1
|
Shentu CY, Wang HB, Peng X, Xu DC, Qian LN, Chen Y, Peng LH. Progress and Challenges of Topical Delivery Technologies Meditated Drug Therapy for Osteoarthritis. Int J Nanomedicine 2024; 19:8337-8352. [PMID: 39161359 PMCID: PMC11330747 DOI: 10.2147/ijn.s466437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/10/2024] [Indexed: 08/21/2024] Open
Abstract
Osteoarthritis (OA) is a degenerative disease commonly seen in middle-aged and elderly people. Multiple cytokines are involved in the local tissue damage in OA. Currently, non-pharmacologic and surgical interventions are the main conventional approaches for the treatment of OA. In terms of pharmaceutical drug therapy, NSAIDs and acetaminophen are mainly used to treat OA. However, it is prone to various adverse reactions such as digestive tract ulcer, thromboembolism, prosthesis loosening, nerve injury and so on. With the in-depth study of OA, more and more novel topical drug delivery strategies and vehicles have been developed, which can make up for the shortcomings of traditional dosage forms, improve the bioavailability of drugs, and significantly reduce drug side effects. This review summarizes the immunopathogenesis, treatment guidelines, and progress and challenges of topical delivery technologies of OA, with some perspectives on the future pharmacological treatment of OA proposed.
Collapse
Affiliation(s)
- Cheng-Yu Shentu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People’s Republic of China
| | - Hao-Bin Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People’s Republic of China
| | - Xiao Peng
- Jinhua Institute of Zhejiang University, Jinhua, Zhejiang, 321299, People’s Republic of China
| | - Dong-Chen Xu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People’s Republic of China
| | - Li-Na Qian
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People’s Republic of China
| | - Yong Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People’s Republic of China
- Jinhua Institute of Zhejiang University, Jinhua, Zhejiang, 321299, People’s Republic of China
| | - Li-Hua Peng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People’s Republic of China
- Jinhua Institute of Zhejiang University, Jinhua, Zhejiang, 321299, People’s Republic of China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, Macau SAR, People’s Republic of China
| |
Collapse
|
2
|
Dawalibi A, Alosaimi AA, Mohammad KS. Balancing the Scales: The Dual Role of Interleukins in Bone Metastatic Microenvironments. Int J Mol Sci 2024; 25:8163. [PMID: 39125732 PMCID: PMC11311339 DOI: 10.3390/ijms25158163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
Bone metastases, a common and debilitating consequence of advanced cancers, involve a complex interplay between malignant cells and the bone microenvironment. Central to this interaction are interleukins (ILs), a group of cytokines with critical roles in immune modulation and inflammation. This review explores the dualistic nature of pro-inflammatory and anti-inflammatory interleukins in bone metastases, emphasizing their molecular mechanisms, pathological impacts, and therapeutic potential. Pro-inflammatory interleukins, such as IL-1, IL-6, and IL-8, have been identified as key drivers in promoting osteoclastogenesis, tumor proliferation, and angiogenesis. These cytokines create a favorable environment for cancer cell survival and bone degradation, contributing to the progression of metastatic lesions. Conversely, anti-inflammatory interleukins, including IL-4, IL-10, and IL-13, exhibit protective roles by modulating immune responses and inhibiting osteoclast activity. Understanding these opposing effects is crucial for developing targeted therapies aimed at disrupting the pathological processes in bone metastases. Key signaling pathways, including NF-κB, JAK/STAT, and MAPK, mediate the actions of these interleukins, influencing tumor cell survival, immune cell recruitment, and bone remodeling. Targeting these pathways presents promising therapeutic avenues. Current treatment strategies, such as the use of denosumab, tocilizumab, and emerging agents like bimekizumab and ANV419, highlight the potential of interleukin-targeted therapies in mitigating bone metastases. However, challenges such as therapeutic resistance, side effects, and long-term efficacy remain significant hurdles. This review also addresses the potential of interleukins as diagnostic and prognostic biomarkers, offering insights into patient stratification and personalized treatment approaches. Interleukins have multifaceted roles that depend on the context, including the environment, cell types, and cellular interactions. Despite substantial progress, gaps in research persist, particularly regarding the precise mechanisms by which interleukins influence the bone metastatic niche and their broader clinical implications. While not exhaustive, this overview underscores the critical roles of interleukins in bone metastases and highlights the need for continued research to fully elucidate their complex interactions and therapeutic potential. Addressing these gaps will be essential for advancing our understanding and treatment of bone metastases in cancer patients.
