1
|
Pelissier-Rota M, Lainé M, Ducarouge B, Bonaz B, Jacquier-Sarlin M. Role of Cholinergic Receptors in Colorectal Cancer: Potential Therapeutic Implications of Vagus Nerve Stimulation? ACTA ACUST UNITED AC 2013. [DOI: 10.4236/jct.2013.46128] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
2
|
Wierstra I. FOXM1 (Forkhead box M1) in tumorigenesis: overexpression in human cancer, implication in tumorigenesis, oncogenic functions, tumor-suppressive properties, and target of anticancer therapy. Adv Cancer Res 2013; 119:191-419. [PMID: 23870513 DOI: 10.1016/b978-0-12-407190-2.00016-2] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
FOXM1 (Forkhead box M1) is a typical proliferation-associated transcription factor and is also intimately involved in tumorigenesis. FOXM1 stimulates cell proliferation and cell cycle progression by promoting the entry into S-phase and M-phase. Additionally, FOXM1 is required for proper execution of mitosis. In accordance with its role in stimulation of cell proliferation, FOXM1 exhibits a proliferation-specific expression pattern and its expression is regulated by proliferation and anti-proliferation signals as well as by proto-oncoproteins and tumor suppressors. Since these factors are often mutated, overexpressed, or lost in human cancer, the normal control of the foxm1 expression by them provides the basis for deregulated FOXM1 expression in tumors. Accordingly, FOXM1 is overexpressed in many types of human cancer. FOXM1 is intimately involved in tumorigenesis, because it contributes to oncogenic transformation and participates in tumor initiation, growth, and progression, including positive effects on angiogenesis, migration, invasion, epithelial-mesenchymal transition, metastasis, recruitment of tumor-associated macrophages, tumor-associated lung inflammation, self-renewal capacity of cancer cells, prevention of premature cellular senescence, and chemotherapeutic drug resistance. However, in the context of urethane-induced lung tumorigenesis, FOXM1 has an unexpected tumor suppressor role in endothelial cells because it limits pulmonary inflammation and canonical Wnt signaling in epithelial lung cells, thereby restricting carcinogenesis. Accordingly, FOXM1 plays a role in homologous recombination repair of DNA double-strand breaks and maintenance of genomic stability, that is, prevention of polyploidy and aneuploidy. The implication of FOXM1 in tumorigenesis makes it an attractive target for anticancer therapy, and several antitumor drugs have been reported to decrease FOXM1 expression.
Collapse
|
3
|
Kadri CJ, Pereira JA, da Silva CMG, Nonose R, Nascimento EFD, Jacomo AL, Martinez CAR. E-cadherin expression in colonic mucosa with and without fecal stream. J INVEST SURG 2012; 26:72-9. [PMID: 23273176 DOI: 10.3109/08941939.2012.693334] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
UNLABELLED The tissue content of E-cadherin changes in inflammatory bowel diseases; however, similar changes have not yet been evaluated in diversion colitis. OBJECTIVE The aim of this study was to evaluate the tissue expression of E-cadherin in the mucosa of the colon in both segments with and without a fecal stream. METHODS Sixty Wistar rats were subjected to deviation of fecal stream by proximal colostomy in left colon and a distal mucosal fistula. Animals were divided into three experimental groups that were sacrificed 6, 12, and 18 weeks after surgery. In each experimental group, five animals underwent laparotomy without intestinal deviation (control subgroup). Colitis was diagnosed based on the presence of three independent histological parameters: reduction of the crypt length, neutrophil infiltration of the mucosa and submucosa, and epithelial erosion or ulceration. The E-cadherin expression was evaluated by immunohistochemistry and the tissue levels by computerized morphometry. The Mann-Whitney and Kruskal-Wallis test were used to compare the groups adopting a significance level of 5% (p < .05). RESULTS Segments without fecal stream showed a reduction in E-cadherin content when compared with segments with fecal stream. In the segments with a fecal stream, E-cadherin was expressed at the apical surface of colon glands, while segments without fecal stream showed a decrease in the amount of apical E-cadherin. The content of E-cadherin was maintained over the entire time of the intestinal exclusion. CONCLUSIONS Diversion of the fecal stream decreases the expression of E-cadherin of the colon epithelium.
