1
|
Strzelecki P, Karczewska M, Szalewska-Pałasz A, Nowicki D. Phytochemicals Controlling Enterohemorrhagic Escherichia coli (EHEC) Virulence-Current Knowledge of Their Mechanisms of Action. Int J Mol Sci 2025; 26:381. [PMID: 39796236 PMCID: PMC11719993 DOI: 10.3390/ijms26010381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/29/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is a common pathotype of E. coli that causes numerous outbreaks of foodborne illnesses. EHEC is a zoonotic pathogen that is transmitted from animals to humans. Ruminants, particularly cattle, are considered important reservoirs for virulent EHEC strains. Humans can become infected with EHEC through the consumption of contaminated food and water or through direct contact with infected animals or humans. E. coli O157:H7 is one of the most commonly reported causes of foodborne illnesses in developed countries. The formation of attaching and effacing (A/E) lesions on the intestinal epithelium, combined with Shiga toxin production, is a hallmark of EHEC infection and can lead to lethal hemolytic-uremic syndrome (HUS). For the phage-dependent regulation of Shiga toxin production, antibiotic treatment is contraindicated, as it may exacerbate toxin production, limiting therapeutic options to supportive care. In response to this challenge and the growing threat of antibiotic resistance, phytochemicals have emerged as promising antivirulence agents. These plant-derived compounds target bacterial virulence mechanisms without promoting resistance. Therefore, the aim of this study is to summarize the recent knowledge on the use of phytochemicals targeting EHEC. We focused on the molecular basis of their action, targeting the principal virulence determinants of EHEC.
Collapse
Affiliation(s)
| | | | - Agnieszka Szalewska-Pałasz
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (P.S.); (M.K.)
| | - Dariusz Nowicki
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (P.S.); (M.K.)
| |
Collapse
|
2
|
Benhamou W, Blanquart F, Choisy M, Berngruber TW, Choquet R, Gandon S. Evolution of virulence in emerging epidemics: from theory to experimental evolution and back. Virus Evol 2024; 10:veae069. [PMID: 39568860 PMCID: PMC11578488 DOI: 10.1093/ve/veae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/25/2024] [Accepted: 08/27/2024] [Indexed: 11/22/2024] Open
Abstract
The experimental validation of theoretical predictions is a crucial step in demonstrating the predictive power of a model. While quantitative validations are common in infectious diseases epidemiology, experimental microbiology primarily focuses on the evaluation of a qualitative match between model predictions and experiments. In this study, we develop a method to deepen the quantitative validation process with a polymorphic viral population. We analyse the data from an experiment carried out to monitor the evolution of the temperate bacteriophage λ spreading in continuous cultures of Escherichia coli. This experimental work confirmed the influence of the epidemiological dynamics on the evolution of transmission and virulence of the virus. A variant with larger propensity to lyse bacterial cells was favoured in emerging epidemics (when the density of susceptible cells was large), but counter-selected when most cells were infected. Although this approach qualitatively validated an important theoretical prediction, no attempt was made to fit the model to the data nor to further develop the model to improve the goodness of fit. Here, we show how theoretical analysis-including calculations of the selection gradients-and model fitting can be used to estimate key parameters of the phage life cycle and yield new insights on the evolutionary epidemiology of the phage λ. First, we show that modelling explicitly the infected bacterial cells which will eventually be lysed improves the fit of the transient dynamics of the model to the data. Second, we carry out a theoretical analysis that yields useful approximations that capture at the onset and at the end of an epidemic the effects of epidemiological dynamics on selection and differentiation across distinct life stages of the virus. Finally, we estimate key phenotypic traits characterizing the two strains of the virus used in our experiment such as the rates of prophage reactivation or the probabilities of lysogenization. This study illustrates the synergy between experimental, theoretical, and statistical approaches; and especially how interpreting the temporal variation in the selection gradient and the differentiation across distinct life stages of a novel variant is a powerful tool to elucidate the evolutionary epidemiology of emerging infectious diseases.
Collapse
Affiliation(s)
| | - François Blanquart
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France
| | - Marc Choisy
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | | | - Rémi Choquet
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Sylvain Gandon
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| |
Collapse
|
3
|
Padmesh S, Singh A, Chopra S, Sen M, Habib S, Shrivastava D, Johri P. Isolation and characterization of novel lytic bacteriophages that infect multi drug resistant clinical strains of Escherichia coli. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:57327-57337. [PMID: 37347328 DOI: 10.1007/s11356-023-28081-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 05/31/2023] [Indexed: 06/23/2023]
Abstract
The pathogenic strains of Escherichia coli (E. coli) are frequent cause of urinary tract infections including catheter-associated, soft tissue infections and sepsis. The growing antibiotic resistance in E. coli is a major health concern. Bacteriophages are specific for their bacterial host, thus providing a novel and effective alternatives. This study focuses on isolation of bacteriophages from urban sewage treatment plants. Initially 50 different bacteriophages have been isolated against non-resistant reference E. coli strain and fifty multidrug resistant clinical isolates of extraintestinal infections. Out of which only thirty-one lytic phages which gave clear plaques were further analysed for different physico-chemical aspects such as thermal inactivation, pH, effect of organic solvents and detergents. Two bacteriophages, ASEC2201 and ASEC2202, were selected for their ability to withstand temperature fluctuation from -20 to 62 °C and a pH range from 4 to 10. They also showed good survival (40-94%) in the presence of organic solvents like ethanol, acetone, DMSO and chloroform or ability to form plaques even after the treatment with detergents like SDS, CTAB and sarkosyl. Both efficiently killed reference strain and 40-44% of multidrug resistant clinical isolates of E. coli. Later ASEC2201 and ASEC2202 were subjected to morphological characterisation through transmission electron microscopy, which revealed them to be tailed phages. The genomic analysis confirmed them to be Escherichia phages which belonged to family Drexlerviridae of Caudovirales.
Collapse
Affiliation(s)
- Sudhakar Padmesh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Gomti Nagar Extension, Lucknow, 226028, India
| | - Aditi Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Gomti Nagar Extension, Lucknow, 226028, India.
| | - Sidharth Chopra
- Division of Microbiology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Manodeep Sen
- Department of Microbiology, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, 226010, India
| | - Saman Habib
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Deepti Shrivastava
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Parul Johri
- Department of Biotechnology, Dr. Ambedkar Institute of Technology for Handicapped, Kanpur, 208024, India
| |
Collapse
|
4
|
Ambros CL, Ehrmann MA. Fate, inducibility, and behavior of Latilactobacillus curvatus temperate phage TMW 1.591 P1 during sausage fermentation. J Appl Microbiol 2024; 135:lxae175. [PMID: 38991993 DOI: 10.1093/jambio/lxae175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/28/2024] [Accepted: 07/10/2024] [Indexed: 07/13/2024]
Abstract
AIMS Temperate phages insert their genome into the host's chromosome. As prophages, they remain latent in the genome until an induction event leads to lytic phage production. When this occurs in a starter culture that has been added to food fermentation, this can impair the fermentation success. This study aimed to analyze prophage inducibility in the Latilactobacillus curvatus TMW 1.591 strain during meat fermentation and investigate whether an induction signal before cryopreservation is maintained during storage and can lead to phage-induced lysis after culture activation. METHODS AND RESULTS A prophage-free isogenic derivative of the model starter organism, L. curvatus TMW 1.591, was developed as a negative control (L. curvatus TMW 1.2406). Raw meat fermentation was performed with the wild-type (WT) and phage-cured strains. The WT strain produced high numbers of phages (5.2 ± 1.8 × 107 plaque-forming units g-1) in the meat batter. However, the prophage did not significantly affect the meat fermentation process. Induction experiments suggested an acidic environment as a potential trigger for prophage induction. Phage induction by ultraviolet light before strain cryopreservation remains functional for at least 10 weeks of storage. CONCLUSIONS Intact prophages are active during meat fermentation. However, in this study, this has no measurable consequences for fermentation, suggesting a high resiliency of meat fermentation against phages. Inadequate handling of lysogenic starter strains, even before preservation, can lead to phage introduction into food fermentation and unintended host lysis.
Collapse
Affiliation(s)
- Conrad L Ambros
- Chair of Microbiology, Technical University of Munich (TUM), School of Life Sciences, 85354 Freising, Germany
| | - Matthias A Ehrmann
- Chair of Microbiology, Technical University of Munich (TUM), School of Life Sciences, 85354 Freising, Germany
| |
Collapse
|
5
|
Bloch S, Nejman-Faleńczyk B, Licznerska K, Dydecka A, Topka-Bielecka G, Necel A, Węgrzyn A, Węgrzyn G. Complex effects of the exo-xis region of the Shiga toxin-converting bacteriophage Φ24 B genome on the phage development and the Escherichia coli host physiology. J Appl Genet 2024; 65:191-211. [PMID: 37968427 PMCID: PMC10789677 DOI: 10.1007/s13353-023-00799-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/17/2023]
Abstract
Lambdoid bacteriophages are excellent models in studies on molecular aspects of virus-host interactions. However, some of them carry genes encoding toxins which are responsible for virulence of pathogenic strains of bacteria. Shiga toxin-converting bacteriophages (Stx phages) encode Shiga toxins that cause virulence of enterohemorrhagic Escherichia coli (EHEC), and their effective production depends on Stx prophage induction. The exo-xis region of the lambdoid phage genome consists of genes which are dispensable for the phage multiplication under laboratory conditions; however, they might modulate the virus development. Nevertheless, their exact effects on the phage and host physiology remained unclear. Here, we present results of complex studies on the role of the exo-xis region of bacteriophage Φ24B, one of Stx2b phages. Transcriptomic analyses, together with proteomic and metabolomic studies, provided the basis for understanding the functions of the exo-xis region. Genes from this region promoted lytic development of the phage over lysogenization. Moreover, expression of the host genes coding for DnaK, DnaJ, GrpE, and GroELS chaperones was impaired in the cells infected with the Δexo-xis phage mutant, relative to the wild-type virus, corroborating the conclusion about lytic development promotion by the exo-xis region. Proteomic and metabolomic analyses indicated also modulation of gad and nrf operons, and levels of amino acids and acylcarnitines, respectively. In conclusion, the exo-xis region controls phage propagation and host metabolism by influencing expression of different phage and bacterial genes, directing the virus to the lytic rather than lysogenic developmental mode.
