1
|
Yin Q, Qu Z, Mathew R, Zeng L, Du Z, Xue Y, Liu D, Zheng X. Epitranscriptomic orchestrations: Unveiling the regulatory paradigm of m6A, A-to-I editing, and m5C in breast cancer via long noncoding RNAs and microRNAs. Cell Biochem Funct 2024; 42:e3996. [PMID: 38561942 DOI: 10.1002/cbf.3996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/09/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024]
Abstract
Breast cancer (BC) poses a persistent global health challenge, particularly in countries with elevated human development indices linked to factors such as increased life expectancy, education, and wealth. Despite therapeutic progress, challenges persist, and the role of epitranscriptomic RNA modifications in BC remains inadequately understood. The epitranscriptome, comprising diverse posttranscriptional modifications on RNA molecules, holds the potential to intricately modulate RNA function and regulation, implicating dysregulation in various diseases, including BC. Noncoding RNAs (ncRNAs), acting as posttranscriptional regulators, influence physiological and pathological processes, including cancer. RNA modifications in long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) add an extra layer to gene expression control. This review delves into recent insights into epitranscriptomic RNA modifications, such as N-6-methyladenosine (m6A), adenine-to-inosine (A-to-I) editing, and 5-methylcytosine (m5C), specifically in the context of lncRNA and miRNAs in BC, highlighting their potential implications in BC development and progression. Understanding this intricate regulatory landscape is vital for deciphering the molecular mechanisms underlying BC and identifying potential therapeutic targets.
Collapse
Affiliation(s)
- Qinan Yin
- Precision Medicine Laboratory, School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
- Henan Engineering Research Center of Digital Pathology and Artificial Intelligence Diagnosis, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Zhifeng Qu
- Henan Engineering Research Center of Digital Pathology and Artificial Intelligence Diagnosis, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Regina Mathew
- Department of Chemistry and Biochemistry, California State University, Los Angeles, California, USA
| | - Li Zeng
- Precision Medicine Laboratory, School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
- Henan Engineering Research Center of Digital Pathology and Artificial Intelligence Diagnosis, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Zhe Du
- Precision Medicine Laboratory, School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
- Henan Engineering Research Center of Digital Pathology and Artificial Intelligence Diagnosis, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Yun Xue
- Precision Medicine Laboratory, School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
- Henan Engineering Research Center of Digital Pathology and Artificial Intelligence Diagnosis, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Dechun Liu
- Henan Engineering Research Center of Digital Pathology and Artificial Intelligence Diagnosis, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Xuewei Zheng
- Precision Medicine Laboratory, School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
- Henan Engineering Research Center of Digital Pathology and Artificial Intelligence Diagnosis, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
2
|
Li W, Wu H, Li J, Wang Z, Cai M, Liu X, Liu G. Transcriptomic analysis reveals associations of blood-based A-to-I editing with Parkinson's disease. J Neurol 2024; 271:976-985. [PMID: 37902879 DOI: 10.1007/s00415-023-12053-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 11/01/2023]
Abstract
BACKGROUND Adenosine-to-inosine (A-to-I) editing is the most common type of RNA editing in humans and the role of A-to-I RNA editing remains unclear in Parkinson's disease (PD). OBJECTIVE We aimed to explore the potential causal association between A-to-I editing and PD, and to assess whether changes in A-to-I editing were associated with cognitive progression in PD. METHODS The RNA-seq data from 380 PD patients and 178 healthy controls in the Parkinson's Progression Marker Initiative cohort was used to quantify A-to-I editing sites. We performed cis-RNA editing quantitative trait loci analysis and a two-sample Mendelian Randomization (MR) study by integrating genome-wide association studies to infer the potential causality between A-to-I editing and PD pathogenesis. The potential causal A-to-I editing sites were further confirmed by Summary-data-based MR analysis. Spearman's correlation analysis was performed to characterize the association between longitudinal A-to-I editing and cognitive progression in patients with PD. RESULTS We identified 17 potential causal A-to-I editing sites for PD and indicated that genetic risk variants may contribute to the risk of PD through A-to-I editing. These A-to-I editing sites were located in genes NCOR1, KANSL1 and BST1. Moreover, we observed 57 sites whose longitudinal A-to-I editing levels correlated with cognitive progression in PD. CONCLUSIONS We found potential causal A-to-I editing sites for PD onset and longitudinal changes of A-to-I editing were associated with cognitive progression in PD. We anticipate this study will provide new biological insights and drive the discovery of the epitranscriptomic role underlying Parkinson's disease.
Collapse
Affiliation(s)
- Weimin Li
- Shenzhen Key Laboratory of Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, No.66, Gongchang Road, Guangming District, Shenzhen, 518107, Guangdong, People's Republic of China
- Neurobiology Research Center, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, No.66, Gongchang Road, Guangming District, Shenzhen, 518107, Guangdong, People's Republic of China
| | - Hao Wu
- Shenzhen Key Laboratory of Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, No.66, Gongchang Road, Guangming District, Shenzhen, 518107, Guangdong, People's Republic of China
- Neurobiology Research Center, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, No.66, Gongchang Road, Guangming District, Shenzhen, 518107, Guangdong, People's Republic of China
| | - Jinxia Li
- Shenzhen Key Laboratory of Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, No.66, Gongchang Road, Guangming District, Shenzhen, 518107, Guangdong, People's Republic of China
- Neurobiology Research Center, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, No.66, Gongchang Road, Guangming District, Shenzhen, 518107, Guangdong, People's Republic of China
| | - Zhuo Wang
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 518172, Guangdong, People's Republic of China
| | - Miao Cai
- Neurology Department, Zhejiang Hospital, Hangzhou, 310013, People's Republic of China
| | - Xiaoli Liu
- Neurology Department, Zhejiang Hospital, Hangzhou, 310013, People's Republic of China
| | - Ganqiang Liu
- Shenzhen Key Laboratory of Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, No.66, Gongchang Road, Guangming District, Shenzhen, 518107, Guangdong, People's Republic of China.
- Neurobiology Research Center, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, No.66, Gongchang Road, Guangming District, Shenzhen, 518107, Guangdong, People's Republic of China.
| |
Collapse
|
3
|
Mir FA, Amanullah A, Jain BP, Hyderi Z, Gautam A. Neuroepigenetics of ageing and neurodegeneration-associated dementia: An updated review. Ageing Res Rev 2023; 91:102067. [PMID: 37689143 DOI: 10.1016/j.arr.2023.102067] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Gene expression is tremendously altered in the brain during memory acquisition, recall, and forgetfulness. However, non-genetic factors, including environmental elements, epigenetic changes, and lifestyle, have grabbed significant attention in recent years regarding the etiology of neurodegenerative diseases (NDD) and age-associated dementia. Epigenetic modifications are essential in regulating gene expression in all living organisms in a DNA sequence-independent manner. The genes implicated in ageing and NDD-related memory disorders are epigenetically regulated by processes such as DNA methylation, histone acetylation as well as messenger RNA editing machinery. The physiological and optimal state of the epigenome, especially within the CNS of humans, plays an intricate role in helping us adjust to the changing environment, and alterations in it cause many brain disorders, but the mechanisms behind it still need to be well understood. When fully understood, these epigenetic landscapes could act as vital targets for pharmacogenetic rescue strategies for treating several diseases, including neurodegeneration- and age-induced dementia. Keeping this objective in mind, this updated review summarises the epigenetic changes associated with age and neurodegeneration-associated dementia.
Collapse
Affiliation(s)
- Fayaz Ahmad Mir
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | - Zeeshan Hyderi
- Department of Biotechnology, Alagappa University, Karaikudi, India
| | - Akash Gautam
- Centre for Neural and Cognitive Sciences, University of Hyderabad, Hyderabad, India.
| |
Collapse
|
4
|
Oreper D, Klaeger S, Jhunjhunwala S, Delamarre L. The peptide woods are lovely, dark and deep: Hunting for novel cancer antigens. Semin Immunol 2023; 67:101758. [PMID: 37027981 DOI: 10.1016/j.smim.2023.101758] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/22/2023] [Accepted: 03/22/2023] [Indexed: 04/08/2023]
Abstract
Harnessing the patient's immune system to control a tumor is a proven avenue for cancer therapy. T cell therapies as well as therapeutic vaccines, which target specific antigens of interest, are being explored as treatments in conjunction with immune checkpoint blockade. For these therapies, selecting the best suited antigens is crucial. Most of the focus has thus far been on neoantigens that arise from tumor-specific somatic mutations. Although there is clear evidence that T-cell responses against mutated neoantigens are protective, the large majority of these mutations are not immunogenic. In addition, most somatic mutations are unique to each individual patient and their targeting requires the development of individualized approaches. Therefore, novel antigen types are needed to broaden the scope of such treatments. We review high throughput approaches for discovering novel tumor antigens and some of the key challenges associated with their detection, and discuss considerations when selecting tumor antigens to target in the clinic.
Collapse
Affiliation(s)
- Daniel Oreper
- Genentech, 1 DNA way, South San Francisco, 94080 CA, USA.
| | - Susan Klaeger
- Genentech, 1 DNA way, South San Francisco, 94080 CA, USA.
| | | | | |
Collapse
|
5
|
Dutta N, Deb I, Sarzynska J, Lahiri A. Inosine and its methyl derivatives: Occurrence, biogenesis, and function in RNA. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 169-170:21-52. [PMID: 35065168 DOI: 10.1016/j.pbiomolbio.2022.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 12/11/2021] [Accepted: 01/11/2022] [Indexed: 05/21/2023]
Abstract
Inosine is one of the most common post-transcriptional modifications. Since its discovery, it has been noted for its ability to contribute to non-Watson-Crick interactions within RNA. Rapidly accumulating evidence points to the widespread generation of inosine through hydrolytic deamination of adenosine to inosine by different classes of adenosine deaminases. Three naturally occurring methyl derivatives of inosine, i.e., 1-methylinosine, 2'-O-methylinosine and 1,2'-O-dimethylinosine are currently reported in RNA modification databases. These modifications are expected to lead to changes in the structure, folding, dynamics, stability and functions of RNA. The importance of the modifications is indicated by the strong conservation of the modifying enzymes across organisms. The structure, binding and catalytic mechanism of the adenosine deaminases have been well-studied, but the underlying mechanism of the catalytic reaction is not very clear yet. Here we extensively review the existing data on the occurrence, biogenesis and functions of inosine and its methyl derivatives in RNA. We also included the structural and thermodynamic aspects of these modifications in our review to provide a detailed and integrated discussion on the consequences of A-to-I editing in RNA and the contribution of different structural and thermodynamic studies in understanding its role in RNA. We also highlight the importance of further studies for a better understanding of the mechanisms of the different classes of deamination reactions. Further investigation of the structural and thermodynamic consequences and functions of these modifications in RNA should provide more useful information about their role in different diseases.
