1
|
Poirier KM, Luallen RJ, Rivera DE. RNA fluorescence in situ hybridization (FISH) as a method to visualize bacterial colonization in the C. elegans gut. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001044. [PMID: 38481555 PMCID: PMC10935869 DOI: 10.17912/micropub.biology.001044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/05/2024] [Accepted: 02/25/2024] [Indexed: 03/17/2024]
Abstract
Caenorhabditis elegans is an excellent model to study host-microbe interactions as it is easy to visualize bacterial presence in their intestine. However, previous studies have shown that utilizing transgenic, fluorescent protein-expressing bacteria is not a reliable method to distinguish living bacteria from dead bacteria in the lumen of C. elegans . In this study, we compared methods for visualizing bacterial presence within the C. elegans intestine and found that RNA f luorescent i n s itu h ybridization (RNA FISH) could distinguish the difference between intact and dead bacteria. Thus, we propose RNA FISH as the preferred method to visualize live bacterial presence in the intestines of C. elegans prior to fixation.
Collapse
Affiliation(s)
- Kayla M Poirier
- Department of Biology, San Diego State University, San Diego, California, United States
| | - Robert J Luallen
- Department of Biology, San Diego State University, San Diego, California, United States
| | - Dalaena E Rivera
- Department of Biology, San Diego State University, San Diego, California, United States
| |
Collapse
|
2
|
Liu L, Zhong KX, Chen Q, Wang Y, Zhang T, Jiao N, Zheng Q. Selective cell lysis pressure on rare and abundant prokaryotic taxa across a shelf-to-slope continuum in the Northern South China Sea. Appl Environ Microbiol 2023; 89:e0139323. [PMID: 38014961 PMCID: PMC10734510 DOI: 10.1128/aem.01393-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 10/19/2023] [Indexed: 11/29/2023] Open
Abstract
IMPORTANCE Virus-induced host lysis contributes up to 40% of total prokaryotic mortality and plays crucial roles in shaping microbial composition and diversity in the ocean. Nonetheless, what taxon-specific cell lysis is caused by viruses remains to be studied. The present study, therefore, examined the taxon-specific cell lysis and estimated its contribution to the variations in the rare and abundant microbial taxa. The results demonstrate that taxon-specific mortality differed in surface and bottom of the coastal environment. In addition, active rare taxa are more susceptible to heightened lytic pressure and suggested the importance of viral lysis in regulating the microbial community composition. These results improve our understanding of bottom-up (abiotic environmental variables) and top-down (viral lysis) controls contributing to microbial community assembly in the ocean.
Collapse
Affiliation(s)
- Lu Liu
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
| | - Kevin Xu Zhong
- Department of Earth, Ocean, and Atmospheric Sciences, University of British Columbia, Vancouver, Canada
| | - Qi Chen
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
| | - Yu Wang
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
| | - Ting Zhang
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
| | - Nianzhi Jiao
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
| | - Qiang Zheng
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
| |
Collapse
|
3
|
Vinacour M, Moiana M, Forné I, Jung K, Bertea M, Calero Valdayo PM, Nikel PI, Imhof A, Palumbo MC, Fernández Do Porto D, Ruiz JA. Genetic dissection of the degradation pathways for the mycotoxin fusaric acid in Burkholderia ambifaria T16. Appl Environ Microbiol 2023; 89:e0063023. [PMID: 38054732 PMCID: PMC10734416 DOI: 10.1128/aem.00630-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 10/25/2023] [Indexed: 12/07/2023] Open
Abstract
IMPORTANCE Fusaric acid (FA) is an important virulence factor produced by several Fusarium species. These fungi are responsible for wilt and rot diseases in a diverse range of crops. FA is toxic for animals, humans and soil-borne microorganisms. This mycotoxin reduces the survival and competition abilities of bacterial species able to antagonize Fusarium spp., due to its negative effects on viability and the production of antibiotics effective against these fungi. FA biodegradation is not a common characteristic among bacteria, and the determinants of FA catabolism have not been identified so far in any microorganism. In this study, we identified genes, enzymes, and metabolic pathways involved in the degradation of FA in the soil bacterium Burkholderia ambifaria T16. Our results provide insights into the catabolism of a pyridine-derivative involved in plant pathogenesis by a rhizosphere bacterium.
Collapse
Affiliation(s)
- Matias Vinacour
- Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mauro Moiana
- Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ignasi Forné
- Protein Analysis Unit, BioMedical Center (BMC), Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Kirsten Jung
- Faculty Biology, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Micaela Bertea
- Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Patricia M. Calero Valdayo
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Pablo I. Nikel
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Axel Imhof
- Protein Analysis Unit, BioMedical Center (BMC), Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Miranda C. Palumbo
- Instituto de Cálculo (IC), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Dario Fernández Do Porto
- Instituto de Cálculo (IC), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jimena A. Ruiz
- Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
- Faculty Biology, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
4
|
Börner J, Friedrich T, Klug G. RNase III participates in control of quorum sensing, pigmentation and oxidative stress resistance in Rhodobacter sphaeroides. Mol Microbiol 2023; 120:874-892. [PMID: 37823424 DOI: 10.1111/mmi.15181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023]
Abstract
RNase III is a dsRNA-specific endoribonuclease, highly conserved in bacteria and eukarya. In this study, we analysed the effects of inactivation of RNase III on the transcriptome and the phenotype of the facultative phototrophic α-proteobacterium Rhodobacter sphaeroides. RNA-seq revealed an unexpectedly high amount of genes with increased expression located directly downstream to the rRNA operons. Chromosomal insertion of additional transcription terminators restored wild type-like expression of the downstream genes, indicating that RNase III may modulate the rRNA transcription termination in R. sphaeroides. Furthermore, we identified RNase III as a major regulator of quorum-sensing autoinducer synthesis in R. sphaeroides. It negatively controls the expression of the autoinducer synthase CerI by reducing cerI mRNA stability. In addition, RNase III inactivation caused altered resistance against oxidative stress and impaired formation of photosynthetically active pigment-protein complexes. We also observed an increase in the CcsR small RNAs that were previously shown to promote resistance to oxidative stress. Taken together, our data present interesting insights into RNase III-mediated regulation and expand the knowledge on the function of this important enzyme in bacteria.
Collapse
Affiliation(s)
- Janek Börner
- Institute of Microbiology and Molecular Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Tobias Friedrich
- Biomedical Informatics and Systems Medicine, Justus-Liebig-University Giessen, Giessen, Germany
- Institute of Biochemistry, Justus-Liebig-University Giessen, Giessen, Germany
| | - Gabriele Klug
- Institute of Microbiology and Molecular Biology, Justus-Liebig-University Giessen, Giessen, Germany
| |
Collapse
|
5
|
Broglia L, Le Rhun A, Charpentier E. Methodologies for bacterial ribonuclease characterization using RNA-seq. FEMS Microbiol Rev 2023; 47:fuad049. [PMID: 37656885 PMCID: PMC10503654 DOI: 10.1093/femsre/fuad049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/06/2023] [Accepted: 08/23/2023] [Indexed: 09/03/2023] Open
Abstract
Bacteria adjust gene expression at the post-transcriptional level through an intricate network of small regulatory RNAs and RNA-binding proteins, including ribonucleases (RNases). RNases play an essential role in RNA metabolism, regulating RNA stability, decay, and activation. These enzymes exhibit species-specific effects on gene expression, bacterial physiology, and different strategies of target recognition. Recent advances in high-throughput RNA sequencing (RNA-seq) approaches have provided a better understanding of the roles and modes of action of bacterial RNases. Global studies aiming to identify direct targets of RNases have highlighted the diversity of RNase activity and RNA-based mechanisms of gene expression regulation. Here, we review recent RNA-seq approaches used to study bacterial RNases, with a focus on the methods for identifying direct RNase targets.
Collapse
Affiliation(s)
- Laura Broglia
- Max Planck Unit for the Science of Pathogens, D-10117 Berlin, Germany
- Center for Human Technologies, Istituto Italiano di Tecnologia, 16152 Genova, Italy
| | - Anaïs Le Rhun
- Max Planck Unit for the Science of Pathogens, D-10117 Berlin, Germany
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, F-33000 Bordeaux, France
| | - Emmanuelle Charpentier
- Max Planck Unit for the Science of Pathogens, D-10117 Berlin, Germany
- Institute for Biology, Humboldt University, D-10115 Berlin, Germany
| |
Collapse
|
6
|
Njenga R, Boele J, Öztürk Y, Koch HG. Coping with stress: How bacteria fine-tune protein synthesis and protein transport. J Biol Chem 2023; 299:105163. [PMID: 37586589 PMCID: PMC10502375 DOI: 10.1016/j.jbc.2023.105163] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/18/2023] Open
Abstract
Maintaining a functional proteome under different environmental conditions is challenging for every organism, in particular for unicellular organisms, such as bacteria. In order to cope with changing environments and stress conditions, bacteria depend on strictly coordinated proteostasis networks that control protein production, folding, trafficking, and degradation. Regulation of ribosome biogenesis and protein synthesis are cornerstones of this cellular adaptation in all domains of life, which is rationalized by the high energy demand of both processes and the increased resistance of translationally silent cells against internal or external poisons. Reduced protein synthesis ultimately also reduces the substrate load for protein transport systems, which are required for maintaining the periplasmic, inner, and outer membrane subproteomes. Consequences of impaired protein transport have been analyzed in several studies and generally induce a multifaceted response that includes the upregulation of chaperones and proteases and the simultaneous downregulation of protein synthesis. In contrast, generally less is known on how bacteria adjust the protein targeting and transport machineries to reduced protein synthesis, e.g., when cells encounter stress conditions or face nutrient deprivation. In the current review, which is mainly focused on studies using Escherichia coli as a model organism, we summarize basic concepts on how ribosome biogenesis and activity are regulated under stress conditions. In addition, we highlight some recent developments on how stress conditions directly impair protein targeting to the bacterial membrane. Finally, we describe mechanisms that allow bacteria to maintain the transport of stress-responsive proteins under conditions when the canonical protein targeting pathways are impaired.
Collapse
Affiliation(s)
- Robert Njenga
- Faculty of Medicine, Institute for Biochemistry and Molecular Biology, ZBMZ, Albert-Ludwigs University Freiburg, Freiburg, Germany; Faculty of Biology, Albert-Ludwigs University Freiburg, Freiburg, Germany
| | - Julian Boele
- Faculty of Medicine, Institute for Biochemistry and Molecular Biology, ZBMZ, Albert-Ludwigs University Freiburg, Freiburg, Germany
| | - Yavuz Öztürk
- Faculty of Medicine, Institute for Biochemistry and Molecular Biology, ZBMZ, Albert-Ludwigs University Freiburg, Freiburg, Germany
| | - Hans-Georg Koch
- Faculty of Medicine, Institute for Biochemistry and Molecular Biology, ZBMZ, Albert-Ludwigs University Freiburg, Freiburg, Germany.
| |
Collapse
|
7
|
Dubnau E, DeSantis M, Dubnau D. Formation of a stable RNase Y-RicT (YaaT) complex requires RicA (YmcA) and RicF (YlbF). mBio 2023; 14:e0126923. [PMID: 37555678 PMCID: PMC10470536 DOI: 10.1128/mbio.01269-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 06/28/2023] [Indexed: 08/10/2023] Open
Abstract
In Bacillus subtilis, the RicT (YaaT), RicA (YmcA), and RicF (YlbF) proteins, which form a stable ternary complex, are needed together with RNase Y (Rny) to cleave and thereby stabilize several key transcripts encoding enzymes of intermediary metabolism. We show here that RicT, but not RicA or RicF, forms a stable complex with Rny and that this association requires the presence of RicA and RicF. We propose that RicT is handed off from the ternary complex to Rny. We show further that the two iron-sulfur clusters carried by the ternary Ric complex are required for the formation of the stable RicT-Rny complex. We demonstrate that proteins of the degradosome-like network of B. subtilis, which also interact with Rny, are dispensable for processing of the gapA operon. Thus, Rny participates in distinct RNA-related processes, determined by its binding partners, and a RicT-Rny complex is likely the functional entity for gapA mRNA maturation. IMPORTANCE The action of nucleases on RNA is universal and essential for all forms of life and includes processing steps that lead to the mature and functional forms of certain transcripts. In Bacillus subtilis, it has been shown that key transcripts for energy-producing steps of glycolysis, for nitrogen assimilation, and for oxidative phosphorylation, all of them crucial processes of intermediary metabolism, are cleaved at specific locations, resulting in mRNA stabilization. The proteins required for these cleavages in B. subtilis [Rny (RNase Y), RicA (YmcA), RicF (YlbF), and RicT (YaaT)] are broadly conserved among the firmicutes, including several important pathogens, hinting that regulatory mechanisms they control may also be conserved. Several aspects of these regulatory events have been explored: phenotypes associated with the absence of these proteins have been described, the impact of these absences on the transcriptome has been documented, and there has been significant exploration of the biochemistry and structural biology of Rny and the Ric proteins. The present study further advances our understanding of the association of Ric proteins and Rny and shows that a complex of Rny with RicT is probably the entity that carries out mRNA maturation.