Collapse
Affiliation(s)
- Sylwia Bloch
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | | | | | | | | | - Agnieszka Necel
- Department of Medical Microbiology, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Alicja Węgrzyn
- Phage Therapy Center, University Center for Applied and Interdisciplinary Research, University of Gdansk, Gdansk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland.
| |
Collapse
|
6
|
Bloch S, Lewandowska N, Zwolenkiewicz J, Mach P, Łukasiak A, Olejniczak M, Donaldson LW, Węgrzyn G, Nejman-Faleńczyk B. Bacteriophage-encoded 24B_1 molecule resembles herpesviral microRNAs and plays a crucial role in the development of both the virus and its host. PLoS One 2023; 18:e0296038. [PMID: 38117844 PMCID: PMC10732415 DOI: 10.1371/journal.pone.0296038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/01/2023] [Indexed: 12/22/2023] Open
Abstract
The 24B_1 small non-coding RNA molecule has been identified in Escherichia coli after induction of Shiga toxin-converting bacteriophage Φ24B. In this work, we focused on its direct role during phage and bacterial host development. We observed that in many aspects, this phage sRNA resembles herpesviral microRNAs. Similar to microRNAs, the mature 24B_1 is a short molecule, consisting of just 20 nucleotides. It is generated by cleaving the 80-nt long precursor transcript, and likely it undergoes a multi-step maturation process in which the Hfq protein plays an important role, as confirmed by demonstration of its binding to the 24B_1 precursor, but not to the 24B_1 mature form. Moreover, 24B_1 plays a significant role in maintaining the prophage state and reprogramming the host's energy metabolism. We proved that overproduction of this molecule causes the opposite physiological effects to the mutant devoid of the 24B_1 gene, and thus, favors the lysogenic pathway. Furthermore, the 24B_1 overrepresentation significantly increases the efficiency of expression of phage genes coding for proteins CI, CII, and CIII which are engaged in the maintenance of the prophage. It seems that through binding to mRNA of the sdhB gene, coding for the succinate dehydrogenase subunit, the 24B_1 alters the central carbon metabolism and causes a drop in the ATP intracellular level. Interestingly, a similar effect, called the Warburg switch, is caused by herpesviral microRNAs and it is observed in cancer cells. The advantage of the Warburg effect is still unclear, however, it was proposed that the metabolism of cancer cells, and all rapidly dividing cells, is adopted to convert nutrients such as glucose and glutamine faster and more efficiently into biomass. The availability of essential building blocks, such as nucleotides, amino acids, and lipids, is crucial for effective cell proliferation which in turn is essential for the prophage and its host to stay in the lysogenic state.
Collapse
Affiliation(s)
- Sylwia Bloch
- Department of Molecular Biology, University of Gdansk, Gdansk, Poland
| | | | - Joanna Zwolenkiewicz
- Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznan, Poznan, Poland
| | - Paulina Mach
- Department of Molecular Biology, University of Gdansk, Gdansk, Poland
| | | | - Mikołaj Olejniczak
- Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznan, Poznan, Poland
| | | | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdansk, Gdansk, Poland
| | | |
Collapse
|
7
|
Prolič-Kalinšek M, Volkov AN, Hadži S, Van Dyck J, Bervoets I, Charlier D, Loris R. Structural basis of DNA binding by YdaT, a functional equivalent of the CII repressor in the cryptic prophage CP-933P from Escherichia coli O157:H7. Acta Crystallogr D Struct Biol 2023; 79:245-258. [PMID: 36876434 PMCID: PMC9986795 DOI: 10.1107/s2059798323001249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 02/10/2023] [Indexed: 03/01/2023] Open
Abstract
YdaT is a functional equivalent of the CII repressor in certain lambdoid phages and prophages. YdaT from the cryptic prophage CP-933P in the genome of Escherichia coli O157:H7 is functional as a DNA-binding protein and recognizes a 5'-TTGATTN6AATCAA-3' inverted repeat. The DNA-binding domain is a helix-turn-helix (HTH)-containing POU domain and is followed by a long α-helix (α6) that forms an antiparallel four-helix bundle, creating a tetramer. The loop between helix α2 and the recognition helix α3 in the HTH motif is unusually long compared with typical HTH motifs, and is highly variable in sequence and length within the YdaT family. The POU domains have a large degree of freedom to move relative to the helix bundle in the free structure, but their orientation becomes fixed upon DNA binding.
Collapse
Affiliation(s)
- Maruša Prolič-Kalinšek
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium
- VIB–VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Pleinlaan 2, 1050 Brussel, Belgium
| | - Alexander N. Volkov
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium
- VIB–VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Pleinlaan 2, 1050 Brussel, Belgium
- Jean Jeener NMR Center, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium
| | - San Hadži
- Department of Physical Chemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Jeroen Van Dyck
- Department of Chemistry, Universiteit Antwerpen, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| | - Indra Bervoets
- Research Group of Microbiology, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium
| | - Daniel Charlier
- Research Group of Microbiology, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium
| | - Remy Loris
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium
- VIB–VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Pleinlaan 2, 1050 Brussel, Belgium
| |
Collapse
|
8
|
Zhou S, Liu Z, Song J, Chen Y. Disarm The Bacteria: What Temperate Phages Can Do. Curr Issues Mol Biol 2023; 45:1149-1167. [PMID: 36826021 PMCID: PMC9955262 DOI: 10.3390/cimb45020076] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/28/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
In the field of phage applications and clinical treatment, virulent phages have been in the spotlight whereas temperate phages received, relatively speaking, less attention. The fact that temperate phages often carry virulent or drug-resistant genes is a constant concern and drawback in temperate phage applications. However, temperate phages also play a role in bacterial regulation. This review elucidates the biological properties of temperate phages based on their life cycle and introduces the latest work on temperate phage applications, such as on host virulence reduction, biofilm degradation, genetic engineering and phage display. The versatile use of temperate phages coupled with their inherent properties, such as economy, ready accessibility, wide variety and host specificity, make temperate phages a solid candidate in tackling bacterial infections.
Collapse
Affiliation(s)
- Shiyue Zhou
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Zhengjie Liu
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Jiaoyang Song
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yibao Chen
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| |
Collapse
|
9
|
Aframian N, Omer Bendori S, Kabel S, Guler P, Stokar-Avihail A, Manor E, Msaeed K, Lipsman V, Grinberg I, Mahagna A, Eldar A. Dormant phages communicate via arbitrium to control exit from lysogeny. Nat Microbiol 2021; 7:145-153. [PMID: 34887546 DOI: 10.1038/s41564-021-01008-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/26/2021] [Indexed: 01/23/2023]
Abstract
Temperate bacterial viruses (phages) can transition between lysis-replicating and killing the host-and lysogeny, that is, existing as dormant prophages while keeping the host viable. Recent research showed that on invading a naïve cell, some phages communicate using a peptide signal, termed arbitrium, to control the decision of entering lysogeny. Whether communication can also serve to regulate exit from lysogeny (known as phage induction) is unclear. Here we show that arbitrium-coding prophages continue to communicate from the lysogenic state by secreting and sensing the arbitrium signal. Signalling represses DNA damage-dependent phage induction, enabling prophages to reduce the induction rate when surrounded by other lysogens. We show that in certain phages, DNA damage and communication converge to regulate the expression of the arbitrium-responsive gene aimX, while in others integration of DNA damage and communication occurs downstream of aimX expression. Additionally, signalling by prophages tilts the decision of nearby infecting phages towards lysogeny. Altogether, we find that phages use small-molecule communication throughout their entire life cycle to sense the abundance of lysogens in the population, thus avoiding lysis when they are likely to encounter established lysogens rather than permissive uninfected hosts.
Collapse
Affiliation(s)
- Nitzan Aframian
- Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Shira Omer Bendori
- Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Stav Kabel
- Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Polina Guler
- Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | | | - Erica Manor
- Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Kholod Msaeed
- Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Valeria Lipsman
- Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel.,Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Ilana Grinberg
- Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Alaa Mahagna
- Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Avigdor Eldar
- Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
10
|
Cieślik M, Bagińska N, Jończyk-Matysiak E, Węgrzyn A, Węgrzyn G, Górski A. Temperate Bacteriophages-The Powerful Indirect Modulators of Eukaryotic Cells and Immune Functions. Viruses 2021; 13:v13061013. [PMID: 34071422 PMCID: PMC8228536 DOI: 10.3390/v13061013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/22/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022] Open
Abstract
Bacteriophages are natural biological entities that limit the growth and amplification of bacteria. They are important stimulators of evolutionary variability in bacteria, and currently are considered a weapon against antibiotic resistance of bacteria. Nevertheless, apart from their antibacterial activity, phages may act as modulators of mammalian immune responses. In this paper, we focus on temperate phages able to execute the lysogenic development, which may shape animal or human immune response by influencing various processes, including phagocytosis of bacterial invaders and immune modulation of mammalian host cells.
Collapse
Affiliation(s)
- Martyna Cieślik
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (M.C.); (N.B.); (E.J.-M.)
| | - Natalia Bagińska
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (M.C.); (N.B.); (E.J.-M.)
| | - Ewa Jończyk-Matysiak
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (M.C.); (N.B.); (E.J.-M.)
| | - Alicja Węgrzyn
- Laboratory of Phage Therapy, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822 Gdańsk, Poland;
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland;
| | - Andrzej Górski
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (M.C.); (N.B.); (E.J.-M.)
- Phage Therapy Unit, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland
- Infant Jesus Hospital, The Medical University of Warsaw, 02-006 Warsaw, Poland
- Correspondence:
| |
Collapse
|
11
|
Llarena AK, Aspholm M, O'Sullivan K, Wêgrzyn G, Lindbäck T. Replication Region Analysis Reveals Non-lambdoid Shiga Toxin Converting Bacteriophages. Front Microbiol 2021; 12:640945. [PMID: 33868197 PMCID: PMC8044961 DOI: 10.3389/fmicb.2021.640945] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 02/16/2021] [Indexed: 11/22/2022] Open
Abstract
Shiga toxin is the major virulence factor of enterohemorrhagic Escherichia coli (EHEC), and the gene encoding it is carried within the genome of Shiga toxin-converting phages (Stx phages). Numerous Stx phages have been sequenced to gain a better understanding of their contribution to the virulence potential of EHEC. The Stx phages are classified into the lambdoid phage family based on similarities in lifestyle, gene arrangement, and nucleotide sequence to the lambda phages. This study explores the replication regions of non-lambdoid Stx phages that completely lack the O and P genes encoding the proteins involved in initiating replication in the lambdoid phage genome. Instead, they carry sequences encoding replication proteins that have not been described earlier, here referred to as eru genes (after EHEC phage replication unit genes). This study identified three different types of Eru-phages, where the Eru1-type is carried by the highly pathogenic EHEC strains that caused the Norwegian O103:H25 outbreak in 2006 and the O104:H4 strain that caused the large outbreak in Europe in 2011. We show that Eru1-phages exhibit a less stable lysogenic state than the classical lambdoid Stx phages. As production of phage particles is accompanied by production of Stx toxin, the Eru1-phage could be associated with a high-virulence phenotype of the host EHEC strain. This finding emphasizes the importance of classifying Stx phages according to their replication regions in addition to their Stx-type and could be used to develop a novel strategy to identify highly virulent EHEC strains for improved risk assessment and management.
Collapse
Affiliation(s)
- Ann-Katrin Llarena
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Marina Aspholm
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Kristin O'Sullivan
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Grzegorz Wêgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdañsk, Gdañsk, Poland
| | - Toril Lindbäck
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| |
Collapse
|
12
|
Bloch S, Lewandowska N, Węgrzyn G, Nejman-Faleńczyk B. Bacteriophages as sources of small non-coding RNA molecules. Plasmid 2020; 113:102527. [PMID: 32768406 DOI: 10.1016/j.plasmid.2020.102527] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 01/10/2023]
Abstract
Bacteriophages play an essential role in the transferring of genes that contribute to the bacterial virulence and whose products are dangerous to human health. Interestingly, phages carrying virulence genes are mostly temperate and in contrast to lytic phages undergo both lysogenic and lytic cycles. Importantly, expression of the majority of phage genes and subsequent production of phage encoded proteins is suppressed during lysogeny. The expression of the majority of phage genes is tightly linked to lytic development. Among others, small non-coding RNAs (sRNAs) of phage origin are involved in the regulation of phage gene expression and thus play an important role in both phage and host development. In the case of bacteria, sRNAs affect processes such as virulence, colonization ability, motility and cell growth or death. In turn, in the case of phages, they play essential roles during the early stage of infection, maintaining the state of lysogeny and silencing the expression of late structural genes, thereby regulating the transition between phage life cycles. Interestingly, sRNAs have been identified in both lytic and temperate phages and they have been discussed in this work according to this classification. Particular attention was paid to viral sRNAs resembling eukaryotic microRNAs.