Collapse
Affiliation(s)
- Ahmad Dawalibi
- Department of Anatomy, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia;
| | - Amal Ahmed Alosaimi
- College of Medicine, Imam Mohammad Ibn Saud Islamic University, Riyadh 11432, Saudi Arabia;
| | - Khalid S. Mohammad
- Department of Anatomy, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia;
| |
Collapse
|
3
|
Moqadami A, Khalaj-Kondori M, Hosseinpour Feizi MA, Baradaran B. Minocycline declines interleukin-1ß-induced apoptosis and matrix metalloproteinase expression in C28/I2 chondrocyte cells: an in vitro study on osteoarthritis. EXCLI JOURNAL 2024; 23:114-129. [PMID: 38487083 PMCID: PMC10938238 DOI: 10.17179/excli2023-6710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/15/2024] [Indexed: 03/17/2024]
Abstract
Osteoarthritis (OA) is a degenerative joint disease that occurs with aging. In its late phases, it is determined by the loss of chondrocytes and the breakdown of the extracellular matrix, resulting in pain and functional impairment. Interleukin-1 beta (IL-1β) is increased in the injured joints and contributes to the OA pathobiology by inducing chondrocyte apoptosis and up-regulation of matrix metalloproteinases (MMPs). Here, we aimed to understand whether minocycline could protect chondrocytes against the IL-1β-induced effects. The human C28/I2 chondrocyte cell line was treated with IL-1β or IL-1β plus minocycline. Cell viability/toxicity, cell cycle progression, and apoptosis were assessed with MMT assay and flow cytometry. Expression of apoptotic genes and MMPs were evaluated with qRT-PCR and western blotting. IL-1β showed a significant cytotoxic effect on the C28/I2 chondrocyte cells. The minocycline effective concentration (EC50) significantly protected the C28/I2 cells against the IL-1β-induced cytotoxic effect. Besides, minocycline effectively lowered IL-1β-induced sub-G1 cell population increase, indicating the minocycline anti-apoptotic effect. When assessed by real-time PCR and western blotting, the minocycline treatment group showed an elevated level of Bcl-2 and a significant decrease in the mRNA and protein expression of the apoptotic markers Bax and Caspase-3 and Matrix metalloproteinases (MMPs) such as MMP-3 and MMP-13. In conclusion, IL-1β promotes OA by inducing chondrocyte death and MMPs overexpression. Treatment with minocycline reduces these effects and decreases the production of apoptotic factors as well as the MMP-3 and MMP-13. Minocycline might be considered as an anti-IL-1β therapeutic supplement in the treatment of osteoarthritis. See also the graphical abstract(Fig. 1).
Collapse
Affiliation(s)
- Amin Moqadami
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mohammad Khalaj-Kondori
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Yu L, Luo R, Qin G, Zhang Q, Liang W. Efficacy and safety of anti-interleukin-1 therapeutics in the treatment of knee osteoarthritis: a systematic review and meta-analysis of randomized controlled trials. J Orthop Surg Res 2023; 18:100. [PMID: 36782214 PMCID: PMC9923921 DOI: 10.1186/s13018-023-03590-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
OBJECTIVE We aimed to evaluate the efficacy and safety of anti-interleukin-1 therapeutics, including IL-1 antibodies, interleukin-1 receptor antagonists (IL-1 Ras) and IL-1 inhibitors, for knee osteoarthritis (KOA) treatment. METHODS Databases (Medline, Embase, Web of Science and CENTRAL) and ClinicalTrials.gov were systematically searched for randomized controlled trials (RCTs) of anti-interleukin-1 therapeutics from inception to August 31, 2022. The outcomes were the mean change in pain and function scores and the risk of adverse effects (AEs). RESULTS In the 12 studies included, anti-interleukin-1 therapeutics were superior to placebo in terms of pain relief (standardized mean difference [SMD] = - 0.38, 95% confidence interval [CI] = - 1.82 to - 0.40, p < 0.001, I2 = 77%) and functional improvement (SMD = - 1.11, 95% CI = - 1.82 to - 0.40, p = 0.002, I2 = 96%). The incidence of any AE (risk ratio [RR] = 1.02, 95% CI = 0.88-1.18, p < 0.001, I2 = 76%) was higher following treatment with anti-interleukin-1 therapeutics than placebo, while no significant difference was found in the incidence of serious AEs (SAEs) or discontinuations due to AEs. Subgroup analyses showed that IL-1 antibodies and the IL-1 inhibitor provided pain relief (IL-1 antibodies: SMD = - 0.61, 95% CI = - 0.92 to - 0.31, p < 0.001; IL-1 inhibitor: SMD = - 0.39, 95% CI = - 0.72 to - 0.06, p = 0.02, I2 = 74.0%) and functional improvement (IL-1 antibodies: SMD = - 1.75, 95% CI = - 2.10 to - 1.40, p < 0.001; IL-1 inhibitor: SMD = - 0.28, 95% CI = - 0.83 to 0.27, p = 0.31, I2 = 88%) superior to those of placebo, whereas IL-1 Ras did not. However, the IL-1 inhibitor increased the incidence of any AE (RR = 1.35, 95% CI = 0.92-1.98, p < 0.001, I2 = 85%) but not the risk of SAEs or discontinuations due to AEs. IL-1 antibodies and IL-1 Ras showed no difference in safety compared with placebo. CONCLUSIONS Anti-interleukin-1 therapeutics could relieve OA-related pain and improve function, but is probably associated with an increased risk of adverse events. Specially, IL-1 antibodies and an IL-1 inhibitor could relieve OA-related pain and improve function, whereas IL-1 Ras could not. IL-1 antibodies and IL-1 Ras were relatively safe options, but IL-1 inhibitors were associated with safety concerns.
Collapse
Affiliation(s)
- Lizhi Yu
- The First Affiliated Hospital of Guangxi University of Science and Technology, Guangxi University of Science and Technology, 124 Yuejin Road, Liuzhou, 545001, Guangxi Province, China
| | - Raoshan Luo
- The First Affiliated Hospital of Guangxi University of Science and Technology, Guangxi University of Science and Technology, 124 Yuejin Road, Liuzhou, 545001, Guangxi Province, China
| | - Gang Qin
- The First Affiliated Hospital of Guangxi University of Science and Technology, Guangxi University of Science and Technology, 124 Yuejin Road, Liuzhou, 545001, Guangxi Province, China
| | - Qinyan Zhang
- The First Affiliated Hospital of Guangxi University of Science and Technology, Guangxi University of Science and Technology, 124 Yuejin Road, Liuzhou, 545001, Guangxi Province, China
| | - Weiming Liang
- The First Affiliated Hospital of Guangxi University of Science and Technology, Guangxi University of Science and Technology, 124 Yuejin Road, Liuzhou, 545001, Guangxi Province, China.