Collapse
Affiliation(s)
- Eugenie Dubnau
- Public Health Research Institute, Rutgers University, Newark, New Jersey, USA
| | - Micaela DeSantis
- Public Health Research Institute, Rutgers University, Newark, New Jersey, USA
| | - David Dubnau
- Public Health Research Institute, Rutgers University, Newark, New Jersey, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| |
Collapse
|
8
|
Yi X, Yang D, Xu X, Wang Y, Guo Y, Zhang M, Wang Y, He Y, Zhu J. Cold plasma pretreatment reinforces the lignocellulose-derived aldehyde inhibitors tolerance and bioethanol fermentability for Zymomonas mobilis. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:102. [PMID: 37322470 DOI: 10.1186/s13068-023-02354-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/29/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Lignocellulose-derived aldehyde inhibitors seriously blocked the biorefinery of biofuels and biochemicals. To date, the economic production of lignocellulose-based products heavily relied on high productivities of fermenting strains. However, it was expensive and time-consuming for the achievable rational modification to strengthen stress tolerance robustness of aldehyde inhibitors. Here, it aimed to improve aldehyde inhibitors tolerance and cellulosic bioethanol fermentability for the chassis Zymomonas mobilis ZM4 pretreated using energy-efficient and eco-friendly cold plasma. RESULTS It was found that bioethanol fermentability was weaker in CSH (corn stover hydrolysates) than that in synthetic medium for Z. mobilis, and thus was attributed to the inhibition of the lignocellulose-derived aldehyde inhibitors in CSH. Convincingly, it further confirmed that the mixed aldehydes severely decreased bioethanol accumulation through additional aldehydes supplementary assays in synthetic medium. After assayed under different processing time (10-30 s), discharge power (80-160 W), and working pressure (120-180 Pa) using cold atmosphere plasma (CAP), it achieved the increased bioethanol fermentability for Z. mobilis after pretreated at the optimized parameters (20 s, 140 W and 165 Pa). It showed that cold plasma brought about three mutation sites including ZMO0694 (E220V), ZMO0843 (L471L) and ZMO0843 (P505H) via Genome resequencing-based SNPs (single nucleotide polymorphisms). A serial of differentially expressed genes (DEGs) were further identified as the potential contributors for stress tolerance via RNA-Seq sequencing, including ZMO0253 and ZMO_RS09265 (type I secretion outer membrane protein), ZMO1941 (Type IV secretory pathway protease TraF-like protein), ZMOr003 and ZMOr006 (16S ribosomal RNA), ZMO0375 and ZMO0374 (levansucrase) and ZMO1705 (thioredoxins). It enriched cellular process, followed by metabolic process and single-organism process for biological process. For KEGG analysis, the mutant was also referred to starch and sucrose metabolism, galactose metabolism and two-component system. Finally, but interestingly, it simultaneously achieved the enhanced stress tolerance capacity of aldehyde inhibitors and bioethanol fermentability in CSH for the mutant Z. mobilis. CONCLUSIONS Of several candidate genetic changes, the mutant Z. mobilis treated with cold plasma was conferred upon the facilitated aldehyde inhibitors tolerance and bioethanol production. This work would provide a strain biocatalyst for the efficient production of lignocellulosic biofuels and biochemicals.
Collapse
Affiliation(s)
- Xia Yi
- National-Local Joint Engineering Research Center for Biomass Refining and High-Quality Utilization, Changzhou University, Changzhou, 213164, China.
- Institute of Urban and Rural Mining, Changzhou University, Changzhou, 213164, China.
- Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization Technology, Changzhou University, Changzhou, 213164, Jiangsu, China.
| | - Dong Yang
- School of Pharmacy, Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Xiaoyan Xu
- School of Pharmacy, Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Youjun Wang
- School of Pharmacy, Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Yan Guo
- School of Pharmacy, Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Meng Zhang
- School of Pharmacy, Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Yilong Wang
- School of Pharmacy, Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Yucai He
- National-Local Joint Engineering Research Center for Biomass Refining and High-Quality Utilization, Changzhou University, Changzhou, 213164, China.
- School of Pharmacy, Changzhou University, Changzhou, 213164, Jiangsu, China.
| | - Jie Zhu
- National-Local Joint Engineering Research Center for Biomass Refining and High-Quality Utilization, Changzhou University, Changzhou, 213164, China.
- Institute of Urban and Rural Mining, Changzhou University, Changzhou, 213164, China.
- Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization Technology, Changzhou University, Changzhou, 213164, Jiangsu, China.
- School of Pharmacy, Changzhou University, Changzhou, 213164, Jiangsu, China.
| |
Collapse
|
9
|
Dubnau E, DeSantis M, Dubnau D. Formation of a stable RNase Y-RicT (YaaT) complex requires RicA (YmcA) and RicF (YlbF). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.541740. [PMID: 37292586 PMCID: PMC10245838 DOI: 10.1101/2023.05.22.541740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In Bacillus subtilis , the RicT (YaaT), RicA (YmcA) and RicF (YlbF) proteins, which form a stable ternary complex, are needed together with RNase Y (Rny), to cleave and thereby stabilize several key transcripts encoding enzymes of intermediary metabolism. We show here that RicT, but not RicA or RicF, forms a stable complex with Rny, and that this association requires the presence of RicA and RicF. We propose that RicT is handed off from the ternary complex to Rny. We show further that the two iron-sulfur clusters carried by the ternary Ric complex are required for the formation of the stable RicT-Rny complex. We demonstrate that proteins of the degradosome-like network of B. subtilis , which also interact with Rny, are dispensable for processing of the gapA operon. Thus, Rny participates in distinct RNA-related processes, determined by its binding partners, and a RicT-Rny complex is likely the functional entity for gapA mRNA maturation. IMPORTANCE The action of nucleases on RNA is universal and essential for all forms of life and includes processing steps that lead to the mature and functional forms of certain transcripts. In B. subtilis it has been shown that key transcripts for energy producing steps of glycolysis, for nitrogen assimilation and for oxidative phosphorylation, all of them crucial processes of intermediary metabolism, are cleaved at specific locations, resulting in mRNA stabilization. The proteins required for these cleavages in B. subtilis (Rny (RNase Y), RicA (YmcA), RicF (YlbF) and RicT (YaaT)) are broadly conserved among the firmicutes, including in several important pathogens, hinting that regulatory mechanisms they control may also be conserved. Several aspects of these regulatory events have been explored: phenotypes associated with the absence of these proteins have been described, the impact of these absences on the transcriptome has been documented, and there has been significant exploration of the biochemistry and structural biology of Rny and the Ric proteins. The present study further advances our understanding of the association of Ric proteins and Rny and shows that a complex of Rny with RicT is probably the entity that carries out mRNA maturation.
Collapse
Affiliation(s)
- Eugenie Dubnau
- Public Health Research Institute, Rutgers University, 225 Warren Street, Newark, New Jersey, 07103, USA
| | - Micaela DeSantis
- Public Health Research Institute, Rutgers University, 225 Warren Street, Newark, New Jersey, 07103, USA
| | - David Dubnau
- Public Health Research Institute, Rutgers University, 225 Warren Street, Newark, New Jersey, 07103, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, New Jersey, 07103, USA
| |
Collapse
|
10
|
Hespanhol JT, Karman L, Sanchez-Limache DE, Bayer-Santos E. Intercepting biological messages: Antibacterial molecules targeting nucleic acids during interbacterial conflicts. Genet Mol Biol 2023; 46:e20220266. [PMID: 36880694 PMCID: PMC9990079 DOI: 10.1590/1678-4685-gmb-2022-0266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/25/2022] [Indexed: 03/08/2023] Open
Abstract
Bacteria live in polymicrobial communities and constantly compete for resources. These organisms have evolved an array of antibacterial weapons to inhibit the growth or kill competitors. The arsenal comprises antibiotics, bacteriocins, and contact-dependent effectors that are either secreted in the medium or directly translocated into target cells. During bacterial antagonistic encounters, several cellular components important for life become a weak spot prone to an attack. Nucleic acids and the machinery responsible for their synthesis are well conserved across the tree of life. These molecules are part of the information flow in the central dogma of molecular biology and mediate long- and short-term storage for genetic information. The aim of this review is to summarize the diversity of antibacterial molecules that target nucleic acids during antagonistic interbacterial encounters and discuss their potential to promote the emergence antibiotic resistance.
Collapse
Affiliation(s)
- Julia Takuno Hespanhol
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Lior Karman
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | | | - Ethel Bayer-Santos
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| |
Collapse
|
11
|
Williams MC, Reker AE, Margolis SR, Liao J, Wiedmann M, Rojas ER, Meeske AJ. Restriction endonuclease cleavage of phage DNA enables resuscitation from Cas13-induced bacterial dormancy. Nat Microbiol 2023; 8:400-409. [PMID: 36782027 PMCID: PMC9992242 DOI: 10.1038/s41564-022-01318-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 12/22/2022] [Indexed: 02/15/2023]
Abstract
Type VI CRISPR systems protect against phage infection using the RNA-guided nuclease Cas13 to recognize viral messenger RNA. Upon target recognition, Cas13 cleaves phage and host transcripts non-specifically, leading to cell dormancy that is incompatible with phage propagation. However, whether and how infected cells recover from dormancy is unclear. Here we show that type VI CRISPR and DNA-cleaving restriction-modification (RM) systems frequently co-occur and synergize to clear phage infections and resuscitate cells. In the natural type VI CRISPR host Listeria seeligeri, we show that RM cleaves the phage genome, thus removing the source of phage transcripts and enabling cells to recover from Cas13-induced cellular dormancy. We find that phage infections are neutralized more effectively when Cas13 and RM systems operate together. Our work reveals that type VI CRISPR immunity is cell-autonomous and non-abortive when paired with RM, and hints at other synergistic roles for the diverse host-directed immune systems in bacteria.
Collapse
Affiliation(s)
| | - Alexandra E Reker
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Shally R Margolis
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Jingqiu Liao
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, NY, USA
- Graduate Field of Microbiology, Cornell University, Ithaca, NY, USA
| | - Enrique R Rojas
- Department of Biology, New York University, New York, NY, USA
| | | |
Collapse
|
12
|
Hadjeras L, Bouvier M, Canal I, Poljak L, Morin-Ogier Q, Froment C, Burlet-Schlitz O, Hamouche L, Girbal L, Cocaign-Bousquet M, Carpousis AJ. Attachment of the RNA degradosome to the bacterial inner cytoplasmic membrane prevents wasteful degradation of rRNA in ribosome assembly intermediates. PLoS Biol 2023; 21:e3001942. [PMID: 36603027 PMCID: PMC9848016 DOI: 10.1371/journal.pbio.3001942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/18/2023] [Accepted: 12/01/2022] [Indexed: 01/06/2023] Open
Abstract
RNA processing and degradation shape the transcriptome by generating stable molecules that are necessary for translation (rRNA and tRNA) and by facilitating the turnover of mRNA, which is necessary for the posttranscriptional control of gene expression. In bacteria and the plant chloroplast, RNA degradosomes are multienzyme complexes that process and degrade RNA. In many bacterial species, the endoribonuclease RNase E is the central component of the RNA degradosome. RNase E-based RNA degradosomes are inner membrane proteins in a large family of gram-negative bacteria (β- and γ-Proteobacteria). Until now, the reason for membrane localization was not understood. Here, we show that a mutant strain of Escherichia coli, in which the RNA degradosome is localized to the interior of the cell, has high levels of 20S and 40S particles that are defective intermediates in ribosome assembly. These particles have aberrant protein composition and contain rRNA precursors that have been cleaved by RNase E. After RNase E cleavage, rRNA fragments are degraded to nucleotides by exoribonucleases. In vitro, rRNA in intact ribosomes is resistant to RNase E cleavage, whereas protein-free rRNA is readily degraded. We conclude that RNA degradosomes in the nucleoid of the mutant strain interfere with cotranscriptional ribosome assembly. We propose that membrane-attached RNA degradosomes in wild-type cells control the quality of ribosome assembly after intermediates are released from the nucleoid. That is, the compact structure of mature ribosomes protects rRNA against cleavage by RNase E. Turnover of a proportion of intermediates in ribosome assembly explains slow growth of the mutant strain. Competition between mRNA and rRNA degradation could be the cause of slower mRNA degradation in the mutant strain. We conclude that attachment of the RNA degradosome to the bacterial inner cytoplasmic membrane prevents wasteful degradation of rRNA precursors, thus explaining the reason for conservation of membrane-attached RNA degradosomes throughout the β- and γ-Proteobacteria.
