1
|
Sanduja S, Blanco FF, Dixon DA. The roles of TTP and BRF proteins in regulated mRNA decay. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 2:42-57. [PMID: 21278925 DOI: 10.1002/wrna.28] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Adenylate- and uridylate-rich element (ARE) motifs are cis-acting elements present in the 3′ untranslated region of mRNA transcripts that encode many inflammation- and cancer-associated genes. The TIS11 family of RNA-binding proteins, composed of tristetraprolin (TTP) and butyrate response factors 1 and 2 (BRF-1 and -2), plays a critical role in regulating the expression of ARE-containing mRNAs. Through their ability to bind and target ARE-containing mRNAs for rapid degradation, this class of RNA-binding proteins serves a fundamental role in limiting the expression of a number of critical genes, thereby exerting anti-inflammatory and anti-cancer effects. Regulation of TIS11 family members occurs on a number of levels through cellular signaling events to control their transcription, mRNA turnover, phosphorylation status, cellular localization, association with other proteins, and proteosomal degradation, all of which impact TIS11 members' ability to promote ARE-mediated mRNA decay along with decay-independent functions. This review summarizes our current understanding of posttranscriptional regulation of ARE-containing gene expression by TIS11 family members and discusses their role in maintaining normal physiological processes and the pathological consequences in their absence.
Collapse
Affiliation(s)
- Sandhya Sanduja
- Department of Biological Sciences and Cancer Research Center, University of South Carolina, Columbia, SC, USA
| | | | | |
Collapse
|
2
|
Ikuta T, Adekile AD, Gutsaeva DR, Parkerson JB, Yerigenahally SD, Clair B, Kutlar A, Odo N, Head CA. The proinflammatory cytokine GM-CSF downregulates fetal hemoglobin expression by attenuating the cAMP-dependent pathway in sickle cell disease. Blood Cells Mol Dis 2011; 47:235-42. [PMID: 21945571 PMCID: PMC3223356 DOI: 10.1016/j.bcmd.2011.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 08/10/2011] [Accepted: 08/20/2011] [Indexed: 02/02/2023]
Abstract
Although reduction in leukocyte counts following hydroxyurea therapy in sickle cell disease (SCD) predicts fetal hemoglobin (HbF) response, the underlying mechanism remains unknown. We previously reported that leukocyte counts are regulated by granulocyte-macrophage colony-stimulating factor (GM-CSF) in SCD patients. Here we examined the roles of GM-CSF in the regulation of HbF expression in SCD. Upon the analysis of retrospective data in 372 patients, HbF levels were inversely correlated with leukocyte counts and GM-CSF levels in SCD patients without hydroxyurea therapy, while HbF increments after hydroxyurea therapy correlated with a reduction in leukocyte counts, suggesting a negative effect of GM-CSF on HbF expression. Consistently, in vitro studies using primary erythroblasts showed that the addition of GM-CSF to erythroid cells decreased HbF expression. We next examined the intracellular signaling pathway through which GM-CSF reduced HbF expression. Treatment of erythroid cells with GM-CSF resulted in the reduction of intracellular cAMP levels and abrogated phosphorylation of cAMP response-element-binding-protein, suggesting attenuation of the cAMP-dependent pathway, while the phosphorylation levels of mitogen-activated protein kinases were not affected. This is compatible with our studies showing a role for the cAMP-dependent pathway in HbF expression. Together, these results demonstrate that GM-CSF plays a role in regulating both leukocyte count and HbF expression in SCD. Reduction in GM-CSF levels upon hydroxyurea therapy may be critical for efficient HbF induction. The results showing the involvement of GM-CSF in HbF expression may suggest possible mechanisms for hydroxyurea resistance in SCD.