Collapse
Affiliation(s)
- Nivedita Dutta
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata, 700009, West Bengal, India
| | - Indrajit Deb
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata, 700009, West Bengal, India
| | - Joanna Sarzynska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Ansuman Lahiri
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata, 700009, West Bengal, India.
| |
Collapse
|
6
|
Song B, Shiromoto Y, Minakuchi M, Nishikura K. The role of RNA editing enzyme ADAR1 in human disease. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1665. [PMID: 34105255 PMCID: PMC8651834 DOI: 10.1002/wrna.1665] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 03/02/2021] [Accepted: 04/22/2021] [Indexed: 12/19/2022]
Abstract
Adenosine deaminase acting on RNA (ADAR) catalyzes the posttranscriptional conversion of adenosine to inosine in double-stranded RNA (dsRNA), which can lead to the creation of missense mutations in coding sequences. Recent studies show that editing-dependent functions of ADAR1 protect dsRNA from dsRNA-sensing molecules and inhibit innate immunity and the interferon-mediated response. Deficiency in these ADAR1 functions underlie the pathogenesis of autoinflammatory diseases such as the type I interferonopathies Aicardi-Goutieres syndrome and dyschromatosis symmetrica hereditaria. ADAR1-mediated editing of endogenous coding and noncoding RNA as well as ADAR1 editing-independent interactions with DICER can also have oncogenic or tumor suppressive effects that affect tumor proliferation, invasion, and response to immunotherapy. The combination of proviral and antiviral roles played by ADAR1 in repressing the interferon response and editing viral RNAs alters viral morphogenesis and cell susceptibility to infection. This review analyzes the structure and function of ADAR1 with a focus on its position in human disease pathways and the mechanisms of its disease-associated effects. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Processing > RNA Editing and Modification RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Brian Song
- Department of Gene Expression and Regulation, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Yusuke Shiromoto
- Department of Gene Expression and Regulation, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Moeko Minakuchi
- Department of Gene Expression and Regulation, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Kazuko Nishikura
- Department of Gene Expression and Regulation, The Wistar Institute, Philadelphia, Pennsylvania, USA
| |
Collapse
|
7
|
Huo XX, Wang SJ, Song H, Li MD, Yu H, Wang M, Gong HX, Qiu XT, Zhu YF, Zhang JY. Roles of Major RNA Adenosine Modifications in Head and Neck Squamous Cell Carcinoma. Front Pharmacol 2021; 12:779779. [PMID: 34899345 PMCID: PMC8657411 DOI: 10.3389/fphar.2021.779779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/09/2021] [Indexed: 11/13/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer malignancy worldwide and is known to have poor prognosis. The pathogenesis behind the development of HNSCC is not fully understood. Modifications on RNA are involved in many pathophysiological processes, such as tumor development and inflammation. Adenosine-related RNA modifications have shown to be linked to cancer and may play a role in cancer occurrence and development. To date, there are at least 170 different chemical RNA modifications that modify coding and non-coding RNAs (ncRNAs). These modifications affect RNA stability and transcription efficiency. In this review, we focus on the current understanding of the four major RNA adenosine modifications (N6-Methyladenosine, N1-Methyladenosine, Alternative Polyadenylation Modification and A-to-I RNA editing) and their potential molecular mechanisms related to HNSCC development and progression. We also touch on how these RNA modifications affect treatment of HNSCCs.
Collapse
Affiliation(s)
- Xing-Xing Huo
- Experimental Center of Clinical Research, Scientific Research Department, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Shu-Jie Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Hang Song
- Department of Biochemistry and Molecular Biology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Ming-de Li
- Experimental Center of Clinical Research, Scientific Research Department, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Hua Yu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Meng Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Hong-Xiao Gong
- Experimental Center of Clinical Research, Scientific Research Department, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Xiao-Ting Qiu
- Experimental Center of Clinical Research, Scientific Research Department, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Yong-Fu Zhu
- Experimental Center of Clinical Research, Scientific Research Department, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Jian-Ye Zhang
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
8
|
Aloufi N, Alluli A, Eidelman DH, Baglole CJ. Aberrant Post-Transcriptional Regulation of Protein Expression in the Development of Chronic Obstructive Pulmonary Disease. Int J Mol Sci 2021; 22:ijms222111963. [PMID: 34769392 PMCID: PMC8584689 DOI: 10.3390/ijms222111963] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is an incurable and prevalent respiratory disorder that is characterized by chronic inflammation and emphysema. COPD is primarily caused by cigarette smoke (CS). CS alters numerous cellular processes, including the post-transcriptional regulation of mRNAs. The identification of RNA-binding proteins (RBPs), microRNAs (miRNAs), and long non-coding RNAs (lncRNAs) as main factors engaged in the regulation of RNA biology opens the door to understanding their role in coordinating physiological cellular processes. Dysregulation of post-transcriptional regulation by foreign particles in CS may lead to the development of diseases such as COPD. Here we review current knowledge about post-transcriptional events that may be involved in the pathogenesis of COPD.
Collapse
Affiliation(s)
- Noof Aloufi
- Department of Pathology, McGill University, Montreal, QC H3A 2B4, Canada; (N.A.); (A.A.)
- Department of Medical Laboratory Technology, Applied Medical Science, Taibah University, Universities Road, Medina P.O. Box 344, Saudi Arabia
| | - Aeshah Alluli
- Department of Pathology, McGill University, Montreal, QC H3A 2B4, Canada; (N.A.); (A.A.)
| | - David H. Eidelman
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada;
| | - Carolyn J. Baglole
- Department of Pathology, McGill University, Montreal, QC H3A 2B4, Canada; (N.A.); (A.A.)
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada;
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada
- Correspondence:
| |
Collapse
|
9
|
De Paolis V, Lorefice E, Orecchini E, Carissimi C, Laudadio I, Fulci V. Epitranscriptomics: A New Layer of microRNA Regulation in Cancer. Cancers (Basel) 2021; 13:3372. [PMID: 34282776 PMCID: PMC8268402 DOI: 10.3390/cancers13133372] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs are pervasive regulators of gene expression at the post-transcriptional level in metazoan, playing key roles in several physiological and pathological processes. Accordingly, these small non-coding RNAs are also involved in cancer development and progression. Furthermore, miRNAs represent valuable diagnostic and prognostic biomarkers in malignancies. In the last twenty years, the role of RNA modifications in fine-tuning gene expressions at several levels has been unraveled. All RNA species may undergo post-transcriptional modifications, collectively referred to as epitranscriptomic modifications, which, in many instances, affect RNA molecule properties. miRNAs are not an exception, in this respect, and they have been shown to undergo several post-transcriptional modifications. In this review, we will summarize the recent findings concerning miRNA epitranscriptomic modifications, focusing on their potential role in cancer development and progression.
Collapse
Affiliation(s)
| | | | | | - Claudia Carissimi
- Dipartimento di Medicina Molecolare, Sapienza Università di Roma, 00161 Rome, Italy; (V.D.P.); (E.L.); (E.O.); (V.F.)
| | - Ilaria Laudadio
- Dipartimento di Medicina Molecolare, Sapienza Università di Roma, 00161 Rome, Italy; (V.D.P.); (E.L.); (E.O.); (V.F.)
| | | |
Collapse
|
10
|
Shiromoto Y, Sakurai M, Qu H, Kossenkov AV, Nishikura K. Processing of Alu small RNAs by DICER/ADAR1 complexes and their RNAi targets. RNA (NEW YORK, N.Y.) 2020; 26:1801-1814. [PMID: 32817447 PMCID: PMC7668262 DOI: 10.1261/rna.076745.120] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/12/2020] [Indexed: 06/08/2023]
Abstract
In addition to adenosine-to-inosine RNA editing activities, ADAR1 has been shown to have various RNA editing-independent activities including modulation of RNAi efficacy. We previously reported that ADAR1 forms a heterodimer complex with DICER and facilitates processing of pre-miRNAs to mature miRNAs. In addition to miRNA synthesis, DICER is involved in processing of long dsRNAs into small RNAs (endo-siRNAs). Generation of retrotransposon-derived endo-siRNAs by DICER and their functions in regulation of transcripts in mouse oocytes has been previously reported. However, the synthesis and functions of endo-siRNAs in somatic cells remain largely unknown. Here, we report that ADAR1 together with DICER generates endogenous small RNAs, Alu endo-siRNAs by cleaving long double-stranded regions of inverted Alu repeats. We identified AGO2-loaded Alu endo-siRNAs, which are highly expressed in commonly used cell lines. These Alu endo-siRNAs carrying both sense and antisense Alu sequences seem to target a set of genes containing a single Alu sequence, either antisense or sense, respectively, within their 3'UTR. In silico screening identified potential RNA silencing target genes for these Alu endo-siRNAs. We present results of a proof-of-concept experiment, in which sense Alu endo-siRNAs derived from AluSz and AluJr family elements target CUB Domain Containing Protein 1 mRNAs containing an antisense copy of AluJb in their 3'UTRs and consequently induce apoptosis in HeLa cells. Our results clearly indicate that Alu endo-siRNAs are functional also in somatic cells.
Collapse
Affiliation(s)
| | | | - Helen Qu
- The Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
11
|
Teoh PJ, Koh MY, Chng WJ. ADARs, RNA editing and more in hematological malignancies. Leukemia 2020; 35:346-359. [PMID: 33139858 DOI: 10.1038/s41375-020-01076-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/21/2020] [Accepted: 10/20/2020] [Indexed: 02/08/2023]
Abstract
Adenosine-to-inosine (A-to-I) editing is the most prevalent type of RNA editing in humans, mediated by the adenosine deaminases acting on RNA (ADARs). Physiologically, these enzymes are present in the nucleus and/or the cytoplasm, where they catalyze the conversion of adenosines (A) to inosines (I) on double-stranded mRNA molecules. Aberrant ADAR-mediated-editing is a prominent feature in a variety of cancers. Importantly, the biological functions of ADARs and its functional implications in hematological malignancies have recently been unraveled. In this review, we will highlight the functions of ADARs and their involvements in cancer, specifically in hematological malignancies. RNA editing-independent function of cellular processes by ADARs and the potential of developing novel therapeutic approaches revolving RNA editing will also be discussed.
