1
|
Kharmyssov C, Utegulov Z. Brillouin Biosensing of Viscoelasticity across Phase Transitions in Ovine Cornea. BIOSENSORS 2024; 14:371. [PMID: 39194600 DOI: 10.3390/bios14080371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 08/29/2024]
Abstract
Noninvasive in situ monitoring of viscoelastic characteristics of corneal tissue at elevated temperatures is pivotal for mechanical property-informed refractive surgery techniques, including thermokeratoplasty and photorefractive keratectomy, requiring precise thermal modifications of the corneal structure during these surgical procedures. This study harnesses Brillouin light scattering spectroscopy as a biosensing platform to noninvasively probe the viscoelastic properties of ovine corneas across a temperature range of 25-64 °C. By submerging the tissue samples in silicone oil, consistent hydration and immiscibility are maintained, allowing for their accurate sensing of temperature-dependent mechanical behaviors. We identify significant phase transitions in the corneal tissue, particularly beyond 40 °C, likely due to collagen unfolding, marking the beginning of thermal destabilization. A subsequent transition, observed beyond 60 °C, correlates with collagen denaturation. These phase transformations highlight the cornea's sensitivity to both physiologically reversible and irreversible viscoelastic changes induced by mild to high temperatures. Our findings underscore the potential of the Brillouin biosensing technique for real-time diagnostics of corneal biomechanics during refractive surgeries to attain optimized therapeutic outcomes.
Collapse
Affiliation(s)
| | - Zhandos Utegulov
- Department of Physics, School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
| |
Collapse
|
2
|
Chow BJ, Lee IXY, Liu C, Liu YC. Potential therapeutic effects of peroxisome proliferator-activated receptors on corneal diseases. Exp Biol Med (Maywood) 2024; 249:10142. [PMID: 38993197 PMCID: PMC11238193 DOI: 10.3389/ebm.2024.10142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 06/12/2024] [Indexed: 07/13/2024] Open
Abstract
The cornea is an avascular tissue in the eye that has multiple functions in the eye to maintain clear vision which can significantly impair one's vision when subjected to damage. Peroxisome proliferator-activated receptors (PPARs), a family of nuclear receptor proteins comprising three different peroxisome proliferator-activated receptor (PPAR) isoforms, namely, PPAR alpha (α), PPAR gamma (γ), and PPAR delta (δ), have emerged as potential therapeutic targets for treating corneal diseases. In this review, we summarised the current literature on the therapeutic effects of PPAR agents on corneal diseases. We discussed the role of PPARs in the modulation of corneal wound healing, suppression of corneal inflammation, neovascularisation, fibrosis, stimulation of corneal nerve regeneration, and amelioration of dry eye by inhibiting oxidative stress within the cornea. We also discussed the underlying mechanisms of these therapeutic effects. Future clinical trials are warranted to further attest to the clinical therapeutic efficacy.
Collapse
Affiliation(s)
- Bing Jie Chow
- Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Isabelle Xin Yu Lee
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, Singapore
| | - Chang Liu
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, Singapore
| | - Yu-Chi Liu
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, Singapore
- Department of Cornea and External Eye Disease, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-National University of Singapore (NUS) Medical School, Singapore, Singapore
| |
Collapse
|
3
|
Moin KA, Pandiri S, Manion GN, Brown AH, Moshirfar M, Hoopes PC. The Utilization of Topical Insulin for Ocular Surface Diseases: A Narrative Review. Cureus 2024; 16:e62065. [PMID: 38989397 PMCID: PMC11235153 DOI: 10.7759/cureus.62065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2024] [Indexed: 07/12/2024] Open
Abstract
Various etiologies, including diabetic keratopathy (DK), dry eye disease (DED), and neurotrophic keratopathy (NK), can disrupt corneal homeostasis, exacerbating corneal epithelial defects. Topical insulin has emerged as a promising therapy for promoting corneal wound healing and addressing underlying pathologies. This review systematically evaluates the efficacy of topical insulin across different corneal disorders. A literature review was conducted across the PubMed, Google Scholar, and Scopus research databases. The search resulted in a total of 19 articles, consisting of clinical trials, retrospective studies, and case reports. In DK, topical insulin accelerates corneal wound healing post-vitreoretinal surgery with lower concentrations showing higher outcomes when compared to conventional therapy, possibly due to improved epithelial stem cell migration. In comparison, the dry-eye disease results are inconclusive regarding patient-reported outcomes and corneal staining. For NK, topical insulin accelerates corneal wound healing and restores corneal nerve sensation. Other persistent epithelial defect (PED) etiologies that have been treated with topical insulin are infection, immune-mediated, mechanical and chemical trauma, and chronic ocular surface alterations. Although individual mechanisms for the benefits of topical insulin for each of these etiologies have not been studied, the literature demonstrates that topical insulin is efficacious for PEDs regardless of etiology. Future clinical trials need to be conducted to further evaluate optimal dosing, duration, and use of topical insulin for the restoration of the corneal surface.