Collapse
Affiliation(s)
- Caled Jaoudat Kadri
- Postgraduate Program in Health Sciences, São Francisco University, Bragança Paulista, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
4
|
|
5
|
Uen WC, Tai CJ, Shen SC, Lee WR, Tsao TY, Deng WP, Chiou HY, Hsu CH, Hsieh CI, Liao CF, Jiang MC. Differential distributions of CSE1L/CAS and E-cadherin in the polarized and non-polarized epithelial glands of neoplastic colorectal epithelium. J Mol Histol 2010; 41:259-66. [DOI: 10.1007/s10735-010-9286-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 08/16/2010] [Indexed: 11/29/2022]
|
6
|
Baum B, Settleman J, Quinlan MP. Transitions between epithelial and mesenchymal states in development and disease. Semin Cell Dev Biol 2008; 19:294-308. [PMID: 18343170 DOI: 10.1016/j.semcdb.2008.02.001] [Citation(s) in RCA: 319] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Accepted: 02/04/2008] [Indexed: 12/21/2022]
Abstract
The ancestors of modern Metazoa were constructed in large part by the foldings and distortions of two-dimensional sheets of epithelial cells. This changed approximately 600 million years ago with the evolution of mesenchymal cells. These cells arise as the result of epithelial cell delamination through a reprogramming process called an epithelial to mesenchymal transition (EMT) [Shook D, Keller R. Mechanisms, mechanics and function of epithelial-mesenchymal transitions in early development. Mech Dev 2003;120:1351-83; Thiery JP, Sleeman JP. Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol 2006;7:131-42]. Because mesenchymal cells are free to migrate through the body cavity, the evolution of the mesenchyme opened up new avenues for morphological plasticity, as cells evolved the ability to take up new positions within the embryo and to participate in novel cell-cell interactions; forming new types of internal tissues and organs such as muscle and bone [Thiery JP, Sleeman, JP. Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol 2006;7:131-42; Hay ED, Zuk A. Transformations between epithelium and mesenchyme: normal, pathological, and experimentally induced. Am J Kidney Dis 1995;26:678-90]. After migrating to a suitable site, mesenchymal cells coalesce and re-polarize to form secondary epithelia, in a so-called mesenchymal-epithelial transition (MET). Such switches between mesenchymal and epithelial states are a frequent feature of Metazoan gastrulation [Hay ED, Zuk A. Transformations between epithelium and mesenchyme: normal, pathological, and experimentally induced. Am J Kidney Dis 1995;26:678-90] and the neural crest lineage [Duband JL, Monier F, Delannet M, Newgreen D. Epitheliu-mmesenchyme transition during neural crest development. Acta Anat 1995;154:63-78]. Significantly, however, when hijacked during the development of cancer, the ability of cells to undergo EMT, to leave the primary tumor and to undergo MET at secondary sites can have devastating consequences on the organism, allowing tumor cells derived from epithelia to invade surrounding tissues and spread through the host [Thiery JP, Sleeman JP. Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol 2006;7:131-42; Hay ED, Zuk A. Transformations between epithelium and mesenchyme: normal, pathological, and experimentally induced. Am J Kidney Dis 1995;26:678-90]. Thus, the molecular and cellular mechanisms underpinning EMT are both an essential feature of Metazoan development and an important area of biomedical research. In this review, we discuss the common molecular and cellular mechanisms involved in EMT in both cases.
Collapse
Affiliation(s)
- Buzz Baum
- Department of Cell and Developmental Biology, UCL, London, UK
| | | | | |
Collapse
|
7
|
Barshack I, Goldberg I, Chowers Y, Horowitz A, Kopolovic J. Different beta-catenin immunoexpression in carcinoid tumors of the appendix in comparison to other gastrointestinal carcinoid tumors. Pathol Res Pract 2003; 198:531-6. [PMID: 12389996 DOI: 10.1078/0344-0338-00297] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Carcinoid tumor of the appendix is an endocrine tumor that is histologically similar to, but biologically less aggressive than carcinoids arising from other parts of the gastrointestinal tract. In this study, we examined E-cadherin, beta-catenin, DCC, p53 and Ki67 immunoexpression in cases of carcinoid of the appendix and made a comparison with non-appendiceal carcinoid tumors. Nine cases of appendiceal carcinoid and 11 biopsies of carcinoid of other parts of the gastrointestinal tract, five cases of the small intestine and six of the stomach were immunohistochemically evaluated for Ki67, p53, DCC, E-cadherin and beta-catenin. Two main patterns of beta-catenin staining were observed. The first pattern was characterized as membranous and cytoplasmic, and was seen mainly in the peripheral cells of the nests. The second pattern was diffuse, predominantly membranous. Most (five of seven) appendiceal carcinoids and only three of 11 non-appendiceal cases showed the first staining pattern (p < 0.05). Immunoexpression of E-cadherin and DCC was similar in both groups. p53 and Ki-67 immunostaining revealed stronger nuclear positivity in the non-appendiceal carcinoid tumors (statistically not significant). We found a pattern of beta-catenin immunostaining in typical carcinoid tumors of the appendix that was different from the pattern seen in non-appendiceal carcinoid tumors. This alteration suggests that carcinoid of the appendix may represent a different subtype of carcinoid tumors with different immunohistochemical and biological behavior.