Collapse
Affiliation(s)
- Sylwia Bloch
- Laboratory of Molecular Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822 Gdańsk, Poland
| | - Natalia Lewandowska
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Bożena Nejman-Faleńczyk
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland.
| |
Collapse
|
13
|
Dydecka A, Bloch S, Necel A, Topka G, Węgrzyn A, Tong J, Donaldson LW, Węgrzyn G, Nejman-Faleńczyk B. The ea22 gene of lambdoid phages: preserved prolysogenic function despite of high sequence diversity. Virus Genes 2020; 56:266-277. [PMID: 31970620 PMCID: PMC7093339 DOI: 10.1007/s11262-020-01734-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 01/14/2020] [Indexed: 12/22/2022]
Abstract
The exo-xis region of lambdoid phages contains open reading frames and genes that appear to be evolutionarily important. However, this region has received little attention up to now. In this study, we provided evidence that ea22, the largest gene of this region, favors the lysogenic pathway over the lytic pathway in contrast to other characterized exo-xis region genes including ea8.5, orf61, orf60a, and orf63. Our assays also suggest some functional analogies between Ea22 and the phage integrase protein (Int). While it is unsurprising that Ea22 operates similarly in both λ and Stx phages, we have observed some distinctions that may arise from considerable sequence dissimilarity at the carboxy termini of each protein.
Collapse
Affiliation(s)
- Aleksandra Dydecka
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Sylwia Bloch
- Laboratory of Molecular Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822, Gdańsk, Poland
| | - Agnieszka Necel
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Gracja Topka
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Alicja Węgrzyn
- Laboratory of Molecular Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822, Gdańsk, Poland
| | - Jinge Tong
- Department of Biology, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
| | - Logan W Donaldson
- Department of Biology, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Bożena Nejman-Faleńczyk
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland.
| |
Collapse
|
14
|
Filipiak M, Łoś JM, Łoś M. Efficiency of induction of Shiga-toxin lambdoid prophages in Escherichia coli due to oxidative and antibiotic stress depends on the combination of prophage and the bacterial strain. J Appl Genet 2019; 61:131-140. [PMID: 31808108 PMCID: PMC6968986 DOI: 10.1007/s13353-019-00525-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/19/2019] [Accepted: 09/26/2019] [Indexed: 11/30/2022]
Abstract
In the study presented here, we tested, how large a fraction of lysogenic culture was undergoing filamentation, which could indicate triggering of the SOS response or SOS-independent prophage induction that is also known to cause cell filamentation. Here, antibiotic stress was triggered by adding mitomycin C and oxidative stress was induced by hydrogen peroxide. Observation of bacterial cells under an optical microscope revealed more filamenting cells for lysogenic Escherichia coli than for strains not carrying a prophage. Moreover, the amount of filamenting cells depended not only on the stress agents used and the type of the prophage, but also on the host. During induction of the 933W prophage, the resulting phage titer and the amount of elongating cells were different when using E. coli O157:H7 EDL933 clinical isolate and the E. coli MG1655 laboratory strain. The amount of filamenting cells correlates well with the observed phage titers.
Collapse
Affiliation(s)
- Michalina Filipiak
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdansk, Wita Stwosza Street 59, 80-308, Gdansk, Poland
| | - Joanna M Łoś
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdansk, Wita Stwosza Street 59, 80-308, Gdansk, Poland.
- Phage Consultants, Partyzantow Street 10/18, 80-254, Gdansk, Poland.
| | - Marcin Łoś
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdansk, Wita Stwosza Street 59, 80-308, Gdansk, Poland
- Phage Consultants, Partyzantow Street 10/18, 80-254, Gdansk, Poland
| |
Collapse
|
15
|
Smith MW, Herfort L, Rivers AR, Simon HM. Genomic Signatures for Sedimentary Microbial Utilization of Phytoplankton Detritus in a Fast-Flowing Estuary. Front Microbiol 2019; 10:2475. [PMID: 31749780 PMCID: PMC6848030 DOI: 10.3389/fmicb.2019.02475] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 10/15/2019] [Indexed: 01/21/2023] Open
Abstract
In fast-flowing, river-dominated estuaries, “hotspots” of microbial biogeochemical cycling can be found within areas of extended water retention. Lateral bays located off of the North and South channels of the Columbia River estuary are proposed to be such hotspots. Previous metagenomic studies on water samples indicated that these regions function both as sources and sinks of biogenic particles, with potential to impact organic matter fluxes in the estuary. To extend this work, we analyzed 11 sediment metagenomes from three disparate bays: the freshwater Cathlamet Bay, and the brackish Youngs Bay and more saline Baker Bay located nearer the mouth to the south and north of the main channel, respectively. Samples were collected from upper layers of sediments in August of 2011 and 2013 for DNA extraction and metagenome sequencing. All metagenomes were dominated by bacterial sequences, although diatom sequences as high as 26% of the total annotated sequences were observed in the higher salinity samples. Unsupervised 2D hierarchical clustering analysis resulted in the eleven metagenome samples clustered into four groups by microbial taxonomic composition, with Bacteroides, diatom, and phage levels driving most of the grouping. Results of functional gene clustering further indicated that diatom bloom degradation stage (early vs. late) was an important factor. While the Flavobacteriia and Cytophagia classes were well represented in metagenomes containing abundant diatoms, taxa from the Bacteroidia class, along with certain members of the Sphingobacteriia class, were particularly abundant in metagenomes representing later stages of diatom decomposition. In contrast, the sediment metagenomes with low relative abundance of diatom and Bacteroidetes sequences appeared to have a metabolic potential biased toward microbial growth under nutrient limitation. While differences in water salinity clearly also influenced the microbial community composition and metabolic potential, our results highlight a central role for allochthonous labile organic matter (i.e., diatom detritus), in shaping bacterial taxonomic and functional properties in the Columbia River estuary lateral bay sediments. These results suggest that in fast-flowing, river-dominated estuaries, sediment microbial communities in areas of extended water retention, such as the lateral bays, may contribute disproportionately to estuarine organic matter degradation and recycling.
Collapse
Affiliation(s)
- Maria W Smith
- Center for Coastal Margin Observation & Prediction, Oregon Health & Science University, Portland, OR, United States
| | - Lydie Herfort
- Center for Coastal Margin Observation & Prediction, Oregon Health & Science University, Portland, OR, United States.,Institute of Environmental Health, Oregon Health & Science University, Portland, OR, United States
| | - Adam R Rivers
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA, United States
| | - Holly M Simon
- Center for Coastal Margin Observation & Prediction, Oregon Health & Science University, Portland, OR, United States.,Institute of Environmental Health, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
16
|
Topka G, Bloch S, Nejman-Faleńczyk B, Gąsior T, Jurczak-Kurek A, Necel A, Dydecka A, Richert M, Węgrzyn G, Węgrzyn A. Characterization of Bacteriophage vB-EcoS-95, Isolated From Urban Sewage and Revealing Extremely Rapid Lytic Development. Front Microbiol 2019; 9:3326. [PMID: 30697202 PMCID: PMC6340994 DOI: 10.3389/fmicb.2018.03326] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 12/21/2018] [Indexed: 01/05/2023] Open
Abstract
Morphological, biological, and genetic characteristics of a virulent Siphoviridae phage, named vB-EcoS-95, is reported. This phage was isolated from urban sewage. It was found to infect some Escherichia coli strains giving clear plaques. The genome of this phage is composed of 50,910 bp and contains 89 ORFs. Importantly, none of the predicted ORFs shows any similarity with known pathogenic factors that would prevent its use in medicine. Genome sequence analysis of vB-EcoS-95 revealed 74% similarity to genomic sequence of Shigella phage pSf-1. Compared to pSf-1, phage vb-EcoS-95 does not infect Shigella strains and has an efficient bacteriolytic activity against some E. coli strains. One-step growth analysis revealed that this phage has a very short latent period (4 min), and average burst size of 115 plaque forming units per cell, which points to its high infectivity of host cells and strong lytic activity. The bacteriolytic effect of vB-EcoS-95 was tested also on biofilm-producing strains. These results indicate that vB-EcoS-95 is a newly discovered E. coli phage that may be potentially used to control the formation of biofilms.
Collapse
Affiliation(s)
- Gracja Topka
- Department of Molecular BiologyUniversity of Gdańsk, Gdańsk, Poland
| | - Sylwia Bloch
- Department of Molecular BiologyUniversity of Gdańsk, Gdańsk, Poland
| | | | - Tomasz Gąsior
- Laboratory of Molecular Biology, Institute of Biochemistry and BiophysicsPolish Academy of Sciences, Gdańsk, Poland
| | | | - Agnieszka Necel
- Department of Molecular BiologyUniversity of Gdańsk, Gdańsk, Poland
| | | | - Malwina Richert
- Laboratory of Electron MicroscopyUniversity of Gdańsk, Gdańsk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular BiologyUniversity of Gdańsk, Gdańsk, Poland
| | - Alicja Węgrzyn
- Laboratory of Molecular Biology, Institute of Biochemistry and BiophysicsPolish Academy of Sciences, Gdańsk, Poland
| |
Collapse
|
17
|
Roles of orf60a and orf61 in Development of Bacteriophages λ and Φ24 B. Viruses 2018; 10:v10100553. [PMID: 30314296 PMCID: PMC6213356 DOI: 10.3390/v10100553] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/06/2018] [Accepted: 10/09/2018] [Indexed: 11/30/2022] Open
Abstract
The exo-xis region of lambdoid bacteriophage genomes contains several established and potential genes that are evolutionarily conserved, but not essential for phage propagation under laboratory conditions. Nevertheless, deletion or overexpression of either the whole exo-xis region and important regulatory elements can significantly influence the regulation of phage development. This report defines specific roles for orf60a and orf61 in bacteriophage λ and Φ24B, a specific Shiga toxin-converting phage with clinical relevance. We observed that mutant phages bearing deletions of orf60a and orf61 impaired two central aspects of phage development: the lysis-versus-lysogenization decision and prophage induction. These effects were more pronounced for phage Φ24B than for λ. Surprisingly, adsorption of phage Φ24B on Escherichia coli host cells was less efficient in the absence of either orf60a or orf61. We conclude that these open reading frames (ORFs) play important, but not essential, roles in the regulation of lambdoid phage development. Although phages can propagate without these ORFs in nutrient media, we suggest that they may be involved in the regulatory network, ensuring optimization of phage development under various environmental conditions.
