetic studies suggest that the barrier to immune proteins is not absolute, but rather may be regulated by a specific transfer mechanism. In this study, we confirm the presence of IgG in the central nervous system by immunocytochemistry and demonstrate a close anatomical relationship between the distribution of this protein and the blood-brain barrier. IgG was immunolocalized in the normal rat brain by using monoclonal and polyclonal antibodies to IgG and its subclasses. On the basis of an initial evaluation, the most appropriate antibodies and dilutions were selected for subsequent analyses. In the first study, IgG and albumin were immunolocalized in adjacent sections. In the second study, horseradish peroxidase (HRP) was given intravenously prior to sacrifice, in order to examine artifacts related to perfusion fixation. The distribution of HRP and IgG was then examined in adjacent sections. In the third study, IgG was immunolocalized in sections of brain after mild traumatic head injury. A monoclonal antibody to IgG2a and a polyclonal antibody to IgG were selected on the basis of specificity and consistent, mutual localization. Distinct, patchy, perivascular staining, infrequently associated with labeled neurons, was noted throughout the brain. Electron microscopy confirmed the perivascular localization; IgG was localized along the basal lamina of microvasculature and within the adjacent parenchyma. Albumin and HRP did not exhibit a similar pattern of perivascular immunostaining. After head injury, prominent immunostaining for IgG was observed in the injured hemisphere. In summary, these data indicate that the normal rat brain contains IgG, which dramatically increases after head injury. The distinct perivascular distribution in the normal brain suggests local microvascular permeability. This permeability is selective for IgG, since albumin does not share a similar perivascular localization. The neuronal staining which is closely associated with perivascular label may reflect one intracellular route for extravasated IgG.
Collapse
Affiliation(s)
- N Aihara
- Department of Neurosurgery, University of California, San Francisco
| | | | | | | | | |
Collapse
|
19
|
Waguespack PJ, Banks WA, Kastin AJ. Interleukin-2 does not cross the blood-brain barrier by a saturable transport system. Brain Res Bull 1994; 34:103-9. [PMID: 8044683 DOI: 10.1016/0361-9230(94)90005-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Blood-borne interleukin-2 (IL-2), like other cytokines, is known to affect the central nervous system (CNS). One mechanism by which circulating substances can alter brain function is to directly cross the blood-brain barrier (BBB). We investigated the ability of IL-2 to cross the BBB, the interface between the periphery and the CNS. IL-2 labeled with 125I (I-IL-2) was injected into mice intravenously and its rate of entry into the brain determined by multiple-time regression analysis. I-IL-2 was found to enter the brain about 10 times faster than albumin. Neither morphine nor antibodies to IL-2, IL-1 alpha, or the IL-1 receptor affected the entry of I-IL-2. High performance liquid chromatography (HPLC) confirmed that the radioactivity entering the brain represented intact cytokine. However, excess unlabeled IL-2 was unable to impede the entry of I-IL-2, indicating that this transport is nonsaturable. This contrasts with saturable transport systems found for the cytokines IL-1 alpha and TNF-alpha, but still may explain how IL-2 can exert central effects.
Collapse
|