Collapse
Affiliation(s)
- Kayvon A Moin
- Hoopes Vision Research Center, Hoopes Vision, Draper, USA
| | - Srujay Pandiri
- Ophthalmology, University of Missouri Kansas City School of Medicine, Kansas City, USA
| | - Garrett N Manion
- Ophthalmology, Creighton University School of Medicine, Omaha, USA
| | - Alex H Brown
- Ophthalmology, University of Arizona College of Medicine - Phoenix, Phoenix, USA
| | - Majid Moshirfar
- Eye Banking and Corneal Transplantation, Utah Lions Eye Bank, Murray, USA
- Corneal and Refractive Surgery, Hoopes Vision Research Center, Draper, USA
| | | |
Collapse
|
4
|
Guérin LP, Le-Bel G, Desjardins P, Couture C, Gillard E, Boisselier É, Bazin R, Germain L, Guérin SL. The Human Tissue-Engineered Cornea (hTEC): Recent Progress. Int J Mol Sci 2021; 22:ijms22031291. [PMID: 33525484 PMCID: PMC7865732 DOI: 10.3390/ijms22031291] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/11/2022] Open
Abstract
Each day, about 2000 U.S. workers have a job-related eye injury requiring medical treatment. Corneal diseases are the fifth cause of blindness worldwide. Most of these diseases can be cured using one form or another of corneal transplantation, which is the most successful transplantation in humans. In 2012, it was estimated that 12.7 million people were waiting for a corneal transplantation worldwide. Unfortunately, only 1 in 70 patients received a corneal graft that same year. In order to provide alternatives to the shortage of graftable corneas, considerable progress has been achieved in the development of living corneal substitutes produced by tissue engineering and designed to mimic their in vivo counterpart in terms of cell phenotype and tissue architecture. Most of these substitutes use synthetic biomaterials combined with immortalized cells, which makes them dissimilar from the native cornea. However, studies have emerged that describe the production of tridimensional (3D) tissue-engineered corneas using untransformed human corneal epithelial cells grown on a totally natural stroma synthesized by living corneal fibroblasts, that also show appropriate histology and expression of both extracellular matrix (ECM) components and integrins. This review highlights contributions from laboratories working on the production of human tissue-engineered corneas (hTECs) as future substitutes for grafting purposes. It overviews alternative models to the grafting of cadaveric corneas where cell organization is provided by the substrate, and then focuses on their 3D counterparts that are closer to the native human corneal architecture because of their tissue development and cell arrangement properties. These completely biological hTECs are therefore very promising as models that may help understand many aspects of the molecular and cellular mechanistic response of the cornea toward different types of diseases or wounds, as well as assist in the development of novel drugs that might be promising for therapeutic purposes.
Collapse
Affiliation(s)
- Louis-Philippe Guérin
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Gaëtan Le-Bel
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Pascale Desjardins
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Camille Couture
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Elodie Gillard
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Élodie Boisselier
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Richard Bazin
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Lucie Germain
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Sylvain L. Guérin
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Correspondence: ; Tel.: +1-418-682-7565
| |
Collapse
|
5
|
A new corneal epithelial biomimetic 3D model for in vitro eye toxicity assessment: Development, characterization and applicability. Toxicol In Vitro 2020; 62:104666. [DOI: 10.1016/j.tiv.2019.104666] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/16/2019] [Accepted: 09/24/2019] [Indexed: 01/25/2023]
|
6
|
Sohn HJ, Seo GE, Lee JH, Ham AJ, Oh YH, Kang H, Shin HJ. Cytopathic Change and Inflammatory Response of Human Corneal Epithelial Cells Induced by Acanthamoeba castellanii Trophozoites and Cysts. THE KOREAN JOURNAL OF PARASITOLOGY 2019; 57:217-223. [PMID: 31284343 PMCID: PMC6616168 DOI: 10.3347/kjp.2019.57.3.217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 04/18/2019] [Indexed: 12/03/2022]
Abstract
Acanthamoeba castellanii has ubiquitous distribution and causes primary acanthamoebic keratitis (AK). AK is a common disease in contact lens wearers and results in permanent visual impairment or blindness. In this study, we observed the cytopathic effect, in vitro cytotoxicity, and secretion pattern of cytokines in human corneal epithelial cells (HCECs) induced by A. castellanii trophozoites and/or cysts. Morphological observation revealed that panked dendritic HCECs co-cultured with amoeba cysts had changed into round shape and gradually died. Such changes were more severe in co-culture with cyst than those of co-cultivation with trophozoites. In vitro cytotoxicity assay revealed the highest cytotoxicity to HCECs in the co-culture system with amoeba cysts. A. castellanii induced the expression of IL-1α, IL-6, IL-8, and CXCL1 in HCECs. Secreted levels of IL-1α, IL-6, and IL-8 in HCECs co-cultured with both trophozoites and cysts were increased at an early incubation time (3 and 6 hr). These results suggested that cytopathic changes and pro-inflammatory cytokines release of HCECs in response to A. castellanii, especially amoebic cysts, are an important mechanism for AK development.