Collapse
|
18
|
Ding F, Allen V, Luo W, Zhang S, Duan Y. Molecular mechanisms underlying heat or tetracycline treatments for citrus HLB control. HORTICULTURE RESEARCH 2018; 5:30. [PMID: 29872535 PMCID: PMC5981314 DOI: 10.1038/s41438-018-0038-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/06/2018] [Accepted: 03/27/2018] [Indexed: 05/05/2023]
Abstract
Huanglongbing (HLB), a destructive plant bacterial disease, severely impedes worldwide citrus production. In our previous reports, we revealed the molecular mechanisms of host plant responses that underlie thermotherapy against HLB. In this study, we investigated the molecular mechanism underlying heat or tetracycline treatments on the HLB bacterium, 'Candidatus Liberibacter asiaticus' (Las) by focusing on Las prophage/phage conversion under stress conditions. By comparing the prophage FP1 and FP2 copy number to the copy number of 16S rDNA in HLB-affected plants, we found that the relative copy number of both FP1 and FP2 increased significantly, ranging from 3.4- to 6.7-fold change when Las-infected samples underwent a temperature shift from 23 to 37, 42 or 45 °C. When treated with tetracycline at 50-150 and 200-250 µg/ml, respectively, the relative copy number of both FP1 and FP2 increased by 3.4- to 6.0-fold. In addition, analyses of Las prophage structural gene and antirepressor gene copy numbers showed similar trends for all treatments. Furthermore, transmission electron microscopy provided direct evidence of lysogenic to lytic conversion upon temperature increase. These results not only provide new insight into the molecular mechanisms underlying heat or tetracycline treatment but also suggest a novel HLB control strategy by enhancing the endogenous conversion from Las prophages to phages.
Collapse
Affiliation(s)
- Fang Ding
- Hubei Key Laboratory of PLant Pathology, Huazhong Agricultural University, 430070 Wuhan, Hubei P.R. China
- USDA-ARS-USHRL, Fort Pierce, FL 34945 USA
| | | | - Weiqi Luo
- USDA-ARS-USHRL, Fort Pierce, FL 34945 USA
- Center for Integrated Pest Management, North Carolina State University, Raleigh, NC 27606 USA
| | - Shouan Zhang
- IFAS-TREC, University of Florida, Homestead, FL 33031 USA
| | | |
Collapse
|
19
|
Górski A, Jończyk-Matysiak E, Międzybrodzki R, Weber-Dąbrowska B, Łusiak-Szelachowska M, Bagińska N, Borysowski J, Łobocka MB, Węgrzyn A, Węgrzyn G. Phage Therapy: Beyond Antibacterial Action. Front Med (Lausanne) 2018; 5:146. [PMID: 29876350 PMCID: PMC5974148 DOI: 10.3389/fmed.2018.00146] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 04/30/2018] [Indexed: 12/12/2022] Open
Abstract
Until recently, phages were considered as mere “bacteria eaters” with potential for use in combating antimicrobial resistance. The real value of phage therapy assessed according to the standards of evidence-based medicine awaits confirmation by clinical trials. However, the progress in research on phage biology has shed more light on the significance of phages. Accumulating data indicate that phages may also interact with eukaryotic cells. How such interactions could be translated into advances in medicine (especially novel means of therapy) is discussed herein.
Collapse
Affiliation(s)
- Andrzej Górski
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland.,Phage Therapy Unit, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland.,Department of Clinical Immunology, Transplantation Institute, Medical University of Warsaw, Warsaw, Poland
| | - Ewa Jończyk-Matysiak
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Ryszard Międzybrodzki
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland.,Phage Therapy Unit, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland.,Department of Clinical Immunology, Transplantation Institute, Medical University of Warsaw, Warsaw, Poland
| | - Beata Weber-Dąbrowska
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland.,Phage Therapy Unit, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Marzanna Łusiak-Szelachowska
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Natalia Bagińska
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Jan Borysowski
- Department of Clinical Immunology, Transplantation Institute, Medical University of Warsaw, Warsaw, Poland
| | - Małgorzata B Łobocka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.,Autonomous Department of Microbial Biology, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Alicja Węgrzyn
- Laboratory of Molecular Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Gdańsk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
20
|
Neamah MM, Mir-Sanchis I, López-Sanz M, Acosta S, Baquedano I, Haag AF, Marina A, Ayora S, Penadés JR. Sak and Sak4 recombinases are required for bacteriophage replication in Staphylococcus aureus. Nucleic Acids Res 2017; 45:6507-6519. [PMID: 28475766 PMCID: PMC5499656 DOI: 10.1093/nar/gkx308] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 05/03/2017] [Indexed: 11/16/2022] Open
Abstract
DNA-single strand annealing proteins (SSAPs) are recombinases frequently encoded in the genome of many bacteriophages. As SSAPs can promote homologous recombination among DNA substrates with an important degree of divergence, these enzymes are involved both in DNA repair and in the generation of phage mosaicisms. Here, analysing Sak and Sak4 as representatives of two different families of SSAPs present in phages infecting the clinically relevant bacterium Staphylococcus aureus, we demonstrate for the first time that these enzymes are absolutely required for phage reproduction. Deletion of the genes encoding these enzymes significantly reduced phage replication and the generation of infectious particles. Complementation studies revealed that these enzymes are required both in the donor (after prophage induction) and in the recipient strain (for infection). Moreover, our results indicated that to perform their function SSAPs require the activity of their cognate single strand binding (Ssb) proteins. Mutational studies demonstrated that the Ssb proteins are also required for phage replication, both in the donor and recipient strain. In summary, our results expand the functions attributed to the Sak and Sak4 proteins, and demonstrate that both SSAPs and Ssb proteins are essential for the life cycle of temperate staphylococcal phages.
Collapse
Affiliation(s)
- Maan M Neamah
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK.,Department of Microbiology, Faculty of Veterinary Medicine, University of Kufa, Kufa, Iraq
| | - Ignacio Mir-Sanchis
- Departamento de Ciencias Biomédicas, Universidad CEU Cardenal Herrera, 46113 Moncada, Valencia, Spain
| | - María López-Sanz
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 28049 Madrid, Spain
| | - Sonia Acosta
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 28049 Madrid, Spain
| | - Ignacio Baquedano
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 28049 Madrid, Spain
| | - Andreas F Haag
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Alberto Marina
- Instituto de Biomedicina de Valencia (IBV-CSIC) and CIBER de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
| | - Silvia Ayora
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 28049 Madrid, Spain
| | - José R Penadés
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| |
Collapse
|
21
|
Molecular analysis of the low-temperature Escherichia coli phage vB_EcoS_NBD2. Arch Virol 2017; 163:105-114. [PMID: 29018963 DOI: 10.1007/s00705-017-3589-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 08/26/2017] [Indexed: 12/23/2022]
Abstract
A novel low-temperature Escherichia coli phage vB_EcoS_NBD2 was isolated in Lithuania from agricultural soil. With an optimum temperature for plating around 20 °C, vB_EcoS_NBD2 efficiently produced plaques on Escherichia coli NovaBlue (DE3) at a temperature range of 10-30 °C, yet failed to plate at temperatures above 35 °C. Phage vB_EcoS_NBD2 virions have a siphoviral morphology with an isometric head (65 nm in diameter), and a non-contractile flexible tail (170 nm). The 51,802-bp genome of vB_EcoS_NBD2 has a G + C content of 49.8%, and contains 87 probable protein-encoding genes as well as 1 gene for tRNASer. Comparative sequence analysis revealed that 22 vB_EcoS_NBD2 ORFs encode unique proteins that have no reliable identity to database entries. Based on homology to biologically defined proteins and/or proteomics analysis, 36 vB_EcoS_NBD2 ORFs were given a putative functional annotation, including 20 genes coding for morphogenesis-related proteins and 13 associated with DNA metabolism. Phylogenetic analysis revealed that vB_EcoS_NBD2 belongs to the subfamily Tunavirinae, but cannot be assigned to any genus currently recognized by ICTV.
Collapse
|
22
|
Ménage à trois in the human gut: interactions between host, bacteria and phages. Nat Rev Microbiol 2017; 15:397-408. [DOI: 10.1038/nrmicro.2017.30] [Citation(s) in RCA: 205] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
Jurczak-Kurek A, Gąsior T, Nejman-Faleńczyk B, Bloch S, Dydecka A, Topka G, Necel A, Jakubowska-Deredas M, Narajczyk M, Richert M, Mieszkowska A, Wróbel B, Węgrzyn G, Węgrzyn A. Biodiversity of bacteriophages: morphological and biological properties of a large group of phages isolated from urban sewage. Sci Rep 2016; 6:34338. [PMID: 27698408 PMCID: PMC5048108 DOI: 10.1038/srep34338] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/13/2016] [Indexed: 12/31/2022] Open
Abstract
A large scale analysis presented in this article focuses on biological and physiological variety of bacteriophages. A collection of 83 bacteriophages, isolated from urban sewage and able to propagate in cells of different bacterial hosts, has been obtained (60 infecting Escherichia coli, 10 infecting Pseudomonas aeruginosa, 4 infecting Salmonella enterica, 3 infecting Staphylococcus sciuri, and 6 infecting Enterococcus faecalis). High biological diversity of the collection is indicated by its characteristics, both morphological (electron microscopic analyses) and biological (host range, plaque size and morphology, growth at various temperatures, thermal inactivation, sensitivity to low and high pH, sensitivity to osmotic stress, survivability upon treatment with organic solvents and detergents), and further supported by hierarchical cluster analysis. By the end of the research no larger collection of phages from a single environmental source investigated by these means had been found. The finding was confirmed by whole genome analysis of 7 selected bacteriophages. Moreover, particular bacteriophages revealed unusual biological features, like the ability to form plaques at low temperature (4 °C), resist high temperature (62 °C or 95 °C) or survive in the presence of an organic solvents (ethanol, acetone, DMSO, chloroform) or detergent (SDS, CTAB, sarkosyl) making them potentially interesting in the context of biotechnological applications.
Collapse
Affiliation(s)
- Agata Jurczak-Kurek
- Department of Molecular Evolution University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Tomasz Gąsior
- Laboratory of Molecular Biology (affiliated with University of Gdańsk), Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Bożena Nejman-Faleńczyk
- Department of Molecular Biology, and University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Sylwia Bloch
- Department of Molecular Biology, and University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Aleksandra Dydecka
- Department of Molecular Biology, and University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Gracja Topka
- Department of Molecular Biology, and University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Agnieszka Necel
- Department of Molecular Biology, and University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Magdalena Jakubowska-Deredas
- Department of Genetics and Marine Biotechnology, Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
| | - Magdalena Narajczyk
- Laboratory of Electron Microscopy, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Malwina Richert
- Laboratory of Electron Microscopy, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Agata Mieszkowska
- Department of Molecular Evolution University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Borys Wróbel
- Department of Genetics and Marine Biotechnology, Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
- Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznań, Umultowska 89, 61-614, Poznań, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, and University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Alicja Węgrzyn
- Laboratory of Molecular Biology (affiliated with University of Gdańsk), Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Wita Stwosza 59, 80-308 Gdańsk, Poland
| |
Collapse
|
24
|
Khalil RKS, Skinner C, Patfield S, He X. Phage-mediated Shiga toxin (Stx) horizontal gene transfer and expression in non-Shiga toxigenic Enterobacter and Escherichia coli strains. Pathog Dis 2016; 74:ftw037. [PMID: 27109772 DOI: 10.1093/femspd/ftw037] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2016] [Indexed: 10/21/2022] Open
Abstract
Enterobacter cloacae M12X01451 strain recently identified from a clinical specimen produces a new Stx1 subtype (Stx1e) that was not neutralized by existing anti-Stx1 monoclonal antibodies. Acquisition of stx by Ent. cloacae is rare and origin/stability of stx1e in M12X01451 is not known. In this study, we confirmed the ability of Stx1a- and Stx1e-converting phages from an Escherichia coli O157:H7 strain RM8530 and M12X01451 respectively to infect several E. coli and Ent. cloacae strains. stx1e was detected in 97.5% and 72.5% of progenies of strains lysogenized by stx1e phage after 10 (T10) and 20 (T20) subcultures, versus 65% and 17.5% for stx1a gene. Infection of M12X01451 and RM8530 with each other's phages generated double lysogens containing both phages. stx1a was lost after T10, whereas the stx1e was maintained even after T20 in M12X01451 lysogens. In RM8530 lysogens, the acquired stx1e was retained with no mutations, but 20% of stx1a was lost after T20 ELISA and western blot analyses demonstrated that Stx1e was produced in all strains lysogenized by stx1e phage; however, Stx1a was not detected in any lysogenized strain. The study results highlight the potential risks of emerging Stx-producing strains via bacteriophages either in the human gastrointestinal tract or in food production environments, which are matters of great concern and may have serious impacts on human health.