Collapse
Affiliation(s)
- Lydia Hadjeras
- LMGM, Université de Toulouse, CNRS, UPS, CBI, Toulouse, France
| | - Marie Bouvier
- LMGM, Université de Toulouse, CNRS, UPS, CBI, Toulouse, France
| | - Isabelle Canal
- LMGM, Université de Toulouse, CNRS, UPS, CBI, Toulouse, France
| | - Leonora Poljak
- LMGM, Université de Toulouse, CNRS, UPS, CBI, Toulouse, France
| | | | - Carine Froment
- IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
- Infrastructure Nationale de Protéomique, ProFI, Toulouse, France
| | - Odile Burlet-Schlitz
- IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
- Infrastructure Nationale de Protéomique, ProFI, Toulouse, France
| | - Lina Hamouche
- LMGM, Université de Toulouse, CNRS, UPS, CBI, Toulouse, France
| | - Laurence Girbal
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | | | - Agamemnon J. Carpousis
- LMGM, Université de Toulouse, CNRS, UPS, CBI, Toulouse, France
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
- * E-mail:
| |
Collapse
|
13
|
Zhong KX, Wirth JF, Chan AM, Suttle CA. Mortality by ribosomal sequencing (MoRS) provides a window into taxon-specific cell lysis. THE ISME JOURNAL 2023; 17:105-116. [PMID: 36209336 PMCID: PMC9751121 DOI: 10.1038/s41396-022-01327-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/05/2022]
Abstract
Microbes are by far the dominant biomass in the world's oceans and drive biogeochemical cycles that are critical to life on Earth. The composition of marine microbial communities is highly dynamic, spatially and temporally, with consequent effects on their functional roles. In part, these changes in composition result from viral lysis, which is taxon-specific and estimated to account for about half of marine microbial mortality. Here, we show that extracellular ribosomal RNA (rRNAext) is produced by viral lysis, and that specific lysed populations can be identified by sequencing rRNAext recovered from seawater samples. In ten seawater samples collected at five depths between the surface and 265 m during and following a phytoplankton bloom, lysis was detected in about 15% of 16,946 prokaryotic taxa, identified from amplicon sequence variants (ASVs), with lysis occurring in up to 34% of taxa within a water sample. The ratio of rRNAext to cellular rRNA (rRNAcell) was used as an index of taxon-specific lysis, and revealed that higher relative lysis was most commonly associated with copiotrophic bacteria that were in relatively low abundance, such as those in the genera Escherichia and Shigella spp., as well as members of the Bacteriodetes; whereas, relatively low lysis was more common in taxa that are often relatively abundant, such as members of the Pelagibacterales (i.e., SAR11 clade), cyanobacteria in the genus Synechococcus, and members of the phylum Thaumarchaeota (synonym, Nitrososphaerota) that comprised about 13-15% of the 16 S rRNA gene sequences below 30 m. These results provide an explanation for the long-standing conundrum of why highly productive bacteria that are readily isolated from seawater are often in very low abundance. The ability to estimate taxon-specific cell lysis will help explore the distribution and abundance of microbial populations in nature.
Collapse
Affiliation(s)
- Kevin Xu Zhong
- Department of Earth, Ocean, and Atmospheric Sciences, University of British Columbia, Vancouver, BC, Canada.
| | - Jennifer F Wirth
- Department of Earth, Ocean, and Atmospheric Sciences, University of British Columbia, Vancouver, BC, Canada
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA
| | - Amy M Chan
- Department of Earth, Ocean, and Atmospheric Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Curtis A Suttle
- Department of Earth, Ocean, and Atmospheric Sciences, University of British Columbia, Vancouver, BC, Canada.
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada.
- Department of Botany, University of British Columbia, Vancouver, BC, Canada.
- Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
14
|
Qi L, Liu H, Gao J, Deng K, Wang X, Dong X, Li J. Endonucleolytic processing plays a critical role in the maturation of ribosomal RNA in Methanococcus maripaludis. RNA Biol 2023; 20:760-773. [PMID: 37731260 PMCID: PMC10515664 DOI: 10.1080/15476286.2023.2258035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2023] [Indexed: 09/22/2023] Open
Abstract
Ribosomal RNA (rRNA) processing and maturation are fundamentally important for ribosome biogenesis, but the mechanisms in archaea, the third form of life, remains largely elusive. This study aimed to investigate the rRNA maturation process in Methanococcus maripaludis, a representative archaeon lacking known 3'-5' exonucleases. Through cleavage site identification and enzymatic assays, the splicing endonuclease EndA was determined to process the bulge-helix-bulge (BHB) motifs in 16S and 23S rRNA precursors. After splicing, the circular processing intermediates were formed and this was confirmed by quantitative RT-PCR and Northern blot. Ribonuclease assay revealed a specific cleavage at a 10-nt A/U-rich motif at the mature 5' end of pre-16S rRNA, which linearized circular pre-16S rRNA intermediate. Further 3'-RACE and ribonuclease assays determined that the endonuclease Nob1 cleaved the 3' extension of pre-16S rRNA, and so generated the mature 3' end. Circularized RT-PCR (cRT-PCR) and 5'-RACE identified two cleavage sites near helix 1 at the 5' end of 23S rRNA, indicating that an RNA structure-based endonucleolytic processing linearized the circular pre-23S rRNA intermediate. In the maturation of pre-5S rRNA, multiple endonucleolytic processing sites were determined at the 10-nt A/U-rich motif in the leader and trailer sequence. This study demonstrates that endonucleolytic processing, particularly at the 10-nt A/U-rich motifs play an essential role in the pre-rRNA maturation of M. maripaludis, indicating diverse pathways of rRNA maturation in archaeal species.
Collapse
Affiliation(s)
- Lei Qi
- School of Basic Medical Sciences and School of Biomedical Engineering, Hubei University of Medicine, Shiyan, China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Huan Liu
- School of Basic Medical Sciences and School of Biomedical Engineering, Hubei University of Medicine, Shiyan, China
| | - Jian Gao
- School of Basic Medical Sciences and School of Biomedical Engineering, Hubei University of Medicine, Shiyan, China
| | - Kai Deng
- School of Basic Medical Sciences and School of Biomedical Engineering, Hubei University of Medicine, Shiyan, China
| | - Xiaoyan Wang
- School of Basic Medical Sciences and School of Biomedical Engineering, Hubei University of Medicine, Shiyan, China
| | - Xiuzhu Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jie Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
15
|
Naganathan A, Culver GM. Interdependency and Redundancy Add Complexity and Resilience to Biogenesis of Bacterial Ribosomes. Annu Rev Microbiol 2022; 76:193-210. [PMID: 35609945 DOI: 10.1146/annurev-micro-041020-121806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The pace and efficiency of ribosomal subunit production directly impact the fitness of bacteria. Biogenesis demands more than just the union of ribosomal components, including RNA and proteins, to form this functional ribonucleoprotein particle. Extra-ribosomal protein factors play a fundamental role in the efficiency and efficacy of ribosomal subunit biogenesis. A paucity of data on intermediate steps, multiple and overlapping pathways, and the puzzling number of functions that extra-ribosomal proteins appear to play in vivo make unraveling the formation of this macromolecular assemblage difficult. In this review, we outline with examples the multinodal landscape of factor-assisted mechanisms that influence ribosome synthesis in bacteria. We discuss in detail late-stage events that mediate correct ribosome formation and the transition to translation initiation and thereby ensure high-fidelity protein synthesis.
Collapse
Affiliation(s)
- Anusha Naganathan
- Department of Biology, University of Rochester, Rochester, New York, USA; ,
| | - Gloria M Culver
- Department of Biology, University of Rochester, Rochester, New York, USA; ,
- Center for RNA Biology and Department of Biochemistry and Biophysics, University of Rochester, Rochester, New York, USA
| |
Collapse
|
16
|
Lee VT, Sondermann H, Winkler WC. Nano-RNases: oligo- or dinucleases? FEMS Microbiol Rev 2022; 46:6677394. [PMID: 36026528 PMCID: PMC9779919 DOI: 10.1093/femsre/fuac038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 07/28/2022] [Accepted: 08/24/2022] [Indexed: 01/07/2023] Open
Abstract
Diribonucleotides arise from two sources: turnover of RNA transcripts (rRNA, tRNA, mRNA, and others) and linearization of cyclic-di-nucleotide signaling molecules. In both cases, there appears to be a requirement for a dedicated set of enzymes that will cleave these diribonucleotides into mononucleotides. The first enzyme discovered to mediate this activity is oligoribonuclease (Orn) from Escherichia coli. In addition to being the enzyme that cleaves dinucleotides and potentially other short oligoribonucleotides, Orn is also the only known exoribonuclease enzyme that is essential for E. coli, suggesting that removal of the shortest RNAs is an essential cellular function. Organisms naturally lacking the orn gene encode other nanoRNases (nrn) that can complement the conditional E. coli orn mutant. This review covers the history and recent advances in our understanding of these enzymes and their substrates. In particular, we focus on (i) the sources of diribonucleotides; (ii) the discovery of exoribonucleases; (iii) the structural features of Orn, NrnA/NrnB, and NrnC; (iv) the enzymatic activity of these enzymes against diribonucleotides versus other substrates; (v) the known physiological consequences of accumulation of linear dinucleotides; and (vi) outstanding biological questions for diribonucleotides and diribonucleases.
Collapse
|
17
|
A Conundrum of r-Protein Stability: Unbalanced Stoichiometry of r-Proteins during Stationary Phase in Escherichia coli. mBio 2022; 13:e0187322. [PMID: 35980033 PMCID: PMC9601097 DOI: 10.1128/mbio.01873-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial ribosomes are composed of three rRNA and over 50 ribosomal protein (r-protein) molecules. r-proteins are essential for ribosome assembly and structural stability and also participate in almost all ribosome functions. Ribosomal components are present in stoichiometric amounts in the mature 70S ribosomes during exponential and early stationary growth phases. Ribosomes are degraded in stationary phase; however, the stability and fate of r-proteins during stationary growth phase are not known. In this study, we report a quantitative analysis of ribosomal components during extended stationary-phase growth in Escherichia coli. We show that (i) the quantity of ribosomes per cell mass decreases in stationary phase, (ii) 70S ribosomes contain r-proteins in stoichiometric amounts, (iii) 30S subunits are degraded faster than 50S subunits, (iv) the quantities of 21 r-proteins in the total proteome decrease during 14 days (short-lived r-proteins) concomitantly with the reduction of cellular RNA, and (e) 30 r-proteins are stable and form a pool of free r-proteins (stable r-proteins). Thus, r-proteins are present in nonstoichiometric amounts in the proteome of E. coli during the extended stationary phase.