Collapse
Affiliation(s)
- Hae-Jin Sohn
- Department of Microbiology, Ajou University School of medicine, and Department of Biomedical Science, Graduate School of Ajou University, Suwon 16499, Korea
| | - Ga-Eun Seo
- Department of Microbiology, Ajou University School of medicine, and Department of Biomedical Science, Graduate School of Ajou University, Suwon 16499, Korea
| | - Jae-Ho Lee
- Department of Microbiology, Ajou University School of medicine, and Department of Biomedical Science, Graduate School of Ajou University, Suwon 16499, Korea
| | - A-Jeong Ham
- Department of Microbiology, Ajou University School of medicine, and Department of Biomedical Science, Graduate School of Ajou University, Suwon 16499, Korea
| | - Young-Hwan Oh
- Department of Microbiology, Ajou University School of medicine, and Department of Biomedical Science, Graduate School of Ajou University, Suwon 16499, Korea
| | - Heekyoung Kang
- Department of Microbiology, Ajou University School of medicine, and Department of Biomedical Science, Graduate School of Ajou University, Suwon 16499, Korea
| | - Ho-Joon Shin
- Department of Microbiology, Ajou University School of medicine, and Department of Biomedical Science, Graduate School of Ajou University, Suwon 16499, Korea
| |
Collapse
|
7
|
Oydanich M, Epstein SP, Gadaria-Rathod N, Guers JJ, Fernandez KB, Asbell PA. In Vivo Efficacy of Histatin-1 in a Rabbit Animal Model. Curr Eye Res 2018; 43:1215-1220. [PMID: 29945490 DOI: 10.1080/02713683.2018.1490772] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Purpose/Aim: Corneal abrasions and nonhealing corneal epithelial defects are common conditions that cause pain and sometimes are slow to heal. Histatins, a family of histidine-rich peptides, have been implicated in oral and skin epithelial wound healing, and have been shown to be effective in vitro in human corneal epithelial cells. The objective of this study was to test the efficacy of histatin-1 on corneal epithelial wound healing in rabbits. MATERIALS & METHODS Twenty-two (22) rabbits were separated into four treatment groups, each containing 3-7 rabbits. Treatments included three histatin-1 formulations (0.1 ug/ml. 1 ug/ml, and 10 ug/ml) and one inactive vehicle, one drop given three times per day. Eight (8) mm circular wounds were created using 0.5 ml of 20% ethyl alcohol in the right eye of each rabbit. A masked observer photographed each eye twice daily using slit-lamp biomicrophotography. Wound area was analyzed by using ImageJ. Statistical analysis was conducted using Graphpad Prism. RESULTS Wound recovery was faster in animals given 0.1 ug/ml, 1 ug/ml, and 10 ug/ml when compared to the vehicle solution at 6, 24, and 30 hours after wound creation (p < 0.01). No adverse events were observed in any eyes. When analyzing area under the curve, % recovered area was higher overall in the 0.1 ug/ml (p < 0.01), 1 ug/ml (p < 0.01), and 10 ug/ml (p < 0.001) groups when compared to the vehicle solution. Hourly healing rate was also observed to be faster in the 0.1 ug/ml, 1 ug/ml, and 10 ug/ml groups (p < 0.001) at 24 hours postinjury suggesting an accelerated healing process as compared to the vehicle group. CONCLUSION This study represents the first in vivo experiment evaluating and confirming the efficacy of topical histatin on the corneal epithelium wound healing. Further studiesare warranted to better understand the mechanism and safety of topical histatin-1 in corneal epithelial wound-healing and its potential role for human disease treatment.
Collapse
Affiliation(s)
- Marko Oydanich
- a Department of Ophthalmology , Mount Sinai Medical Center , New York , New York , USA
| | - Seth P Epstein
- a Department of Ophthalmology , Mount Sinai Medical Center , New York , New York , USA
| | - Neha Gadaria-Rathod
- a Department of Ophthalmology , Mount Sinai Medical Center , New York , New York , USA
| | - John J Guers
- b Department of Exercise Science , Stockton University , Galloway , New Jersey , USA
| | - Karen B Fernandez
- a Department of Ophthalmology , Mount Sinai Medical Center , New York , New York , USA
| | - Penny A Asbell
- a Department of Ophthalmology , Mount Sinai Medical Center , New York , New York , USA
| |
Collapse
|
8
|
Bai SR, Fan TJ. Cytotoxic effect of proparacaine on human corneal epithelial cells and its possible mechanisms. Mol Cell Toxicol 2017. [DOI: 10.1007/s13273-017-0003-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Barrier Function in the Ocular Surface: From Conventional Paradigms to New Opportunities. Ocul Surf 2015; 13:103-9. [DOI: 10.1016/j.jtos.2014.10.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 10/09/2014] [Accepted: 10/01/2014] [Indexed: 01/10/2023]
|
10
|
Zhang Y, Wu J, Xin Z, Wu X. Aspergillus fumigatus triggers innate immune response via NOD1 signaling in human corneal epithelial cells. Exp Eye Res 2014; 127:170-8. [PMID: 25108222 DOI: 10.1016/j.exer.2014.07.025] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 07/07/2014] [Accepted: 07/29/2014] [Indexed: 01/23/2023]
Abstract
Fungal keratitis is a serious vision-threatening disease caused by fungi after corneal epithelium damage. We have previously shown a role of cell surface TLRs in Aspergillus fumigatus (A. fumigatus) keratitis. In the present study we showed that Human telomerase-immortalized corneal epithelial cells (HCECs) exposed to A. fumigatus elicited an inflammatory response consisting in increased interleukin-6 (IL-6), IL-8 and tumor necrosis factor (TNF)-α expression and innate defense molecules hBD2 and LL37 in a time-dependent manner. In this study we further investigated the role of intracellular nucleotide-binding oligomerization domain-containing protein (NOD)-like receptors, NOD1 in innate immune and inflammatory response to A. fumigatus. We showed that NOD1 and its downstream signaling molecules RIP2 and NF-κB p65 are expressed in HCECs challenged with either NOD1 specific ligand iE-DAP or A. fumigatus. More importantly, NOD1 knockdown attenuated A. fumigatus-triggered the expression of NOD1, and downstream signaling effectors RIP2 and NF-κB p65, as well as the secretion of IL-6, IL-8 and TNF-α, and the production of hBD2 and LL37. In conclusion, our results demonstrated that NOD1 is a prominent factor of innate immune and inflammatory response in HCECs against A. fumigatus, suggesting that NOD1 might be a potential novel therapeutic target for the treatment of fungal keratitis.