| |
Collapse
|
5
|
Domínguez A, Payán X, Dipp FA, Castillo BE. Photobiomodulation with 940 nm laser diode: effect on the interleukin 6 expression after orthodontic initial archwire activation. LASERS IN DENTAL SCIENCE 2021; 5:35-41. [DOI: 10.1007/s41547-021-00115-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 01/19/2021] [Indexed: 11/27/2023]
|
6
|
Role of Synovial Exosomes in Osteoclast Differentiation in Inflammatory Arthritis. Cells 2021; 10:cells10010120. [PMID: 33435236 PMCID: PMC7827682 DOI: 10.3390/cells10010120] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/30/2020] [Accepted: 01/08/2021] [Indexed: 01/01/2023] Open
Abstract
This study aimed to investigate the characteristics of exosomes isolated from synovial fluid and their role in osteoclast differentiation in different types of inflammatory arthritis. Exosomes isolated from synovial fluid of rheumatoid arthritis (RA), ankylosing spondylitis (AS), gout, and osteoarthritis (OA) patients were co-incubated with CD14+ mononuclear cells from healthy donors without macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor kappa-B ligand (RANKL). Osteoclast differentiation was evaluated via tartrate-resistant acid phosphatase (TRAP) staining and activity and F-actin ring formation. RANKL expression on synovial exosomes was assessed using flow cytometry and an enzyme-linked immunosorbent assay (ELISA). Synovial exosomes were the lowest in OA patients; these induced osteoclastogenesis in the absence of M-CSF and RANKL. Osteoclastogenesis was significantly higher with more exosomes in RA (p = 0.030) than in OA patients, but not in AS or gout patients. On treating macrophages with a specified number of synovial exosomes from RA/AS patients, exosomes induced greater osteoclastogenesis in RA than in AS patients. Synovial exosomal RANKL levels were significantly higher in RA (p = 0.035) than in AS patients. Synovial exosome numbers vary with the type of inflammatory arthritis. Synovial exosomes from RA patients may bear the disease-specific “synovial signature of osteoclastogenesis.”
Collapse
|
7
|
Sahin ON, Ozpinar A, Serdar M. Maternal omega-3 polyunsaturated fatty acids supplementation in pregnancy decreases MMP-1 levels in breastmilk: a cross-sectional study. J Matern Fetal Neonatal Med 2020; 35:3143-3151. [PMID: 32962453 DOI: 10.1080/14767058.2020.1814241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Anti-inflammatory properties of fish-oil are well known and suggested during pregnancy. MMP-1 is involved in inflammation and tissue remodelling. There have been studies focused on anti-inflammatory effect of maternal omega use on human milk while little is known about the effect of omega use on breastmilk proteases. Leptin is an important hormone that influences MMP levels in various tissues and exerts its metabolic effects. In our study we assessed the levels of MMP-1, TIMP-1, leptin, IL-6 and FA's including PUFA in breastmilk from women who used omega-3. MATERIALS AND METHODS Our study was a cross-sectional study included 67(Group 1, n = 32, omega user; Group 2 n = 35, non-user)lactating women and their infan MMP-1, TIMP-1, leptin, IL-6 and FA's were evaluated in breastmilk of both groups. MMP-1, TIMP-1, IL-6 and leptin were measured by enzyme-linked immunoabsorbent assay (ELISA) method. Breastmilk fatty acids were measured by gas chromatography flame ionisation detector (GC-FID). RESULTS Matrix metalloproteinase-1 (MMP-1) levels in breastmilk were significantly lower in breastmilk from omega users (mean ± SD, 0.455 ± 0.1) than non-users (mean ± SD, 0.677 ± 0.289) (p=.0001). MMP-1 and omega 6:3 ratio were positively correlated (r: 0.301, p=.01). MMP levels were correlated with IL-6 (Pearson's r: 0.411, p<.001). MMP-1 and leptin levels were positively correlated (r: .388, p=.001). CONCLUSION MMP-1 levels in breastmilk, may be modified by maternal omega use in pregnancy which may help to redirect extracellular matrix remodelling and metabolic programming in early infancy.
Collapse
Affiliation(s)
- Ozlem Naciye Sahin
- Medical Faculty, Department of Pediatrics, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Aysel Ozpinar
- Medical Faculty, Department of Clinical Biochemistry, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Muhittin Serdar
- Medical Faculty, Department of Clinical Biochemistry, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| |
Collapse
|
8
|
Xiong L, Zhao K, Cao Y, Guo HH, Pan JX, Yang X, Ren X, Mei L, Xiong WC. Linking skeletal muscle aging with osteoporosis by lamin A/C deficiency. PLoS Biol 2020; 18:e3000731. [PMID: 32479501 PMCID: PMC7310860 DOI: 10.1371/journal.pbio.3000731] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 06/23/2020] [Accepted: 05/14/2020] [Indexed: 01/19/2023] Open
Abstract
The nuclear lamina protein lamin A/C is a key component of the nuclear envelope. Mutations in the lamin A/C gene (LMNA) are identified in patients with various types of laminopathy-containing diseases, which have features of accelerated aging and osteoporosis. However, the underlying mechanisms for laminopathy-associated osteoporosis remain largely unclear. Here, we provide evidence that loss of lamin A/C in skeletal muscles, but not osteoblast (OB)-lineage cells, results in not only muscle aging-like deficit but also trabecular bone loss, a feature of osteoporosis. The latter is due in large part to elevated bone resorption. Further cellular studies show an increase of osteoclast (OC) differentiation in cocultures of bone marrow macrophages/monocytes (BMMs) and OBs after treatment with the conditioned medium (CM) from lamin A/C-deficient muscle cells. Antibody array screening analysis of the CM proteins identifies interleukin (IL)-6, whose expression is markedly increased in lamin A/C-deficient muscles. Inhibition of IL-6 by its blocking antibody in BMM-OB cocultures diminishes the increase of osteoclastogenesis. Knockout (KO) of IL-6 in muscle lamin A/C-KO mice diminishes the deficits in trabecular bone mass but not muscle. Further mechanistic studies reveal an elevation of cellular senescence marked by senescence-associated beta-galactosidase (SA-β-gal), p16Ink4a, and p53 in lamin A/C-deficient muscles and C2C12 muscle cells, and the p16Ink4a may induce senescence-associated secretory phenotype (SASP) and IL-6 expression. Taken together, these results suggest a critical role for skeletal muscle lamin A/C to prevent cellular senescence, IL-6 expression, hyperosteoclastogenesis, and trabecular bone loss, uncovering a pathological mechanism underlying the link between muscle aging/senescence and osteoporosis.