Collapse
Affiliation(s)
- Iris Barshack
- Department of Pathology, The Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | | | | | | | | |
Collapse
|
8
|
Bremnes RM, Veve R, Hirsch FR, Franklin WA. The E-cadherin cell-cell adhesion complex and lung cancer invasion, metastasis, and prognosis. Lung Cancer 2002; 36:115-24. [PMID: 11955645 DOI: 10.1016/s0169-5002(01)00471-8] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Lung cancer is the most common cause of cancer deaths in the western world. Progress in treatment results has been limited, and the prognosis is poor with a 5-year survival less than 15%. Based on new developments in molecular biology, our knowledge about lung carcinogenesis and mechanisms for invasion and metastasis has expanded and may in the future lead to more specific targeted therapies and better prognosis. The E-cadherin-catenin complex is critical for intercellular adhesiveness and maintenance of normal and malignant tissue architecture. Reduced expression of this complex in malignant disease is associated with tumour invasion, metastasis, and unfavorable prognosis. METHODS This review is based on search in the Medline database from 1991 to 2001. We have reviewed the relevance of the E-cadherin-catenin adhesion complex in malignancy in general and lung cancer in particular. Furthermore, its role as target for specific therapy is discussed. RESULTS Available data indicate that alterations of proteins involved in the E-cadherin-catenin complex are early incidents in cancer development. Reduced or altered expression of one or more of the components in this complex is associated with extended invasive and progressive behavior of cancer cells. Consistently, the E-cadherin-catenin complex appears to be increasingly delicate with regard to cancer prognosis. beta-Catenin, one of the components of the adhesion complex, also plays a significant role in cell signal transduction, gene activation, apoptosis inhibition, and increased cellular proliferation and migration. CONCLUSION Inactivation of the E-cadherin-catenin adhesion complex, induced by genetic and epigenetic events, plays a significant role in multistage carcinogenesis, and seems to be associated with dedifferentiation, local invasion, regional metastasis, and reduced survival in lung cancer.
Collapse
Affiliation(s)
- Roy M Bremnes
- Department of Pathology, University of Colorado Cancer Center, Denver, USA.
| | | | | | | |
Collapse
|
9
|
West MR, Ferguson DJP, Hart VJ, Sanjar S, Man Y. Maintenance of the epithelial barrier in a bronchial epithelial cell line is dependent on functional E-cadherin local to the tight junctions. CELL COMMUNICATION & ADHESION 2002; 9:29-44. [PMID: 12200963 DOI: 10.1080/15419060212185] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Tight junctions (TJ) are essential components of polarized epithelia, and E-cadherin is important for their formation and maintenance. The bronchial epithelial cell line, 16HBE14o-expresses E- and P-cadherin, but not N-cadherin. E- and P-cadherin levels changed during culture, the former increasing after confluence, and the latter were markedly reduced. All detectable E-cadherin was bound to beta- and gamma-catenins. We investigated involvement of E-cadherin with epithelial integrity using an E-cadherin specific, function-blocking antibody, SHE78-7. Surprisingly, apical SHE78-7 exposure caused a prompt fall in transepithelial resistance (TER), while TER remained unchanged for 8 hrs after basal exposure then dropped. SHE78-7 exposure increased epithelial permeability to mannitol, inulin, and 9.5 kDa and 77 kDa dextrans and caused fragmentation and loss of the tight junction protein, ZO-1, from the cell borders in some areas. Ultrastructural studies showed that all junctional intercellular contact was lost in the center of SHE78-7 induced lesions. Near the lesion periphery, epithelial structure was maintained, but TJs were dysfunctional as shown by ruthenium red penetration. Analysis of epithelial penetration by SHE78-7 revealed discrete, local defects in the apical barrier at the top of some cell hills that permitted rapid access of the antibody to E-cadherin near the apical surface. In contrast, after basal exposure, antibody initially engaged with E-cadherin nearer the basal surface and only accessed apical E-cadherin later. Taken together with the TER measurements, these data suggest compartmentalization of E-cadherin function within 16HBE14o-cells, with only the apical E-cadherin adjacent to the tight junctions contributing to the function of the latter.