Collapse
Affiliation(s)
- Yuting Zhang
- Department of Ophthalmology, Qilu Hospital of Shandong University, Wenhua Xi Road 107, Jinan, Shandong Province, 250012, PR China
| | - Jiayin Wu
- Department of Ophthalmology, Qilu Hospital of Shandong University, Wenhua Xi Road 107, Jinan, Shandong Province, 250012, PR China
| | - Zhaoting Xin
- Department of Ophthalmology, Qilu Hospital of Shandong University, Wenhua Xi Road 107, Jinan, Shandong Province, 250012, PR China
| | - Xinyi Wu
- Department of Ophthalmology, Qilu Hospital of Shandong University, Wenhua Xi Road 107, Jinan, Shandong Province, 250012, PR China.
| |
Collapse
|
11
|
Erdinest N, Aviel G, Moallem E, Anteby I, Yahalom C, Mechoulam H, Ovadia H, Solomon A. Expression and activation of toll-like receptor 3 and toll-like receptor 4 on human corneal epithelial and conjunctival fibroblasts. JOURNAL OF INFLAMMATION-LONDON 2014; 11:3. [PMID: 24491080 PMCID: PMC3922746 DOI: 10.1186/1476-9255-11-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 01/30/2014] [Indexed: 02/01/2023]
Abstract
Background Toll-like receptors (TLRs) are recognized as important contributors to the initiation and modulation of the inflammatory response in the eye. This study investigated the precise expression patterns and functionality of TLRs in human corneal epithelial cells (HCE) and in conjunctival fibroblasts (HCF). Methods The cell surface expression of TLRs 2-4, TLR7 and TLR9 in HCE and HCF was examined by flow cytometry with or without stimulation with lipopolysaccharide (LPS) or polyinosinic:polycytidylic acid (poly I:C). The mRNA expression of the TLRs was determined by real-time PCR. The protein content levels of interleukin (IL)-6, IL-8, IL-1β and tumor necrosis factor-α (TNF-α) were measured in HCE and HCF using multiplex fluorescent bead immunoassay (FBI). Results The surface expression of TLR3 and TLR4 was detected on both HCE and HCF. Following incubation with LPS, the percentage of HCE cells staining for TLR4 decreased from 10.18% to 0.62% (P < 0.001). Incubation with poly I:C lowered the percentage of HCE cells positive for TLR3 from 10.44% to 2.84% (P < 0.001). The mRNA expression of TLRs2, 4, 7 and 9 was detected in HCE only. Activation of HCE with LPS complex elicited protein secretion up to 4.51 ± 0.85-fold higher levels of IL-6 (P < 0.05), 2.5 ± 0.36-fold IL-8 (P > 0.05), 4.35 ± 1.12-fold IL-1β (P > 0.05) and 29.35 ± 2.3-fold TNFα (P < 0.05) compared to cells incubated in medium. Conclusions HCF and HCE both express TLRs that respond to specific ligands by increasing cytokine expression. Following activation, the surface expression of TLR3 and TLR4 on HCE is decreased, thus creating a negative feedback loop, mitigating the effect of TLR activation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Abraham Solomon
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
| |
Collapse
|
12
|
Guo H, Du G, Wang L, Wang D, Hu L, Huang Y. Integrin alpha v beta 6 contributes to maintaining corneal epithelial barrier function. Cell Biol Int 2013; 37:593-9. [PMID: 23412966 DOI: 10.1002/cbin.10076] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Accepted: 02/06/2013] [Indexed: 01/11/2023]
Affiliation(s)
- Huiling Guo
- Department of Ophthalmology, Chinese PLA General Hospital, Beijing, China; Department of Ophthalmology, Chinese PLA 306 Hospital, Beijing, China
| | | | | | | | | | | |
Collapse
|
13
|
Kolar SS, McDermott AM. Role of host-defence peptides in eye diseases. Cell Mol Life Sci 2011; 68:2201-13. [PMID: 21584809 PMCID: PMC3637883 DOI: 10.1007/s00018-011-0713-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 04/26/2011] [Accepted: 04/26/2011] [Indexed: 10/18/2022]
Abstract
The eye and its associated tissues including the lacrimal system and lids have evolved several defence mechanisms to prevent microbial invasion. Included among this armory are several host-defence peptides. These multifunctional molecules are being studied not only for their endogenous antimicrobial properties but also for their potential therapeutic effects. Here the current knowledge of host-defence peptide expression in the eye will be summarised. The role of these peptides in eye disease will be discussed with the primary focus being on infectious keratitis, inflammatory conditions including dry eye and wound healing. Finally the potential of using host-defence peptides and their mimetics/derivatives for the treatment and prevention of eye diseases is addressed.