Collapse
Affiliation(s)
- Rowaida K S Khalil
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
| | - Craig Skinner
- Western Regional Research Center, U.S. Department of Agriculture, Agricultural Research Service, 800 Buchanan Street, Albany, CA 94710, USA
| | - Stephanie Patfield
- Western Regional Research Center, U.S. Department of Agriculture, Agricultural Research Service, 800 Buchanan Street, Albany, CA 94710, USA
| | - Xiaohua He
- Western Regional Research Center, U.S. Department of Agriculture, Agricultural Research Service, 800 Buchanan Street, Albany, CA 94710, USA
| |
Collapse
|
25
|
De Paepe M, Tournier L, Moncaut E, Son O, Langella P, Petit MA. Carriage of λ Latent Virus Is Costly for Its Bacterial Host due to Frequent Reactivation in Monoxenic Mouse Intestine. PLoS Genet 2016; 12:e1005861. [PMID: 26871586 PMCID: PMC4752277 DOI: 10.1371/journal.pgen.1005861] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 01/22/2016] [Indexed: 01/21/2023] Open
Abstract
Temperate phages, the bacterial viruses able to enter in a dormant prophage state in bacterial genomes, are present in the majority of bacterial strains for which the genome sequence is available. Although these prophages are generally considered to increase their hosts’ fitness by bringing beneficial genes, studies demonstrating such effects in ecologically relevant environments are relatively limited to few bacterial species. Here, we investigated the impact of prophage carriage in the gastrointestinal tract of monoxenic mice. Combined with mathematical modelling, these experimental results provided a quantitative estimation of key parameters governing phage-bacteria interactions within this model ecosystem. We used wild-type and mutant strains of the best known host/phage pair, Escherichia coli and phage λ. Unexpectedly, λ prophage caused a significant fitness cost for its carrier, due to an induction rate 50-fold higher than in vitro, with 1 to 2% of the prophage being induced. However, when prophage carriers were in competition with isogenic phage susceptible bacteria, the prophage indirectly benefited its carrier by killing competitors: infection of susceptible bacteria led to phage lytic development in about 80% of cases. The remaining infected bacteria were lysogenized, resulting overall in the rapid lysogenization of the susceptible lineage. Moreover, our setup enabled to demonstrate that rare events of phage gene capture by homologous recombination occurred in the intestine of monoxenic mice. To our knowledge, this study constitutes the first quantitative characterization of temperate phage-bacteria interactions in a simplified gut environment. The high prophage induction rate detected reveals DNA damage-mediated SOS response in monoxenic mouse intestine. We propose that the mammalian gut, the most densely populated bacterial ecosystem on earth, might foster bacterial evolution through high temperate phage activity. Dormant bacterial viruses, or prophages, are found in the genomes of almost all bacteria, but their impact on bacterial host fitness is largely unknown. Through experiments in mice, supported by a mathematical model, we quantified the activity of Escherichia coli prophage λ in monoxenic mouse gut, as well as its impact on its carrier bacteria. λ carriage negatively impacted its hosts due to frequent reactivation, but indirectly benefited its host by killing susceptible bacterial competitors. The high prophage activity unraveled in this study reflects a constant rate of SOS response, resulting from DNA damage in monoxenic mouse intestine. Our results should motivate researchers to take the presence of prophages into account when studying the action of specific bacteria in the gastrointestinal tract of mammals.
Collapse
Affiliation(s)
- Marianne De Paepe
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
- * E-mail:
| | | | - Elisabeth Moncaut
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Olivier Son
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Philippe Langella
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Marie-Agnès Petit
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
26
|
Oxidative Stress in Shiga Toxin Production by Enterohemorrhagic Escherichia coli. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:3578368. [PMID: 26798420 PMCID: PMC4699097 DOI: 10.1155/2016/3578368] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 09/30/2015] [Indexed: 12/28/2022]
Abstract
Virulence of enterohemorrhagic Escherichia coli (EHEC) strains depends on production of Shiga toxins. These toxins are encoded in genomes of lambdoid bacteriophages (Shiga toxin-converting phages), present in EHEC cells as prophages. The genes coding for Shiga toxins are silent in lysogenic bacteria, and prophage induction is necessary for their efficient expression and toxin production. Under laboratory conditions, treatment with UV light or antibiotics interfering with DNA replication are commonly used to induce lambdoid prophages. Since such conditions are unlikely to occur in human intestine, various research groups searched for other factors or agents that might induce Shiga toxin-converting prophages. Among other conditions, it was reported that treatment with H2O2 caused induction of these prophages, though with efficiency significantly lower relative to UV-irradiation or mitomycin C treatment. A molecular mechanism of this phenomenon has been proposed. It appears that the oxidative stress represents natural conditions provoking induction of Shiga toxin-converting prophages as a consequence of H2O2 excretion by either neutrophils in infected humans or protist predators outside human body. Finally, the recently proposed biological role of Shiga toxin production is described in this paper, and the “bacterial altruism” and “Trojan Horse” hypotheses, which are connected to the oxidative stress, are discussed.
Collapse
|
27
|
The Role of the Exo-Xis Region in Oxidative Stress-Mediated Induction of Shiga Toxin-Converting Prophages. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:8453135. [PMID: 26798427 PMCID: PMC4699033 DOI: 10.1155/2016/8453135] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 09/22/2015] [Accepted: 09/28/2015] [Indexed: 11/17/2022]
Abstract
Previous studies indicated that these genetic elements could be involved in the regulation of lysogenization and prophage induction processes. The effects were dramatic in Shiga toxin-converting phage Φ24(B) after treatment with oxidative stress-inducing agent, hydrogen peroxide, while they were less pronounced in bacteriophage λ and in both phages irradiated with UV. The hydrogen peroxide-caused prophage induction was found to be RecA-dependent. Importantly, in hydrogen peroxide-treated E. coli cells lysogenic for either λ or Φ24(B), deletion of the exo-xis region resulted in a significant decrease in the levels of expression of the S.O.S. regulon genes. Moreover, under these conditions, a dramatic decrease in the levels of expression of phage genes crucial for lytic development (particularly xis, exo, N, cro, O, Q, and R) could be observed in Φ24(B)-, but not in λ-bearing cells. We conclude that genes located in the exo-xis region are necessary for efficient expression of both host S.O.S regulon in lysogenic bacteria and regulatory genes of Shiga toxin-converting bacteriophage Φ24(B).
Collapse
|
28
|
Bloch S, Nejman-Faleńczyk B, Topka G, Dydecka A, Licznerska K, Narajczyk M, Necel A, Węgrzyn A, Węgrzyn G. UV-Sensitivity of Shiga Toxin-Converting Bacteriophage Virions Φ24B, 933W, P22, P27 and P32. Toxins (Basel) 2015; 7:3727-39. [PMID: 26402701 PMCID: PMC4591643 DOI: 10.3390/toxins7093727] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 09/14/2015] [Accepted: 09/16/2015] [Indexed: 01/19/2023] Open
Abstract
Shiga toxin-converting bacteriophages (Stx phages) are present as prophages in Shiga toxin-producing Escherichia coli (STEC) strains. Theses phages can be transmitted to previously non-pathogenic E. coli cells making them potential producers of Shiga toxins, as they bear genes for these toxins in their genomes. Therefore, sensitivity of Stx phage virions to various conditions is important in both natural processes of spreading of these viruses and potential prophylactic control of appearance of novel pathogenic E. coli strains. In this report we provide evidence that virions of Stx phages are significantly more sensitive to UV irradiation than bacteriophage λ. Following UV irradiation of Stx virions at the dose of 50 J/m2, their infectivity dropped by 1–3 log10, depending on the kind of phage. Under these conditions, a considerable release of phage DNA from virions was observed, and electron microscopy analyses indicated a large proportion of partially damaged virions. Infection of E. coli cells with UV-irradiated Stx phages resulted in significantly decreased levels of expression of N and cro genes, crucial for lytic development. We conclude that inactivation of Stx virions caused by relatively low dose of UV light is due to damage of capsids that prevents effective infection of the host cells.
Collapse
Affiliation(s)
- Sylwia Bloch
- Department of Molecular Biology, University of Gdańsk, Wita Stwosza 59, Gdańsk 80-308, Poland.
| | - Bożena Nejman-Faleńczyk
- Department of Molecular Biology, University of Gdańsk, Wita Stwosza 59, Gdańsk 80-308, Poland.
| | - Gracja Topka
- Department of Molecular Biology, University of Gdańsk, Wita Stwosza 59, Gdańsk 80-308, Poland.
| | - Aleksandra Dydecka
- Department of Molecular Biology, University of Gdańsk, Wita Stwosza 59, Gdańsk 80-308, Poland.
| | - Katarzyna Licznerska
- Department of Molecular Biology, University of Gdańsk, Wita Stwosza 59, Gdańsk 80-308, Poland.
| | - Magdalena Narajczyk
- Laboratory of Electron Microscopy, University of Gdańsk, Wita Stwosza 59, Gdańsk 80-308, Poland.
| | - Agnieszka Necel
- Department of Molecular Biology, University of Gdańsk, Wita Stwosza 59, Gdańsk 80-308, Poland.
| | - Alicja Węgrzyn
- Laboratory of Molecular Biology (affiliated with the University of Gdańsk), Polish Academy of Sciences, Wita Stwosza 59, Gdańsk 80-308, Poland.
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdańsk, Wita Stwosza 59, Gdańsk 80-308, Poland.
| |
Collapse
|
29
|
Motlagh AM, Bhattacharjee AS, Goel R. Microbiological study of bacteriophage induction in the presence of chemical stress factors in enhanced biological phosphorus removal (EBPR). WATER RESEARCH 2015; 81:1-14. [PMID: 26024959 DOI: 10.1016/j.watres.2015.04.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 04/10/2015] [Accepted: 04/11/2015] [Indexed: 06/04/2023]
Abstract
Polyphosphate accumulating organisms (PAOs) are responsible for carrying the enhanced biological phosphorus removal (EBPR). Although the EBPR process is well studied, the failure of EBPR performance at both laboratory and full-scale plants has revealed a lack of knowledge about the ecological and microbiological aspects of EBPR processes. Bacteriophages are viruses that infect bacteria as their sole host. Bacteriophage infection of polyphosphate accumulating organisms (PAOs) has not been considered as a main contributor to biological phosphorus removal upsets. This study examined the effects of different stress factors on the dynamics of bacteriophages and the corresponding effects on the phosphorus removal performance in a lab-scale EBPR system. The results showed that copper (heavy metal), cyanide (toxic chemical), and ciprofloxacin (antibiotic), as three different anthropogenic stress factors, can induce phages integrated onto bacterial genomes (i.e. prophages) in an enriched EBPR sequencing batch reactor, resulting in a decrease in the polyphosphate kinase gene ppk1 clades copy number, phosphorus accumulation capacity, and phosphorus removal performance. This study opens opportunities for further research on the effects of bacteriophages in nutrient cycles both in controlled systems such as wastewater treatment plants and natural ecosystems.