Collapse
Affiliation(s)
- M R West
- GlaxoSmithkline, Gunnelswood Rd., Stevenage, SG1 2NY, UK.
| | | | | | | | | |
Collapse
|
10
|
Barshack I, Goldberg I, Chowers Y, Weiss B, Horowitz A, Kopolovic J. Immunohistochemical analysis of candidate gene product expression in the duodenal epithelium of children with coeliac sprue. J Clin Pathol 2001; 54:684-8. [PMID: 11533074 PMCID: PMC1731505 DOI: 10.1136/jcp.54.9.684] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Coeliac sprue is a chronic disease, in which there is a characteristic mucosal lesion of the small intestine and impaired nutrient absorption, which improves upon the withdrawal of wheat gliadins and related grain proteins from the diet. Biopsy specimens demonstrate diffuse enteritis with pronounced atrophy or total loss of villi. There is also a long term risk of malignant disease. AIMS To compare the immunoexpression of DCC (deleted in colon cancer), p53, E-cadherin, and beta-catenin in the duodenal mucosa of children with coeliac disease with that seen in children with no evidence of small intestinal disease. METHODS To gain more insight into the genetic and immunohistochemical alterations of the duodenal epithelium in coeliac disease, 21 endoscopic biopsies from children with coeliac disease and 10 duodenal biopsies from children without coeliac disease were immunohistochemically evaluated for p53, DCC, E-cadherin, and beta-catenin. RESULTS DCC expression was not reduced in patients with coeliac disease compared with those without coeliac disease. p53 positive nuclear immunostaining was seen in seven of the 21 patients with coeliac disease. Positive nuclear staining was seen mainly in the deep and the lateral aspects of the crypts. All patients in the control group were negative for p53. In nine and three of the 21 patients with coeliac disease, respectively, the immunohistochemical expression of E-cadherin and beta-catenin was reduced. However, both E-cadherin and beta-catenin immunostaining in the control group was not altered. CONCLUSIONS E-cadherin and beta-catenin were reduced in the duodenal epithelium of children with coeliac disease when compared with normal mucosa. p53 was overexpressed in the duodenal mucosa of patients with coeliac disease. The reduced expression of E-cadherin and beta-catenin and p53 overexpression may contribute to the morphological changes seen in the small intestinal mucosa in coeliac disease.
Collapse
Affiliation(s)
- I Barshack
- Department of Pathology, The Chaim Sheba Medical Center, Tel-Hashomer 52621, Israel
| | | | | | | | | | | |
Collapse
|
11
|
Gassler N, Rohr C, Schneider A, Kartenbeck J, Bach A, Obermüller N, Otto HF, Autschbach F. Inflammatory bowel disease is associated with changes of enterocytic junctions. Am J Physiol Gastrointest Liver Physiol 2001; 281:G216-28. [PMID: 11408275 DOI: 10.1152/ajpgi.2001.281.1.g216] [Citation(s) in RCA: 260] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Changes of the intestinal mucosal barrier are considered to play a role in the pathogenesis of inflammatory bowel disease (IBD). Our experiments were designed to identify dysregulation of epithelial junctional molecules in the IBD intestinum and to address whether altered expression of these molecules is a primary event in IBD or a phenomenon secondary to the inflammatory process. Noninflamed and inactively and actively inflamed mucosal tissues from patients with ulcerative colitis or Crohn's disease as well as tissues from control subjects were analyzed for the expression of junctional molecules by different methods. Marked downregulation of junctional proteins and their respective mRNAs was observed in actively inflamed IBD tissues. In IBD tissues with inactive inflammation, only a few junctional molecules such as E-cadherin and alpha-catenin were affected, whereas expression of desmosomal or tight junction-associated proteins appeared almost unchanged. In noninflamed IBD tissues, junctional protein expression was not different from that seen in normal control subjects. In IBD, downregulation of junctional molecule expression is apparently associated with the inflammatory process and does not likely represent a primary phenomenon.