Collapse
Affiliation(s)
- Phaik Ju Teoh
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Cancer Science Institute of Singapore, Singapore, Singapore
| | - Mun Yee Koh
- Cancer Science Institute of Singapore, Singapore, Singapore
| | - Wee Joo Chng
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. .,Cancer Science Institute of Singapore, Singapore, Singapore. .,Department of Haematology-Oncology, National University Cancer Institute of Singapore, National University Health System, Singapore, Singapore.
| |
Collapse
|
12
|
Competitive endogenous network of lncRNA, miRNA, and mRNA in the chemoresistance of gastrointestinal tract adenocarcinomas. Biomed Pharmacother 2020; 130:110570. [PMID: 32763816 DOI: 10.1016/j.biopha.2020.110570] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/17/2020] [Accepted: 07/26/2020] [Indexed: 12/12/2022] Open
Abstract
Chemotherapy is one of the main therapeutic strategies used for gastrointestinal tract adenocarcinomas (GTAs), but resistance to anticancer drugs is a substantial obstacle in successful chemotherapy. Accumulating evidence shows that non-coding RNAs, especially long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), can affect the drug resistance of tumor cells by forming a ceRNA regulatory network with mRNAs. The efficiency of the competing endogenous RNAs (ceRNAs) network can be affected by the number and integrality of miRNA recognition elements (MREs). Dynamic factors such as RNA editing, alternative splicing, single nucleotide polymorphism (SNP), RNA-binding proteins and RNA secondary structure can influence the MRE activity, which may in turn be involved in the regulation of chemoresistance-associated ceRNA network by prospective approaches. Besides activities in a single tumor cell, the components of the tumor micoenvironment (TME) also affect the ceRNA network by regulating the expression of non-coding RNA directly or indirectly. The alternation of the ceRNA network often has an impact on the malignant phenotype of tumor including chemoresistance. In this review, we focused on how MRE-associated dynamic factors and components of TME affected the ceRNA network and speculated the potential association of ceRNA network with chemoresistance. We also summarized the ceRNA network of lncRNAs, miRNAs, and mRNAs which efficiently triggers chemoresistance in the specific types of GTAs and analyzed the role of each RNA as a "promoter" or "suppressor" of chemoresistance.
Collapse
|
13
|
Aberrant Overexpression of RNA-Editing Enzyme ADAR1 Promotes the Progression of Endometriosis. Reprod Sci 2020; 27:575-584. [PMID: 32046435 DOI: 10.1007/s43032-019-00057-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 08/08/2019] [Indexed: 10/25/2022]
Abstract
Considerable efforts have been invested to elucidate the potential mechanisms involved in the physiopathology of endometriosis. However, to date, prior research has not been conclusive. This research has examined one particular mechanism, i.e., the effect of ADAR1 on endometriosis lesions. Eutopic endometrium was collected from women with (n = 25) and without endometriosis (n = 25), respectively. The expression of ADAR1 mRNA was measured based on quantitative real-time polymerase chain reactions (RT-qPCR). Both Western blot and immunohistochemistry were performed to establish ADAR1 protein expression levels. The results indicated that ADAR1 mRNA and proteins were significantly greater in the eutopic endometrium of the women with endometriosis, compared to the women without (P < 0.05). The Cell Counting Kit-8 (CCK-8) and EdU method were conducted to examine the effect of ADAR1 on cell viability and proliferation in eutopic endometriosis cells. A transwell assay was also used to detect the role of ADAR1 in the invasion of endometrial cells. The results obtained showed that ADAR1 promoted endometrial cell viability, proliferation, and invasion (P < 0.05). This informed our conclusion that the ADAR1 gene is upregulated in endometriosis, potentially paying a pivotal role in the physiopathology of endometriosis.
Collapse
|
14
|
Abstract
Genetic variation is a necessity of all biological systems. Viruses use all known mechanisms of variation; mutation, several forms of recombination, and segment reassortment in the case of viruses with a segmented genome. These processes are intimately connected with the replicative machineries of viruses, as well as with fundamental physical-chemical properties of nucleotides when acting as template or substrate residues. Recombination has been viewed as a means to rescue viable genomes from unfit parents or to produce large modifications for the exploration of phenotypic novelty. All types of genetic variation can act conjointly as blind processes to provide the raw materials for adaptation to the changing environments in which viruses must replicate. A distinction is made between mechanistically unavoidable and evolutionarily relevant mutation and recombination.
Collapse
|
15
|
Wold EA, Wild CT, Cunningham KA, Zhou J. Targeting the 5-HT2C Receptor in Biological Context and the Current State of 5-HT2C Receptor Ligand Development. Curr Top Med Chem 2019; 19:1381-1398. [PMID: 31288724 DOI: 10.2174/1568026619666190709101449] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/14/2019] [Accepted: 05/16/2019] [Indexed: 12/19/2022]
Abstract
Serotonin (5-HT) 5-HT2C receptor (5-HT2CR) is recognized as a critical mediator of diseaserelated pathways and behaviors based upon actions in the central nervous system (CNS). Since 5-HT2CR is a class A G protein-coupled receptor (GPCR), drug discovery efforts have traditionally pursued the activation of the receptor through synthetic ligands with agonists proposed for the treatment of obesity, substance use disorders and impulse control disorders while antagonists may add value for the treatment of anxiety, depression and schizophrenia. The most significant agonist discovery to date is the FDAapproved anti-obesity medication lorcaserin. In recent years, efforts towards developing other mechanisms to enhance receptor function have resulted in the discovery of Positive Allosteric Modulators (PAMs) for the 5-HT2CR, with several molecule series now reported. The biological significance and context for signaling and function of the 5-HT2CR, and the current status of 5-HT2CR agonists and PAMs are discussed in this review.
Collapse
Affiliation(s)
- Eric A Wold
- Center for Addiction Research and Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Christopher T Wild
- Center for Addiction Research and Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Kathryn A Cunningham
- Center for Addiction Research and Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Jia Zhou
- Center for Addiction Research and Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| |
Collapse
|
16
|
Zhang Y, Zhang L, Yue J, Wei X, Wang L, Liu X, Gao H, Hou X, Zhao F, Yan H, Wang L. Genome-wide identification of RNA editing in seven porcine tissues by matched DNA and RNA high-throughput sequencing. J Anim Sci Biotechnol 2019; 10:24. [PMID: 30911384 PMCID: PMC6415349 DOI: 10.1186/s40104-019-0326-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/24/2019] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND RNA editing is a co/posttranscriptional modification mechanism that increases the diversity of transcripts, with potential functional consequences. The advent of next-generation sequencing technologies has enabled the identification of RNA edits at unprecedented throughput and resolution. However, our knowledge of RNA editing in swine is still limited. RESULTS Here, we utilized RES-Scanner to identify RNA editing sites in the brain, subcutaneous fat, heart, liver, muscle, lung and ovary in three 180-day-old Large White gilts based on matched strand-specific RNA sequencing and whole-genome resequencing datasets. In total, we identified 74863 editing sites, and 92.1% of these sites caused adenosine-to-guanosine (A-to-G) conversion. Most A-to-G sites were located in noncoding regions and generally had low editing levels. In total, 151 A-to-G sites were detected in coding regions (CDS), including 94 sites that could lead to nonsynonymous amino acid changes. We provide further evidence supporting a previous observation that pig transcriptomes are highly editable at PRE-1 elements. The number of A-to-G editing sites ranged from 4155 (muscle) to 25001 (brain) across the seven tissues. The expression levels of the ADAR enzymes could explain some but not all of this variation across tissues. The functional analysis of the genes with tissue-specific editing sites in each tissue revealed that RNA editing might play important roles in tissue function. Specifically, more pathways showed significant enrichment in the fat and liver than in other tissues, while no pathway was enriched in the muscle. CONCLUSIONS This study identified a total of 74863 nonredundant RNA editing sites in seven tissues and revealed the potential importance of RNA editing in tissue function. Our findings largely extend the porcine editome and enhance our understanding of RNA editing in swine.
Collapse
Affiliation(s)
- Yuebo Zhang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Longchao Zhang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Jingwei Yue
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Xia Wei
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Ligang Wang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Xin Liu
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Hongmei Gao
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Xinhua Hou
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Fuping Zhao
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Hua Yan
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Lixian Wang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| |
Collapse
|
17
|
Abstract
Noncoding RNAs (ncRNAs) have received much attention due to their central role in gene expression and translational regulation as well as due to their involvement in several biological processes and disease development. Small noncoding RNAs (sncRNAs), such as microRNAs and piwiRNAs, have been thoroughly investigated and functionally characterized. Long noncoding RNAs (lncRNAs), known to play an important role in chromatin-interacting transcription regulation, posttranscriptional regulation, cell-to-cell signaling, and protein regulation, are also being investigated to further elucidate their functional roles.Next-generation sequencing (NGS) technologies have greatly aided in characterizing the ncRNAome. Moreover, the coupling of NGS technology together with bioinformatics tools has been essential to the genome-wide detection of RNA modifications in ncRNAs. RNA editing, a common human co-transcriptional and posttranscriptional modification, is a dynamic biological phenomenon able to alter the sequence and the structure of primary transcripts (both coding and noncoding RNAs) during the maturation process, consequently influencing the biogenesis, as well as the function, of ncRNAs. In particular, the dysregulation of the RNA editing machineries have been associated with the onset of human diseases.In this chapter we discuss the potential functions of ncRNA editing and describe the knowledge base and bioinformatics resources available to investigate such phenomenon.
Collapse
|
18
|
Tassinari V, Cesarini V, Silvestris DA, Gallo A. The adaptive potential of RNA editing-mediated miRNA-retargeting in cancer. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1862:291-300. [PMID: 30605729 DOI: 10.1016/j.bbagrm.2018.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/20/2018] [Accepted: 12/20/2018] [Indexed: 12/18/2022]
Abstract
A-to-I RNA editing is a post-transcriptional mechanism that converts the genomically coded Adenosine (A) into Inosine (I) at the RNA level. This type of RNA editing is the most frequent in humans and is mediated by the ADAR enzymes. RNA editing can alter the genetic code of mRNAs, but also affect the functions of noncoding RNAs such as miRNAs. Recent studies have identified thousands of microRNA editing events in different cancer types. However, the important role played by miRNA-editing in cancer has been reported for just a few microRNAs. Herein, we recapitulate the current studies on cancer-related microRNA editing and discuss their importance in tumor growth and progression. This article is part of a Special Issue entitled: mRNA modifications in gene expression control edited by Dr. Soller Matthias and Dr. Fray Rupert.