Collapse
Affiliation(s)
- Amir Mohaghegh Motlagh
- Department of Civil and Environmental Engineering, University of Utah, 110 S Central Campus Drive, Salt Lake City, UT 84112, USA
| | - Ananda S Bhattacharjee
- Department of Civil and Environmental Engineering, University of Utah, 110 S Central Campus Drive, Salt Lake City, UT 84112, USA
| | - Ramesh Goel
- Department of Civil and Environmental Engineering, University of Utah, 110 S Central Campus Drive, Salt Lake City, UT 84112, USA.
| |
Collapse
|
30
|
Nejman-Faleńczyk B, Bloch S, Licznerska K, Felczykowska A, Dydecka A, Węgrzyn A, Węgrzyn G. Small regulatory RNAs in lambdoid bacteriophages and phage-derived plasmids: Not only antisense. Plasmid 2015; 78:71-8. [DOI: 10.1016/j.plasmid.2014.07.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 07/28/2014] [Accepted: 07/31/2014] [Indexed: 10/24/2022]
|
31
|
Nowicki D, Bloch S, Nejman-Faleńczyk B, Szalewska-Pałasz A, Węgrzyn A, Węgrzyn G. Defects in RNA polyadenylation impair both lysogenization by and lytic development of Shiga toxin-converting bacteriophages. J Gen Virol 2015; 96:1957-68. [PMID: 25711968 DOI: 10.1099/vir.0.000102] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In Escherichia coli, the major poly(A) polymerase (PAP I) is encoded by the pcnB gene. In this report, a significant impairment of lysogenization by Shiga toxin-converting (Stx) bacteriophages (Φ24B, 933W, P22, P27 and P32) is demonstrated in host cells with a mutant pcnB gene. Moreover, lytic development of these phages after both infection and prophage induction was significantly less efficient in the pcnB mutant than in the WT host. The increase in DNA accumulation of the Stx phages was lower under conditions of defective RNA polyadenylation. Although shortly after prophage induction, the levels of mRNAs of most phage-borne early genes were higher in the pcnB mutant, at subsequent phases of the lytic development, a drastically decreased abundance of certain mRNAs, including those derived from the N, O and Q genes, was observed in PAP I-deficient cells. All of these effects observed in the pcnB cells were significantly more strongly pronounced in the Stx phages than in bacteriophage λ. Abundance of mRNA derived from the pcnB gene was drastically increased shortly (20 min) after prophage induction by mitomycin C and decreased after the next 20 min, while no such changes were observed in non-lysogenic cells treated with this antibiotic. This prophage induction-dependent transient increase in pcnB transcript may explain the polyadenylation-driven regulation of phage gene expression.
Collapse
Affiliation(s)
- Dariusz Nowicki
- 1Department of Molecular Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Sylwia Bloch
- 1Department of Molecular Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Bożena Nejman-Faleńczyk
- 1Department of Molecular Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | | | - Alicja Węgrzyn
- 2Laboratory of Molecular Biology (affiliated with the University of Gdańsk), Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Grzegorz Węgrzyn
- 1Department of Molecular Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| |
Collapse
|
32
|
Bloch S, Nejman-Faleńczyk B, Dydecka A, Łoś JM, Felczykowska A, Węgrzyn A, Węgrzyn G. Different expression patterns of genes from the exo-xis region of bacteriophage λ and Shiga toxin-converting bacteriophage Ф24B following infection or prophage induction in Escherichia coli. PLoS One 2014; 9:e108233. [PMID: 25310402 PMCID: PMC4195576 DOI: 10.1371/journal.pone.0108233] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 08/28/2014] [Indexed: 11/19/2022] Open
Abstract
Lambdoid bacteriophages serve as useful models in microbiological and molecular studies on basic biological process. Moreover, this family of viruses plays an important role in pathogenesis of enterohemorrhagic Escherichia coli (EHEC) strains, as they are carriers of genes coding for Shiga toxins. Efficient expression of these genes requires lambdoid prophage induction and multiplication of the phage genome. Therefore, understanding the mechanisms regulating these processes appears essential for both basic knowledge and potential anti-EHEC applications. The exo-xis region, present in genomes of lambdoid bacteriophages, contains highly conserved genes of largely unknown functions. Recent report indicated that the Ea8.5 protein, encoded in this region, contains a newly discovered fused homeodomain/zinc-finger fold, suggesting its plausible regulatory role. Moreover, subsequent studies demonstrated that overexpression of the exo-xis region from a multicopy plasmid resulted in impaired lysogenization of E. coli and more effective induction of λ and Ф24B prophages. In this report, we demonstrate that after prophage induction, the increase in phage DNA content in the host cells is more efficient in E. coli bearing additional copies of the exo-xis region, while survival rate of such bacteria is lower, which corroborated previous observations. Importantly, by using quantitative real-time reverse transcription PCR, we have determined patterns of expressions of particular genes from this region. Unexpectedly, in both phages λ and Ф24B, these patterns were significantly different not only between conditions of the host cells infection by bacteriophages and prophage induction, but also between induction of prophages with various agents (mitomycin C and hydrogen peroxide). This may shed a new light on our understanding of regulation of lambdoid phage development, depending on the mode of lytic cycle initiation.
Collapse
Affiliation(s)
- Sylwia Bloch
- Department of Molecular Biology, University of Gdańsk, Gdańsk, Poland
| | | | | | - Joanna M. Łoś
- Department of Molecular Biology, University of Gdańsk, Gdańsk, Poland
| | | | - Alicja Węgrzyn
- Department of Microbiology, University of Szczecin, Szczecin, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdańsk, Gdańsk, Poland
- * E-mail:
| |
Collapse
|
33
|
Westerhoff HV, Brooks AN, Simeonidis E, García-Contreras R, He F, Boogerd FC, Jackson VJ, Goncharuk V, Kolodkin A. Macromolecular networks and intelligence in microorganisms. Front Microbiol 2014; 5:379. [PMID: 25101076 PMCID: PMC4106424 DOI: 10.3389/fmicb.2014.00379] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 07/05/2014] [Indexed: 11/13/2022] Open
Abstract
Living organisms persist by virtue of complex interactions among many components organized into dynamic, environment-responsive networks that span multiple scales and dimensions. Biological networks constitute a type of information and communication technology (ICT): they receive information from the outside and inside of cells, integrate and interpret this information, and then activate a response. Biological networks enable molecules within cells, and even cells themselves, to communicate with each other and their environment. We have become accustomed to associating brain activity - particularly activity of the human brain - with a phenomenon we call "intelligence." Yet, four billion years of evolution could have selected networks with topologies and dynamics that confer traits analogous to this intelligence, even though they were outside the intercellular networks of the brain. Here, we explore how macromolecular networks in microbes confer intelligent characteristics, such as memory, anticipation, adaptation and reflection and we review current understanding of how network organization reflects the type of intelligence required for the environments in which they were selected. We propose that, if we were to leave terms such as "human" and "brain" out of the defining features of "intelligence," all forms of life - from microbes to humans - exhibit some or all characteristics consistent with "intelligence." We then review advances in genome-wide data production and analysis, especially in microbes, that provide a lens into microbial intelligence and propose how the insights derived from quantitatively characterizing biomolecular networks may enable synthetic biologists to create intelligent molecular networks for biotechnology, possibly generating new forms of intelligence, first in silico and then in vivo.
Collapse
Affiliation(s)
- Hans V. Westerhoff
- Department of Molecular Cell Physiology, Vrije Universiteit AmsterdamAmsterdam, Netherlands
- Manchester Centre for Integrative Systems Biology, The University of ManchesterManchester, UK
- Synthetic Systems Biology, University of AmsterdamAmsterdam, Netherlands
| | - Aaron N. Brooks
- Institute for Systems BiologySeattle, WA, USA
- Molecular and Cellular Biology Program, University of WashingtonSeattle, WA, USA
| | - Evangelos Simeonidis
- Institute for Systems BiologySeattle, WA, USA
- Luxembourg Centre for Systems Biomedicine, University of LuxembourgEsch-sur-Alzette, Luxembourg
| | | | - Fei He
- Department of Automatic Control and Systems Engineering, The University of SheffieldSheffield, UK
| | - Fred C. Boogerd
- Department of Molecular Cell Physiology, Vrije Universiteit AmsterdamAmsterdam, Netherlands
| | | | - Valeri Goncharuk
- Netherlands Institute for NeuroscienceAmsterdam, Netherlands
- Russian Cardiology Research CenterMoscow, Russia
- Department of Medicine, Center for Alzheimer and Neurodegenerative Research, University of AlbertaEdmonton, AB, Canada
| | - Alexey Kolodkin
- Institute for Systems BiologySeattle, WA, USA
- Luxembourg Centre for Systems Biomedicine, University of LuxembourgEsch-sur-Alzette, Luxembourg
| |
Collapse
|
34
|
Olszewski P, Szambowska A, Barałska S, Narajczyk M, Węgrzyn G, Glinkowska M. A dual promoter system regulating λ DNA replication initiation. Nucleic Acids Res 2014; 42:4450-62. [PMID: 24500197 PMCID: PMC3985674 DOI: 10.1093/nar/gku103] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Transcription and DNA replication are tightly regulated to ensure coordination of gene expression with growth conditions and faithful transmission of genetic material to progeny. A large body of evidence has accumulated, indicating that encounters between protein machineries carrying out DNA and RNA synthesis occur in vivo and may have important regulatory consequences. This feature may be exacerbated in the case of compact genomes, like the one of bacteriophage λ, used in our study. Transcription that starts at the rightward pR promoter and proceeds through the λ origin of replication and downstream of it was proven to stimulate the initiation of λ DNA replication. Here, we demonstrate that the activity of a convergently oriented pO promoter decreases the efficiency of transcription starting from pR. Our results show, however, that a lack of the functional pO promoter negatively influences λ phage and λ-derived plasmid replication. We present data, suggesting that this effect is evoked by the enhanced level of the pR-driven transcription, occurring in the presence of the defective pO, which may result in the impeded formation of the replication initiation complex. Our data suggest that the cross talk between the two promoters regulates λ DNA replication and coordinates transcription and replication processes.
Collapse
Affiliation(s)
- Paweł Olszewski
- Department of Molecular Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland, Laboratory of Molecular Biology (affiliated with the University of Gdańsk), Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Wita Stwosza 59, 80-308 Gdańsk, Poland and Laboratory of Electron Microscopy, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | | | | | | | | | | |
Collapse
|
35
|
Phenethyl isothiocyanate inhibits shiga toxin production in enterohemorrhagic Escherichia coli by stringent response induction. Antimicrob Agents Chemother 2014; 58:2304-15. [PMID: 24492371 DOI: 10.1128/aac.02515-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The pathogenicity of enterohemorrhagic Escherichia coli (EHEC) depends on production of Shiga toxins, which are encoded by stx genes located in the genomes of lambdoid prophages. Efficient expression of these genes requires prophage induction and lytic development of phages. Treatment of EHEC infections is problematic due to not only the resistance of various strains to antibiotics but also the fact that many antibiotics cause prophage induction, thus resulting in high-level expression of stx genes. Here we report that E. coli growth, Shiga toxin-converting phage development, and production of the toxin by EHEC are strongly inhibited by phenethyl isothiocyanate (PEITC). We demonstrate that PEITC induces the stringent response in E. coli that is mediated by massive production of a global regulator, guanosine tetraphosphate (ppGpp). The stringent response induction arises most probably from interactions of PEITC with amino acids and from amino acid deprivation-mediated activation of ppGpp synthesis. In mutants unable to synthesize ppGpp, development of Shiga toxin-converting phages and production of Shiga toxin are significantly enhanced. Therefore, ppGpp, which appears at high levels in bacterial cells after stimulation of its production by PEITC, is a negative regulator of EHEC virulence and at the same time efficiently inhibits bacterial growth. This is in contrast to stimulation of virulence of different bacteria by this nucleotide reported previously by others.