Collapse
Affiliation(s)
- Tohru Ikuta
- Department of Anesthesiology and Perioperative Medicine, Medical College of Georgia, Georgia Health Sciences University, Augusta, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Wagner SE, Burch JB, Bottai M, Puett R, Porter D, Bolick-Aldrich S, Temples T, Wilkerson RC, Vena JE, Hébert JR. Groundwater uranium and cancer incidence in South Carolina. Cancer Causes Control 2010; 22:41-50. [PMID: 21080052 DOI: 10.1007/s10552-010-9669-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Accepted: 10/09/2010] [Indexed: 12/29/2022]
Abstract
OBJECTIVE This ecologic study tested the hypothesis that census tracts with elevated groundwater uranium and more frequent groundwater use have increased cancer incidence. METHODS Data sources included: incident total, leukemia, prostate, breast, colorectal, lung, kidney, and bladder cancers (1996-2005, SC Central Cancer Registry); demographic and groundwater use (1990 US Census); and groundwater uranium concentrations (n = 4,600, from existing federal and state databases). Kriging was used to predict average uranium concentrations within tracts. The relationship between uranium and standardized cancer incidence ratios was modeled among tracts with substantial groundwater use via linear or semiparametric regression, with and without stratification by the proportion of African Americans in each area. RESULTS A total of 134,685 cancer cases were evaluated. Tracts with ≥50% groundwater use and uranium concentrations in the upper quartile had increased risks for colorectal, breast, kidney, prostate, and total cancer compared to referent tracts. Some of these relationships were more likely to be observed among tracts populated primarily by African Americans. CONCLUSION SC regions with elevated groundwater uranium and more groundwater use may have an increased incidence of certain cancers, although additional research is needed since the design precluded adjustment for race or other predictive factors at the individual level.
Collapse
Affiliation(s)
- Sara E Wagner
- College of Public Health, Department of Epidemiology and Biostatistics, Paul D. Coverdell Center for Biomedical and Health Sciences, University of Georgia, 500 D.W. Brooks Drive, Athens, GA 30602-7396, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
TIS11 family proteins and their roles in posttranscriptional gene regulation. J Biomed Biotechnol 2009; 2009:634520. [PMID: 19672455 PMCID: PMC2722025 DOI: 10.1155/2009/634520] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Accepted: 05/18/2009] [Indexed: 12/20/2022] Open
Abstract
Posttranscriptional regulation of gene expression of mRNAs containing adenine-uridine rich elements (AREs) in their 3′ untranslated regions is mediated by a number of different proteins that interact with these elements to either stabilise or destabilise them. The present review concerns the TPA-inducible sequence 11 (TIS11) protein family, a small family of proteins, that appears to interact with ARE-containing mRNAs and promote their degradation. This family of proteins has been extensively studied in the past decade. Studies have focussed on determining their biochemical functions, identifying their target mRNAs, and determining their roles in cell functions and diseases.
Collapse
|
5
|
Cao H, Lin R. Quantitative evaluation of His-tag purification and immunoprecipitation of tristetraprolin and its mutant proteins from transfected human cells. Biotechnol Prog 2009; 25:461-7. [PMID: 19330843 DOI: 10.1002/btpr.121] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Histidine (His)-tag is widely used for affinity purification of recombinant proteins, but the yield and purity of expressed proteins are quite different. Little information is available about quantitative evaluation of this procedure. The objective of this study was to evaluate His-tag procedure quantitatively and to compare it with immunoprecipitation using radiolabeled tristetraprolin (TTP), a zinc finger protein with anti-inflammatory property. Human embryonic kidney 293 cells were transfected with wild-type and nine mutant plasmids with single or multiple phosphorylation site mutation(s) in His-TTP. These proteins were expressed and mainly localized in the cytosol of transfected cells by immunocytochemistry and confocal microscopy. His-TTP proteins were purified by Ni-NTA beads with imidazole elution or precipitated by TTP antibodies from transfected cells after being labeled with [(32)P]-orthophosphate. The results showed that (1) His-tag purification was more effective than immunoprecipitation for TTP purification; (2) mutations in TTP increased the yield of His-TTP by both purification procedures; and (3) mutations in TTP increased the binding affinity of mutant proteins for Ni-NTA beads. These findings suggest that bioengineering phosphorylation sites in proteins can increase the production of recombinant proteins.