Collapse
Affiliation(s)
- Satya S. Kolar
- College of Optometry, University of Houston, 4901 Calhoun Road, 505 J Davis Armistead Bldg, Houston, TX 77204-2020 USA
| | - Alison M. McDermott
- College of Optometry, University of Houston, 4901 Calhoun Road, 505 J Davis Armistead Bldg, Houston, TX 77204-2020 USA
| |
Collapse
|
14
|
Haddad O, Gumez L, Hawse JR, Subramaniam M, Spelsberg TC, Bensamoun SF. TIEG1-null tenocytes display age-dependent differences in their gene expression, adhesion, spreading and proliferation properties. Exp Cell Res 2011; 317:1726-35. [PMID: 21620830 DOI: 10.1016/j.yexcr.2011.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 05/09/2011] [Accepted: 05/10/2011] [Indexed: 10/18/2022]
Abstract
The remodeling of extracellular matrix is a crucial mechanism in tendon development and the proliferation of fibroblasts is a key factor in this process. The purpose of this study was to further elucidate the role of TIEG1 in mediating important tenocyte properties throughout the aging process. Wildtype and TIEG1 knockout tenocytes adhesion, spreading and proliferation were characterized on different substrates (fibronectin, collagen type I, gelatin and laminin) and the expression levels of various genes known to be involved with tendon development were analyzed by RT-PCR. The experiments revealed age-dependent and substrate-dependent properties for both wildtype and TIEG1 knockout tenocytes. Taken together, our results indicate an important role for TIEG1 in regulating tenocytes adhesion, spreading, and proliferation throughout the aging process. Understanding the basic mechanisms of TIEG1 in tenocytes may provide valuable information for treating multiple tendon disorders.
Collapse
Affiliation(s)
- Oualid Haddad
- Laboratoire de Biomécanique et Bioingénierie UMR CNRS 6600, Université de Technologie de Compiègne, Compiègne, France
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
The ocular surface is the first line of defence in the eye against environmental microbes. The ocular innate immune system consists of a combination of anatomical, mechanical and immunological defence mechanisms. TLRs (Toll-like receptors), widely expressed by the ocular surface, are able to recognize microbial pathogens and to trigger the earliest immune response leading to inflammation. Increasing evidence highlights the crucial role of TLRs in regulating innate immune responses during ocular surface infective and non-infective inflammatory conditions. In addition, recent observations have shown that TLRs modulate the adaptive immune response, also playing an important role in ocular autoimmune and allergic diseases. One of the main goals of ocular surface treatment is to control the inflammatory reaction in order to preserve corneal integrity and transparency. Recent experimental evidence has shown that specific modulation of TLR pathways induces an improvement in several ocular inflammatory conditions, such as allergic conjunctivitis, suggesting new therapeutic anti-inflammatory strategies. The purpose of the present review is to summarize the current knowledge of TLRs at the ocular surface and to propose them as potential targets of therapy for ocular inflammatory conditions.
Collapse
|
16
|
|
17
|
Jie Zhao, Wu XY, Yu FSX. Activation of Toll-like receptors 2 and 4 in Aspergillus fumigatus keratitis. Innate Immun 2009; 15:155-68. [PMID: 19474209 DOI: 10.1177/1753425908101521] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Toll-like receptor (TLR) 2 and TLR4 are major receptors of Aspergillus fumigatus. Aspergillus fumigatus signaling in cornea induces the production of many pro-inflammatory molecules. In this study, we have shown that exposure of telomerase-immortalized human corneal epithelial cells (HCECs) to A. fumigatus antigens resulted in up-regulation of TLR2 and TLR4, and release of IL-1beta and IL-10 in HCECs, effects that could be inhibited by treatment with TLR2, and TLR4 antibodies. In addition, the A. fumigatus antigens-induced production of IL-1beta and IL-10 in supernatants of corneal epithelial cells was also attenuated by NF-kappaB inhibitor. Aspergillus fumigatus keratitis developed in Wistar rats, as evidenced by high SLE scores, influx of polymorphonuclear leukocytes (PMNs), activation of TLR2 and TLR4, and production of IL-1beta and IL-10 over controls. These findings indicate that the cornea has functional TLR2 and TLR4, and activation of TLR2 and TLR4 through NF-kappaB may contribute to pathogenesis of keratomycosis.
Collapse
Affiliation(s)
- Jie Zhao
- Department of Ophthalmology, Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, China
| | | | | |
Collapse
|
18
|
Lack of MD-2 expression in human corneal epithelial cells is an underlying mechanism of lipopolysaccharide (LPS) unresponsiveness. Immunol Cell Biol 2008; 87:141-8. [PMID: 18936773 PMCID: PMC2645480 DOI: 10.1038/icb.2008.75] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In the present study we tested the responsiveness of human corneal epithelial cells (HCECs) and corneal fibroblasts to lipopolysaccharide (LPS), a TLR4 ligand. Purified P aeruginosa LPS was used to stimulate telomerase-immortalized HCECs (HUCL) and stromal fibroblast (THK) cell lines. Exposure of cells to LPS induced a time-dependent activation of NF-κB in THK but not in HUCL cells, as assessed by an increase in IκB-α phosphorylation and degradation. Concomitant with NF-κB activation, LPS-treated THK cells, but not HUCL cells, produced significantly more cytokines than control untreated cells. A cell surface biotinylation assay revealed that HUCL cells express TLR4 intracellularly whereas TLR5 is expressed on the cell surface. Furthermore, RT-PCR analysis revealed that HUCL and primary HCECs, in contrast to THK cells, do not express MD-2. Thus, our results demonstrate that the LPS unresponsiveness of HCECs might be due to deficient expression of MD2, an essential component for LPS-TLR4 signaling.