Collapse
|
18
|
Carpousis AJ, Campo N, Hadjeras L, Hamouche L. Compartmentalization of RNA Degradosomes in Bacteria Controls Accessibility to Substrates and Ensures Concerted Degradation of mRNA to Nucleotides. Annu Rev Microbiol 2022; 76:533-552. [PMID: 35671533 DOI: 10.1146/annurev-micro-041020-113308] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
RNA degradosomes are multienzyme complexes composed of ribonucleases, RNA helicases, and metabolic enzymes. RNase E-based degradosomes are widespread in Proteobacteria. The Escherichia coli RNA degradosome is sequestered from transcription in the nucleoid and translation in the cytoplasm by localization to the inner cytoplasmic membrane, where it forms short-lived clusters that are proposed to be sites of mRNA degradation. In Caulobacter crescentus, RNA degradosomes localize to ribonucleoprotein condensates in the interior of the cell [bacterial ribonucleoprotein-bodies (BR-bodies)], which have been proposed to drive the concerted degradation of mRNA to nucleotides. The turnover of mRNA in growing cells is important for maintaining pools of nucleotides for transcription and DNA replication. Membrane attachment of the E. coli RNA degradosome is necessary to avoid wasteful degradation of intermediates in ribosome assembly. Sequestering RNA degradosomes to C. crescentus BR-bodies, which exclude structured RNA, could have a similar role in protecting intermediates in ribosome assembly from degradation. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Agamemnon J Carpousis
- LMGM, Université de Toulouse, CNRS, UPS, CBI, Toulouse, France; , , .,TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Nathalie Campo
- LMGM, Université de Toulouse, CNRS, UPS, CBI, Toulouse, France; , ,
| | - Lydia Hadjeras
- LMGM, Université de Toulouse, CNRS, UPS, CBI, Toulouse, France; , , .,Current affiliation: IMIB, University of Würzburg, Würzburg, Germany;
| | - Lina Hamouche
- LMGM, Université de Toulouse, CNRS, UPS, CBI, Toulouse, France; , ,
| |
Collapse
|
19
|
Role of main RNA modifications in cancer: N 6-methyladenosine, 5-methylcytosine, and pseudouridine. Signal Transduct Target Ther 2022; 7:142. [PMID: 35484099 PMCID: PMC9051163 DOI: 10.1038/s41392-022-01003-0] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 12/16/2022] Open
Abstract
Cancer is one of the major diseases threatening human life and health worldwide. Epigenetic modification refers to heritable changes in the genetic material without any changes in the nucleic acid sequence and results in heritable phenotypic changes. Epigenetic modifications regulate many biological processes, such as growth, aging, and various diseases, including cancer. With the advancement of next-generation sequencing technology, the role of RNA modifications in cancer progression has become increasingly prominent and is a hot spot in scientific research. This review studied several common RNA modifications, such as N6-methyladenosine, 5-methylcytosine, and pseudouridine. The deposition and roles of these modifications in coding and noncoding RNAs are summarized in detail. Based on the RNA modification background, this review summarized the expression, function, and underlying molecular mechanism of these modifications and their regulators in cancer and further discussed the role of some existing small-molecule inhibitors. More in-depth studies on RNA modification and cancer are needed to broaden the understanding of epigenetics and cancer diagnosis, treatment, and prognosis.
Collapse
|
20
|
Chhabra S, Mandell ZF, Liu B, Babitzke P, Bechhofer DH. Analysis of mRNA Decay Intermediates in Bacillus subtilis 3' Exoribonuclease and RNA Helicase Mutant Strains. mBio 2022; 13:e0040022. [PMID: 35311531 PMCID: PMC9040804 DOI: 10.1128/mbio.00400-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 02/28/2022] [Indexed: 12/22/2022] Open
Abstract
The Bacillus subtilis genome encodes four 3' exoribonucleases: polynucleotide phosphorylase (PNPase), RNase R, RNase PH, and YhaM. Previous work showed that PNPase, encoded by the pnpA gene, is the major 3' exonuclease involved in mRNA turnover; in a pnpA deletion strain, numerous mRNA decay intermediates accumulate. Whether B. subtilis mRNA decay occurs in the context of a degradosome complex is controversial. In this study, global mapping of mRNA decay intermediate 3' ends within coding sequences was performed in strains that were either deleted for or had an inactivating point mutation in the pnpA gene. The patterns of 3'-end accumulation in these strains were highly similar, which may have implications for the role of a degradosome in mRNA decay. A comparison with mapped 3' ends in a strain lacking CshA, the major RNA helicase, indicated that many mRNAs require both PNPase and CshA for efficient decay. Transcriptome sequencing (RNA-seq) analysis of strains lacking RNase R suggested that this enzyme did not play a major role in mRNA turnover in the wild-type strain. Strains were constructed that contained only one of the four known 3' exoribonucleases. When RNase R was the only 3' exonuclease present, it was able to degrade a model mRNA efficiently, showing processive decay even through a strong stem-loop structure that inhibits PNPase processivity. Strains containing only RNase PH or only YhaM were also insensitive to this RNA secondary structure, suggesting the existence of another, as-yet-unidentified, 3' exoribonuclease. IMPORTANCE The ability to rapidly change bacterial gene expression programs in response to environmental conditions is highly dependent on the efficient turnover of mRNA. While much is known about the regulation of gene expression at the transcriptional and translational levels, much less is known about the intermediate step of mRNA decay. Here, we mapped the 3' ends of mRNA decay intermediates in strains that were missing the major 3' exoribonuclease PNPase or the RNA helicase CshA. We also assessed the roles of three other B. subtilis 3' exonucleases in the mRNA decay process. The data confirm the primary role of PNPase in mRNA turnover and suggest the involvement of one or more unknown RNases.
Collapse
Affiliation(s)
- Shivani Chhabra
- Icahn School of Medicine at Mount Sinai, Department of Pharmacological Sciences, New York, New York, USA
| | - Zachary F. Mandell
- The Pennsylvania State University, Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, University Park, Pennsylvania, USA
| | - Bo Liu
- Icahn School of Medicine at Mount Sinai, Department of Pharmacological Sciences, New York, New York, USA
| | - Paul Babitzke
- The Pennsylvania State University, Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, University Park, Pennsylvania, USA
| | - David H. Bechhofer
- Icahn School of Medicine at Mount Sinai, Department of Pharmacological Sciences, New York, New York, USA
| |
Collapse
|
21
|
Ingle S, Chhabra S, Chen J, Lazarus MB, Luo X, Bechhofer DH. Discovery and initial characterization of YloC, a novel endoribonuclease in Bacillus subtilis. RNA (NEW YORK, N.Y.) 2022; 28:227-238. [PMID: 34815358 PMCID: PMC8906540 DOI: 10.1261/rna.078962.121] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
The Bacillus subtilis genome is predicted to encode numerous ribonucleases, including four 3' exoribonucleases that have been characterized to some extent. A strain containing gene knockouts of all four known 3' exoribonucleases is viable, suggesting that one or more additional RNases remain to be discovered. A protein extract from the quadruple RNase mutant strain was fractionated and RNase activity was followed, resulting in the identification of an enzyme activity catalyzed by the YloC protein. YloC is an endoribonuclease and is a member of the highly conserved "YicC family" of proteins that is widespread in bacteria. YloC is a metal-dependent enzyme that catalyzes the cleavage of single-stranded RNA, preferentially at U residues, and exists in an oligomeric form, most likely a hexamer. As such, YloC shares some characteristics with the SARS-CoV Nsp15 endoribonuclease. While the in vivo function of YloC in B. subtilis is yet to be determined, YloC was found to act similarly to YicC in an Escherichia coli in vivo assay that assesses decay of the small RNA, RyhB. Thus, YloC may play a role in small RNA regulation.
Collapse
Affiliation(s)
- Shakti Ingle
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Shivani Chhabra
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Jiandong Chen
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Michael B Lazarus
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Xing Luo
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - David H Bechhofer
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| |
Collapse
|
22
|
Ferreira-Cerca S. The dark side of the ribosome life cycle. RNA Biol 2022; 19:1045-1049. [PMID: 36082947 PMCID: PMC9467602 DOI: 10.1080/15476286.2022.2121421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Thanks to genetics, biochemistry, and structural biology many features of the ribosome´s life cycles in models of bacteria, eukaryotes, and some organelles have been revealed to near-atomic details. Collectively, these studies have provided a very detailed understanding of what are now well-established prototypes for ribosome biogenesis and function as viewed from a 'classical' model organisms perspective. However, very important challenges remain ahead to explore the functional and structural diversity of both ribosome biogenesis and function across the biological diversity on earth. Particularly, the 'third domain of life', the archaea, and also many non-model bacterial and eukaryotic organisms have been comparatively neglected. Importantly, characterizing these additional biological systems will not only offer a yet untapped window to enlighten the evolution of ribosome biogenesis and function but will also help to unravel fundamental principles of molecular adaptation of these central cellular processes.
Collapse
Affiliation(s)
- Sébastien Ferreira-Cerca
- Regensburg Center for Biochemistry, Biochemistry III - Institute for Biochemistry, Genetics and Microbiology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
23
|
RNase III, Ribosome Biogenesis and Beyond. Microorganisms 2021; 9:microorganisms9122608. [PMID: 34946208 PMCID: PMC8708148 DOI: 10.3390/microorganisms9122608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 12/17/2022] Open
Abstract
The ribosome is the universal catalyst for protein synthesis. Despite extensive studies, the diversity of structures and functions of this ribonucleoprotein is yet to be fully understood. Deciphering the biogenesis of the ribosome in a step-by-step manner revealed that this complexity is achieved through a plethora of effectors involved in the maturation and assembly of ribosomal RNAs and proteins. Conserved from bacteria to eukaryotes, double-stranded specific RNase III enzymes play a large role in the regulation of gene expression and the processing of ribosomal RNAs. In this review, we describe the canonical role of RNase III in the biogenesis of the ribosome comparing conserved and unique features from bacteria to eukaryotes. Furthermore, we report additional roles in ribosome biogenesis re-enforcing the importance of RNase III.
Collapse
|
24
|
Jaafar M, Contreras J, Dominique C, Martín-Villanueva S, Capeyrou R, Vitali P, Rodríguez-Galán O, Velasco C, Humbert O, Watkins NJ, Villalobo E, Bohnsack KE, Bohnsack MT, Henry Y, Merhi RA, de la Cruz J, Henras AK. Association of snR190 snoRNA chaperone with early pre-60S particles is regulated by the RNA helicase Dbp7 in yeast. Nat Commun 2021; 12:6153. [PMID: 34686656 PMCID: PMC8536666 DOI: 10.1038/s41467-021-26207-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 09/22/2021] [Indexed: 12/15/2022] Open
Abstract
Synthesis of eukaryotic ribosomes involves the assembly and maturation of precursor particles (pre-ribosomal particles) containing ribosomal RNA (rRNA) precursors, ribosomal proteins (RPs) and a plethora of assembly factors (AFs). Formation of the earliest precursors of the 60S ribosomal subunit (pre-60S r-particle) is among the least understood stages of ribosome biogenesis. It involves the Npa1 complex, a protein module suggested to play a key role in the early structuring of the pre-rRNA. Npa1 displays genetic interactions with the DExD-box protein Dbp7 and interacts physically with the snR190 box C/D snoRNA. We show here that snR190 functions as a snoRNA chaperone, which likely cooperates with the Npa1 complex to initiate compaction of the pre-rRNA in early pre-60S r-particles. We further show that Dbp7 regulates the dynamic base-pairing between snR190 and the pre-rRNA within the earliest pre-60S r-particles, thereby participating in structuring the peptidyl transferase center (PTC) of the large ribosomal subunit. The molecular events underlying the assembly and maturation of the early pre-60S particles during eukaryotic ribosome synthesis are not well understood. Here, the authors combine yeast genetics and biochemical experiments to characterise the functions of two important players of eukaryotic ribosome biogenesis, the box C/D snoRNP snR190 and the helicase Dbp7, which both interact. They show that the snR190 snoRNA acts as a RNA chaperone that assists the structuring of the 25S rRNA during the maturation of early pre-60S particles and that Dbp7 is important for facilitating remodeling events in the peptidyl transferase center region of the 25S rRNAs during the maturation of early pre-60S particles.