Collapse
Affiliation(s)
- Heping Cao
- Diet, Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, 10300 Baltimore Avenue, Beltsville, MD 20705, USA.
| | | |
Collapse
|
6
|
Ishmael FT, Fang X, Galdiero MR, Atasoy U, Rigby WF, Gorospe M, Cheadle C, Stellato C. Role of the RNA-binding protein tristetraprolin in glucocorticoid-mediated gene regulation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 180:8342-53. [PMID: 18523301 PMCID: PMC2505276 DOI: 10.4049/jimmunol.180.12.8342] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Glucocorticoids (GCs) are the mainstay of anti-inflammatory therapy. Modulation of posttranscriptional regulation (PTR) of gene expression by GCs is a relevant yet poorly characterized mechanism of their action. The RNA-binding protein tristetraprolin (TTP) plays a central role in PTR by binding to AU-rich elements in the 3'-untranslated region of proinflammatory transcripts and accelerating their decay. We found that GCs induce TTP expression in primary and immortalized human bronchial epithelial cells. To investigate the importance of PTR and the role of TTP in GC function, we compared the effect of GC treatment on genome-wide gene expression using mouse embryonic fibroblasts (MEFs) obtained from wild-type and TTP(-/-) mice. We confirmed that GCs induce TTP in MEFs and observed in TTP(-/-) MEFs a striking loss of up to 85% of GC-mediated gene expression. Gene regulation by TNF-alpha was similarly affected, as was the antagonistic effect of GC on TNF-alpha-induced response. Inflammatory genes, including cytokines and chemokines, were among the genes whose sensitivity to GCs was affected by lack of TTP. Silencing of TTP in WT MEFs by small interfering RNA confirmed loss of GC response in selected targets. Immunoprecipitation of ribonucleoprotein complexes revealed binding of TTP to several validated transcripts. Changes in the rate of transcript degradation studied by actinomycin D were documented for only a subset of transcripts bound to TTP. These results reveal a strong and previously unrecognized contribution of PTR to the anti-inflammatory action of GCs and point at TTP as a key factor mediating this process through a complex mechanism of action.
Collapse
Affiliation(s)
- Faoud T. Ishmael
- Division of Allergy and Clinical Immunology, Johns Hopkins University, Baltimore, MD 21224
| | - Xi Fang
- Division of Allergy and Clinical Immunology, Johns Hopkins University, Baltimore, MD 21224
| | - Maria Rosaria Galdiero
- Division of Allergy and Clinical Immunology, Johns Hopkins University, Baltimore, MD 21224
| | - Ulus Atasoy
- University of Missouri-Columbia, Columbia, MO
| | | | - Myriam Gorospe
- Laboratory of Cellular and Molecular Biology, National Institute of Aging, NIH, Baltimore, MD 21224
| | - Chris Cheadle
- Division of Allergy and Clinical Immunology, Johns Hopkins University, Baltimore, MD 21224
| | - Cristiana Stellato
- Division of Allergy and Clinical Immunology, Johns Hopkins University, Baltimore, MD 21224
| |
Collapse
|
7
|
Tristetraprolin (TTP) gene polymorphisms in patients with rheumatoid arthritis and healthy individuals. Mod Rheumatol 2008; 18:472-9. [PMID: 18536977 DOI: 10.1007/s10165-008-0085-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Accepted: 04/16/2008] [Indexed: 10/22/2022]
Abstract
Tristetraprolin (TTP) is an intracellular protein that modulates the production of cytokines, including TNFalpha, by binding to and destabilizing the mRNAs of these cytokines. Therefore, differences in TTP gene expression may affect the severity of inflammatory diseases, such as rheumatoid arthritis (RA). We searched for polymorphisms in the human TTP gene and for this purpose, we sequenced the entire TTP gene in 20 Japanese individuals (ten with RA and ten healthy volunteers) and found one single nucleotide polymorphism (SNP) in the promoter region. We analyzed this SNP (A/G) by restriction fragment length polymorphism method in 155 RA patients and 100 control subjects. While the frequency of A allele in this SNP was similar in RA patients (74.5%) and controls (76.0%), the disease duration in RA patients with genotype GG was shorter than that of patients with genotypes AA/AG and RA patients with genotype GG had a higher probability of being treated with infliximab. We studied the difference in promoter activity between the two alleles by luciferase assay and found that the promoter activity of TTP promoter region with allele A was around two-fold higher than that with allele G. We conclude that this SNP in the promoter region of the TTP gene mildly affects promoter activity, and thus, may influence the disease activity of inflammatory disorders including RA.