Collapse
|
19
|
Zhao J, Wu XY. Aspergillus fumigatus antigens activate immortalized human corneal epithelial cells via toll-like receptors 2 and 4. Curr Eye Res 2008; 33:447-54. [PMID: 18568882 DOI: 10.1080/02713680802130339] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE To evaluate the role of toll-like receptors (TLR) 2 and 4 in host responses to Aspergillus fumigatus by use of cultured telomerase-immortalized human corneal epithelial cells (HCECs). METHODS HCECs were stimulated with inactive antigens from A. fumigatus. The expression of TLR2 and TLR4, phosphorylation of Ikappa B-alpha (pIkappa B-alpha), and release of interleukin (IL)-1beta and IL-6 was measured with and without inhibitors to TLR2 and TLR4. RESULTS Exposure of HCECs to A. fumigatus antigens resulted in up-regulation of TLR2 and TLR4, activation of pIkappa B, and release of IL-1beta and IL-6 in HCECs, effects that could be inhibited by treatment with TLR2 and TLR4 antibodies. CONCLUSIONS TLR2 and TLR4-nuclear factor-kappa B signaling pathways in corneal epithelium play important roles in inflammatory responses against A. fumigatus antigens.
Collapse
Affiliation(s)
- Jie Zhao
- Department of Ophthalmology, Qilu Hospital, Shandong University, Jinan, China
| | | |
Collapse
|
20
|
Triggering of toll-like receptors 2 and 4 by Aspergillus fumigatus conidia in immortalized human corneal epithelial cells to induce inflammatory cytokines. Chin Med J (Engl) 2008. [DOI: 10.1097/00029330-200803010-00016] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
21
|
Staphylococcus aureus lipoproteins trigger human corneal epithelial innate response through toll-like receptor-2. Microb Pathog 2007; 44:426-34. [PMID: 18191935 DOI: 10.1016/j.micpath.2007.11.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Revised: 11/13/2007] [Accepted: 11/15/2007] [Indexed: 01/09/2023]
Abstract
Bacterial lipoproteins (LP) are a family of cell wall components found in a wide variety of bacteria. In this study, we characterized the response of HUCL, a telomerase-immortalized human corneal epithelial cell (HCEC) line, to LP isolated from Staphylococcus (S) aureus. S. aureus LP (saLP) prepared by Triton X-114 extraction stimulated the activation of NF-kappaB, JNK, and P38 signaling pathways in HUCL cells. The extracts failed to stimulate NF-kappaB activation in HUCL cells after lipoprotein lipase treatment and in cell lines expressing TLR4 or TLR9, but not TLR2, indicating lipoprotein nature of the extracts. saLP induced the up-regulation of a variety of inflammatory cytokines and chemokines (IL-6, IL-8, ICAM-1), antimicrobial molecules (hBD-2, LL-37, and iNOS), and homeostasis genes (Mn-SOD) at both the mRNA level and protein level. Similar inflammatory response to saLP was also observed in primarily cultured HCECs using the production of IL-6 as readout. Moreover, TLR2 neutralizing antibody blocked the saLP-induced secretion of IL-6, IL-8 and hBD2 in HUCL cells. Our findings suggest that saLP activates TLR2 and triggers innate immune response in the cornea to S. aureus infection via production of proinflammatory cytokines and defense molecules.
Collapse
|
22
|
Kumar A, Tassopoulos AM, Li Q, Yu FSX. Staphylococcus aureus protein A induced inflammatory response in human corneal epithelial cells. Biochem Biophys Res Commun 2007; 354:955-61. [PMID: 17270147 PMCID: PMC1864947 DOI: 10.1016/j.bbrc.2007.01.072] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Accepted: 01/15/2007] [Indexed: 11/18/2022]
Abstract
In the present study, we examined the role of Staphylococcus aureus protein A (SpA) in inducing inflammatory response in human corneal epithelial cells (HCECs). Exposure of HCECs to SpA induces rapid NF-kappaB activation and secretion of proinflammatory cytokine/chemokines (TNF-alpha and IL-8) in both concentration and time-dependent manner. Challenge of HCECs with live SpA(-/-) mutant S. aureus strains resulted in significantly reduced production of the cytokines when compared to the wild-type S. aureus strain. SpA also elicited the activation of MAP Kinases P38, ERK, but not JNK, in HCECs. SpA-induced production of proinflammatory cytokine were completely blocked by the NF-kappaB and p38 inhibitors and partially inhibited by the Jnk inhibitor. Pretreatment with anti-TLR2 neutralizing antibody had no effect on SpA-induced inflammatory response in HCECs, suggesting that this response is independent of TLR2 signaling. Moreover, unlike TLR2 ligands, SpA failed to induce the expression of antimicrobial peptides (hBD2 and LL-37) in HCECs. These studies indicate that SpA is a S. aureus virulence factor that stimulates HCEC inflammatory response through a pathway distinct from TLR2 in HCECs.