Collapse
Affiliation(s)
- Lei Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- Louis Stoke VA Medical Center, Cleveland, Ohio, United States of America
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, United States of America
| | - Kai Zhao
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, United States of America
| | - Yu Cao
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, United States of America
| | - Hao-Han Guo
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Jin-Xiu Pan
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- Louis Stoke VA Medical Center, Cleveland, Ohio, United States of America
| | - Xiao Yang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, United States of America
| | - Xiao Ren
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Lin Mei
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- Louis Stoke VA Medical Center, Cleveland, Ohio, United States of America
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, United States of America
| | - Wen-Cheng Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- Louis Stoke VA Medical Center, Cleveland, Ohio, United States of America
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, United States of America
| |
Collapse
|
9
|
Chatziravdeli V, Katsaras GN, Lambrou GI. Gene Expression in Osteoblasts and Osteoclasts Under Microgravity Conditions: A Systematic Review. Curr Genomics 2019; 20:184-198. [PMID: 31929726 PMCID: PMC6935951 DOI: 10.2174/1389202920666190422142053] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/05/2019] [Accepted: 04/05/2019] [Indexed: 12/28/2022] Open
Abstract
Background Microgravity (μG) negatively influences bone metabolism by affecting normal osteoblast and osteoclast function. μG effects on bone metabolism has been an extensive field of study in recent years, due to the challenges presented by space flight. Methods We systematically reviewed research data from genomic studies performed in real or simulat-ed μG, on osteoblast and osteoclast cells. Our search yielded 50 studies, of which 39 concerned cells of the osteoblast family and 11 osteoclast precursors. Results Osteoblastic cells under μG show a decreased differentiation phenotype, proved by diminished expression levels of Alkaline Phosphatase (ALP) and Osteocalcin (OCN) but no apoptosis. Receptor Activator of NF-κB Ligand (RANKL)/ Osteoprotegerine (OPG) ratio is elevated in favor of RANKL in a time-dependent manner, and further RANKL production is caused by upregulation of Interleukin-6 (IL-6) and the inflammation pathway. Extracellular signals and changes in the gravitational environment are perceived by mechanosensitive proteins of the cytoskeleton and converted to intracellular signals through the Mitogen Activated Protein Kinase pathway (MAPK). This is followed by changes in the ex-pression of nuclear transcription factors of the Activator Protein-1 (AP-1) family and in turn of the NF-κB, thus affecting osteoblast differentiation, cell cycle, proliferation and maturation. Pre-osteoclastic cells show increased expression of the marker proteins such as Tryptophan Regulated Attenuation Protein (TRAP), cathepsin K, Matrix Metalloproteinase-9 (MMP-9) under μG conditions and become sensitized to RANKL. Conclusion Suppressing the expression of fusion genes such as syncytine-A which acts independently of RANKL, could be possible future therapeutic targets for microgravity side effects.