Collapse
|
8
|
Cao H, Lin R, Ghosh S, Anderson RA, Urban JF. Production and characterization of ZFP36L1 antiserum against recombinant protein from Escherichia coli. Biotechnol Prog 2008; 24:326-33. [PMID: 18302406 DOI: 10.1021/bp070269n] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Tristetraprolin/zinc finger protein 36 (TTP/ZFP36) family proteins are anti-inflammatory. They bind and destabilize some AU-rich element-containing mRNAs such as tumor necrosis factor mRNA. In this study, recombinant ZFP36L1/TIS11B (a TTP homologue) was overexpressed in E. coli, purified, and used for polyclonal antibody production in rabbits. The antiserum recognized nanograms of the antigen on immunoblots. This antiserum and another antiserum developed against recombinant mouse TTP were used to detect ZFP36L1 and TTP in mouse 3T3-L1 adipocytes and RAW264.7 macrophages. Immunoblotting showed that ZFP36L1 was stably expressed with a size corresponding to the lower mass size of ZFP36L1 expressed in transfected human embryonic kidney 293 cells, but TTP was induced by cinnamon extract and not by lipopolysaccharide (LPS) in adipocytes. In contrast, ZFP36L1 was undetectable, but TTP was strongly induced in LPS-stimulated RAW cells. Quantitative real-time polymerase chain reaction confirmed the higher levels of ZFP36L1 mRNA in adipocytes and TTP mRNA in RAW cells. Low levels of ZFP36L1 expression were also confirmed by Northern blotting in mouse embryonic fibroblasts. These results demonstrate that ZFP36L1 antiserum is useful in the detection of this protein and that TTP and ZFP36L1 are differentially expressed and regulated at the mRNA and protein levels in mouse adipocytes and macrophages.
Collapse
Affiliation(s)
- Heping Cao
- Diet, Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, U.S. Department of Agriculture-ARS, 10300 Baltimore Avenue, Beltsville, MD 20705, USA.
| | | | | | | | | |
Collapse
|
9
|
Cao H, Deterding LJ, Blackshear PJ. Phosphorylation site analysis of the anti-inflammatory and mRNA-destabilizing protein tristetraprolin. Expert Rev Proteomics 2008; 4:711-26. [PMID: 18067411 DOI: 10.1586/14789450.4.6.711] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Tristetraprolin (TTP) is a member of the CCCH zinc finger proteins and is an anti-inflammatory protein. Mice deficient in TTP develop a profound inflammatory syndrome with erosive arthritis, autoimmunity and myeloid hyperplasia. TTP binds to mRNA AU-rich elements with high affinity for UUAUUUAUU nucleotides and causes destabilization of those mRNA molecules. TTP is phosphorylated extensively in vivo and is a substrate for multiple protein kinases in vitro. A number of approaches have been used to identify its phosphorylation sites. This article highlights the recent progress and different approaches utilized for the identification of phosphorylation sites in mammalian TTP. Important but limited results are obtained using traditional methods, including in vivo labeling, site-directed mutagenesis, phosphopeptide mapping and protein sequencing. Mass spectrometry (MS), including MALDI/MS, MALDI/MS/MS, liquid chromatography/MS/MS, immobilized metal ion affinity chromatography (IMAC)/MALDI/MS/MS and multidimensional protein identification technology has led the way in identifying TTP phosphorylation sites. The combination of these approaches has identified multiple phosphorylation sites in mammalian TTP, some of which are predicted by motif scanning to be phosphorylated by several protein kinases. This information should provide the molecular basis for future investigation of TTP's regulatory functions in controlling proinflammatory cytokines.