Collapse
Affiliation(s)
- Ashok Kumar
- The Kresge Eye Institute, Department of Ophthalmology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | | | | | | |
Collapse
|
23
|
Hozono Y, Ueta M, Hamuro J, Kojima K, Kawasaki S, Yamazaki K, Kinoshita S. Human corneal epithelial cells respond to ocular-pathogenic, but not to nonpathogenic-flagellin. Biochem Biophys Res Commun 2006; 347:238-47. [PMID: 16824488 DOI: 10.1016/j.bbrc.2006.06.088] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Accepted: 06/13/2006] [Indexed: 10/24/2022]
Abstract
In this study, we investigated the expression of TLR5 in human corneal epithelial cells (CEC), and the functional outcome of TLR5 triggering by flagellins of pathogenic- and nonpathogenic bacteria. Flagellins derived from Pseudomonas aeruginosa, Salmonella typhimurium, Serratia marcescense or Bacillus subtilis were used. The TLR5 protein and TLR5 specific mRNA expression was evident on human CEC. In human corneal epithelium tissues, TLR5 protein was detected at the basal and wing cells of the tissues. Ocular pathogenic bacteria, namely P. aeruginosa and S. marcescense, derived flagellin induced the significantly increased level of gene activation and IL-6 and IL-8 production. In contrast, ocular nonpathogenic S. typhimurium- and B. subtilis-derived flagellin induced neither the gene activation nor the increased production of IL-6 and IL-8 in human CEC. Human CEC would respond only to flagellin derived of ocular pathogenic bacteria, but not to those derived of ocular nonpathogenic bacteria, to generate pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Yukako Hozono
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Hirokoji-agaru, Kawaramachi-dori, Kamigyo-ku, Japan
| | | | | | | | | | | | | |
Collapse
|
24
|
Kumar A, Zhang J, Yu FSX. Toll-like receptor 3 agonist poly(I:C)-induced antiviral response in human corneal epithelial cells. Immunology 2006; 117:11-21. [PMID: 16423036 PMCID: PMC1782193 DOI: 10.1111/j.1365-2567.2005.02258.x] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The objective of this study was to examine the expression of Toll-like receptor 3 (TLR3) by human corneal epithelial cells (HCECs) and to determine whether exposure to the TLR3 agonist polyinosinic-polycytidylic acid [poly(I:C)] induces an antiviral response in these cells. Fluorescence-activated cell sorter (FACS) analysis revealed TLR3 to be constitutively expressed and distributed intracellularly in HCECs. Stimulation of HCECs with the TLR3 agonist poly(I:C) induced the activation of nuclear factor (NF)-kappaB and production of the proinflammatory cytokine interleukin (IL)-6 and the chemokine IL-8. Upon exposure to poly(I:C), HCECs initiated a potent antiviral response resulting in an increase of interferon (IFN)-beta mRNA expression (7-fold). Poly(I:C) stimulation also up-regulated mRNA expression of the antiviral chemokine IFN-gamma inducible protein 10 (IP10), myxovirus resistance gene A and 2',5'-oligoadenylate synthetase (5-, 10- and 9-fold, respectively), and secretion of IP10. These responses were also induced by exogenously added type 1 IFNs, but could not be blocked by pretreatment of the cells with anti-TLR3 monoclonal antibody, suggesting that the receptor was not expressed on the cell surface. Furthermore, incubation of HCECs with an endosomal acidification inhibitor, chloroquine, markedly inhibited poly(I:C)-mediated IFN-beta expression in HCECs. These results suggest that corneal epithelial cells are important sentinels of the corneal innate immune system against viral infection, and that stimulation of TLR3 can induce the expression of key proinflammatory cytokines and chemokines and antiviral genes that help in the defence of the cornea against viral infection.
Collapse
Affiliation(s)
- Ashok Kumar
- Kresge Eye Institute/Department of Ophthalmology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | |
Collapse
|
25
|
Zhang J, Wu XY, Yu FSX. Inflammatory responses of corneal epithelial cells to Pseudomonas aeruginosa infection. Curr Eye Res 2005; 30:527-34. [PMID: 16020286 PMCID: PMC2666384 DOI: 10.1080/02713680590968150] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
PURPOSE We hypothesized that corneal epithelium plays a role in the innate immune response by sensing the presence of pathogens and providing signals that activate the corneal defense system. We sought to determine the mechanisms involved in the activation of the signaling pathways and subsequent production of proinflammatory cytokines in human corneal epithelial cells (HCECs) in response to Pseudomonas aeruginosa infection. METHODS Epithelial monolayers of a telomerase-immortalized HCEC line, HUCL, and primary cultures of HCECs were exposed to P. aeruginosa (PA01 strain) with or without the presence of the NF-kappaB inhibitor kamebakaurin, the p38 inhibitor SB203580, or the JNK inhibitor SP600125. IkappaB-alpha phosphorylation and degradation and p38 and JNK phosphorylation were assessed at different time points by Western blot analysis. Interleukin (IL)-6, IL-8, and TNF-alpha levels were determined by reverse transcription-polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA). RESULTS Exposure of HUCL cells and primary HCECs to P. aeruginosa resulted in rapid activation of NF-kappaB as indicated by an increase in IkappaB-alpha phosphorylation observed within 15 min and by IkappaB-alpha degradation, which peaked in 1 hr. Two stress-activated mitogen-activated protein kinases, p38 and JNK, were also activated as their phosphorylation was induced by P. aeruginosa infection. Concomitant with the activation of these Toll-like receptor-mediated signaling pathways, transcriptional expression and subsequent secretion of IL-6 and IL-8 in HUCL cells were also induced by P. aeruginosa. Presence of the NF-kappaB inhibitor kamebakaurin in culture medium blocked P. aeruginosa-induced NF-kappaB activation and inhibited IL-6, IL-8, and TNF-alpha expression and secretion. Inhibition of p38 or JNK also resulted in a decrease in bacteria-induced expression and secretion of these cytokines. CONCLUSIONS P. aeruginosa triggers an innate immune response in HCECs, and NF-kappaB and, to a lesser extent, the p38/JNK signal pathways are responsible for P. aeruginosa-induced proinflammatory cytokine production in these cells.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta, Georgia 30912, USA