Collapse
Affiliation(s)
- N Gassler
- Pathologisches Institut, Universität Heidelberg, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Schön MP, Schön M, Warren HB, Donohue JP, Parker CM. Cutaneous inflammatory disorder in integrin alphaE (CD103)-deficient mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:6583-9. [PMID: 11086102 DOI: 10.4049/jimmunol.165.11.6583] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The integrin alpha(E)beta(7) is thought to play an important role in the localization of mucosal, but not of cutaneous T lymphocytes. Thus, it was surprising that 89% of adult alpha(E)(-/-) mice on the 129/Sv x BALB/c background developed inflammatory skin lesions without an apparent infectious etiology. Skin inflammation correlated with alpha(E) deficiency in mice with a mixed 129/Sv x BALB/c background, but not in mice further backcrossed to BALB/c and housed in a second animal facility. These studies suggested that alpha(E) deficiency, in combination with other genetic and/or environmental factors, is involved in lesion development. The lesions were infiltrated by CD4(+) T cells and neutrophils, and associated with increased expression of inflammatory cytokines. Furthermore, skin inflammation resulted from transfer of unfractionated alpha(E)(-/-) splenocytes into scid/scid mice, but not from transfer of wild-type splenocytes, suggesting that the lesions resulted from immune dysregulation. We also studied the role of alpha(E)beta(7) in a murine model of hyperproliferative inflammatory skin disorders that is induced by transfer of minor histocompatibility-mismatched CD4(+)/CD45RB(high) T cells into scid/scid mice under specific environmental conditions. Under housing conditions that were permissive for lesion development, transfer of alpha(E)-deficient CD4(+)/CD45RB(high) T cells significantly exacerbated the cutaneous lesions as compared with lesions observed in mice reconstituted with wild-type donor cells. These experiments suggested that alpha(E)-expressing cells play an important role during the course of cutaneous inflammation. In addition, they suggest that alpha(E)beta(7) deficiency, in combination with other genetic or environmental factors, is a risk factor for inflammatory skin disease.
Collapse
Affiliation(s)
- M P Schön
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
13
|
Abstract
BACKGROUND The E-cadherin-catenin complex plays a crucial role in epithelial cell-cell adhesion and in the maintenance of tissue architecture. Perturbation in the expression or function of this complex results in loss of intercellular adhesion, with possible consequent cell transformation and tumour progression. Recently, much progress has been made in understanding the interaction between the different components of this protein complex and how this cell-cell adhesion complex is modulated in cancer cells. METHODS This is an update of the role of the E-cadherin-catenin complex in human cancers. It emphasizes new features and the possible role of the complex in clinical practice, discussed in the light of 165 references obtained from the Medline database from 1995 to 1999. RESULTS More evidence is now appearing to suggest that disturbance in protein-protein interaction in the E-cadherin-catenin adhesion complex is one of the main events in the early and late steps of cancer development. An inverse correlation is found between expression of the E-cadherin-catenin complex and the invasive behaviour of tumour cells. Therefore, E-cadherin-catenin may become a significant prognostic marker for tumour behaviour. Besides its role in establishing tight cell-cell adhesion, beta- catenin plays a major role in cell signalling and promotion of neoplastic growth. This suggests its dual role as a tumour suppressor and as an oncogene in human cancers. CONCLUSION Recent developments show that the E-cadherin-catenin complex is more than a 'sticky molecular complex'. Further studies may yield greater insight into the early molecular interactions critical to the initiation and progression of tumours. This should aid the development of novel strategies for both prevention and treatment of cancer.
Collapse
Affiliation(s)
- B P Wijnhoven
- Departments of Surgery and Pathology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | | | | |
Collapse
|
14
|
Abstract
Abstract
E-cadherin gene is often termed a “metastasis suppressor” gene because the E-cadherin protein can suppress tumor cell invasion and metastasis. Inactivation of the E-cadherin gene occurs in undifferentiated solid tumors by both genetic and epigenetic mechanisms; however, the role of E-cadherin in hematologic malignancies is only now being recognized. E-cadherin expression is essential for erythroblast and normoblast maturation, yet expression is reduced or absent in leukemic blast cells. This study examined the messenger RNA (mRNA) and protein expression of the E-cadherin gene in bone marrow and blood samples from normal donors and patients with leukemia. We found that all normal donor samples expressed E-cadherin mRNA, whereas both samples of acute myelogenous leukemia and chronic lymphocytic leukemia had a significant reduction or absence of expression. However, normal blast counterparts expressed only a low level of E-cadherin surface protein. Sodium bisulphite genomic sequencing was used to fully characterize the methylation patterns of the CpG island associated with the E-cadherin gene promoter in those samples with matched DNA. All of the normal control samples were essentially unmethylated; however, 14 of 18 (78%) of the leukemia samples had abnormal hypermethylation of the E-cadherin CpG island. In fact both alleles of the E-cadherin gene were often hypermethylated. We conclude the E-cadherin gene is a common target for hypermethylation in hematologic malignancies.