Collapse
Affiliation(s)
- Heping Cao
- US Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics, and Immunology Laboratory, 10300 Baltimore Avenue, Beltsville, MD 20705, USA.
| | | | | |
Collapse
|
10
|
Carrick DM, Chulada P, Donn R, Fabris M, McNicholl J, Whitworth W, Blackshear PJ. Genetic variations in ZFP36 and their possible relationship to autoimmune diseases. J Autoimmun 2006; 26:182-96. [PMID: 16546352 DOI: 10.1016/j.jaut.2006.01.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Revised: 01/26/2006] [Accepted: 01/26/2006] [Indexed: 11/15/2022]
Abstract
The ZFP36 gene codes for TTP, a regulator of TNF alpha. In mice, TTP deficiency results in a systemic autoimmune inflammatory syndrome with severe arthritis. We hypothesized that genetic variations in ZFP36 are associated with autoimmune disease in humans. The primary objective of this study was to identify human ZFP36 genetic variants in autoimmune disease cases and controls, determine their frequencies in a general clinic population, and construct haplotypes. We resequenced ZFP36 in 316 individuals with autoimmune diseases and identified 28 polymorphisms and determined the frequency of all the known ZFP36 polymorphisms in 484 participants of the Environmental Polymorphism Registry, a regional registry being conducted by the NIEHS. Based on the sequence-verified ZFP36 genotypes, 34 haplotypes were constructed. As a secondary objective, we examined autoimmune disease cases and controls for potential ZFP36 genetic associations. One novel polymorphism, ZFP36*8, a C to T transition in the protein coding domain, was significantly associated with rheumatoid arthritis (RA) in African-Americans (RR=1.23, 95% CI: 1.11-1.36). The data presented here suggest a tentative association between ZFP36 and RA. This finding, as well as the ZFP36 polymorphisms and haplotypes identified here, should form the basis for future association studies in autoimmune diseases.
Collapse
Affiliation(s)
- Danielle Mercatante Carrick
- Office of Clinical Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.
| | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
The inflammatory response is a complex physiologic process that requires the coordinate induction of cytokines, chemokines, angiogenic factors, effector-enzymes, and proteases. Although transcriptional activation is required to turn on the inflammatory response, recent studies have revealed that posttranscriptional mechanisms play an important role by determining the rate at which mRNAs encoding inflammatory effector proteins are translated and degraded. Most posttranscriptional control mechanisms function to dampen the expression of pro-inflammatory proteins to ensure that potentially injurious proteins are not overexpressed during an inflammatory response. Here we discuss the factors that regulate the stability and translation of mRNAs encoding pro-inflammatory proteins.