Collapse
Affiliation(s)
- Mariam Jaafar
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062, Toulouse, France.,Genomic Stability and Biotherapy (GSBT) Laboratory, Faculty of Sciences, Rafik Hariri Campus, Lebanese University, Beirut, Lebanon.,Cancer Research Center of Lyon (CRCL), 69 008, Lyon, France
| | - Julia Contreras
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Seville, Spain.,Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012, Seville, Spain
| | - Carine Dominique
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Sara Martín-Villanueva
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Seville, Spain
| | - Régine Capeyrou
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Patrice Vitali
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Olga Rodríguez-Galán
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Seville, Spain.,Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012, Seville, Spain
| | - Carmen Velasco
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Seville, Spain.,Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, 41012, Seville, Spain
| | - Odile Humbert
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Nicholas J Watkins
- Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Eduardo Villalobo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Seville, Spain.,Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, 41012, Seville, Spain
| | - Katherine E Bohnsack
- Department of Molecular Biology, University Medical Centre Göttingen, 37073, Göttingen, Germany
| | - Markus T Bohnsack
- Department of Molecular Biology, University Medical Centre Göttingen, 37073, Göttingen, Germany.,Göttingen Center for Molecular Biosciences, Georg-August University Göttingen, 37077, Göttingen, Germany
| | - Yves Henry
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Raghida Abou Merhi
- Genomic Stability and Biotherapy (GSBT) Laboratory, Faculty of Sciences, Rafik Hariri Campus, Lebanese University, Beirut, Lebanon
| | - Jesús de la Cruz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Seville, Spain.,Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012, Seville, Spain
| | - Anthony K Henras
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062, Toulouse, France.
| |
Collapse
|
25
|
Naganathan A, Keltz R, Lyon H, Culver GM. Uncovering a delicate balance between endonuclease RNase III and ribosomal protein S15 in E. coli ribosome assembly. Biochimie 2021; 191:104-117. [PMID: 34508826 DOI: 10.1016/j.biochi.2021.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 08/26/2021] [Accepted: 09/02/2021] [Indexed: 12/01/2022]
Abstract
The bacterial ribosomal protein S15 is located in the platform, a functional region of the 30S ribosomal subunit. While S15 is critical for in vitro formation of E. coli small subunits (SSUs), it is dispensable for in vivo biogenesis and growth. In this work, a novel synergistic interaction between rpsO, the gene that encodes S15, and rnc (the gene that encodes RNase III), was uncovered in E. coli. RNase III catalyzes processing of precursor ribosomal RNA (rRNA) transcripts and thus is involved in functional ribosome subunit maturation. Strains lacking S15 (ΔrpsO), RNase III (Δrnc) or both genes were examined to understand the relationship between these two factors and the impact of this double deletion on rRNA processing and SSU maturation. The double deletion of rpsO and rnc partially alleviates the observed cold sensitivity of ΔrpsO alone. A novel 16S rRNA precursor (17S∗ rRNA) that is detected in free 30S subunits of Δrnc is incorporated in 70S-like ribosomes in the double deletion. The stable accumulation of 17S∗ rRNA suggests that timing of processing events is closely coupled with SSU formation events in vivo. The double deletion has a suppressive effect on the cell elongation phenotype of ΔrpsO. The alteration of the phenotypes associated with S15 loss, due to the absence of RNase III, indicates that pre-rRNA processing and improvement of growth, relative to that observed for ΔrpsO, are connected. The characterization of the functional link between the two factors illustrates that there are redundancies and compensatory pathways for SSU maturation.
Collapse
Affiliation(s)
| | - Roxanne Keltz
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Hiram Lyon
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Gloria M Culver
- Department of Biology, University of Rochester, Rochester, NY, USA; Center for RNA Biology, University of Rochester, Rochester, NY, USA; Department of Biochemistry and Biophysics, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
26
|
Hamouche L, Poljak L, Carpousis AJ. Ribosomal RNA degradation induced by the bacterial RNA polymerase inhibitor rifampicin. RNA (NEW YORK, N.Y.) 2021; 27:rna.078776.121. [PMID: 34099575 PMCID: PMC8284325 DOI: 10.1261/rna.078776.121] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/03/2021] [Indexed: 05/12/2023]
Abstract
Rifampicin, a broad-spectrum antibiotic, inhibits bacterial RNA polymerase. Here we show that rifampicin treatment of Escherichia coli results in a 50% decrease in cell size due to a terminal cell division. This decrease is a consequence of inhibition of transcription as evidenced by an isogenic rifampicin-resistant strain. There is also a 50% decrease in total RNA due mostly to a 90% decrease in 23S and 16S rRNA levels. Control experiments showed this decrease is not an artifact of our RNA purification protocol and therefore due to degradation in vivo. Since chromosome replication continues after rifampicin treatment, ribonucleotides from rRNA degradation could be recycled for DNA synthesis. Rifampicin-induced rRNA degradation occurs under different growth conditions and in different strain backgrounds. However, rRNA degradation is never complete thus permitting the re-initiation of growth after removal of rifampicin. The orderly shutdown of growth under conditions where the induction of stress genes is blocked by rifampicin is noteworthy. Inhibition of protein synthesis by chloramphenicol resulted in a partial decrease in 23S and 16S rRNA levels whereas kasugamycin treatment had no effect. Analysis of temperature-sensitive mutant strains implicate RNase E, PNPase and RNase R in rifampicin-induced rRNA degradation. We cannot distinguish between a direct role for RNase E in rRNA degradation versus an indirect role involving a slowdown of mRNA degradation. Since mRNA and rRNA appear to be degraded by the same ribonucleases, competition by rRNA is likely to result in slower mRNA degradation rates in the presence of rifampicin than under normal growth conditions.
Collapse
Affiliation(s)
- Lina Hamouche
- LMGM, CBI, Universite de Toulouse, CNRS, UPS, Toulouse, France
| | - Leonora Poljak
- LMGM, CBI, Universite de Toulouse, CNRS, UPS, Toulouse, France
| | | |
Collapse
|
27
|
Abstract
Vitamin B6 is an ensemble of six interconvertible vitamers: pyridoxine (PN), pyridoxamine (PM), pyridoxal (PL), and their 5'-phosphate derivatives, PNP, PMP, and PLP. Pyridoxal 5'-phosphate is a coenzyme in a variety of enzyme reactions concerning transformations of amino and amino acid compounds. This review summarizes all known and putative PLP-binding proteins found in the Escherichia coli MG1655 proteome. PLP can have toxic effects since it contains a very reactive aldehyde group at its 4' position that easily forms aldimines with primary and secondary amines and reacts with thiols. Most PLP is bound either to the enzymes that use it as a cofactor or to PLP carrier proteins, protected from the cellular environment but at the same time readily transferable to PLP-dependent apoenzymes. E. coli and its relatives synthesize PLP through the seven-step deoxyxylulose-5-phosphate (DXP)-dependent pathway. Other bacteria synthesize PLP in a single step, through a so-called DXP-independent pathway. Although the DXP-dependent pathway was the first to be revealed, the discovery of the widespread DXP-independent pathway determined a decline of interest in E. coli vitamin B6 metabolism. In E. coli, as in most organisms, PLP can also be obtained from PL, PN, and PM, imported from the environment or recycled from protein turnover, via a salvage pathway. Our review deals with all aspects of vitamin B6 metabolism in E. coli, from transcriptional to posttranslational regulation. A critical interpretation of results is presented, in particular, concerning the most obscure aspects of PLP homeostasis and delivery to PLP-dependent enzymes.
Collapse
|
28
|
Orthogonal translation enables heterologous ribosome engineering in E. coli. Nat Commun 2021; 12:599. [PMID: 33500394 PMCID: PMC7838251 DOI: 10.1038/s41467-020-20759-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 12/16/2020] [Indexed: 01/30/2023] Open
Abstract
The ribosome represents a promising avenue for synthetic biology, but its complexity and essentiality have hindered significant engineering efforts. Heterologous ribosomes, comprising rRNAs and r-proteins derived from different microorganisms, may offer opportunities for novel translational functions. Such heterologous ribosomes have previously been evaluated in E. coli via complementation of a genomic ribosome deficiency, but this method fails to guide the engineering of refractory ribosomes. Here, we implement orthogonal ribosome binding site (RBS):antiRBS pairs, in which engineered ribosomes are directed to researcher-defined transcripts, to inform requirements for heterologous ribosome functionality. We discover that optimized rRNA processing and supplementation with cognate r-proteins enhances heterologous ribosome function for rRNAs derived from organisms with ≥76.1% 16S rRNA identity to E. coli. Additionally, some heterologous ribosomes undergo reduced subunit exchange with E. coli-derived subunits. Cumulatively, this work provides a general framework for heterologous ribosome engineering in living cells.
Collapse
|
29
|
Carrier MC, Ng Kwan Lim E, Jeannotte G, Massé E. Trans-Acting Effectors Versus RNA Cis-Elements: A Tightly Knit Regulatory Mesh. Front Microbiol 2021; 11:609237. [PMID: 33384678 PMCID: PMC7769764 DOI: 10.3389/fmicb.2020.609237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/10/2020] [Indexed: 11/13/2022] Open
Abstract
Prokaryotic organisms often react instantly to environmental variations to ensure their survival. They can achieve this by rapidly and specifically modulating translation, the critical step of protein synthesis. The translation machinery responds to an array of cis-acting elements, located on the RNA transcript, which dictate the fate of mRNAs. These cis-encoded elements, such as RNA structures or sequence motifs, interact with a variety of regulators, among them small regulatory RNAs. These small regulatory RNAs (sRNAs) are especially effective at modulating translation initiation through their interaction with cis-encoded mRNA elements. Here, through selected examples of canonical and non-canonical regulatory events, we demonstrate the intimate connection between mRNA cis-encoded features and sRNA-dependent translation regulation. We also address how sRNA-based mechanistic studies can drive the discovery of new roles for cis-elements. Finally, we briefly overview the challenges of using translation regulation by synthetic regulators as a tool.
Collapse
Affiliation(s)
- Marie-Claude Carrier
- Department of Biochemistry and Functional Genomics, RNA Group, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Evelyne Ng Kwan Lim
- Department of Biochemistry and Functional Genomics, RNA Group, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Gabriel Jeannotte
- Department of Biochemistry and Functional Genomics, RNA Group, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Eric Massé
- Department of Biochemistry and Functional Genomics, RNA Group, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
30
|
Theng S, Williamson KS, Franklin MJ. Role of Hibernation Promoting Factor in Ribosomal Protein Stability during Pseudomonas aeruginosa Dormancy. Int J Mol Sci 2020; 21:E9494. [PMID: 33327444 PMCID: PMC7764885 DOI: 10.3390/ijms21249494] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 01/02/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that causes biofilm-associated infections. P. aeruginosa can survive in a dormant state with reduced metabolic activity in nutrient-limited environments, including the interiors of biofilms. When entering dormancy, the bacteria undergo metabolic remodeling, which includes reduced translation and degradation of cellular proteins. However, a supply of essential macromolecules, such as ribosomes, are protected from degradation during dormancy. The small ribosome-binding proteins, hibernation promoting factor (HPF) and ribosome modulation factor (RMF), inhibit translation by inducing formation of inactive 70S and 100S ribosome monomers and dimers. The inactivated ribosomes are protected from the initial steps in ribosome degradation, including endonuclease cleavage of the ribosomal RNA (rRNA). Here, we characterized the role of HPF in ribosomal protein (rProtein) stability and degradation during P. aeruginosa nutrient limitation. We determined the effect of the physiological status of P. aeruginosa prior to starvation on its ability to recover from starvation, and on its rRNA and rProtein stability during cell starvation. The results show that the wild-type strain and a stringent response mutant (∆relA∆spoT strain) maintain high cellular abundances of the rProteins L5 and S13 over the course of eight days of starvation. In contrast, the abundances of L5 and S13 reduce in the ∆hpf mutant cells. The loss of rProteins in the ∆hpf strain is dependent on the physiology of the cells prior to starvation. The greatest rProtein loss occurs when cells are first cultured to stationary phase prior to starvation, with less rProtein loss in the ∆hpf cells that are first cultured to exponential phase or in balanced minimal medium. Regardless of the pre-growth conditions, P. aeruginosa recovery from starvation and the integrity of its rRNA are impaired in the absence of HPF. The results indicate that protein remodeling during P. aeruginosa starvation includes the degradation of rProteins, and that HPF is essential to prevent rProtein loss in starved P. aeruginosa. The results also indicate that HPF is produced throughout cell growth, and that regardless of the cellular physiological status, HPF is required to protect against ribosome loss when the cells subsequently enter starvation phase.