Collapse
|
36
|
ppGpp-dependent negative control of DNA replication of Shiga toxin-converting bacteriophages in Escherichia coli. J Bacteriol 2013; 195:5007-15. [PMID: 23995636 DOI: 10.1128/jb.00592-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The pathogenicity of enterohemorrhagic Escherichia coli (EHEC) strains depends on the production of Shiga toxins that are encoded on lambdoid prophages. Effective production of these toxins requires prophage induction and subsequent phage replication. Previous reports indicated that lytic development of Shiga toxin-converting bacteriophages is inhibited in amino acid-starved bacteria. However, those studies demonstrated that inhibition of both phage-derived plasmid replication and production of progeny virions occurred during the stringent as well as the relaxed response to amino acid starvation, i.e., in the presence as well as the absence of high levels of ppGpp, an alarmone of the stringent response. Therefore, we asked whether ppGpp influences DNA replication and lytic development of Shiga toxin-converting bacteriophages. Lytic development of 5 such bacteriophages was tested in an E. coli wild-type strain and an isogenic mutant that does not produce ppGpp (ppGpp(0)). In the absence of ppGpp, production of progeny phages was significantly (in the range of an order of magnitude) more efficient than in wild-type cells. Such effects were observed in infected bacteria as well as after prophage induction. All tested bacteriophages formed considerably larger plaques on lawns formed by ppGpp(0) bacteria than on those formed by wild-type E. coli. The efficiency of synthesis of phage DNA and relative amount of lambdoid plasmid DNA were increased in cells devoid of ppGpp relative to bacteria containing a basal level of this nucleotide. We conclude that ppGpp negatively influences the lytic development of Shiga toxin-converting bacteriophages and that phage DNA replication efficiency is limited by the stringent control alarmone.
Collapse
|
37
|
Genes from the exo-xis region of λ and Shiga toxin-converting bacteriophages influence lysogenization and prophage induction. Arch Microbiol 2013; 195:693-703. [PMID: 23979561 PMCID: PMC3824215 DOI: 10.1007/s00203-013-0920-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Revised: 07/31/2013] [Accepted: 08/09/2013] [Indexed: 01/17/2023]
Abstract
The exo–xis region, present in genomes of lambdoid bacteriophages, contains highly conserved genes of largely unknown functions. In this report, using bacteriophage λ and Shiga toxin-converting bacteriophage ϕ24Β, we demonstrate that the presence of this region on a multicopy plasmid results in impaired lysogenization of Escherichia coli and delayed, while more effective, induction of prophages following stimulation by various agents (mitomycin C, hydrogen peroxide, UV irradiation). Spontaneous induction of λ and ϕ24Β prophages was also more efficient in bacteria carrying additional copies of the corresponding exo–xis region on plasmids. No significant effects of an increased copy number of genes located between exo and xis on both efficiency of adsorption on the host cells and lytic development inside the host cell of these bacteriophages were found. We conclude that genes from the exo–xis region of lambdoid bacteriophages participate in the regulation of lysogenization and prophage maintenance.
Collapse
|
38
|
Abstract
Pseudolysogeny can be defined as the stage of stalled development of a bacteriophage in a host cell without either multiplication of the phage genome (as in lytic development) or its replication synchronized with the cell cycle and stable maintenance in the cell line (as in lysogenization), which proceeds with no viral genome degradation, thus allowing the subsequent restart of virus development. This phenomenon is usually caused by unfavorable growth conditions for the host cell (such as starvation) and is terminated with initiation of either true lysogenization or lytic growth when growth conditions improve. Pseudolysogeny has been known for tens of years; however, its role has often been underestimated. Currently, it is being considered more often as an important aspect of phage-host interactions. The reason for this is mostly an increased interest in phage-host interactions in the natural environment. Pseudolysogeny seems to play an important role in phage survival, as bacteria in a natural environment are starved or their growth is very slow. This phenomenon can be an important aspect of phage-dependent bacterial mortality and may influence the virulence of some bacterial strains.
Collapse
Affiliation(s)
- Marcin Łoś
- Department of Molecular Biology, University of Gdańsk, Gdańsk, Poland
| | | |
Collapse
|
39
|
Barańska S, Glinkowska M, Herman-Antosiewicz A, Maciąg-Dorszyńska M, Nowicki D, Szalewska-Pałasz A, Węgrzyn A, Węgrzyn G. Replicating DNA by cell factories: roles of central carbon metabolism and transcription in the control of DNA replication in microbes, and implications for understanding this process in human cells. Microb Cell Fact 2013; 12:55. [PMID: 23714207 PMCID: PMC3698200 DOI: 10.1186/1475-2859-12-55] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 05/26/2013] [Indexed: 12/29/2022] Open
Abstract
Precise regulation of DNA replication is necessary to ensure the inheritance of genetic features by daughter cells after each cell division. Therefore, determining how the regulatory processes operate to control DNA replication is crucial to our understanding and application to biotechnological processes. Contrary to early concepts of DNA replication, it appears that this process is operated by large, stationary nucleoprotein complexes, called replication factories, rather than by single enzymes trafficking along template molecules. Recent discoveries indicated that in bacterial cells two processes, central carbon metabolism (CCM) and transcription, significantly and specifically influence the control of DNA replication of various replicons. The impact of these discoveries on our understanding of the regulation of DNA synthesis is discussed in this review. It appears that CCM may influence DNA replication by either action of specific metabolites or moonlighting activities of some enzymes involved in this metabolic pathway. The role of transcription in the control of DNA replication may arise from either topological changes in nucleic acids which accompany RNA synthesis or direct interactions between replication and transcription machineries. Due to intriguing similarities between some prokaryotic and eukaryotic regulatory systems, possible implications of studies on regulation of microbial DNA replication on understanding such a process occurring in human cells are discussed.
Collapse
Affiliation(s)
- Sylwia Barańska
- Department of Molecular Biology, University of Gdańsk, Wita Stwosza 59, Gdańsk 80-308, Poland
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Loś JM, Loś M, Węgrzyn A, Węgrzyn G. Altruism of Shiga toxin-producing Escherichia coli: recent hypothesis versus experimental results. Front Cell Infect Microbiol 2013; 2:166. [PMID: 23316482 PMCID: PMC3539655 DOI: 10.3389/fcimb.2012.00166] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 12/11/2012] [Indexed: 12/24/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) may cause bloody diarrhea and hemorrhagic colitis (HC), with subsequent systemic disease. Since genes coding for Shiga toxins (stx genes) are located on lambdoid prophages, their effective production occurs only after prophage induction. Such induction and subsequent lytic development of Shiga toxin-converting bacteriophages results not only in production of toxic proteins, but also in the lysis (and thus, the death) of the host cell. Therefore, one may ask the question: what is the benefit for bacteria to produce the toxin if they die due to phage production and subsequent cell lysis? Recently, a hypothesis was proposed (simultaneously but independently by two research groups) that STEC may benefit from Shiga toxin production as a result of toxin-dependent killing of eukaryotic cells such as unicellular predators or human leukocytes. This hypothesis could make sense only if we assume that prophage induction (and production of the toxin) occurs only in a small fraction of bacterial cells, thus, a few members of the population are sacrificed for the benefit of the rest, providing an example of “bacterial altruism.” However, various reports indicating that the frequency of spontaneous induction of Shiga toxin-converting prophages is higher than that of other lambdoid prophages might seem to contradict the for-mentioned model. On the other hand, analysis of recently published results, discussed here, indicated that the efficiency of prophage excision under conditions that may likely occur in the natural habitat of STEC is sufficiently low to ensure survival of a large fraction of the bacterial host. A molecular mechanism by which partial prophage induction may occur is proposed. We conclude that the published data supports the proposed model of bacterial “altruism” where prophage induction occurs at a low enough frequency to render toxin production a positive selective force on the general STEC population.
Collapse
Affiliation(s)
- Joanna M Loś
- Laboratory of Molecular Genetics, Department of Molecular Biology, University of Gdańsk Gdańsk, Poland
| | | | | | | |
Collapse
|
41
|
Hoffman MT, Doud MS, Williams L, Zhang MQ, Ding F, Stover E, Hall D, Zhang S, Jones L, Gooch M, Fleites L, Dixon W, Gabriel D, Duan YP. Heat treatment eliminates 'Candidatus Liberibacter asiaticus' from infected citrus trees under controlled conditions. PHYTOPATHOLOGY 2013; 103:15-22. [PMID: 23035631 DOI: 10.1094/phyto-06-12-0138-r] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Huanglongbing (HLB) is one of the most destructive diseases of citrus worldwide. The three known causal agents of HLB are species of α-proteobacteria: 'Candidatus Liberibacter asiaticus', 'Ca. L. africanus', and 'Ca. L. americanus'. Previous studies have found distinct variations in temperature sensitivity and tolerance among these species. Here, we describe the use of controlled heat treatments to cure HLB caused by 'Ca. L. asiaticus', the most prevalent and heat-tolerant species. Using temperature-controlled growth chambers, we evaluated the time duration and temperature required to suppress or eliminate the 'Ca. L. asiaticus' bacterium in citrus, using various temperature treatments for time periods ranging from 2 days to 4 months. Results of quantitative polymerase chain reaction (qPCR) after treatment illustrate significant decreases in the 'Ca. L. asiaticus' bacterial titer, combined with healthy vigorous growth by all surviving trees. Repeated qPCR testing confirmed that previously infected, heat-treated plants showed no detectable levels of 'Ca. L. asiaticus', while untreated control plants remained highly infected. Continuous thermal exposure to 40 to 42°C for a minimum of 48 h was sufficient to significantly reduce titer or eliminate 'Ca. L. asiaticus' bacteria entirely in HLB-affected citrus seedlings. This method may be useful for the control of 'Ca. Liberibacter'-infected plants in nursery and greenhouse settings.
Collapse
Affiliation(s)
- Michele T Hoffman
- United States Department of Agriculture, Agriculture Reserch Service, United States Horticultural Research Laboratory, Fort Pierce, FL 34945, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Bacteriophage λ, rediscovered in the early 1950s, has served as a model in molecular biology studies for decades. Although currently more complex organisms and more complicated biological systems can be studied, this phage is still an excellent model to investigate principles of biological processes occurring at the molecular level. In fact, very few other biological models provide possibilities to examine regulations of biological mechanisms as detailed as performed with λ. In this chapter, recent advances in our understanding of mechanisms of bacteriophage λ development are summarized and discussed. Particularly, studies on (i) phage DNA injection, (ii) molecular bases of the lysis-versus-lysogenization decision and the lysogenization process itself, (iii) prophage maintenance and induction, (iv), λ DNA replication, (v) phage-encoded recombination systems, (vi) transcription antitermination, (vii) formation of the virion structure, and (viii) lysis of the host cell, as published during several past years, will be presented.