Collapse
Affiliation(s)
- Valentina Tassinari
- RNA Editing Laboratory, Oncohaematology Department, IRCCS Ospedale Pediatrico Bambino Gesù (OPBG), Viale di San Paolo, 15, 00146 Rome, Italy
| | - Valeriana Cesarini
- RNA Editing Laboratory, Oncohaematology Department, IRCCS Ospedale Pediatrico Bambino Gesù (OPBG), Viale di San Paolo, 15, 00146 Rome, Italy
| | - Domenico Alessandro Silvestris
- RNA Editing Laboratory, Oncohaematology Department, IRCCS Ospedale Pediatrico Bambino Gesù (OPBG), Viale di San Paolo, 15, 00146 Rome, Italy
| | - Angela Gallo
- RNA Editing Laboratory, Oncohaematology Department, IRCCS Ospedale Pediatrico Bambino Gesù (OPBG), Viale di San Paolo, 15, 00146 Rome, Italy.
| |
Collapse
|
19
|
Knutson SD, Ayele TM, Heemstra JM. Chemical Labeling and Affinity Capture of Inosine-Containing RNAs Using Acrylamidofluorescein. Bioconjug Chem 2018; 29:2899-2903. [PMID: 30148626 DOI: 10.1021/acs.bioconjchem.8b00541] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Adenosine-to-inosine (A-to-I) RNA editing is a widespread and conserved post-transcriptional modification, producing significant changes in cellular function and behavior. Accurately identifying, detecting, and quantifying these sites in the transcriptome is necessary to improve our understanding of editing dynamics, its broader biological roles, and connections with diseases. Chemical labeling of edited bases coupled with affinity enrichment has enabled improved characterization of several forms of RNA editing. However, there are no approaches currently available for pull-down of inosines. To address this need, we explore acrylamide as a labeling motif and report here an acrylamidofluorescein reagent that reacts with inosine and enables enrichment of inosine-containing RNA transcripts. This method provides improved sensitivity in the detection and identification of inosines toward a more comprehensive transcriptome-wide analysis of A-to-I editing. Acrylamide derivatization is also highly generalizable, providing potential for the labeling of inosine with a wide variety of probes and affinity handles.
Collapse
Affiliation(s)
- Steve D Knutson
- Department of Chemistry , Emory University , Atlanta , Georgia 30322 , United States
| | - Tewoderos M Ayele
- Department of Chemistry , Emory University , Atlanta , Georgia 30322 , United States
| | - Jennifer M Heemstra
- Department of Chemistry , Emory University , Atlanta , Georgia 30322 , United States
| |
Collapse
|
20
|
Nithin C, Ghosh P, Bujnicki JM. Bioinformatics Tools and Benchmarks for Computational Docking and 3D Structure Prediction of RNA-Protein Complexes. Genes (Basel) 2018; 9:genes9090432. [PMID: 30149645 PMCID: PMC6162694 DOI: 10.3390/genes9090432] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/26/2018] [Accepted: 08/21/2018] [Indexed: 12/29/2022] Open
Abstract
RNA-protein (RNP) interactions play essential roles in many biological processes, such as regulation of co-transcriptional and post-transcriptional gene expression, RNA splicing, transport, storage and stabilization, as well as protein synthesis. An increasing number of RNP structures would aid in a better understanding of these processes. However, due to the technical difficulties associated with experimental determination of macromolecular structures by high-resolution methods, studies on RNP recognition and complex formation present significant challenges. As an alternative, computational prediction of RNP interactions can be carried out. Structural models obtained by theoretical predictive methods are, in general, less reliable compared to models based on experimental measurements but they can be sufficiently accurate to be used as a basis for to formulating functional hypotheses. In this article, we present an overview of computational methods for 3D structure prediction of RNP complexes. We discuss currently available methods for macromolecular docking and for scoring 3D structural models of RNP complexes in particular. Additionally, we also review benchmarks that have been developed to assess the accuracy of these methods.
Collapse
Affiliation(s)
- Chandran Nithin
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland.
| | - Pritha Ghosh
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland.
| | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland.
- Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, ul. Umultowska 89, PL-61-614 Poznan, Poland.
| |
Collapse
|
21
|
Špačková N, Réblová K. Role of Inosine⁻Uracil Base Pairs in the Canonical RNA Duplexes. Genes (Basel) 2018; 9:genes9070324. [PMID: 29958383 PMCID: PMC6070904 DOI: 10.3390/genes9070324] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/13/2018] [Accepted: 06/26/2018] [Indexed: 01/09/2023] Open
Abstract
Adenosine to inosine (A–I) editing is the most common modification of double-stranded RNA (dsRNA). This change is mediated by adenosine deaminases acting on RNA (ADARs) enzymes with a preference of U>A>C>G for 5′ neighbor and G>C=A>U or G>C>U=A for 3′ neighbor. A–I editing occurs most frequently in the non-coding regions containing repetitive elements such as ALUs. It leads to disruption of RNA duplex structure, which prevents induction of innate immune response. We employed standard and biased molecular dynamics (MD) simulations to analyze the behavior of RNA duplexes with single and tandem inosine–uracil (I–U) base pairs in different sequence context. Our analysis showed that the I–U pairs induce changes in base pair and base pair step parameters and have different dynamics when compared with standard canonical base pairs. In particular, the first I–U pair from tandem I–U/I–U systems exhibited increased dynamics depending on its neighboring 5′ base. We discovered that UII sequence, which is frequently edited, has lower flexibility compared with other sequences (AII, GII, CII), hence it only modestly disrupts dsRNA. This might indicate that the UAA motifs in ALUs do not have to be sufficiently effective in preventing immune signaling.
Collapse
Affiliation(s)
- Naďa Špačková
- Department of Condensed Matter Physics, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic.
| | - Kamila Réblová
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
| |
Collapse
|
22
|
Díaz-Piña G, Ordoñez-Razo RM, Montes E, Páramo I, Becerril C, Salgado A, Santibañez-Salgado JA, Maldonado M, Ruiz V. The Role of ADAR1 and ADAR2 in the Regulation of miRNA-21 in Idiopathic Pulmonary Fibrosis. Lung 2018; 196:393-400. [PMID: 29637273 DOI: 10.1007/s00408-018-0115-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/29/2018] [Indexed: 12/21/2022]
Abstract
INTRODUCTION microRNAs (miRNAs) are small non-coding 1RNAs that post-transcriptionally regulate gene expression. Recent evidence shows that adenosine deaminases that act on RNA (ADAR) can edit miRNAs. miRNAs are involved in the development of different diseases, such as idiopathic pulmonary fibrosis (IPF). In IPF, about 40% of the miRNAs are differentially expressed with respect to controls. Among these miRNAs, miRNA-21 has been found over-expressed in IPF and its targets are anti-fibrosing molecules such as PELI1 and SPRY2. The objective of this study is to determine the role of ADAR1 and 2 on the expression of miRNA-21 in human lung fibroblasts trough quantification of gene expression, protein levels, and overexpression of ADAR1 and 2. METHODS Six control and six fibrotic primary fibroblast cell cultures were used for RNA extraction, ADAR1, ADAR2, PELI1, SPRY2, miRNA-21, and pri-miRNA-21 expression was measured. Subsequently, two fibrotic fibroblast cultures were used for overexpression of ADAR1 and ADAR2, and they were stimulated with TGFβ1. Real-time PCR and Western blot were performed. RESULTS ADAR1 is significantly downregulated in IPF fibroblasts; the overexpression of ADAR1 and ADAR2 reestablishes the expression levels of miRNA-21, PELI1, and SPRY2 in fibroblasts of patients with IPF. CONCLUSION These changes in the processing of miRNAs have great value in pathology diagnosis, including lung diseases, and play an important role in the understanding of molecular mechanisms involved in the development of different pathologies, as well as representing new therapeutic targets.
Collapse
Affiliation(s)
- Gabriela Díaz-Piña
- Departamento de Investigación en Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Calz. Tlalpan 4502, Col. Sección XVI, 14080, Mexico City, Mexico
| | - Rosa Ma Ordoñez-Razo
- Hospital de Pediatría, Centro Médico Siglo XXI, Instituto Mexicano del Seguro Social, Unidad de Investigación Médica en Genética Humana, Av. Cuauhtémoc 330, Col. Doctores, 06720, Mexico City, Mexico
| | - Eduardo Montes
- Clínica de Asma, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Calz. Tlalpan 4502, Col. Sección XVI, 14080, Mexico City, Mexico
| | - Ignacio Páramo
- Clínica de Asma, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Calz. Tlalpan 4502, Col. Sección XVI, 14080, Mexico City, Mexico
| | - Carina Becerril
- Departamento de Investigación en Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Calz. Tlalpan 4502, Col. Sección XVI, 14080, Mexico City, Mexico
| | - Alfonso Salgado
- Departamento de Investigación en Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Calz. Tlalpan 4502, Col. Sección XVI, 14080, Mexico City, Mexico
| | - J Alfredo Santibañez-Salgado
- Departamento de Cirugía Experimental, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Calz. Tlalpan 4502, Col. Sección XVI, 14080, Mexico City, Mexico
| | - Mariel Maldonado
- Departamento de Investigación en Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Calz. Tlalpan 4502, Col. Sección XVI, 14080, Mexico City, Mexico
| | - Victor Ruiz
- Departamento de Investigación en Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Calz. Tlalpan 4502, Col. Sección XVI, 14080, Mexico City, Mexico. .,Laboratorio de Biología Molecular, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Calz. Tlalpan 4502, Col. Sección XVI, 14080, Mexico City, Mexico.
| |
Collapse
|
23
|
Lin DC, Wang MR, Koeffler HP. Genomic and Epigenomic Aberrations in Esophageal Squamous Cell Carcinoma and Implications for Patients. Gastroenterology 2018; 154:374-389. [PMID: 28757263 PMCID: PMC5951382 DOI: 10.1053/j.gastro.2017.06.066] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 06/05/2017] [Accepted: 06/07/2017] [Indexed: 12/28/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) is a common malignancy without effective therapy. The exomes of more than 600 ESCCs have been sequenced in the past 4 years, and numerous key aberrations have been identified. Recently, researchers reported both inter- and intratumor heterogeneity. Although these are interesting observations, their clinical implications are unclear due to the limited number of samples profiled. Epigenomic alterations, such as changes in DNA methylation, histone acetylation, and RNA editing, also have been observed in ESCCs. However, it is not clear what proportion of ESCC cells carry these epigenomic aberrations or how they contribute to tumor development. We review the genomic and epigenomic characteristics of ESCCs, with a focus on emerging themes. We discuss their clinical implications and future research directions.
Collapse
Affiliation(s)
- De-Chen Lin
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California.
| | - Ming-Rong Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - H Phillip Koeffler
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California; Cancer Science Institute of Singapore, National University of Singapore, Singapore; National University Cancer Institute, National University Hospital Singapore, Singapore
| |
Collapse
|
24
|
Genome-wide DNA methylation changes associated with olfactory learning and memory in Apis mellifera. Sci Rep 2017; 7:17017. [PMID: 29208987 PMCID: PMC5717273 DOI: 10.1038/s41598-017-17046-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 11/08/2017] [Indexed: 12/25/2022] Open
Abstract
The honeybee is a model organism for studying learning and memory formation and its underlying molecular mechanisms. While DNA methylation is well studied in caste differentiation, its role in learning and memory is not clear in honeybees. Here, we analyzed genome-wide DNA methylation changes during olfactory learning and memory process in A. mellifera using whole genome bisulfite sequencing (WGBS) method. A total of 853 significantly differentially methylated regions (DMRs) and 963 differentially methylated genes (DMGs) were identified. We discovered that 440 DMRs of 648 genes were hypermethylated and 274 DMRs of 336 genes were hypomethylated in trained group compared to untrained group. Of these DMGs, many are critical genes involved in learning and memory, such as Creb, GABABR and Ip3k, indicating extensive involvement of DNA methylation in honeybee olfactory learning and memory process. Furthermore, key enzymes for histone methylation, RNA editing and miRNA processing also showed methylation changes during this process, implying that DNA methylation can affect learning and memory of honeybees by regulating other epigenetic modification processes.