Collapse
Affiliation(s)
- Vasiliki Chatziravdeli
- 18 Orthopedic Department, Shoulder Surgery Unit, General Hospital " Asklepieio", Vassileos Pavlou Av. 1, 16673, Voula, Athens, Greece; 2Graduate Program "Metabolic Bones Diseases", National and Kapodistrian University of Athens, Medical School, Mikras Asias 75, 11527, Goudi, Athens, Greece; 3Neonatal Intensive Care Unit, General Hospital of Nikaia "Aghios Panteleimon", Andrea Petrou Mantouvalou Str. 3, 18454, Nikaia, Piraeus, Greece; 4Laboratory for the Research of Musculoskeletal Disorders, Medical School, National and Kapodistrian University of Athens, Nikis 2, 14561, Kifissia, Athens, Greece; 5First Department of Pediatrics, University of Athens, Choremeio Research Laboratory, National and Kapodistrian University of Athens, Thivon & Levadeias 8, 11527, Goudi, Athens, Greece
| | - George N Katsaras
- 18 Orthopedic Department, Shoulder Surgery Unit, General Hospital " Asklepieio", Vassileos Pavlou Av. 1, 16673, Voula, Athens, Greece; 2Graduate Program "Metabolic Bones Diseases", National and Kapodistrian University of Athens, Medical School, Mikras Asias 75, 11527, Goudi, Athens, Greece; 3Neonatal Intensive Care Unit, General Hospital of Nikaia "Aghios Panteleimon", Andrea Petrou Mantouvalou Str. 3, 18454, Nikaia, Piraeus, Greece; 4Laboratory for the Research of Musculoskeletal Disorders, Medical School, National and Kapodistrian University of Athens, Nikis 2, 14561, Kifissia, Athens, Greece; 5First Department of Pediatrics, University of Athens, Choremeio Research Laboratory, National and Kapodistrian University of Athens, Thivon & Levadeias 8, 11527, Goudi, Athens, Greece
| | - George I Lambrou
- 18 Orthopedic Department, Shoulder Surgery Unit, General Hospital " Asklepieio", Vassileos Pavlou Av. 1, 16673, Voula, Athens, Greece; 2Graduate Program "Metabolic Bones Diseases", National and Kapodistrian University of Athens, Medical School, Mikras Asias 75, 11527, Goudi, Athens, Greece; 3Neonatal Intensive Care Unit, General Hospital of Nikaia "Aghios Panteleimon", Andrea Petrou Mantouvalou Str. 3, 18454, Nikaia, Piraeus, Greece; 4Laboratory for the Research of Musculoskeletal Disorders, Medical School, National and Kapodistrian University of Athens, Nikis 2, 14561, Kifissia, Athens, Greece; 5First Department of Pediatrics, University of Athens, Choremeio Research Laboratory, National and Kapodistrian University of Athens, Thivon & Levadeias 8, 11527, Goudi, Athens, Greece
| |
Collapse
|
10
|
Harmer D, Falank C, Reagan MR. Interleukin-6 Interweaves the Bone Marrow Microenvironment, Bone Loss, and Multiple Myeloma. Front Endocrinol (Lausanne) 2019; 9:788. [PMID: 30671025 PMCID: PMC6333051 DOI: 10.3389/fendo.2018.00788] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 12/14/2018] [Indexed: 12/14/2022] Open
Abstract
The immune system is strongly linked to the maintenance of healthy bone. Inflammatory cytokines, specifically, are crucial to skeletal homeostasis and any dysregulation can result in detrimental health complications. Interleukins, such as interleukin 6 (IL-6), act as osteoclast differentiation modulators and as such, must be carefully monitored and regulated. IL-6 encourages osteoclastogenesis when bound to progenitors and can cause excessive osteoclastic activity and osteolysis when overly abundant. Numerous bone diseases are tied to IL-6 overexpression, including rheumatoid arthritis, osteoporosis, and bone-metastatic cancers. In the latter, IL-6 can be released with growth factors into the bone marrow microenvironment (BMM) during osteolysis from bone matrix or from cancer cells and osteoblasts in an inflammatory response to cancer cells. Thus, IL-6 helps create an ideal microenvironment for oncogenesis and metastasis. Multiple myeloma (MM) is a blood cancer that homes to the BMM and is strongly tied to overexpression of IL-6 and bone loss. The roles of IL-6 in the progression of MM are discussed in this review, including roles in bone homing, cancer-associated bone loss, disease progression and drug resistance. MM disease progression often includes the development of drug-resistant clones, and patients commonly struggle with reoccurrence. As such, therapeutics that specifically target the microenvironment, rather than the cancer itself, are ideal and IL-6, and its myriad of downstream signaling partners, are model targets. Lastly, current and potential therapeutic interventions involving IL-6 and connected signaling molecules are discussed in this review.
Collapse
Affiliation(s)
- Danielle Harmer
- Reagan Laboratory, Maine Medical Center Research Institute, Scarborough, ME, United States
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, United States
| | - Carolyne Falank
- Reagan Laboratory, Maine Medical Center Research Institute, Scarborough, ME, United States
| | - Michaela R. Reagan
- Reagan Laboratory, Maine Medical Center Research Institute, Scarborough, ME, United States
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, United States
- School of Medicine, Tufts University, Boston, MA, United States
| |
Collapse
|
11
|
Pro-inflammatory cytokines: The link between obesity and osteoarthritis. Cytokine Growth Factor Rev 2018; 44:38-50. [PMID: 30340925 DOI: 10.1016/j.cytogfr.2018.10.002] [Citation(s) in RCA: 519] [Impact Index Per Article: 86.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/06/2018] [Accepted: 10/08/2018] [Indexed: 02/05/2023]
Abstract
Osteoarthritis (OA), characterized by joint malfunction and chronic disability, is the most common form of arthritis. Clinical and animal experiments reveal that age-related OA is associated with many factors such as age, sex, trauma, and obesity. One of the most influential and modifiable risk factors is obesity. Obesity not only increases mechanical stress on the tibiofemoral cartilage, but also leads to a higher prevalence of OA in non-weight-bearing areas. There is a link between obesity and inflammation. Adipose tissues play a crucial role in this context because they are the major source of cytokines, chemokines, and metabolically-active mediators named adipokines. The adipokines, including adiponectin and leptin, have been demonstrated to regulate inflammatory immune responses in cartilage. Obese people and animals show a higher level of serum tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL)-1β and IL-6, all of which are produced by macrophages derived from adipose tissue. These pro-inflammatory cytokines regulate the proliferation and apoptosis of adipocytes, promote lipolysis, inhibit lipid synthesis and decrease blood lipids through autocrine and paracrine mechanisms. Elevated levels of TNF-α, IL-1 and IL-6 have been found in the synovial fluid, synovial membrane, subchondral bone and cartilage of OA patients, confirming their important roles in OA pathogenesis. TNF-α, IL-6 and IL-1 are the factors released by fat to negatively regulate cartilage directly. Moreover, TNF-α, IL-1 and IL-6 can induce the production of other cytokines, matrix metalloproteinases (MMPs) and prostaglandins and inhibit the synthesis of proteoglycans and type II collagen; thus, they play a pivotal role in cartilage matrix degradation and bone resorption in OA. Activated chondrocytes also produce MMP-1, MMP-3, MMP-13, and aggrecanase 1 and 2 (ADAMTS-4, ADAMTS-5). In addition, IL-1, TNF-α and IL-6 may cause OA indirectly by regulating release of adiponectin and leptin from adipocytes. In this review, we first summarize the relationship between obesity and inflammation. Then we summarize the roles of IL-1, TNF-α and IL-6 in OA. We further discuss how IL-1, TNF-α and IL-6 regulate the communication between fat and OA, and their pathological roles in obesity-related OA. Lastly, we discuss the possibility of using the pro-inflammatory signaling pathway as a therapeutic target to develop drugs for obesity-related OA.