Collapse
|
43
|
Łoś JM, Łoś M, Węgrzyn G. Bacteriophages carrying Shiga toxin genes: genomic variations, detection and potential treatment of pathogenic bacteria. Future Microbiol 2011; 6:909-24. [DOI: 10.2217/fmb.11.70] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Although most Escherichia coli strains occur in the mammalian intestine as commensals, some of them, including enterohemorrhagic E. coli (EHEC), are capable of causing disease in humans. The most notorious virulence factors of EHEC are Shiga toxins, encoded by genes located on genomes of lambdoid prophages. Production and release of these toxins is strongly stimulated after the induction of these prophages. Many antibiotics used to treat bacterial infections stimulate induction of Shiga toxin-converting prophages, enhancing severity of the disease symptoms. Hence, treatment with antibiotics is not recommended if infection with EHEC is confirmed or even suspected. In this light, rapid detection of EHEC is crucial, and understanding the mechanisms of prophage induction and phage development in the human intestine is important to facilitate development of procedures preventing or alleviating Shiga toxin-caused diseases.
Collapse
Affiliation(s)
- Joanna M Łoś
- Department of Molecular Biology, University of Gdansk, Kladki 24, 80–822 Gdansk, Poland
| | - Marcin Łoś
- Department of Molecular Biology, University of Gdansk, Kladki 24, 80–822 Gdansk, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01–224 Warsaw, Poland
| | | |
Collapse
|
44
|
Recombination-dependent concatemeric viral DNA replication. Virus Res 2011; 160:1-14. [PMID: 21708194 DOI: 10.1016/j.virusres.2011.06.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 06/07/2011] [Accepted: 06/10/2011] [Indexed: 11/24/2022]
Abstract
The initiation of viral double stranded (ds) DNA replication involves proteins that recruit and load the replisome at the replication origin (ori). Any block in replication fork progression or a programmed barrier may act as a factor for ori-independent remodelling and assembly of a new replisome at the stalled fork. Then replication initiation becomes dependent on recombination proteins, a process called recombination-dependent replication (RDR). RDR, which is recognized as being important for replication restart and stability in all living organisms, plays an essential role in the replication cycle of many dsDNA viruses. The SPP1 virus, which infects Bacillus subtilis cells, serves as a paradigm to understand the links between replication and recombination in circular dsDNA viruses. SPP1-encoded initiator and replisome assembly proteins control the onset of viral replication and direct the recruitment of host-encoded replisomal components at viral oriL. SPP1 uses replication fork reactivation to switch from ori-dependent θ-type (circle-to-circle) replication to σ-type RDR. Replication fork arrest leads to a double strand break that is processed by viral-encoded factors to generate a D-loop into which a new replisome is assembled, leading to σ-type viral replication. SPP1 RDR proteins are compared with similar proteins encoded by other viruses and their possible in vivo roles are discussed.
Collapse
|
45
|
Zhang S, Flores-Cruz Z, Zhou L, Kang BH, Fleites LA, Gooch MD, Wulff NA, Davis MJ, Duan YP, Gabriel DW. 'Ca. Liberibacter asiaticus' carries an excision plasmid prophage and a chromosomally integrated prophage that becomes lytic in plant infections. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:458-68. [PMID: 21190436 DOI: 10.1094/mpmi-11-10-0256] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Huanglongbing (HLB), also known as citrus greening, is a lethal disease of citrus caused by several species of 'Candidatus Liberibacter', a psyllid-transmitted, phloem-limited, alpha proteobacteria. 'Ca. Liberibacter asiaticus' is widespread in Florida citrus. The recently published 'Ca. L. asiaticus' psy62 genome, derived from a psyllid, revealed a prophage-like region of DNA in the genome, but phage have not been associated with 'Ca. L. asiaticus' to date. In the present study, shotgun sequencing and a fosmid DNA library of curated 'Ca. L. asiaticus' UF506, originally derived from citrus symptomatic for HLB, revealed two largely homologous, circular phage genomes, SC1 and SC2. SC2 encoded putative adhesin and peroxidase genes that had not previously been identified in 'Ca. L. asiaticus' and which may be involved in lysogenic conversion. SC2 also appeared to lack lytic cycle genes and replicated as a prophage excision plasmid, in addition to being found integrated in tandem with SC1 in the UF506 chromosome. By contrast, SC1 carried suspected lytic cycle genes and was found in nonintegrated, lytic cycle forms only in planta. Phage particles associated with 'Ca. L. asiaticus' were found in the phloem of infected periwinkles by transmission electron microscopy. In psyllids, both SC1 and SC2 were found only as prophage.
Collapse
Affiliation(s)
- Shujian Zhang
- Plant Pathology Dept., University of Florida, Gainesville, FL 32611, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Szambowska A, Pierechod M, Wegrzyn G, Glinkowska M. Coupling of transcription and replication machineries in λ DNA replication initiation: evidence for direct interaction of Escherichia coli RNA polymerase and the λO protein. Nucleic Acids Res 2010; 39:168-77. [PMID: 20833633 PMCID: PMC3017604 DOI: 10.1093/nar/gkq752] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Transcription proceeding downstream of the λ phage replication origin was previously shown to support initial steps of the λ primosome assembly in vitro and to regulate frequency and directionality of λ DNA replication in vivo. In this report, the data are presented indicating that the RNA polymerase β subunit makes a direct contact with the λO protein, a replication initiator of λ phage. These results suggest that the role of RNA polymerase during the initiation of λ phage DNA replication may be more complex than solely influencing DNA topology. Results demonstrated in this study also show that gyrase supercoiling activity stimulates the formation of a complex between λO and RNA polymerase, suggesting that the introduction of negative supercoils by DNA gyrase, besides lowering the energy required for DNA strand separation, may play an additional role in modeling protein–protein interactions at early steps of DNA replication initiation.
Collapse
Affiliation(s)
- Anna Szambowska
- Laboratory of Molecular Biology (affiliated with the University of Gdańsk), Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Gdańsk, Poland
| | | | | | | |
Collapse
|
47
|
Nejman B, Nadratowska-Wesołowska B, Szalewska-Pałasz A, Węgrzyn A, Węgrzyn G. Replication of plasmids derived from Shiga toxin-converting bacteriophages in starved Escherichia coli. MICROBIOLOGY-SGM 2010; 157:220-233. [PMID: 20829283 DOI: 10.1099/mic.0.042820-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The pathogenicity of Shiga toxin-producing Escherichia coli (STEC) depends on the expression of stx genes that are located on lambdoid prophages. Effective toxin production occurs only after prophage induction, and one may presume that replication of the phage genome is important for an increase in the dosage of stx genes, positively influencing their expression. We investigated the replication of plasmids derived from Shiga toxin (Stx)-converting bacteriophages in starved E. coli cells, as starvation conditions may be common in the intestine of infected humans. We found that, unlike plasmids derived from bacteriophage λ, the Shiga toxin phage-derived replicons did not replicate in amino acid-starved relA(+) and relA(-) cells (showing the stringent and relaxed responses to starvation, respectively). The presence of the stable fraction of the replication initiator O protein was detected in all tested replicons. However, while ppGpp, the stringent response effector, inhibited the activities of the λ P(R) promoter and its homologues from Shiga toxin-converting bacteriophages, these promoters, except for λ P(R), were only weakly stimulated by the DksA protein. We suggest that this less efficient (relative to λ) positive regulation of transcription responsible for transcriptional activation of the origin contributes to the inhibition of DNA replication initiation of Shiga toxin-converting bacteriophages in starved host cells, even in the absence of ppGpp (as in starved relA(-) hosts). Possible clinical implications of these results are discussed.
Collapse
Affiliation(s)
- Bożena Nejman
- Department of Molecular Biology, University of Gdańsk, Kładki 24, 80-822 Gdańsk, Poland
| | | | | | - Alicja Węgrzyn
- Laboratory of Molecular Biology (affiliated with the University of Gdańsk), Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822 Gdańsk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdańsk, Kładki 24, 80-822 Gdańsk, Poland
| |
Collapse
|
48
|
Influence of the Escherichia coli oxyR gene function on lambda prophage maintenance. Arch Microbiol 2010; 192:673-83. [PMID: 20559623 PMCID: PMC2903704 DOI: 10.1007/s00203-010-0596-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 05/23/2010] [Accepted: 06/02/2010] [Indexed: 11/09/2022]
Abstract
In Escherichia coli hosts, hydrogen peroxide is one of the factors that may cause induction of λ prophage. Here, we demonstrate that H2O2-mediated λ prophage induction is significantly enhanced in the oxyR mutant host. The mRNA levels for cI gene expression were increased in a λ lysogen in the presence of H2O2. On the other hand, stimulation of the pM promoter by cI857 overproduced from a multicopy plasmid was decreased in the ΔoxyR mutant in the presence of H2O2 but not under normal growth conditions. The purified OxyR protein did bind specifically to the pM promoter region. This binding impaired efficiency of interaction of the cI protein with the OR3 site, while stimulating such a binding to OR2 and OR1 sites, in the regulatory region of the pM promoter. We propose that changes in cI gene expression, perhaps in combination with moderately induced SOS response, may be responsible for enhanced λ prophage induction by hydrogen peroxide in the oxyR mutant. Therefore, OxyR seems to be a factor stimulating λ prophage maintenance under conditions of oxidative stress. This proposal is discussed in the light of efficiency of induction of lambdoid prophages bearing genes coding for Shiga toxins.
Collapse
|
49
|
HflD, an Escherichia coli protein involved in the λ lysis–lysogeny switch, impairs transcription activation by λCII. Arch Biochem Biophys 2010; 493:175-83. [DOI: 10.1016/j.abb.2009.10.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 10/16/2009] [Accepted: 10/17/2009] [Indexed: 11/17/2022]
|
50
|
Loś JM, Loś M, Wegrzyn A, Wegrzyn G. Hydrogen peroxide-mediated induction of the Shiga toxin-converting lambdoid prophage ST2-8624 in Escherichia coli O157:H7. ACTA ACUST UNITED AC 2009; 58:322-9. [PMID: 20070366 DOI: 10.1111/j.1574-695x.2009.00644.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Shiga toxin-producing Escherichia coli (STEC) may cause bloody diarrhea and hemorrhagic colitis, with sometimes severe complications. Because genes coding for Shiga toxins are located on lambdoid prophages, effective toxin production occurs only after prophage induction. However, although agents that effectively induce prophage lambda (a paradigm of the family of lambdoid phages) under laboratory conditions, such as UV irradiation or DNA replication inhibitors, are well known, it is unlikely that such factors are present in human intestine infected with STEC. In this report, we demonstrate that induction of a Shiga toxin-converting prophage in its host (E. coli O157:H7) occurs not only in the presence of DNA-interfering antibiotics (mitomycin C and norfloxacin) but also under conditions of oxidative stress [following treatment with hydrogen peroxide (H(2)O(2))]. Under these conditions, we observed not only effective prophage induction but also expression of the reporter gene (replacing the original stx2 gene). In the light of previously published reports, indicating that oxidative stress conditions might occur during colonization of human intestine by enteric bacteria, and that neutrophil-produced H(2)O(2) can increase production of the Shiga toxin in a clinical isolate of STEC, these results suggest that oxidative stress may be one of the agents responsible for stimulating the pathogenicity determinants of STEC, leading to induction of Shiga toxin-converting prophages in these bacteria.
Collapse
Affiliation(s)
- Joanna M Loś
- Department of Molecular Biology, University of Gdańsk, Poland
| | | | | | | |
Collapse
|