Collapse
|
25
|
Abstract
Adenosine-to-inosine RNA editing is a conserved process, which is performed by ADAR enzymes. By changing nucleotides in coding regions of genes and altering codons, ADARs expand the cell's protein repertoire. This function of the ADAR enzymes is essential for human brain development. However, most of the known editing sites are in non-coding repetitive regions in the transcriptome and the purpose of editing in these regions is unclear. Recent studies, which have shown that editing levels of transcripts vary between tissues and developmental stages in many organisms, suggest that the targeted RNA and ADAR editing are both regulated. We discuss the implications of these findings, and the possible role of RNA editing in innate immunity.
Collapse
Affiliation(s)
- Nabeel S Ganem
- a Faculty of Biology , Technion- Israel Institute of Technology , Technion City , Haifa , Israel
| | - Ayelet T Lamm
- a Faculty of Biology , Technion- Israel Institute of Technology , Technion City , Haifa , Israel
| |
Collapse
|
26
|
|
27
|
Abstract
Inosine is one of the most common modifications found in human RNAs and the Adenosine Deaminases that act on RNA (ADARs) are the main enzymes responsible for its production. ADARs were first discovered in the 1980s and since then our understanding of ADARs has advanced tremendously. For instance, it is now known that defective ADAR function can cause human diseases. Furthermore, recently solved crystal structures of the human ADAR2 deaminase bound to RNA have provided insights regarding the catalytic and substrate recognition mechanisms. In this chapter, we describe the occurrence of inosine in human RNAs and the newest perspective on the ADAR family of enzymes, including their substrate recognition, catalytic mechanism, regulation as well as the consequences of A-to-I editing, and their relation to human diseases.
Collapse
|
28
|
Chen Y, Wang H, Lin W, Shuai P. ADAR1 overexpression is associated with cervical cancer progression and angiogenesis. Diagn Pathol 2017; 12:12. [PMID: 28109322 PMCID: PMC5251241 DOI: 10.1186/s13000-017-0600-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 01/12/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND This study aimed to assess the role of RNA-dependent adenosine deaminase (ADAR1) in cervical squamous cell carcinoma occurrence and progression. METHODS ADAR1 expression levels in stage IA and stage IIA cervical squamous cell carcinoma (group A), cervical intraepithelial neoplasia (CIN) specimens (group B), as well as normal and inflamed cervical tissue samples (group C) were assessed by immunohistochemistry. Clinical and pathological data of cervical squamous cell carcinoma patients undergoing surgery were retrospectively evaluated. Chi-square test, comparative analysis of survival curve, disease-free survival and COX risk assessment method were used to understand the association of ADAR1 with the occurrence and progression and prognostic significance of cervical squamous cell carcinoma. RESULTS ADAR1 is expressed in the cytoplasm and nuclei. The expression level was high in squamous cell carcinoma tissues (81.18%), while relatively low in the CIN group (21.56%). And there was no expression in non-cancerous tissues. The differences between them were statistically significant using P < 0.05 as criterion. One-factor analysis revealed that ADAR1 was significantly correlated with tumor diameter, horizontal diffusion diameter, vascular invasion, parametrial invasion, vaginal involvement, and pathologically diagnostic criteria for perineural invasion (PNI). Meanwhile, the overall survival rate of ADAR1 positive patients was significantly lower compared with that of patients with no ADAR1 expression (P < 0.05). Analysis also showed that disease-free survival time of ADAR1 positive patients was shorter than that of ADAR1 negative patients, and the difference was significant (P < 0.01). Finally, COX risk assessment showed that parametrical invasion had independent prognostic factors for overall survival of squamous cell carcinoma. CONCLUSIONS Results indicated that ADAR1 might play an important role in the occurrence, progression and prognosis of cervical squamous cancer.
Collapse
Affiliation(s)
- Ying Chen
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.,Department of Obstetrics and Gynecology, Sichuan Province, Chengdu Women's and Children's Central Hospital, Chengdu, 610091, Sichuan, China
| | - He Wang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Wenyi Lin
- Department of Pathology, Sichuan Province, Chengdu Women's and Children's Central Hospital, Chengdu, 610091, China
| | - Ping Shuai
- Department Physical Examination, Sichuan People's Hospital, Chengdu, 610072, Sichuan, China
| |
Collapse
|
29
|
RNA Editing, ADAR1, and the Innate Immune Response. Genes (Basel) 2017; 8:genes8010041. [PMID: 28106799 PMCID: PMC5295035 DOI: 10.3390/genes8010041] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/03/2017] [Accepted: 01/11/2017] [Indexed: 01/14/2023] Open
Abstract
RNA editing, particularly A-to-I RNA editing, has been shown to play an essential role in mammalian embryonic development and tissue homeostasis, and is implicated in the pathogenesis of many diseases including skin pigmentation disorder, autoimmune and inflammatory tissue injury, neuron degeneration, and various malignancies. A-to-I RNA editing is carried out by a small group of enzymes, the adenosine deaminase acting on RNAs (ADARs). Only three members of this protein family, ADAR1-3, exist in mammalian cells. ADAR3 is a catalytically null enzyme and the most significant function of ADAR2 was found to be in editing on the neuron receptor GluR-B mRNA. ADAR1, however, has been shown to play more significant roles in biological and pathological conditions. Although there remains much that is not known about how ADAR1 regulates cellular function, recent findings point to regulation of the innate immune response as an important function of ADAR1. Without appropriate RNA editing by ADAR1, endogenous RNA transcripts stimulate cytosolic RNA sensing receptors and therefore activate the IFN-inducing signaling pathways. Overactivation of innate immune pathways can lead to tissue injury and dysfunction. However, obvious gaps in our knowledge persist as to how ADAR1 regulates innate immune responses through RNA editing. Here, we review critical findings from ADAR1 mechanistic studies focusing on its regulatory function in innate immune responses and identify some of the important unanswered questions in the field.
Collapse
|
30
|
Labbé C, Lorenzo-Betancor O, Ross OA. Epigenetic regulation in Parkinson's disease. Acta Neuropathol 2016; 132:515-30. [PMID: 27358065 PMCID: PMC5026906 DOI: 10.1007/s00401-016-1590-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 12/16/2022]
Abstract
Recent efforts have shed new light on the epigenetic mechanisms driving gene expression alterations associated with Parkinson's disease (PD) pathogenesis. Changes in gene expression are a well-established cause of PD, and epigenetic mechanisms likely play a pivotal role in regulation. Studies in families with PD harboring duplications and triplications of the SNCA gene have demonstrated that gene dosage is associated with increased expression of both SNCA mRNA and protein, and correlates with a fulminant disease course. Furthermore, it is postulated that even subtle changes in SNCA expression caused by common variation is associated with disease risk. Of note, genome-wide association studies have identified over 30 loci associated with PD with most signals located in non-coding regions of the genome, thus likely influencing transcript expression levels. In health, epigenetic mechanisms tightly regulate gene expression, turning genes on and off to balance homeostasis and this, in part, explains why two cells with the same DNA sequence will have different RNA expression profiles. Understanding this phenomenon will be crucial to our interpretation of the selective vulnerability observed in neurodegeneration and specifically dopaminergic neurons in the PD brain. In this review, we discuss epigenetic mechanisms, such as DNA methylation and histone modifications, involved in regulating the expression of genes relevant to PD, RNA-based mechanisms, as well as the effect of toxins and potential epigenetic-based treatments for PD.
Collapse
Affiliation(s)
- Catherine Labbé
- Department of Neuroscience, Mayo Clinic Jacksonville, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Oswaldo Lorenzo-Betancor
- Department of Neuroscience, Mayo Clinic Jacksonville, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Owen A Ross
- Department of Neuroscience, Mayo Clinic Jacksonville, 4500 San Pablo Road, Jacksonville, FL, 32224, USA.
| |
Collapse
|
31
|
Detection of canonical A-to-G editing events at 3' UTRs and microRNA target sites in human lungs using next-generation sequencing. Oncotarget 2016; 6:35726-36. [PMID: 26486088 PMCID: PMC4742137 DOI: 10.18632/oncotarget.6132] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/14/2015] [Indexed: 01/08/2023] Open
Abstract
RNA editing is a post-transcriptional modification of RNA. The majority of these changes result from adenosine deaminase acting on RNA (ADARs) catalyzing the conversion of adenosine residues to inosine in double-stranded RNAs (dsRNAs). Massively parallel sequencing has enabled the identification of RNA editing sites in human transcriptomes. In this study, we sequenced DNA and RNA from human lungs and identified RNA editing sites with high confidence via a computational pipeline utilizing stringent analysis thresholds. We identified a total of 3,447 editing sites that overlapped in three human lung samples, and with 50% of these sites having canonical A-to-G base changes. Approximately 27% of the edited sites overlapped with Alu repeats, and showed A-to-G clustering (>3 clusters in 100 bp). The majority of edited sites mapped to either 3′ untranslated regions (UTRs) or introns close to splice sites; whereas, only few sites were in exons resulting in non-synonymous amino acid changes. Interestingly, we identified 652 A-to-G editing events in the 3′ UTR of 205 target genes that mapped to 932 potential miRNA target binding sites. Several of these miRNA edited sites were validated in silico. Additionally, we validated several A-to-G edited sites by Sanger sequencing. Altogether, our study suggests a role for RNA editing in miRNA-mediated gene regulation and splicing in human lungs. In this study, we have generated a RNA editome of human lung tissue that can be compared with other RNA editomes across different lung tissues to delineate a role for RNA editing in normal and diseased states.
Collapse
|
32
|
Liddicoat BJ, Hartner JC, Piskol R, Ramaswami G, Chalk AM, Kingsley PD, Sankaran VG, Wall M, Purton LE, Seeburg PH, Palis J, Orkin SH, Lu J, Li JB, Walkley CR. Adenosine-to-inosine RNA editing by ADAR1 is essential for normal murine erythropoiesis. Exp Hematol 2016; 44:947-63. [PMID: 27373493 DOI: 10.1016/j.exphem.2016.06.250] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 06/02/2016] [Indexed: 11/17/2022]
Abstract
Adenosine deaminases that act on RNA (ADARs) convert adenosine residues to inosine in double-stranded RNA. In vivo, ADAR1 is essential for the maintenance of hematopoietic stem/progenitors. Whether other hematopoietic cell types also require ADAR1 has not been assessed. Using erythroid- and myeloid-restricted deletion of Adar1, we demonstrate that ADAR1 is dispensable for myelopoiesis but is essential for normal erythropoiesis. Adar1-deficient erythroid cells display a profound activation of innate immune signaling and high levels of cell death. No changes in microRNA levels were found in ADAR1-deficient erythroid cells. Using an editing-deficient allele, we demonstrate that RNA editing is the essential function of ADAR1 during erythropoiesis. Mapping of adenosine-to-inosine editing in purified erythroid cells identified clusters of hyperedited adenosines located in long 3'-untranslated regions of erythroid-specific transcripts and these are ADAR1-specific editing events. ADAR1-mediated RNA editing is essential for normal erythropoiesis.