Collapse
|
12
|
Huang L, Liu S, Song T, Zhang W, Fan J, Liu Y. Blockade of interleukin 6 by rat anti-mouse interleukin 6 receptor antibody promotes fracture healing. BIOCHEMISTRY (MOSCOW) 2017; 82:1193-1199. [DOI: 10.1134/s0006297917100121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
13
|
Yu K, Ma Y, Li X, Wu X, Liu W, Li X, Shen J, Wang H. Lipopolysaccharide increases IL-6 secretion via activation of the ERK1/2 signaling pathway to up-regulate RANKL gene expression in MLO-Y4 cells. Cell Biol Int 2016; 41:84-92. [PMID: 27778412 DOI: 10.1002/cbin.10696] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 10/20/2016] [Indexed: 12/26/2022]
Abstract
Lipopolysaccharide (LPS) plays an important role in bone resorption, which involves numerous cytokines through various signaling pathways. RANKL and interleukin (IL)-6 are two important cytokines that are involved in bone remodeling. The aim of this study was to evaluate the effect of LPS on RANKL and IL-6 gene expression, the relationship of RANKL and IL-6, and the role of extracellular signal-regulated kinases 1/2 (ERK1/2) on IL-6 secretion induced by LPS in MLO-Y4 cells. The cells were stimulated by LPS at different concentrations (1, 10, 100, 500, and 1000 ng/mL) for different durations (0.5, 1, 2, 4, and 8 h and 0.5, 1, 1.5, 2, and 4 h), and the mRNA expressions of RANKL and IL-6 were determined by PCR. In the presence of 100 ng/mL LPS at different time points (0.5, 1, 1.5, 2, and 4 h), IL-6 secretion and ERK1/2 phosphorylation in the cells were determined by ELISA and western blotting, respectively. STAT3 phosphorylation in cells simulated by 100 ng/mL LPS at different time points (0.5, 1, 2, 4, and 8 h) was assessed by western blotting. We found that LPS significantly up-regulated RANKL expression and activated the ERK1/2 pathway to induce IL-6 mRNA expression and protein synthesis in MLO-Y4 cells. However, the increased IL-6 was blocked by pre-treatment of MLO-Y4 cells with the ERK1/2 inhibitor U0126 (10 µM), and the enhanced RANKL was blocked by the STAT3 inhibitor S3I-201 (100 µM). Our results indicate that LPS up-regulates osteocyte expression of RANKL and IL-6, and the increased RANKL is associated with the up-regulation of IL-6, which involves the ERK1/2 pathway.
Collapse
Affiliation(s)
- Ke Yu
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, 610041, China.,West China College of Stomatology, Sichuan University, Chengdu, 610041, China.,College of Stomatology, Hospital of Stomatology, Southwest Medical University, Luzhou, 646000, China
| | - Yuanyuan Ma
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, China
| | - Xianxian Li
- Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, 610041, China
| | - Xiangnan Wu
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, 610041, China.,West China College of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Wenjia Liu
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, 610041, China.,West China College of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xiaoyu Li
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, 610041, China
| | - Jiefei Shen
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, 610041, China.,West China College of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Hang Wang
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, 610041, China.,West China College of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
14
|
IL-6 Contributes to the Defective Osteogenesis of Bone Marrow Stromal Cells from the Vertebral Body of the Glucocorticoid-Induced Osteoporotic Mouse. PLoS One 2016; 11:e0154677. [PMID: 27128729 PMCID: PMC4851291 DOI: 10.1371/journal.pone.0154677] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 04/18/2016] [Indexed: 01/28/2023] Open
Abstract
Osteoporosis is one of the most prevalent skeletal system diseases. It is characterized by a decrease in bone mass and microarchitectural changes in bone tissue that lead to an attenuation of bone resistance and susceptibility to fracture. Vertebral fracture is by far the most prevalent osteoporotic fracture. In the musculoskeletal system, osteoblasts, originated from bone marrow stromal cells (BMSC), are responsible for osteoid synthesis and mineralization. In osteoporosis, BMSC osteogenic differentiation is defective. However, to date, what leads to the defective BMSC osteogenesis in osteoporosis remains an open question. In the current study, we made attempts to answer this question. A mouse model of glucocorticoid-induced osteoporosis (GIO) was established and BMSC were isolated from vertebral body. The impairment of osteogenesis was observed in BMSC of osteoporotic vertebral body. The expression profiles of thirty-six factors, which play important roles in bone metabolisms, were compared through antibody array between normal and osteoporotic BMSC. Significantly higher secretion level of IL-6 was observed in osteoporotic BMSCs compared with normal control. We provided evidences that IL-6 over-secretion impaired osteogenesis of osteoporotic BMSC. Further, it was observed that β-catenin activity was inhibited in response to IL-6 over-secretion. More importantly, in vivo administration of IL-6 neutralizing antibody was found to be helpful to rescue the osteoporotic phenotype of mouse vertebral body. Our study provides a deeper insight into the pathophysiology of osteoporosis and identifies IL-6 as a promising target for osteoporosis therapy.