Collapse
Affiliation(s)
- Sokuntheary Theng
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA; (S.T.); (K.S.W.)
| | - Kerry S. Williamson
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA; (S.T.); (K.S.W.)
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717, USA
| | - Michael J. Franklin
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA; (S.T.); (K.S.W.)
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717, USA
| |
Collapse
|
31
|
Birkedal U, Beckert B, Wilson DN, Nielsen H. The 23S Ribosomal RNA From Pyrococcus furiosus Is Circularly Permuted. Front Microbiol 2020; 11:582022. [PMID: 33362734 PMCID: PMC7758197 DOI: 10.3389/fmicb.2020.582022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 11/16/2020] [Indexed: 12/29/2022] Open
Abstract
Synthesis and assembly of ribosomal components are fundamental cellular processes and generally well-conserved within the main groups of organisms. Yet, provocative variations to the general schemes exist. We have discovered an unusual processing pathway of pre-rRNA in extreme thermophilic archaea exemplified by Pyrococcus furiosus. The large subunit (LSU) rRNA is produced as a circularly permuted form through circularization followed by excision of Helix 98. As a consequence, the terminal domain VII that comprise the binding site for the signal recognition particle is appended to the 5´ end of the LSU rRNA that instead terminates in Domain VI carrying the Sarcin-Ricin Loop, the primary interaction site with the translational GTPases. To our knowledge, this is the first example of a true post-transcriptional circular permutation of a main functional molecule and the first example of rRNA fragmentation in archaea.
Collapse
Affiliation(s)
- Ulf Birkedal
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Bertrand Beckert
- Institut für Biochemie und Molekularbiologie, Universität Hamburg, Hamburg, Germany
| | - Daniel N Wilson
- Institut für Biochemie und Molekularbiologie, Universität Hamburg, Hamburg, Germany
| | - Henrik Nielsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.,Genomics Group, Nord University, Bodø, Norway
| |
Collapse
|
32
|
Abstract
RNA quality control pathways are critical for cell survival. Here, we describe a new surveillance process involved in the degradation of highly structured and stable ribosomal RNAs. The results demonstrated that the RNA chaperone Hfq and the 3'-5' exoribonuclease R mediate the elimination of detrimental rRNA fragments and are required for the correct processing of rRNA precursors. Escherichia coli cells lacking both Hfq and RNase R accumulate a high level of 16S- and 23S-derived rRNA fragments. Hfq and RNase R were also shown to participate in the maturation of 16S and 23S rRNA precursors. This correlates with the fact that in the absence of Hfq and RNase R, there are severe ribosome assembly defects and a sharp reduction in 70S ribosome levels. Hfq and RNase R may act independently or in a complex, as protein interaction studies revealed that these RNA-binding proteins can associate. This is the first demonstration that the well-conserved Hfq and RNase R proteins act on common regulatory pathways, unraveling previously unknown mechanisms of rRNA surveillance with important consequences for translation and cell survival.IMPORTANCE Quality control pathways that oversee the quality of stable RNA molecules are critical for the cell. In this work, we demonstrate, for the first time, a functional link between Hfq and RNase R in the processing and degradation of the highly structured rRNAs. These RNA-binding proteins are required for the maturation of 16S and 23S rRNAs and correct ribosome assembly. Furthermore, they participate in the degradation of rRNAs and clearance of toxic rRNA fragments from the cell. Our studies have also shown that Hfq and RNase R can form a complex. In summary, the cooperation between Hfq and RNase R in metabolic pathways of stable RNAs may represent a broader mechanism of RNA quality control, given the high conservation of these RNA-binding proteins throughout evolution.
Collapse
|
33
|
Ferdosh S, Banerjee S, Pathak BK, Sengupta J, Barat C. Hibernating ribosomes exhibit chaperoning activity but can resist unfolded protein-mediated subunit dissociation. FEBS J 2020; 288:1305-1324. [PMID: 32649051 DOI: 10.1111/febs.15479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/24/2020] [Accepted: 07/07/2020] [Indexed: 02/03/2023]
Abstract
Ribosome hibernation is a prominent cellular strategy to modulate protein synthesis during starvation and the stationary phase of bacterial cell growth. Translational suppression involves the formation of either factor-bound inactive 70S monomers or dimeric 100S hibernating ribosomal complexes, the biological significance of which is poorly understood. Here, we demonstrate that the Escherichia coli 70S ribosome associated with stationary phase factors hibernation promoting factor or protein Y or ribosome-associated inhibitor A and the 100S ribosome isolated from both Gram-negative and Gram-positive bacteria are resistant to unfolded protein-mediated subunit dissociation and subsequent degradation by cellular ribonucleases. Considering that the increase in cellular stress is accompanied by accumulation of unfolded proteins, such resistance of hibernating ribosomes towards dissociation might contribute to their maintenance during the stationary phase. Analysis of existing structures provided clues on the mechanism of inhibition of the unfolded protein-mediated disassembly in case of hibernating factor-bound ribosome. Further, the factor-bound 70S and 100S ribosomes can suppress protein aggregation and assist in protein folding. The chaperoning activity of these ribosomes is the first evidence of a potential biological activity of the hibernating ribosome that might be crucial for cell survival under stress conditions.
Collapse
Affiliation(s)
- Sehnaz Ferdosh
- Department of Biotechnology, St. Xavier's College, Kolkata, India
| | - Senjuti Banerjee
- Department of Biotechnology, St. Xavier's College, Kolkata, India
| | - Bani K Pathak
- Structural Biology and Bio-Informatics Division, Indian Institute of Chemical Biology (Council of Scientific and Industrial Research), Kolkata, India
| | - Jayati Sengupta
- Structural Biology and Bio-Informatics Division, Indian Institute of Chemical Biology (Council of Scientific and Industrial Research), Kolkata, India
| | - Chandana Barat
- Department of Biotechnology, St. Xavier's College, Kolkata, India
| |
Collapse
|
34
|
Rolland C, La Scola B, Levasseur A. How Tupanvirus Degrades the Ribosomal RNA of Its Amoebal Host? The Ribonuclease T2 Track. Front Microbiol 2020; 11:1691. [PMID: 32849355 PMCID: PMC7399046 DOI: 10.3389/fmicb.2020.01691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/29/2020] [Indexed: 12/15/2022] Open
Abstract
Tupanviruses are giant viruses recently discovered in Brazil from extreme environments: Tupanvirus soda lake (TPV-SL) and Tupanvirus deep ocean (TPV-DO). Unexpected features in Tupanviruses is the cytotoxic effect observed during infection, where the virus degrades the ribosomal RNA (rRNA) of its amoebal host. Interestingly, only TPV-SL causes this rRNA shutdown. We performed a genomic comparison of the two strains to determine potential modifications explaining the absence of rRNA degradation by TPV-DO. Whole genome comparisons were performed as well as more in-depth analysis at the gene level. We also calculated selective pressure on the orthologous genes between the two viruses. Our computational and evolutionary investigations revealed a potential target: a ribonuclease T2. These enzymes are known to be involved in cellular RNA catabolism such as in lysosomal degradation of rRNA. Our results suggest a functional ribonuclease localized in acid compartment closely related to ribonuclease T2 from eukaryotes. Silencing of the RNAse T2 gene of TPV-SL abolished its rRNA shutdown ability thereby correlating in silico assumption to the experimental evidence. In conclusion, all our results pointed to RNAse T2 as a target for explaining the difference for rRNA degradation ability between both strains.
Collapse
Affiliation(s)
- Clara Rolland
- Aix-Marseille Université, UMR MEPHI (Microbes, Evolution, Phylogeny and Infections), IRD, APHM, Faculté de Médecine, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| | - Bernard La Scola
- Aix-Marseille Université, UMR MEPHI (Microbes, Evolution, Phylogeny and Infections), IRD, APHM, Faculté de Médecine, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| | - Anthony Levasseur
- Aix-Marseille Université, UMR MEPHI (Microbes, Evolution, Phylogeny and Infections), IRD, APHM, Faculté de Médecine, Marseille, France
- IHU Méditerranée Infection, Marseille, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
35
|
Qi L, Li J, Jia J, Yue L, Dong X. Comprehensive analysis of the pre-ribosomal RNA maturation pathway in a methanoarchaeon exposes the conserved circularization and linearization mode in archaea. RNA Biol 2020; 17:1427-1441. [PMID: 32449429 DOI: 10.1080/15476286.2020.1771946] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The ribosomal RNA (rRNA) genes are generally organized as an operon and cotranscribed into a polycistronic precursor; therefore, processing and maturation of pre-rRNAs are essential for ribosome biogenesis. However, rRNA maturation pathways of archaea, particularly of methanoarchaea, are scarcely known. Here, we thoroughly elucidated the maturation pathway of the rRNA operon (16S-tRNAAla-23S-tRNACys-5S) in Methanolobus psychrophilus, one representative of methanoarchaea. Enzymatic assay demonstrated that EndA, a tRNA splicing endoribonuclease, cleaved bulge-helix-bulge (BHB) motifs buried in the processing stems of pre-16S and pre-23S rRNAs. Northern blot and quantitative PCR detected splicing-coupled circularization of pre-16S and pre-23S rRNAs, which accounted for 2% and 12% of the corresponding rRNAs, respectively. Importantly, endoribonuclease Nob1 was determined to linearize circular pre-16S rRNA at the mature 3' end so to expose the anti-Shine-Dalgarno sequence, while circular pre-23S rRNA was linearized at the mature 5' end by an unknown endoribonuclease. The resultant 5' and 3' extension in linearized pre-16S and pre-23S rRNAs were finally matured through 5'-3' and 3'-5' exoribonucleolytic trimming, respectively. Additionally, a novel processing pathway of endoribonucleolysis coupled with exoribonucleolysis was identified for the pre-5S rRNA maturation in this methanogen, which could be also conserved in most methanogenic euryarchaea. Based on evaluating the phylogenetic conservation of the key elements that are involved in circularization and linearization of pre-rRNA maturation, we predict that the rRNA maturation mode revealed here could be prevalent among archaea.
Collapse
Affiliation(s)
- Lei Qi
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences , Beijing, PR China
| | - Jie Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences , Beijing, PR China.,College of Life Sciences, University of Chinese Academy of Sciences , Beijing, PR China
| | - Jia Jia
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences , Beijing, PR China.,College of Life Sciences, University of Chinese Academy of Sciences , Beijing, PR China
| | - Lei Yue
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences , Beijing, PR China.,College of Life Sciences, University of Chinese Academy of Sciences , Beijing, PR China
| | - Xiuzhu Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences , Beijing, PR China.,College of Life Sciences, University of Chinese Academy of Sciences , Beijing, PR China
| |
Collapse
|
36
|
Abedeera SM, Hawkins CM, Abeysirigunawardena SC. RsmG forms stable complexes with premature small subunit rRNA during bacterial ribosome biogenesis. RSC Adv 2020; 10:22361-22369. [PMID: 35514586 PMCID: PMC9054591 DOI: 10.1039/d0ra02732d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/01/2020] [Indexed: 12/22/2022] Open
Abstract
The ribosome is the ribonucleoprotein machine that carries out protein biosynthesis in all forms of life. Perfect synchronization between ribosomal RNA (rRNA) transcription, folding, post-transcriptional modification, maturation, and assembly of r-proteins is essential for the rapid formation of structurally and functionally accurate ribosomes. Many RNA nucleotide modification enzymes may function as assembly factors that oversee the accuracy of ribosome assembly. The protein RsmG is a methyltransferase enzyme that is responsible for N7 methylation in G527 of 16S rRNA. Here we illustrate the ability of RsmG to bind various premature small subunit ribosomal RNAs with contrasting affinities. Protein RsmG binds with approximately 15-times higher affinity to premature 16S rRNA with the full leader sequence compared to that of mature 16S rRNA. Various r-proteins which bind to the 5′-domain influence RsmG binding. The observed binding cooperativity between RsmG and r-proteins is sensitive to the maturation status of premature small subunit rRNA. However, neither the maturation of 16S rRNA nor the presence of various r-proteins significantly influence the methylation activity of RsmG. The capability of RsmG to bind to premature small subunit rRNA and alter its binding preference to various RNA–protein complexes based on the maturation of rRNA indicates its ability to influence ribosome assembly. RsmG is the methyltransferase responsible for the N7 methylation of G527 of 16S rRNA. Here we show that RsmG binds preferably to premature bacterial small subunit rRNA. The presence of ribosomal proteins also influences the stability of RsmG–rRNA complexes.![]()
Collapse
Affiliation(s)
- Sudeshi M Abedeera
- Department of Chemistry and Biochemistry, Kent State University Kent Ohio 44242 USA
| | - Caitlin M Hawkins
- Department of Chemistry and Biochemistry, Kent State University Kent Ohio 44242 USA
| | | |
Collapse
|
37
|
Adams PP, Storz G. Prevalence of small base-pairing RNAs derived from diverse genomic loci. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194524. [PMID: 32147527 DOI: 10.1016/j.bbagrm.2020.194524] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/03/2020] [Accepted: 03/03/2020] [Indexed: 12/21/2022]
Abstract
Small RNAs (sRNAs) that act by base-pairing have been shown to play important roles in fine-tuning the levels and translation of their target transcripts across a variety of model and pathogenic organisms. Work from many different groups in a wide range of bacterial species has provided evidence for the importance and complexity of sRNA regulatory networks, which allow bacteria to quickly respond to changes in their environment. However, despite the expansive literature, much remains to be learned about all aspects of sRNA-mediated regulation, particularly in bacteria beyond the well-characterized Escherichia coli and Salmonella enterica species. Here we discuss what is known, and what remains to be learned, about the identification of regulatory base-pairing RNAs produced from diverse genomic loci including how their expression is regulated. This article is part of a Special Issue entitled: RNA and gene control in bacteria edited by Dr. M. Guillier and F. Repoila.