Collapse
Affiliation(s)
- Brian J Liddicoat
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia; Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia
| | - Jochen C Hartner
- Taconic Biosciences, Cologne, Germany; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Division of Hematology/Oncology and Stem Cell Program, Children's Hospital Boston, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Robert Piskol
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Gokul Ramaswami
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Alistair M Chalk
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia; Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia
| | - Paul D Kingsley
- Center for Pediatric Biomedical Research, Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA
| | - Vijay G Sankaran
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Division of Hematology/Oncology and Stem Cell Program, Children's Hospital Boston, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Meaghan Wall
- Victorian Cancer Cytogenetics Service, St. Vincent's Hospital, Fitzroy, Victoria, Australia
| | - Louise E Purton
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia; Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia
| | - Peter H Seeburg
- Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - James Palis
- Center for Pediatric Biomedical Research, Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA
| | - Stuart H Orkin
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Division of Hematology/Oncology and Stem Cell Program, Children's Hospital Boston, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Boston, MA, USA
| | - Jun Lu
- Department of Genetics and Yale Stem Cell Center, Yale University, New Haven, CT, USA
| | - Jin Billy Li
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Carl R Walkley
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia; Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia.
| |
Collapse
|
33
|
He J, Wu D, Zhai Y, Wang Q, Ma X, Yang H, Li H. Interaction of inosine with human serum albumin as determined by NMR relaxation data and fluorescence methodology. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2016.03.067] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
34
|
Cuevas JM, Combe M, Torres-Puente M, Garijo R, Guix S, Buesa J, Rodríguez-Díaz J, Sanjuán R. Human norovirus hyper-mutation revealed by ultra-deep sequencing. INFECTION GENETICS AND EVOLUTION 2016; 41:233-239. [PMID: 27094861 PMCID: PMC7172324 DOI: 10.1016/j.meegid.2016.04.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/11/2016] [Accepted: 04/15/2016] [Indexed: 02/02/2023]
Abstract
Human noroviruses (NoVs) are a major cause of gastroenteritis worldwide. It is thought that, similar to other RNA viruses, high mutation rates allow NoVs to evolve fast and to undergo rapid immune escape at the population level. However, the rate and spectrum of spontaneous mutations of human NoVs have not been quantified previously. Here, we analyzed the intra-patient diversity of the NoV capsid by carrying out RT-PCR and ultra-deep sequencing with 100,000-fold coverage of 16 stool samples from symptomatic patients. This revealed the presence of low-frequency sequences carrying large numbers of U-to-C or A-to-G base transitions, suggesting a role for hyper-mutation in NoV diversity. To more directly test for hyper-mutation, we performed transfection assays in which the production of mutations was restricted to a single cell infection cycle. This confirmed the presence of sequences with multiple U-to-C/A-to-G transitions, and suggested that hyper-mutation contributed a large fraction of the total NoV spontaneous mutation rate. The type of changes produced and their sequence context are compatible with ADAR-mediated editing of the viral RNA. Norovirus U-to-C hyper-mutants are present in patient samples. Analysis of hyper-mutants in cell culture suggests ADAR-mediated RNA edition. Hyper-mutation may contribute to norovirus diversity and evolution.
Collapse
Affiliation(s)
- José M Cuevas
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universitat de València, Valencia, Spain
| | - Marine Combe
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universitat de València, Valencia, Spain
| | - Manoli Torres-Puente
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana, Valencia, Spain
| | - Raquel Garijo
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universitat de València, Valencia, Spain
| | - Susana Guix
- Departament de Microbiologia, Universitat de Barcelona, Barcelona, Spain
| | - Javier Buesa
- Departament de Microbiologia, Universitat de València, Valencia, Spain
| | | | - Rafael Sanjuán
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universitat de València, Valencia, Spain; Departament de Genètica, Universitat de València, Valencia, Spain.
| |
Collapse
|
35
|
Liu H, Wang Q, He Y, Chen L, Hao C, Jiang C, Li Y, Dai Y, Kang Z, Xu JR. Genome-wide A-to-I RNA editing in fungi independent of ADAR enzymes. Genome Res 2016; 26:499-509. [PMID: 26934920 PMCID: PMC4817773 DOI: 10.1101/gr.199877.115] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 01/22/2016] [Indexed: 01/10/2023]
Abstract
Yeasts and filamentous fungi do not have adenosine deaminase acting on RNA (ADAR) orthologs and are believed to lack A-to-I RNA editing, which is the most prevalent editing of mRNA in animals. However, during this study with the PUK1(FGRRES_01058) pseudokinase gene important for sexual reproduction in Fusarium graminearum, we found that two tandem stop codons, UA(1831)GUA(1834)G, in its kinase domain were changed to UG(1831)GUG(1834)G by RNA editing in perithecia. To confirm A-to-I editing of PUK1 transcripts, strand-specific RNA-seq data were generated with RNA isolated from conidia, hyphae, and perithecia. PUK1 was almost specifically expressed in perithecia, and 90% of transcripts were edited to UG(1831)GUG(1834)G. Genome-wide analysis identified 26,056 perithecium-specific A-to-I editing sites. Unlike those in animals, 70.5% of A-to-I editing sites inF. graminearum occur in coding regions, and more than two-thirds of them result in amino acid changes, including editing of 69PUK1-like pseudogenes with stop codons in ORFs.PUK1orthologs and other pseudogenes also displayed stage-specific expression and editing in Neurospora crassa and F. verticillioides Furthermore,F. graminearum differs from animals in the sequence preference and structure selectivity of A-to-I editing sites. Whereas A's embedded in RNA stems are targeted by ADARs, RNA editing inF. graminearum preferentially targets A's in hairpin loops, which is similar to the anticodon loop of tRNA targeted by adenosine deaminases acting on tRNA (ADATs). Overall, our results showed that A-to-I RNA editing occurs specifically during sexual reproduction and mainly in the coding regions in filamentous ascomycetes, involving adenosine deamination mechanisms distinct from metazoan ADARs.
Collapse
Affiliation(s)
- Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Purdue-NWAFU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qinhu Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Purdue-NWAFU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yi He
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lingfeng Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Purdue-NWAFU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chaofeng Hao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Purdue-NWAFU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Cong Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Purdue-NWAFU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yang Li
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907, USA
| | - Yafeng Dai
- State Key Laboratory of Crop Stress Biology for Arid Areas, Purdue-NWAFU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Purdue-NWAFU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jin-Rong Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Purdue-NWAFU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
36
|
Huntley MA, Lou M, Goldstein LD, Lawrence M, Dijkgraaf GJP, Kaminker JS, Gentleman R. Complex regulation of ADAR-mediated RNA-editing across tissues. BMC Genomics 2016; 17:61. [PMID: 26768488 PMCID: PMC4714477 DOI: 10.1186/s12864-015-2291-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 12/11/2015] [Indexed: 01/28/2023] Open
Abstract
Background RNA-editing is a tightly regulated, and essential cellular process for a properly functioning brain. Dysfunction of A-to-I RNA editing can have catastrophic effects, particularly in the central nervous system. Thus, understanding how the process of RNA-editing is regulated has important implications for human health. However, at present, very little is known about the regulation of editing across tissues, and individuals. Results Here we present an analysis of RNA-editing patterns from 9 different tissues harvested from a single mouse. For comparison, we also analyzed data for 5 of these tissues harvested from 15 additional animals. We find that tissue specificity of editing largely reflects differential expression of substrate transcripts across tissues. We identified a surprising enrichment of editing in intronic regions of brain transcripts, that could account for previously reported higher levels of editing in brain. There exists a small but remarkable amount of editing which is tissue-specific, despite comparable expression levels of the edit site across multiple tissues. Expression levels of editing enzymes and their isoforms can explain some, but not all of this variation. Conclusions Together, these data suggest a complex regulation of the RNA-editing process beyond transcript expression levels. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2291-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Melanie A Huntley
- Department of Bioinformatics and Computational Biology, Genentech Inc., 1 DNA Way, South San Francisco, USA.
| | - Melanie Lou
- Department of Bioinformatics and Computational Biology, Genentech Inc., 1 DNA Way, South San Francisco, USA.
| | - Leonard D Goldstein
- Department of Bioinformatics and Computational Biology, Genentech Inc., 1 DNA Way, South San Francisco, USA.
| | - Michael Lawrence
- Department of Bioinformatics and Computational Biology, Genentech Inc., 1 DNA Way, South San Francisco, USA.
| | - Gerrit J P Dijkgraaf
- Department of Molecular Oncology, Genentech Inc., 1 DNA Way, South San Francisco, USA.
| | - Joshua S Kaminker
- Department of Bioinformatics and Computational Biology, Genentech Inc., 1 DNA Way, South San Francisco, USA.
| | - Robert Gentleman
- Department of Bioinformatics and Computational Biology, Genentech Inc., 1 DNA Way, South San Francisco, USA.
| |
Collapse
|
37
|
Domingo E. Molecular Basis of Genetic Variation of Viruses. VIRUS AS POPULATIONS 2016. [PMCID: PMC7149591 DOI: 10.1016/b978-0-12-800837-9.00002-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Genetic variation is a necessity of all biological systems. Viruses use all known mechanisms of variation: mutation, several forms of recombination, and segment reassortment in the case of viruses with a segmented genome. These processes are intimately connected with the replicative machineries of viruses, as well as with fundamental physico-chemical properties of nucleotides when acting as template or substrate residues. Recombination has been viewed as a means to rescue viable genomes from unfit parents, or to produce large modifications for the exploration of phenotypic novelty. All types of genetic variation can act conjointly as blind processes to provide the raw materials for adaptation to the changing environments in which viruses must replicate.