Collapse
|
15
|
Cytokine-mediated bone destruction in rheumatoid arthritis. J Immunol Res 2014; 2014:263625. [PMID: 25295284 PMCID: PMC4176903 DOI: 10.1155/2014/263625] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 05/27/2014] [Indexed: 12/29/2022] Open
Abstract
Bone homeostasis, which involves formation and resorption, is an important process for maintaining adequate bone mass in humans. Rheumatoid arthritis (RA) is an autoimmune disease characterized by inflammation and bone loss, leading to joint destruction and deformity, and is a representative disease of disrupted bone homeostasis. The bone loss and joint destruction are mediated by immunological insults by proinflammatory cytokines and various immune cells. The connection between bone and immunity has been intensely studied and comprises the emerging field of osteoimmunology. Osteoimmunology is an interdisciplinary science investigating the interplay between the skeletal and the immune systems. The main contributors in osteoimmunology are the bone effector cells, such as osteoclasts or osteoblasts, and the immune cells, particularly lymphocytes and monocytes. Physiologically, osteoclasts originate from immune cells, and immune cells regulate osteoblasts and vice versa. Pathological conditions such as RA might affect these interactions, thereby altering bone homeostasis, resulting in the unfavorable outcome of bone destruction. In this review, we describe the osteoclastogenic roles of the proinflammatory cytokines and immune cells that are important in the pathophysiology of RA.
Collapse
|
16
|
The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of osteoarthritis. Mediators Inflamm 2014; 2014:561459. [PMID: 24876674 PMCID: PMC4021678 DOI: 10.1155/2014/561459] [Citation(s) in RCA: 1046] [Impact Index Per Article: 104.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 04/12/2014] [Indexed: 12/11/2022] Open
Abstract
Osteoarthritis (OA) is the most common chronic disease of human joints. The basis of pathologic changes involves all the tissues forming the joint; already, at an early stage, it has the nature of inflammation with varying degrees of severity. An analysis of the complex relationships indicates that the processes taking place inside the joint are not merely a set that (seemingly) only includes catabolic effects. Apart from them, anti-inflammatory anabolic processes also occur continually. These phenomena are driven by various mediators, of which the key role is attributed to the interactions within the cytokine network. The most important group controlling the disease seems to be inflammatory cytokines, including IL-1β, TNFα, IL-6, IL-15, IL-17, and IL-18. The second group with antagonistic effect is formed by cytokines known as anti-inflammatory cytokines such as IL-4, IL-10, and IL-13. The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of OA with respect to inter- and intracellular signaling pathways is still under investigation. This paper summarizes the current state of knowledge. The cytokine network in OA is put in the context of cells involved in this degenerative joint disease. The possibilities for further implementation of new therapeutic strategies in OA are also pointed.
Collapse
|
17
|
Naot D, Chhana A, Matthews BG, Callon KE, Tong PC, Lin JM, Costa JL, Watson M, Grey AB, Cornish J. Molecular mechanisms involved in the mitogenic effect of lactoferrin in osteoblasts. Bone 2011; 49:217-24. [PMID: 21515435 DOI: 10.1016/j.bone.2011.04.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 03/29/2011] [Accepted: 04/02/2011] [Indexed: 01/30/2023]
Abstract
Lactoferrin, an iron-binding glycoprotein present in milk and other exocrine secretions in mammals, is anabolic to bone at physiological concentrations. Lactoferrin stimulates the proliferation, differentiation and survival of osteoblasts, as well as potently inhibiting osteoclastogenesis in bone marrow cultures. In the current study we further investigated the mechanism of action of lactoferrin in osteoblasts. We used low-density arrays to measure the level of expression of 45 genes in MC3T3-E1 osteoblast-like cells treated with lactoferrin, and identified transient, dose-dependent increases in the transcription levels of interleukin-6, of the pro-inflammatory factor prostaglandin-endoperoxide synthase 2 (Ptgs2), and of the transcription factor nuclear factor of activated T cells (Nfatc1). We demonstrated similar changes in primary osteoblast cultures from human and rat. Levels of prostaglandin E2 were increased in conditioned media collected from osteoblasts treated with lactoferrin, indicating that the activity of the enzyme cyclooxygenase 2 (COX2), which is encoded by Ptgs2, was also up-regulated. Using a luciferase reporter construct we showed that lactoferrin induced transcription from the NFAT consensus sequence. We found that inhibiting either COX2 or NFATc1 activity blocked the mitogenic effect of lactoferrin in osteoblasts and that inhibition of NFATc1 activity partially blocked the transcriptional activation of Ptgs2. Our study has provided the first evidence that COX2 and NFATc1 activities are increased by lactoferrin, and demonstrated a role for each of these molecules as mediators of the mitogenic effects of lactoferrin in osteoblasts.