| | | | | |
Collapse
|
26
|
Kumar A, Zhang J, Yu FSX. Toll-like receptor 2-mediated expression of beta-defensin-2 in human corneal epithelial cells. Microbes Infect 2005; 8:380-9. [PMID: 16242370 PMCID: PMC2666383 DOI: 10.1016/j.micinf.2005.07.006] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2005] [Revised: 06/28/2005] [Accepted: 07/04/2005] [Indexed: 11/20/2022]
Abstract
We previously showed that human corneal epithelial cells (HCECs) express Toll-like receptors (TLRs), which recognize gram-positive bacteria and respond to Staphylococcus aureus infection by the expression and secretion of proinflammatory cytokines and beta-defensin-2 (hBD2). In this study, we further elucidated the underlying mechanisms regulating hBD-2 expression and its role in innate defense in HCECs in response to S. aureus challenge. Exposure of HUCL cells, a telomerase-immortalized HCEC line, to S. aureus, its exoproducts (1:10 dilution), or synthetic lipopeptide Pam3Cys (10 microg/ml) resulted in the up-regulation of hBD-2, but not hBD1 and hBD3. Similar to HUCL cells, primary HCECs responded to S. aureus-exoproducts and Pam3Cys challenge by expressing hBD2 mRNA and secreting hBD2 into the culture media. Furthermore, these stimuli induced the expression of TLR2 at both mRNA and protein levels. Consistently with its role as a major pattern-recognizing receptor, TLR2 was located at the cell surface by cell surface biotinylation. The treatment of HUCL cells with TLR2 neutralizing antibody resulted in a significant decrease in Pam3Cys-induced hBD2 production as well as IL-6, IL-8, and TNF-alpha secretion. The Pam3Cys-induced hBD2 expression was completely blocked by NF-kappaB inhibitors and partially inhibited by p38 MAP kinase and the JNK inhibitors. Conditioned media derived from HCECs challenged with S. aureus-exoproducts or Pam3Cys exhibited antibacterial activity against S. aureus, Pseudomonas aeruginosa and Escherichia coli. These findings suggest that S. aureus induces hBD2 production through TLR2-mediated pathways in HCECs and that pathogen-challenged, TLR-activated HCECs possess antimicrobial activity. Thus, the epithelium might play a role in innate defense against bacterial infection by directly killing bacteria in the cornea.
Collapse
Affiliation(s)
| | | | - Fu-Shin X. Yu
- Corresponding author. Tel.: +1 313 577 1657; fax: +1 313 577 7781. E-mail address: (F.-S.X. Yu)
| |
Collapse
|
27
|
Ueta M, Hamuro J, Kiyono H, Kinoshita S. Triggering of TLR3 by polyI:C in human corneal epithelial cells to induce inflammatory cytokines. Biochem Biophys Res Commun 2005; 331:285-94. [PMID: 15845391 DOI: 10.1016/j.bbrc.2005.02.196] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2005] [Indexed: 01/22/2023]
Abstract
Epithelial cells of the ocular surface are key in the first-line defense as a part of the mucosal immune system against pathogens. We investigated whether polyI:C induces the production by human corneal epithelial cells (HCEC) of pro-inflammatory cytokines and IFN-beta, and whether Toll-like receptor (TLR)-3 expression is amplified by polyI:C. TLR3 was expressed on the surface of HCEC. Stimulation with polyI:C elicited the elevated production and mRNA expression of IL-6 and IL-8 in HCEC. While polyI:C induced IFN-beta, far stronger than human fibroblasts, and TLR3 gene expression in HCEC, LPS stimulation did not. Similarly, polyI:C, but not LPS, induced the gene expression of IkappaBalpha and MAIL, members of the IkappaB family, in HCEC. The innate immune response of HCEC is distinct from that of immune-competent cells, and we suggest that this is indicative of the symbiotic relationship between corneal epithelium and microbes inhabiting the ocular surface.
Collapse
Affiliation(s)
- Mayumi Ueta
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | | | | | | |
Collapse
|
28
|
Abstract
Although constantly exposed to the environment and "foreign bodies" such as contact lenses and unwashed fingertips, the ocular surface succumbs to infection relatively infrequently. This is, in large part, due to a very active and robust innate immune response mounted at the ocular surface. Studies over the past 20 years have revealed that small peptides with antimicrobial activity are a major component of the human innate immune response system. The ocular surface is no exception, with peptides of the defensin and cathelicidin families being detected in the tear film and secreted by corneal and conjunctival epithelial cells. There is also much evidence to suggest that the role of some antimicrobial peptides is not restricted to direct killing of pathogens, but, rather, that they function in various aspects of the immune response, including recruitment of immune cells, and through actions on dendritic cells provide a link to adaptive immunity. A role in wound healing is also supported. In this article, the properties, mechanisms of actions and functional roles of antimicrobial peptides are reviewed, with particular emphasis on the potential multifunctional roles of defensins and LL-37 (the only known human cathelicidin) at the ocular surface.
Collapse
Affiliation(s)
- Alison M McDermott
- University of Houston, College of Optometry, Houston, Texas 77204-2020, USA.
| |
Collapse
|