Collapse
|
38
|
Wang B, Liu Y, Sun Z, Liu X, Mi Y, Liu D, Xu X, Hou Q, Wang F, Hu C. A splicing isoform of Ctenopharyngodon idella ADAR1 (CiADAR1-like): Genome organization, tissue specific expression and transcriptional regulation. FISH & SHELLFISH IMMUNOLOGY 2015; 47:535-544. [PMID: 26455664 DOI: 10.1016/j.fsi.2015.09.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 09/30/2015] [Accepted: 09/30/2015] [Indexed: 06/05/2023]
Abstract
Catalyzing the deamination of adenosine to inosine in RNA, ADAR1 (adenosine deaminase that act on RNA 1) belongs to ADAR family. In our previous work, we have cloned the complete genomic sequence of ADAR1 from grass carp (Ctenopharyngodon idella), named CiADAR1. In the process, we found a splicing isoform of CiADAR1 (CiADAR1-like). CiADAR1 and CiADAR1-like are possessed by different promoters but share a common exon 2. The complete genomic CiADAR1-like has 9 exons and 8 introns. Its full-length cDNA is comprised of a 5' UTR (417 bp), a 3' UTR (118 bp) and a 3324 bp-long ORF encoding a polypeptide of 1107 amino acids. The deduced amino acid sequence of CiADAR1-like contains two Z-DNA binding domains, three dsRNA binding motifs and a truncate catalytic domain. CiADAR1-like shared higher homology with Danio rerio ADAR1 and lower homology with HsADAR1-like in phylogenetic tree. qRT-PCR showed that CiADAR1-like were ubiquitously expressed and significantly up-regulated after stimulation with Poly I:C. Its mRNA reached the peak at 12 h post-stimulation in all tested tissues. Western-blotting experiment proved CiADAR1-like was factually expressed in C. idella kidney (CIK) cells. To further study the transcriptional regulatory mechanism of CiADAR1-like, we cloned its promoter sequence. CiADAR1-like promoter is 1173 bp in length containing 3 ISRE and 8 IRF-E. Subsequently, grass carp IRF1 (CiIRF1) and IRF3 (CiIRF3) were expressed in Escherichia coli BL21 and purified by affinity chromatography with the Ni-NTA His-Bind Resin. In vitro, CiIRF1 and CiIRF3 were able to bind to CiADAR1-like promoter with high affinity in gel mobility shift assays, revealing that IRF1 and IRF3 could be the potential transcriptional regulatory factors for CiADAR1-like. In vivo, Co-transfection of pcDNA3.1-IRF1 (or pcDNA3.1-IRF3) with pGL3-CiADAR1-like promoter into CIK cells showed that both IRF1 and IRF3 significantly increased the luciferase activity, suggesting that they play a positive role in CiADAR1-like transcription.
Collapse
Affiliation(s)
- Binhua Wang
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang 330031, China
| | - Yong Liu
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang 330031, China
| | - Zhicheng Sun
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang 330031, China
| | - Xiancheng Liu
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang 330031, China
| | - Yichuan Mi
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang 330031, China
| | - Dan Liu
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang 330031, China
| | - Xiaowen Xu
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang 330031, China
| | - Qunhao Hou
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang 330031, China
| | - Fang Wang
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang 330031, China
| | - Chengyu Hu
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
39
|
Orecchini E, Federico M, Doria M, Arenaccio C, Giuliani E, Ciafrè SA, Michienzi A. The ADAR1 editing enzyme is encapsidated into HIV-1 virions. Virology 2015; 485:475-80. [PMID: 26363218 DOI: 10.1016/j.virol.2015.07.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/13/2015] [Accepted: 07/30/2015] [Indexed: 11/17/2022]
Abstract
Adenosine deaminase acting on RNA1 (ADAR1) was previously reported to affect HIV-1 replication. We report data showing that ADAR1 interacts with the HIV-1 p55 Gag protein, the major structural protein of the immature virus capsid. Furthermore, we found that the endogenous ADAR1 is incorporated into virions purified from the supernatant of primary HIV-1-infected CD4(+) T lymphocytes. Additional experiments demonstrated that the expression of the p55 Gag protein is sufficient for ADAR1 incorporation into virus-like particles (VLPs). Overall, our data originally support the evidence that ADAR1 can be part of the cell protein array uploaded in HIV-1 particles.
Collapse
Affiliation(s)
- Elisa Orecchini
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Maurizio Federico
- National AIDS Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Margherita Doria
- Laboratory of Immunoinfectivology, Bambino Gesù Children׳s Hospital, IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
| | - Claudia Arenaccio
- National AIDS Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Erica Giuliani
- Laboratory of Immunoinfectivology, Bambino Gesù Children׳s Hospital, IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
| | - Silvia Anna Ciafrè
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Alessandro Michienzi
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| |
Collapse
|
40
|
Turk MN, Huentelman MJ. Nucleic acid-based risk factors and biomarkers: a future perspective on their use and development in Alzheimer's disease. Per Med 2015; 12:475-482. [PMID: 29749892 DOI: 10.2217/pme.15.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As our population lives longer the impact of Alzheimer's disease threatens to exert socioeconomic influences across generations. We now know that by the manifestation of memory problems, the neuropathological processes associated with Alzheimer's disease have progressed in the brain for over a decade. This represents an opportunity for medicine - a window to detect, diagnose and treat to prevent the onset of these cognitive symptoms. To achieve these goals we need the confluence of safe effective treatments and an improved ability to identify individuals at highest risk for the disease as early as possible. We will touch on current work in that arena and discuss the future of diagnostic and risk assessment capabilities through the use of nucleic acid-based measurements.
Collapse
Affiliation(s)
- Mari N Turk
- The Translational Genomics Research Institute (TGen), Neurogenomics Division, 8012 S 32nd Way, Phoenix, AZ 85004, USA
| | - Matthew J Huentelman
- The Translational Genomics Research Institute (TGen), Neurogenomics Division, 8012 S 32nd Way, Phoenix, AZ 85004, USA
| |
Collapse
|
41
|
Lardenoije R, Iatrou A, Kenis G, Kompotis K, Steinbusch HWM, Mastroeni D, Coleman P, Lemere CA, Hof PR, van den Hove DLA, Rutten BPF. The epigenetics of aging and neurodegeneration. Prog Neurobiol 2015; 131:21-64. [PMID: 26072273 PMCID: PMC6477921 DOI: 10.1016/j.pneurobio.2015.05.002] [Citation(s) in RCA: 246] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 05/13/2015] [Accepted: 05/13/2015] [Indexed: 12/14/2022]
Abstract
Epigenetics is a quickly growing field encompassing mechanisms regulating gene expression that do not involve changes in the genotype. Epigenetics is of increasing relevance to neuroscience, with epigenetic mechanisms being implicated in brain development and neuronal differentiation, as well as in more dynamic processes related to cognition. Epigenetic regulation covers multiple levels of gene expression; from direct modifications of the DNA and histone tails, regulating the level of transcription, to interactions with messenger RNAs, regulating the level of translation. Importantly, epigenetic dysregulation currently garners much attention as a pivotal player in aging and age-related neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, and Huntington's disease, where it may mediate interactions between genetic and environmental risk factors, or directly interact with disease-specific pathological factors. We review current knowledge about the major epigenetic mechanisms, including DNA methylation and DNA demethylation, chromatin remodeling and non-coding RNAs, as well as the involvement of these mechanisms in normal aging and in the pathophysiology of the most common neurodegenerative diseases. Additionally, we examine the current state of epigenetics-based therapeutic strategies for these diseases, which either aim to restore the epigenetic homeostasis or skew it to a favorable direction to counter disease pathology. Finally, methodological challenges of epigenetic investigations and future perspectives are discussed.
Collapse
Affiliation(s)
- Roy Lardenoije
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands
| | - Artemis Iatrou
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands
| | - Gunter Kenis
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands
| | - Konstantinos Kompotis
- Center for Integrative Genomics, University of Lausanne, Genopode Building, 1015 Lausanne-Dorigny, Switzerland
| | - Harry W M Steinbusch
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands
| | - Diego Mastroeni
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands; L.J. Roberts Alzheimer's Disease Center, Banner Sun Health Research Institute, 10515 W. Santa Fe Drive, Sun City, AZ 85351, USA
| | - Paul Coleman
- L.J. Roberts Alzheimer's Disease Center, Banner Sun Health Research Institute, 10515 W. Santa Fe Drive, Sun City, AZ 85351, USA
| | - Cynthia A Lemere
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Patrick R Hof
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Daniel L A van den Hove
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands; Laboratory of Translational Neuroscience, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Fuechsleinstrasse 15, 97080 Wuerzburg, Germany
| | - Bart P F Rutten
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands.
| |
Collapse
|
42
|
Decrease of mRNA Editing after Spinal Cord Injury is Caused by Down-regulation of ADAR2 that is Triggered by Inflammatory Response. Sci Rep 2015. [PMID: 26223940 PMCID: PMC4519770 DOI: 10.1038/srep12615] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We recently showed that spinal cord injury (SCI) leads to a decrease in mRNA editing of serotonin receptor 2C (5-HT2CR) contributing to post-SCI spasticity. Here we study post-SCI mRNA editing and global gene expression using massively parallel sequencing. Evidence is presented that the decrease in 5-HT2CR editing is caused by down-regulation of adenosine deaminase ADAR2 and that editing of at least one other ADAR2 target, potassium channel Kv1.1, is decreased after SCI. Bayesian network analysis of genome-wide transcriptome data indicates that down-regulation of ADAR2 (1) is triggered by persistent inflammatory response to SCI that is associated with activation of microglia and (2) results in changes in neuronal gene expression that are likely to contribute both to post-SCI restoration of neuronal excitability and muscle spasms. These findings have broad implications for other diseases of the Central Nervous System and could open new avenues for developing efficacious antispastic treatments.
Collapse
|
43
|
Hassan MA, Saeij JP. Incorporating alternative splicing and mRNA editing into the genetic analysis of complex traits. Bioessays 2014; 36:1032-40. [PMID: 25171292 PMCID: PMC4280019 DOI: 10.1002/bies.201400079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The nomination of candidate genes underlying complex traits is often focused on genetic variations that alter mRNA abundance or result in non-conservative changes in amino acids. Although inconspicuous in complex trait analysis, genetic variants that affect splicing or RNA editing can also generate proteomic diversity and impact genetic traits. Indeed, it is known that splicing and RNA editing modulate several traits in humans and model organisms. Using high-throughput RNA sequencing (RNA-seq) analysis, it is now possible to integrate the genetics of transcript abundance, alternative splicing (AS) and editing with the analysis of complex traits. We recently demonstrated that both AS and mRNA editing are modulated by genetic and environmental factors, and potentially engender phenotypic diversity in a genetically segregating mouse population. Therefore, the analysis of splicing and RNA editing can expand not only the regulatory landscape of transcriptome and proteome complexity, but also the repertoire of candidate genes for complex traits.