Collapse
Affiliation(s)
- Georg Stoecklin
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
12
|
Carrick DM, Lai WS, Blackshear PJ. The tandem CCCH zinc finger protein tristetraprolin and its relevance to cytokine mRNA turnover and arthritis. Arthritis Res Ther 2004; 6:248-64. [PMID: 15535838 PMCID: PMC1064869 DOI: 10.1186/ar1441] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Tristetraprolin (TTP) is the best-studied member of a small family of three proteins in humans that is characterized by a tandem CCCH zinc finger (TZF) domain with highly conserved sequences and spacing. Although initially discovered as a gene that could be induced rapidly and transiently by the stimulation of fibroblasts with growth factors and mitogens, it is now known that TTP can bind to AU-rich elements in mRNA, leading to the removal of the poly(A) tail from that mRNA and increased rates of mRNA turnover. This activity was discovered after TTP-deficient mice were created and found to have a systemic inflammatory syndrome with severe polyarticular arthritis and autoimmunity, as well as medullary and extramedullary myeloid hyperplasia. The syndrome seemed to be due predominantly to excess circulating tumor necrosis factor-α (TNF-α), resulting from the increased stability of the TNF-α mRNA and subsequent higher rates of secretion of the cytokine. The myeloid hyperplasia might be due in part to increased stability of granulocyte–macrophage colony-stimulating factor (GM-CSF). This review highlights briefly the characteristics of the TTP-deficiency syndrome in mice and its possible genetic modifiers, as well as recent data on the characteristics of the TTP-binding site in the TNF-α and GM-CSF mRNAs. Recent structural data on the characteristics of the complex between RNA and one of the TTP-related proteins are reviewed, and used to model the TTP-RNA binding complex. We review the current knowledge of TTP sequence variants in humans and discuss the possible contributions of the TTP-related proteins in mouse physiology and in human monocytes. The TTP pathway of TNF-α and GM-CSF mRNA degradation is a possible novel target for anti-TNF-α therapies for rheumatoid arthritis, and also for other conditions proven to respond to anti-TNF-α therapy.
Collapse
MESH Headings
- Animals
- Base Sequence
- Binding Sites
- Bone Diseases, Developmental/genetics
- Bone Diseases, Developmental/pathology
- Bone Diseases, Developmental/physiopathology
- Crosses, Genetic
- Epistasis, Genetic
- Gene Expression Regulation/physiology
- Granulocyte-Macrophage Colony-Stimulating Factor/genetics
- Humans
- Mice
- Mice, Knockout
- Models, Molecular
- Molecular Sequence Data
- Phenotype
- Polymorphism, Genetic
- Protein Binding
- Protein Conformation
- RNA, Messenger/biosynthesis
- RNA, Messenger/chemistry
- Sequence Alignment
- Structure-Activity Relationship
- Tumor Necrosis Factor-alpha/genetics
- Zinc Fingers/physiology
Collapse
Affiliation(s)
- Danielle M Carrick
- Office of Clinical Research, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Wi S Lai
- Laboratory of Neurobiology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Perry J Blackshear
- Office of Clinical Research, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
- Laboratory of Neurobiology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
- Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
13
|
Ramos SBV, Stumpo DJ, Kennington EA, Phillips RS, Bock CB, Ribeiro-Neto F, Blackshear PJ. The CCCH tandem zinc-finger protein Zfp36l2 is crucial for female fertility and early embryonic development. Development 2004; 131:4883-93. [PMID: 15342461 DOI: 10.1242/dev.01336] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The CCCH tandem zinc finger protein, Zfp36l2, like its better-known relative tristetraprolin (TTP), can decrease the stability of AU-rich element-containing transcripts in cell transfection studies; however, its physiological importance is unknown. We disrupted Zfp36l2 in mice,resulting in decreased expression of a truncated protein in which the N-terminal 29 amino acids had been deleted (ΔN-Zfp36l2). Mice derived from different clones of ES cells exhibited complete female infertility,despite evidence from embryo and ovary transplantation experiments that they could gestate and rear wild-type young. ΔN-Zfp36l2 females apparently cycled and ovulated normally, and their ova could be fertilized; however, the embryos did not progress beyond the two-cell stage of development. These mice represent a specific model of disruption of the earliest stages of embryogenesis, implicating Zfp36l2, a probable mRNA-binding and destabilizing protein, in the physiological control of female fertility at the level of early embryonic development. This newly identified biological role for Zfp36l2 may have implications for maternal mRNA turnover in normal embryogenesis, and conceivably could be involved in some cases of unexplained human female infertility.
Collapse
Affiliation(s)
- Silvia B V Ramos
- Laboratory of Signal Transduction, National Institute of Environmental Health Science, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | | | |
Collapse
|