Collapse
Affiliation(s)
- Philip P Adams
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892-5430, USA; Postdoctoral Research Associate Program, National Institute of General Medical Sciences, National Institutes of Health, Bethesda, MD 20892-6200, USA.
| | - Gisela Storz
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892-5430, USA
| |
Collapse
|
38
|
Jüttner M, Weiß M, Ostheimer N, Reglin C, Kern M, Knüppel R, Ferreira-Cerca S. A versatile cis-acting element reporter system to study the function, maturation and stability of ribosomal RNA mutants in archaea. Nucleic Acids Res 2020; 48:2073-2090. [PMID: 31828323 PMCID: PMC7038931 DOI: 10.1093/nar/gkz1156] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/12/2019] [Accepted: 11/30/2019] [Indexed: 12/17/2022] Open
Abstract
General molecular principles of ribosome biogenesis have been well explored in bacteria and eukaryotes. Collectively, these studies have revealed important functional differences and few similarities between these processes. Phylogenetic studies suggest that the information processing machineries from archaea and eukaryotes are evolutionary more closely related than their bacterial counterparts. These observations raise the question of how ribosome synthesis in archaea may proceed in vivo. In this study, we describe a versatile plasmid-based cis-acting reporter system allowing to analyze in vivo the consequences of ribosomal RNA mutations in the model archaeon Haloferax volcanii. Applying this system, we provide evidence that the bulge-helix-bulge motif enclosed within the ribosomal RNA processing stems is required for the formation of archaeal-specific circular-pre-rRNA intermediates and mature rRNAs. In addition, we have collected evidences suggesting functional coordination of the early steps of ribosome synthesis in H. volcanii. Together our investigation describes a versatile platform allowing to generate and functionally analyze the fate of diverse rRNA variants, thereby paving the way to better understand the cis-acting molecular determinants necessary for archaeal ribosome synthesis, maturation, stability and function.
Collapse
Affiliation(s)
- Michael Jüttner
- Biochemistry III – Institute for Biochemistry, Genetics and Microbiology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Matthias Weiß
- Biochemistry III – Institute for Biochemistry, Genetics and Microbiology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Nina Ostheimer
- Biochemistry III – Institute for Biochemistry, Genetics and Microbiology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Corinna Reglin
- Biochemistry III – Institute for Biochemistry, Genetics and Microbiology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Michael Kern
- Biochemistry III – Institute for Biochemistry, Genetics and Microbiology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Robert Knüppel
- Biochemistry III – Institute for Biochemistry, Genetics and Microbiology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Sébastien Ferreira-Cerca
- Biochemistry III – Institute for Biochemistry, Genetics and Microbiology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| |
Collapse
|
39
|
Dos Santos RF, Bárria C, Arraiano CM, Andrade JM. Isolation and Analysis of Bacterial Ribosomes Through Sucrose Gradient Ultracentrifugation. Methods Mol Biol 2020; 2106:299-310. [PMID: 31889266 DOI: 10.1007/978-1-0716-0231-7_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ribosomes are large macromolecular complexes responsible for the translation process. During the course of ribosome biogenesis and protein synthesis, extra-ribosomal factors interact with the ribosome or its subunits to assist in these vital processes. Here we describe a method to isolate and analyze not only bacterial ribosomes but also their associated factors, providing insights into translation regulation. This detailed protocol allows the separation and monitoring of the ribosomal species and their interacting partners along a sucrose density gradient. Simultaneously, fractionation of the gradient allows for the recovery of 70S ribosomes and its subunits enabling a wide range of downstream applications. This protocol can be easily adapted to ribosome-related studies in other species or for separating other macromolecular complexes.
Collapse
Affiliation(s)
- Ricardo F Dos Santos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Cátia Bárria
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Cecília M Arraiano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| | - José M Andrade
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| |
Collapse
|
40
|
Iost I, Chabas S, Darfeuille F. Maturation of atypical ribosomal RNA precursors in Helicobacter pylori. Nucleic Acids Res 2019; 47:5906-5921. [PMID: 31006803 PMCID: PMC6582327 DOI: 10.1093/nar/gkz258] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/28/2019] [Accepted: 04/18/2019] [Indexed: 01/01/2023] Open
Abstract
In most bacteria, ribosomal RNA is transcribed as a single polycistronic precursor that is first processed by RNase III. This double-stranded specific RNase cleaves two large stems flanking the 23S and 16S rRNA mature sequences, liberating three 16S, 23S and 5S rRNA precursors, which are further processed by other ribonucleases. Here, we investigate the rRNA maturation pathway of the human gastric pathogen Helicobacter pylori. This bacterium has an unusual arrangement of its rRNA genes, the 16S rRNA gene being separated from a 23S-5S rRNA cluster. We show that RNase III also initiates processing in this organism, by cleaving two typical stem structures encompassing 16S and 23S rRNAs and an atypical stem–loop located upstream of the 5S rRNA. Deletion of RNase III leads to the accumulation of a large 23S-5S precursor that is found in polysomes, suggesting that it can function in translation. Finally, we characterize a cis-encoded antisense RNA overlapping the leader of the 23S-5S rRNA precursor. We present evidence that this antisense RNA interacts with this precursor, forming an intermolecular complex that is cleaved by RNase III. This pairing induces additional specific cleavages of the rRNA precursor coupled with a rapid degradation of the antisense RNA.
Collapse
Affiliation(s)
- Isabelle Iost
- ARNA Laboratory, Inserm U1212, CNRS UMR 5320, Université de Bordeaux, France
| | - Sandrine Chabas
- ARNA Laboratory, Inserm U1212, CNRS UMR 5320, Université de Bordeaux, France
| | - Fabien Darfeuille
- ARNA Laboratory, Inserm U1212, CNRS UMR 5320, Université de Bordeaux, France
| |
Collapse
|
41
|
Zuo R, Oliveira A, Bullita E, Torino MI, Padgett‐Pagliai KA, Gardner CL, Harrison NA, da Silva D, Merli ML, Gonzalez CF, Lorca GL. Identification of flavonoids as regulators of YbeY activity in
Liberibacter asiaticus. Environ Microbiol 2019; 21:4822-4835. [DOI: 10.1111/1462-2920.14831] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/02/2019] [Accepted: 10/16/2019] [Indexed: 11/27/2022]
Affiliation(s)
- Ran Zuo
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural ScienceUniversity of Florida Gainesville Florida USA
| | - Aline Oliveira
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural ScienceUniversity of Florida Gainesville Florida USA
| | - Enrica Bullita
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural ScienceUniversity of Florida Gainesville Florida USA
| | - Maria Ines Torino
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural ScienceUniversity of Florida Gainesville Florida USA
| | - Kaylie A. Padgett‐Pagliai
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural ScienceUniversity of Florida Gainesville Florida USA
| | - Christopher L. Gardner
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural ScienceUniversity of Florida Gainesville Florida USA
| | - Natalie A. Harrison
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural ScienceUniversity of Florida Gainesville Florida USA
| | - Danilo da Silva
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural ScienceUniversity of Florida Gainesville Florida USA
| | - Marcelo L. Merli
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural ScienceUniversity of Florida Gainesville Florida USA
| | - Claudio F. Gonzalez
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural ScienceUniversity of Florida Gainesville Florida USA
| | - Graciela L. Lorca
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural ScienceUniversity of Florida Gainesville Florida USA
| |
Collapse
|
42
|
Otto M, Wynands B, Drepper T, Jaeger KE, Thies S, Loeschcke A, Blank LM, Wierckx N. Targeting 16S rDNA for Stable Recombinant Gene Expression in Pseudomonas. ACS Synth Biol 2019; 8:1901-1912. [PMID: 31298831 DOI: 10.1021/acssynbio.9b00195] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ribosomal RNA (rRNA) operons have recently been identified as promising sites for chromosomal integration of genetic elements in Pseudomonas putida, a bacterium that has gained considerable popularity as a microbial cell factory. We have developed a tool for targeted integration of recombinant genes into the rRNA operons of various Pseudomonas strains, where the native context of the rRNA clusters enables effective transcription of heterologous genes. However, a sufficient translation of foreign mRNA transcriptionally fused to rRNA required optimization of RNA secondary structures, which was achieved utilizing synthetic ribozymes and a bicistronic design. The generated tool further enabled the characterization of the six rRNA promoter units of P. putida S12 under different growth conditions. The presence of multiple, almost identical rRNA operons in Pseudomonas also allowed the integration of multiple copies of heterologous genetic elements. The integration of two expression cassettes and the resulting disruption of rRNA units only moderately affects growth rates, and the constructs were highly stable over more than 160 generations.
Collapse
Affiliation(s)
- Maike Otto
- Institute of Applied Microbiology, RWTH Aachen University, 52074 Aachen, Germany
- Institute of Bio- and Geosciences (IBG-1: Biotechnology), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Benedikt Wynands
- Institute of Applied Microbiology, RWTH Aachen University, 52074 Aachen, Germany
- Institute of Bio- and Geosciences (IBG-1: Biotechnology), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Thomas Drepper
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Karl-Erich Jaeger
- Institute of Bio- and Geosciences (IBG-1: Biotechnology), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Stephan Thies
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Anita Loeschcke
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Lars M. Blank
- Institute of Applied Microbiology, RWTH Aachen University, 52074 Aachen, Germany
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Nick Wierckx
- Institute of Applied Microbiology, RWTH Aachen University, 52074 Aachen, Germany
- Institute of Bio- and Geosciences (IBG-1: Biotechnology), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| |
Collapse
|
43
|
Jain C. Role of ribosome assembly in Escherichia coli ribosomal RNA degradation. Nucleic Acids Res 2019; 46:11048-11060. [PMID: 30219894 PMCID: PMC6237783 DOI: 10.1093/nar/gky808] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 08/28/2018] [Indexed: 01/09/2023] Open
Abstract
DEAD-Box proteins (DBPs) constitute a prominent class of RNA remodeling factors that play a role in virtually all aspects of RNA metabolism. To better define their cellular functions, deletions in the genes encoding each of the Escherichia coli DBPs were combined with mutations in genes encoding different Ribonucleases (RNases). Significantly, double-deletion strains lacking Ribonuclease R (RNase R) and either the DeaD or SrmB DBP were found to display growth defects and an enhanced accumulation of ribosomal RNA (rRNA) fragments. As RNase R is known to play a key role in removing rRNA degradation products, these observations initially suggested that these two DBPs could be directly involved in the same process. However, additional investigations indicated that DeaD and SrmB-dependent rRNA breakdown is caused by delays in ribosome assembly that increase the exposure of nascent RNAs to endonucleolytic cleavage. Consistent with this notion, mutations in factors known to be important for ribosome assembly also resulted in enhanced rRNA breakdown. Additionally, significant levels of rRNA breakdown products could be visualized in growing cells even in the absence of assembly defects. These findings reveal a hitherto unappreciated mechanism of rRNA degradation under conditions of both normal and abnormal ribosome assembly.