Collapse
Affiliation(s)
- Musa A. Hassan
- Massachusetts Institute of Technology, Department of Biology, Cambridge, MA, USA
| | - Jeroen P.J. Saeij
- Massachusetts Institute of Technology, Department of Biology, Cambridge, MA, USA
| |
Collapse
|
44
|
Peng L, Gu L, Li B, Hertz L. Fluoxetine and all other SSRIs are 5-HT2B Agonists - Importance for their Therapeutic Effects. Curr Neuropharmacol 2014; 12:365-79. [PMID: 25342944 PMCID: PMC4207076 DOI: 10.2174/1570159x12666140828221720] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 06/24/2014] [Accepted: 06/30/2014] [Indexed: 11/22/2022] Open
Abstract
Fluoxetine and other serotonin-specific re-uptake inhibitors (SSRIs) are generally thought to owe their therapeutic potency to inhibition of the serotonin transporter (SERT). However, research in our laboratory showed that it affects, with relatively high affinity the 5-HT2B receptor in cultured astrocytes; this finding was confirmed by independent observations showing that fluoxetine loses its ability to elicit SSRI-like responses in behavioral assays in mice in which the 5-HT2B receptor was knocked-out genetically or inhibited pharmacologically. All clinically used SSRIs are approximately equipotent towards 5-HT2B receptors and exert their effect on cultured astrocytes at concentrations similar to those used clinically, a substantial difference from their effect on SERT. We have demonstrated up-regulation and editing of astrocytic genes for ADAR2, the kainate receptor GluK2, cPLA2 and the 5-HT2B receptor itself after chronic treatment of cultures, which do not express SERT and after treatment of mice (expressing SERT) for 2 weeks with fluoxetine, followed by isolation of astrocytic and neuronal cell fractionation. Affected genes were identical in both experimental paradigms. Fluoxetine treatment also altered Ca(2+) homeostatic cascades, in a specific way that differs from that seen after treatment with the anti-bipolar drugs carbamazepine, lithium, or valproic acid. All changes occurred after a lag period similar to what is seen for fluoxetine's clinical effects, and some of the genes were altered in the opposite direction by mild chronic inescapable stress, known to cause anhedonia, a component of major depression. In the anhedonic mice these changes were reversed by treatment with SSRIs.
Collapse
Affiliation(s)
- Liang Peng
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, P. R. China
| | - Li Gu
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, P. R. China
| | - Baoman Li
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, P. R. China
| | - Leif Hertz
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, P. R. China
| |
Collapse
|
45
|
Predicting A-to-I RNA editing by feature selection and random forest. PLoS One 2014; 9:e110607. [PMID: 25338210 PMCID: PMC4206426 DOI: 10.1371/journal.pone.0110607] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 09/16/2014] [Indexed: 11/19/2022] Open
Abstract
RNA editing is a post-transcriptional RNA process that provides RNA and protein complexity for regulating gene expression in eukaryotes. It is challenging to predict RNA editing by computational methods. In this study, we developed a novel method to predict RNA editing based on a random forest method. A careful feature selection procedure was performed based on the Maximum Relevance Minimum Redundancy (mRMR) and Incremental Feature Selection (IFS) algorithms. Eighteen optimal features were selected from the 77 features in our dataset and used to construct a final predictor. The accuracy and MCC (Matthews correlation coefficient) values for the training dataset were 0.866 and 0.742, respectively; for the testing dataset, the accuracy and MCC were 0.876 and 0.576, respectively. The performance was higher using 18 features than all 77, suggesting that a small feature set was sufficient to achieve accurate prediction. Analysis of the 18 features was performed and may shed light on the mechanism and dominant factors of RNA editing, providing a basis for future experimental validation.
Collapse
|
46
|
Adenosine deaminase acting on RNA-1 (ADAR1) inhibits HIV-1 replication in human alveolar macrophages. PLoS One 2014; 9:e108476. [PMID: 25272020 PMCID: PMC4182706 DOI: 10.1371/journal.pone.0108476] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 08/29/2014] [Indexed: 11/20/2022] Open
Abstract
While exploring the effects of aerosol IFN-γ treatment in HIV-1/tuberculosis co-infected patients, we observed A to G mutations in HIV-1 envelope sequences derived from bronchoalveolar lavage (BAL) of aerosol IFN-γ-treated patients and induction of adenosine deaminase acting on RNA 1 (ADAR1) in the BAL cells. IFN-γ induced ADAR1 expression in monocyte-derived macrophages (MDM) but not T cells. ADAR1 siRNA knockdown induced HIV-1 expression in BAL cells of four HIV-1 infected patients on antiretroviral therapy. Similar results were obtained in MDM that were HIV-1 infected invitro. Over-expression of ADAR1 in transformed macrophages inhibited HIV-1 viral replication but not viral transcription measured by nuclear run-on, suggesting that ADAR1 acts post-transcriptionally. The A to G hyper-mutation pattern observed in ADAR1 over-expressing cells invitro was similar to that found in the lungs of HIV-1 infected patients treated with aerosol IFN-γ suggesting the model accurately represented alveolar macrophages. Together, these results indicate that ADAR1 restricts HIV-1 replication post-transcriptionally in macrophages harboring HIV-1 provirus. ADAR1 may therefore contribute to viral latency in macrophages.
Collapse
|
47
|
Solomon O, Bazak L, Levanon EY, Amariglio N, Unger R, Rechavi G, Eyal E. Characterizing of functional human coding RNA editing from evolutionary, structural, and dynamic perspectives. Proteins 2014; 82:3117-31. [DOI: 10.1002/prot.24672] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 07/28/2014] [Accepted: 08/11/2014] [Indexed: 12/29/2022]
Affiliation(s)
- Oz Solomon
- Cancer Research Center; Chaim Sheba Medical Center; Tel Hashomer 52621 Ramat Gan Israel
- The Everard & Mina Goodman Faculty of Life Sciences; Bar-Ilan University; Ramat Gan 52900 Israel
| | - Lily Bazak
- The Everard & Mina Goodman Faculty of Life Sciences; Bar-Ilan University; Ramat Gan 52900 Israel
| | - Erez Y. Levanon
- The Everard & Mina Goodman Faculty of Life Sciences; Bar-Ilan University; Ramat Gan 52900 Israel
| | - Ninette Amariglio
- Cancer Research Center; Chaim Sheba Medical Center; Tel Hashomer 52621 Ramat Gan Israel
| | - Ron Unger
- The Everard & Mina Goodman Faculty of Life Sciences; Bar-Ilan University; Ramat Gan 52900 Israel
| | - Gideon Rechavi
- Cancer Research Center; Chaim Sheba Medical Center; Tel Hashomer 52621 Ramat Gan Israel
- Sackler School of Medicine; Tel Aviv University; Tel Aviv 69978 Israel
| | - Eran Eyal
- Cancer Research Center; Chaim Sheba Medical Center; Tel Hashomer 52621 Ramat Gan Israel
| |
Collapse
|
48
|
Abstract
Embryonic stem cell maintenance, differentiation, and somatic cell reprogramming require the interplay of multiple pluripotency factors, epigenetic remodelers, and extracellular signaling pathways. RNA-binding proteins (RBPs) are involved in a wide range of regulatory pathways, from RNA metabolism to epigenetic modifications. In recent years we have witnessed more and more studies on the discovery of new RBPs and the assessment of their functions in a variety of biological systems, including stem cells. We review the current studies on RBPs and focus on those that have functional implications in pluripotency, differentiation, and/or reprogramming in both the human and mouse systems.
Collapse
|
49
|
Faoro C, Ataide SF. Ribonomic approaches to study the RNA-binding proteome. FEBS Lett 2014; 588:3649-64. [PMID: 25150170 DOI: 10.1016/j.febslet.2014.07.039] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 07/04/2014] [Accepted: 07/04/2014] [Indexed: 01/23/2023]
Abstract
Gene expression is controlled through a complex interplay among mRNAs, non-coding RNAs and RNA-binding proteins (RBPs), which all assemble along with other RNA-associated factors in dynamic and functional ribonucleoprotein complexes (RNPs). To date, our understanding of RBPs is largely limited to proteins with known or predicted RNA-binding domains. However, various methods have been recently developed to capture an RNA of interest and comprehensively identify its associated RBPs. In this review, we discuss the RNA-affinity purification methods followed by mass spectrometry analysis (AP-MS); RBP screening within protein libraries and computational methods that can be used to study the RNA-binding proteome (RBPome).
Collapse
Affiliation(s)
- Camilla Faoro
- School of Molecular Biosciences, University of Sydney, NSW, Australia
| | - Sandro F Ataide
- School of Molecular Biosciences, University of Sydney, NSW, Australia.
| |
Collapse
|
50
|
Di Narzo AF, Kozlenkov A, Roussos P, Hao K, Hurd Y, Lewis DA, Sibille E, Siever LJ, Koonin E, Dracheva S. A unique gene expression signature associated with serotonin 2C receptor RNA editing in the prefrontal cortex and altered in suicide. Hum Mol Genet 2014; 23:4801-13. [PMID: 24781207 DOI: 10.1093/hmg/ddu195] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Editing of the pre-mRNA for the serotonin receptor 2C (5-HT2CR) by site-specific adenosine deamination (A-to-I pre-mRNA editing) substantially increases the functional plasticity of this key neurotransmitter receptor and is thought to contribute to homeostatic mechanisms in neurons. 5-HT2CR mRNA editing generates up to 24 different receptor isoforms. The extent of editing correlates with 5-HT2CR functional activity: more highly edited isoforms exhibit the least function. Altered 5-HT2CR editing has been reported in postmortem brains of suicide victims. We report a comparative analysis of the connections among 5-HT2CR editing, genome-wide gene expression and DNA methylation in suicide victims, individuals with major depressive disorder and non-psychiatric controls. The results confirm previous findings of an overrepresentation of highly edited mRNA variants (which encode hypoactive 5-HT2CR receptors) in the brains of suicide victims. A large set of genes for which the expression level is associated with editing was detected. This signature set of editing-associated genes is significantly enriched for genes that are involved in synaptic transmission, genes that are preferentially expressed in neurons, and genes whose expression is correlated with the level of DNA methylation. Notably, we report that the link between 5-HT2CR editing and gene expression is disrupted in suicide victims. The results suggest that the postulated homeostatic function of 5-HT2CR editing is dysregulated in individuals who committed suicide.
Collapse
Affiliation(s)
| | - Alexey Kozlenkov
- Department of Psychiatry, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA James J. Peters VA Medical Center, Bronx, NY, USA
| | - Panos Roussos
- Department of Genetics and Genomic Sciences and Department of Psychiatry, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA James J. Peters VA Medical Center, Bronx, NY, USA
| | - Ke Hao
- Department of Genetics and Genomic Sciences and
| | - Yasmin Hurd
- Department of Psychiatry, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David A Lewis
- Department of Psychiatry, Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Etienne Sibille
- Department of Psychiatry, Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Larry J Siever
- Department of Psychiatry, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA James J. Peters VA Medical Center, Bronx, NY, USA
| | - Eugene Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Stella Dracheva
- Department of Psychiatry, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA James J. Peters VA Medical Center, Bronx, NY, USA
| |
Collapse
|