Collapse
|
15
|
Abstract
E-cadherin gene is often termed a “metastasis suppressor” gene because the E-cadherin protein can suppress tumor cell invasion and metastasis. Inactivation of the E-cadherin gene occurs in undifferentiated solid tumors by both genetic and epigenetic mechanisms; however, the role of E-cadherin in hematologic malignancies is only now being recognized. E-cadherin expression is essential for erythroblast and normoblast maturation, yet expression is reduced or absent in leukemic blast cells. This study examined the messenger RNA (mRNA) and protein expression of the E-cadherin gene in bone marrow and blood samples from normal donors and patients with leukemia. We found that all normal donor samples expressed E-cadherin mRNA, whereas both samples of acute myelogenous leukemia and chronic lymphocytic leukemia had a significant reduction or absence of expression. However, normal blast counterparts expressed only a low level of E-cadherin surface protein. Sodium bisulphite genomic sequencing was used to fully characterize the methylation patterns of the CpG island associated with the E-cadherin gene promoter in those samples with matched DNA. All of the normal control samples were essentially unmethylated; however, 14 of 18 (78%) of the leukemia samples had abnormal hypermethylation of the E-cadherin CpG island. In fact both alleles of the E-cadherin gene were often hypermethylated. We conclude the E-cadherin gene is a common target for hypermethylation in hematologic malignancies.
Collapse
|
16
|
Hosono S, Gross I, English MA, Hajra KM, Fearon ER, Licht JD. E-cadherin is a WT1 target gene. J Biol Chem 2000; 275:10943-53. [PMID: 10753894 DOI: 10.1074/jbc.275.15.10943] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The WT1 tumor suppressor gene encodes a transcription factor that can activate and repress gene expression. Transcriptional targets relevant for the growth suppression functions of WT1 are poorly understood. We found that mesenchymal NIH 3T3 fibroblasts stably expressing WT1 exhibit growth suppression and features of epithelial differentiation including up-regulation of E-cadherin mRNA. Acute expression of WT1 in NIH 3T3 fibroblasts after retroviral infection induced murine E-cadherin expression. In transient transfection experiments, the human and murine E-cadherin promoters were activated by co-expression of WT1. E-cadherin promoter activity was increased in cells overexpressing WT1 and was blocked by a dominant negative form of WT1. WT1 activated the murine E-cadherin promoter through a conserved GC-rich sequence similar to an EGR-1 binding site as well as through a CAAT box sequence. WT1 produced in vitro or derived from nuclear extracts bound to the WT1-response element within the murine E-cadherin promoter, but not the CAAT box. E-cadherin, a gene important in epithelial differentiation and neoplastic transformation, represents a downstream target gene that links the roles of the WT1 in differentiation and growth control.
Collapse
Affiliation(s)
- S Hosono
- Derald H. Ruttenberg Cancer Center, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | |
Collapse
|
17
|
Perry I, Hardy R, Jones T, Jankowski J. A colorectal cell line with alterations in E-cadherin and epithelial biology may be an in vitro model of colitis. Mol Pathol 1999; 52:231-42. [PMID: 10694944 PMCID: PMC395704 DOI: 10.1136/mp.52.4.231] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND It has been shown previously in ulcerative colitis tissue that E-cadherin can occasionally be mutated in the extracellular domain early in neoplastic progression. E-cadherin is known to maintain differentiation and inhibits invasion in vivo. AIMS To assess the mechanisms by which such dysfunction occurs. METHODS Four human colorectal cancer cell lines, HCA-7 colonies 1, 3, 6, and 30, derived from a single heterogeneous colorectal cancer were studied. The HCA-7 cell line has p53 mutations and a random errors of replication "positive" phenotype, as is seen in early colitis associated cancers or hereditary nonpolyposis coli cancer (HNPCC). RESULTS Cell lines 6 and 30 expressed E-cadherin abundantly and this correlated positively with their degree of differentiation and organisation; however, both cell lines had loss of heterozygosity of E-cadherin. Interestingly, E-cadherin production was downregulated in the poorly differentiated cell line 1, and this was associated with major chromosomal rearrangements of 16q. This cell line also had a mutation in the homophilic binding domain of exon 4, which was associated with disaggregation by low titres of a function blocking antibody, and an invasive phenotype. CONCLUSIONS These multiple biological alterations further characterise the complex association that E-cadherin has with tumour heterogeneity and suggest that this series of cell lines may be a useful model of colitis associated or HNPCC associated tumorigenesis.