Collapse
Affiliation(s)
- Chaitanya Jain
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
44
|
Sivapragasam S, Grove A. The Link between Purine Metabolism and Production of Antibiotics in Streptomyces. Antibiotics (Basel) 2019; 8:antibiotics8020076. [PMID: 31174282 PMCID: PMC6627660 DOI: 10.3390/antibiotics8020076] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 05/30/2019] [Accepted: 06/03/2019] [Indexed: 02/06/2023] Open
Abstract
Stress and starvation causes bacterial cells to activate the stringent response. This results in down-regulation of energy-requiring processes related to growth, as well as an upregulation of genes associated with survival and stress responses. Guanosine tetra- and pentaphosphates (collectively referred to as (p)ppGpp) are critical for this process. In Gram-positive bacteria, a main function of (p)ppGpp is to limit cellular levels of GTP, one consequence of which is reduced transcription of genes that require GTP as the initiating nucleotide, such as rRNA genes. In Streptomycetes, the stringent response is also linked to complex morphological differentiation and to production of secondary metabolites, including antibiotics. These processes are also influenced by the second messenger c-di-GMP. Since GTP is a substrate for both (p)ppGpp and c-di-GMP, a finely tuned regulation of cellular GTP levels is required to ensure adequate synthesis of these guanosine derivatives. Here, we discuss mechanisms that operate to control guanosine metabolism and how they impinge on the production of antibiotics in Streptomyces species.
Collapse
Affiliation(s)
- Smitha Sivapragasam
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Anne Grove
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| |
Collapse
|
45
|
Bechhofer DH, Deutscher MP. Bacterial ribonucleases and their roles in RNA metabolism. Crit Rev Biochem Mol Biol 2019; 54:242-300. [PMID: 31464530 PMCID: PMC6776250 DOI: 10.1080/10409238.2019.1651816] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/22/2019] [Accepted: 07/31/2019] [Indexed: 12/16/2022]
Abstract
Ribonucleases (RNases) are mediators in most reactions of RNA metabolism. In recent years, there has been a surge of new information about RNases and the roles they play in cell physiology. In this review, a detailed description of bacterial RNases is presented, focusing primarily on those from Escherichia coli and Bacillus subtilis, the model Gram-negative and Gram-positive organisms, from which most of our current knowledge has been derived. Information from other organisms is also included, where relevant. In an extensive catalog of the known bacterial RNases, their structure, mechanism of action, physiological roles, genetics, and possible regulation are described. The RNase complement of E. coli and B. subtilis is compared, emphasizing the similarities, but especially the differences, between the two. Included are figures showing the three major RNA metabolic pathways in E. coli and B. subtilis and highlighting specific steps in each of the pathways catalyzed by the different RNases. This compilation of the currently available knowledge about bacterial RNases will be a useful tool for workers in the RNA field and for others interested in learning about this area.
Collapse
Affiliation(s)
- David H. Bechhofer
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Murray P. Deutscher
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
46
|
Boccitto M, Wolin SL. Ro60 and Y RNAs: structure, functions, and roles in autoimmunity. Crit Rev Biochem Mol Biol 2019; 54:133-152. [PMID: 31084369 DOI: 10.1080/10409238.2019.1608902] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Ro60, also known as SS-A or TROVE2, is an evolutionarily conserved RNA-binding protein that is found in most animal cells, approximately 5% of sequenced prokaryotic genomes and some archaea. Ro60 is present in cells as both a free protein and as a component of a ribonucleoprotein complex, where its best-known partners are members of a class of noncoding RNAs called Y RNAs. Structural and biochemical analyses have revealed that Ro60 is a ring-shaped protein that binds Y RNAs on its outer surface. In addition to Y RNAs, Ro60 binds misfolded and aberrant noncoding RNAs in some animal cell nuclei. Although the fate of these defective Ro60-bound noncoding RNAs in animal cells is not well-defined, a bacterial Ro60 ortholog functions with 3' to 5' exoribonucleases to assist structured RNA degradation. Studies of Y RNAs have revealed that these RNAs regulate the subcellular localization of Ro60, tether Ro60 to effector proteins and regulate the access of other RNAs to its central cavity. As both mammalian cells and bacteria lacking Ro60 are sensitized to ultraviolet irradiation, Ro60 function may be important during exposure to some environmental stressors. Here we summarize the current knowledge regarding the functions of Ro60 and Y RNAs in animal cells and bacteria. Because the Ro60 RNP is a clinically important target of autoantibodies in patients with rheumatic diseases such as Sjogren's syndrome, systemic lupus erythematosus, and neonatal lupus, we also discuss potential roles for Ro60 RNPs in the initiation and pathogenesis of systemic autoimmune rheumatic disease.
Collapse
Affiliation(s)
- Marco Boccitto
- a RNA Biology Laboratory, Center for Cancer Research , National Cancer Institute , Frederick , MD , USA
| | - Sandra L Wolin
- a RNA Biology Laboratory, Center for Cancer Research , National Cancer Institute , Frederick , MD , USA
| |
Collapse
|
47
|
Pseudomonas putida rDNA is a favored site for the expression of biosynthetic genes. Sci Rep 2019; 9:7028. [PMID: 31065014 PMCID: PMC6505042 DOI: 10.1038/s41598-019-43405-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 04/24/2019] [Indexed: 11/23/2022] Open
Abstract
Since high-value bacterial secondary metabolites, including antibiotics, are often naturally produced in only low amounts, their efficient biosynthesis typically requires the transfer of entire metabolic pathways into suitable bacterial hosts like Pseudomonas putida. Stable maintenance and sufficient expression of heterologous pathway-encoding genes in host microbes, however, still remain key challenges. In this study, the 21 kb prodigiosin gene cluster from Serratia marcescens was used as a reporter to identify genomic sites in P. putida KT2440 especially suitable for maintenance and expression of pathway genes. After generation of a strain library by random Tn5 transposon-based chromosomal integration of the cluster, 50 strains exhibited strong prodigiosin production. Remarkably, chromosomal integration sites were exclusively identified in the seven rRNA-encoding rrn operons of P. putida. We could further demonstrate that prodigiosin production was mainly dependent on (i) the individual rrn operon where the gene cluster was inserted as well as (ii) the distance between the rrn promoter and the inserted prodigiosin biosynthetic genes. In addition, the recombinant strains showed high stability upon subculturing for many generations. Consequently, our findings demonstrate the general applicability of rDNA loci as chromosomal integration sites for gene cluster expression and recombinant pathway implementation in P. putida KT2440.
Collapse
|
48
|
Vasilyev N, Gao A, Serganov A. Noncanonical features and modifications on the 5'-end of bacterial sRNAs and mRNAs. WILEY INTERDISCIPLINARY REVIEWS. RNA 2019; 10:e1509. [PMID: 30276982 PMCID: PMC6657780 DOI: 10.1002/wrna.1509] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/05/2018] [Accepted: 09/17/2018] [Indexed: 12/20/2022]
Abstract
Although many eukaryotic transcripts contain cap structures, it has been long thought that bacterial RNAs do not carry any special modifications on their 5'-ends. In bacteria, primary transcripts are produced by transcription initiated with a nucleoside triphosphate and are therefore triphosphorylated on 5'-ends. Some transcripts are then processed by nucleases that yield monophosphorylated RNAs for specific cellular activities. Many primary transcripts are also converted to monophosphorylated species by removal of the terminal pyrophosphate for 5'-end-dependent degradation. Recent studies surprisingly revealed an expanded repertoire of chemical groups on 5'-ends of bacterial RNAs. In addition to mono- and triphosphorylated moieties, some mRNAs and sRNAs contain cap-like structures and diphosphates on their 5'-ends. Although incorporation and removal of these groups have become better understood in recent years, the physiological significance of these modifications remain obscure. This review highlights recent studies aimed at identification and elucidation of novel modifications on the 5'-ends of bacterial RNAs and discusses possible physiological applications of the modified RNAs. This article is categorized under: RNA Turnover and Surveillance > Regulation of RNA Stability RNA Structure and Dynamics > RNA Structure, Dynamics, and Chemistry RNA Processing > Capping and 5' End Modifications.
Collapse
Affiliation(s)
- Nikita Vasilyev
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Ang Gao
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Alexander Serganov
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| |
Collapse
|
49
|
Zhao J, Harris ME. Distributive enzyme binding controlled by local RNA context results in 3' to 5' directional processing of dicistronic tRNA precursors by Escherichia coli ribonuclease P. Nucleic Acids Res 2019; 47:1451-1467. [PMID: 30496557 PMCID: PMC6379654 DOI: 10.1093/nar/gky1162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/17/2018] [Accepted: 11/11/2018] [Indexed: 12/16/2022] Open
Abstract
RNA processing by ribonucleases and RNA modifying enzymes often involves sequential reactions of the same enzyme on a single precursor transcript. In Escherichia coli, processing of polycistronic tRNA precursors involves separation into individual pre-tRNAs by one of several ribonucleases followed by 5′ end maturation by ribonuclease P. A notable exception are valine and lysine tRNAs encoded by three polycistronic precursors that follow a recently discovered pathway involving initial 3′ to 5′ directional processing by RNase P. Here, we show that the dicistronic precursor containing tRNAvalV and tRNAvalW undergoes accurate and efficient 3′ to 5′ directional processing by RNase P in vitro. Kinetic analyses reveal a distributive mechanism involving dissociation of the enzyme between the two cleavage steps. Directional processing is maintained despite swapping or duplicating the two tRNAs consistent with inhibition of processing by 3′ trailer sequences. Structure-function studies identify a stem–loop in 5′ leader of tRNAvalV that inhibits RNase P cleavage and further enforces directional processing. The results demonstrate that directional processing is an intrinsic property of RNase P and show how RNA sequence and structure context can modulate reaction rates in order to direct precursors along specific pathways.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Chemistry, University of Florida, Gainesville, FL 32603, USA
| | - Michael E Harris
- Department of Chemistry, University of Florida, Gainesville, FL 32603, USA
| |
Collapse
|
50
|
Clouet-d'Orval B, Batista M, Bouvier M, Quentin Y, Fichant G, Marchfelder A, Maier LK. Insights into RNA-processing pathways and associated RNA-degrading enzymes in Archaea. FEMS Microbiol Rev 2018; 42:579-613. [PMID: 29684129 DOI: 10.1093/femsre/fuy016] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/17/2018] [Indexed: 12/20/2022] Open
Abstract
RNA-processing pathways are at the centre of regulation of gene expression. All RNA transcripts undergo multiple maturation steps in addition to covalent chemical modifications to become functional in the cell. This includes destroying unnecessary or defective cellular RNAs. In Archaea, information on mechanisms by which RNA species reach their mature forms and associated RNA-modifying enzymes are still fragmentary. To date, most archaeal actors and pathways have been proposed in light of information gathered from Bacteria and Eukarya. In this context, this review provides a state of the art overview of archaeal endoribonucleases and exoribonucleases that cleave and trim RNA species and also of the key small archaeal proteins that bind RNAs. Furthermore, synthetic up-to-date views of processing and biogenesis pathways of archaeal transfer and ribosomal RNAs as well as of maturation of stable small non-coding RNAs such as CRISPR RNAs, small C/D and H/ACA box guide RNAs, and other emerging classes of small RNAs are described. Finally, prospective post-transcriptional mechanisms to control archaeal messenger RNA quality and quantity are discussed.
Collapse
Affiliation(s)
- Béatrice Clouet-d'Orval
- Laboratoire de Microbiologie et de Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, 31062 Toulouse, France
| | - Manon Batista
- Laboratoire de Microbiologie et de Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, 31062 Toulouse, France
| | - Marie Bouvier
- Laboratoire de Microbiologie et de Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, 31062 Toulouse, France
| | - Yves Quentin
- Laboratoire de Microbiologie et de Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, 31062 Toulouse, France
| | - Gwennaele Fichant
- Laboratoire de Microbiologie et de Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, 31062 Toulouse, France
| | | | | |
Collapse
|