Collapse
Affiliation(s)
- I Perry
- Epithelial Laboratory, University of Birmingham, UK
| | | | | | | |
Collapse
|
18
|
Richards FM, McKee SA, Rajpar MH, Cole TR, Evans DG, Jankowski JA, McKeown C, Sanders DS, Maher ER. Germline E-cadherin gene (CDH1) mutations predispose to familial gastric cancer and colorectal cancer. Hum Mol Genet 1999; 8:607-10. [PMID: 10072428 DOI: 10.1093/hmg/8.4.607] [Citation(s) in RCA: 247] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Inherited mutations in the E-cadherin gene ( CDH1 ) were described recently in three Maori kindreds with familial gastric cancer. Familial gastric cancer is genetically heterogeneous and it is not clear what proportion of gastric cancer susceptibility in non-Maori populations is due to germline CDH1 mutations. Therefore, we screened eight familial gastric cancer kindreds of British and Irish origin for germline CDH1 mutations, by SSCP analysis of all 16 exons and flanking sequences. Each family contained: (i) two cases of gastric cancer in first degree relatives with one affected before age 50 years; or (ii) three or more cases of gastric cancer. Novel germline CDH1 mutations (a nonsense and a splice site) were detected in two families (25%). Both mutations were predicted to truncate the E-cadherin protein in the signal peptide domain. In one family there was evidence of non-penetrance and susceptibility to both gastric and colorectal cancer; thus, in addition to six cases of gastric cancer, a CDH1 mutation carrier developed colorectal cancer at age 30 years. We have confirmed that germline mutations in the CDH1 gene cause familial gastric cancer in non-Maori populations. However, only a minority of familial gastric cancers can be accounted for by CDH1 mutations. Loss of E-cadherin function has been implicated in the pathogenesis of sporadic colorectal and other cancers, and our findings provide evidence that germline CDH1 mutations predispose to early onset colorectal cancer. Thus, CDH1 should be investigated as a cause of inherited susceptibility to both gastric and colorectal cancers.
Collapse
Affiliation(s)
- F M Richards
- Section of Medical and Molecular Genetics, Division of Reproductive and Child Health, University of Birmingham, The Medical School, Birmingham B15 2TT, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Jankowski JA, Bruton R, Shepherd N, Sanders DS. Cadherin and catenin biology represent a global mechanism for epithelial cancer progression. Mol Pathol 1997; 50:289-90. [PMID: 9536277 PMCID: PMC379661 DOI: 10.1136/mp.50.6.289] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The cell undergoes a diverse range of stimulations including growth factor activation and signal transduction from adhesion receptors, such as cadherins. In the absence of a mitogenic signal from outside the cell, beta catenin is sequestered in complexes with the product of the adenomatous polyposis coli (APC) gene and a serine threonine glycogen kinase (GSK 3 beta) enabling degradation of free beta catenin. Residual catenins hold cells together by binding to cadherins both at adherens junctions and the actin cytoskeleton. When a mitotic signal is delivered by the wnt pathway, GSK 3 beta is antagonised so that beta catenin can no longer be degraded. Cytosolic concentrations rise and binding to other newly synthesised proteins occurs, especially transcription factors that are transported to the nucleus, such as lymphocyte enhancing factor and T cell factor. This article discusses the signalling between mitogenic and adhesion pathways and suggests that it is a global mechanism for development, differentiation, and disease. These changes in catenin and APC biology may not be sufficient alone to transform cells fully but they appear to be a necessary final common pathway for several cancers of the mucous secreting crypts (including Barrett's oesophageal lesions and colorectal cancer) or stratified secreting epithelium (melanoma) before invasion.
Collapse
Affiliation(s)
- J A Jankowski
- CRC Institute for Cancer Studies, University of Birmingham, UK
| | | | | | | |
Collapse
|