Collapse
Affiliation(s)
- Dorit Naot
- Department of Medicine, University of Auckland, Auckland, New Zealand.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Kim YH, Lee YS, Choi EM. Chrysoeriol isolated from Eurya cilliata leaves protects MC3T3-E1 cells against hydrogen peroxide-induced inhibition of osteoblastic differentiation. J Appl Toxicol 2011; 30:666-73. [PMID: 20981859 DOI: 10.1002/jat.1539] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Chrysoeriol is a flavonoid compound found in several tropical medicinal plants. To elucidate the protective effects of chrysoeriol isolated from Eurya cilliata on the response of osteoblasts to oxidative stress, osteoblastic MC3T3-E1 cells were incubated with chrysoeriol and/or H₂O₂, and markers of osteoblast function and oxidative damage were examined. Chrysoeriol treatment significantly (P < 0.05) reversed the cytotoxic effect of H₂O₂ and increased collagen content, alkaline phosphatase activity and calcium deposition of osteoblasts in the presence of H₂O₂. These effects were blocked by ICI182780, suggesting that chrysoeriol's effect might be partly involved in estrogen action. Moreover, H₂O₂-induced reduction of osteocalcin was recovered in the presence of chrysoeriol. Chrysoeriol significantly (P < 0.05) decreased the production of receptor activator of nuclear factor-κB ligand, interleukin-6, protein carbonyl and malondialdehyde of MC3T3-E1 cells in the presence of H₂O₂. These results demonstrate that chrysoeriol isolated from E. cilliata can protect osteoblasts from oxidative stress-induced toxicity.
Collapse
Affiliation(s)
- Young Ho Kim
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Korea
| | | | | |
Collapse
|
19
|
Abstract
Osteoarthritis (OA) is associated with cartilage destruction, subchondral bone remodeling and inflammation of the synovial membrane, although the etiology and pathogenesis underlying this debilitating disease are poorly understood. Secreted inflammatory molecules, such as proinflammatory cytokines, are among the critical mediators of the disturbed processes implicated in OA pathophysiology. Interleukin (IL)-1β and tumor necrosis factor (TNF), in particular, control the degeneration of articular cartilage matrix, which makes them prime targets for therapeutic strategies. Animal studies provide support for this approach, although only a few clinical studies have investigated the efficacy of blocking these proinflammatory cytokines in the treatment of OA. Apart from IL-1β and TNF, several other cytokines including IL-6, IL-15, IL-17, IL-18, IL-21, leukemia inhibitory factor and IL-8 (a chemokine) have also been shown to be implicated in OA and could possibly be targeted therapeutically. This Review discusses the current knowledge regarding the role of proinflammatory cytokines in the pathophysiology of OA and addresses the potential of anticytokine therapy in the treatment of this disease.
Collapse
|
20
|
Blanchard F, Duplomb L, Baud'huin M, Brounais B. The dual role of IL-6-type cytokines on bone remodeling and bone tumors. Cytokine Growth Factor Rev 2008; 20:19-28. [PMID: 19038573 DOI: 10.1016/j.cytogfr.2008.11.004] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Many factors such as vitamins, hormones and cytokines, control bone metabolism and remodeling. Cytokines of the interleukin-6 family, by acting on bone cells (i.e. osteoblasts and osteoclasts), have an important role in the bone tissue but they recently appeared as double-edged swords. They sustain bone formation but they can also drive bone loss in various osteolytic pathologies. Similarly, development of bone cancers can be either prevented or enhanced by these cytokines, depending on the cell type, the stage of the tumor and the bone environment. This dual effect is also apparent at the level of the signal transducer and activator of transcription and the mitogen-activated protein kinases, the two main signaling pathways that mediate opposite effects in bone cells.
Collapse
Affiliation(s)
- Frédéric Blanchard
- INSERM, ERI, Laboratoire de Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses Primitives, Nantes, France.
| | | | | | | |
Collapse
|
21
|
Brounais B, Chipoy C, Mori K, Charrier C, Battaglia S, Pilet P, Richards CD, Heymann D, Rédini F, Blanchard F. Oncostatin M Induces Bone Loss and Sensitizes Rat Osteosarcoma to the Antitumor Effect of Midostaurin In vivo. Clin Cancer Res 2008; 14:5400-9. [DOI: 10.1158/1078-0432.ccr-07-4781] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Rozen N, Lewinson D, Bick T, Jacob ZC, Stein H, Soudry M. Fracture repair: modulation of fracture-callus and mechanical properties by sequential application of IL-6 following PTH 1-34 or PTH 28-48. Bone 2007; 41:437-45. [PMID: 17599848 DOI: 10.1016/j.bone.2007.04.193] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Revised: 04/19/2007] [Accepted: 04/19/2007] [Indexed: 11/17/2022]
Abstract
Fracture healing presents a sequence of three major stages: inflammation and granulation tissue formation, callus formation and remodeling. Our working hypothesis was that fracture-repair might be enhanced by stimulating proliferation of chondrocytes and osteoblasts in the early stages of fracture healing followed by sequential acceleration of the remodeling process. In the present study we employed a novel device developed by us implementing a standardized fracture in rat tibiae. We investigated the effect of PTH 28-48 or PTH 1-34 alone or in sequence combination with IL-6 together with its soluble receptor (IL-6sR) on fracture repair. PTH 28-48 or PTH 1-34 was applied locally into the hematoma of fractures on days 4, 5 and 6 and IL-6+ its soluble receptor on days 7, 9, and 11. Post-fracture callus volume as measured 14 days post-fracture was increased significantly only by PTH 1-34 (20%; P<0.01). When one of the PTH fragments and IL-6+IL-6sR were applied sequentially callus volume was increased significantly (33%; P<0.01). X-rays radiography at 5 weeks post-fracture showed enlarged callus volume following treatment by either PTH fragments alone, and complete union following the sequential injection of both PTH fragments and IL-6+IL-6sR, only. Only the combination of one of the PTH fragments with IL-6+IL-6sR, as measured 6 weeks post-fracture by three point bending, changed dramatically the quality of the regenerating bone as presented by a 300% increase in mechanical resistance when PTH 1-34 was combined and 200% when PTH 28-48 was combined relative to vehicle-treated fractured bones. We conclude that the sequential application of IL-6+IL-6sR with both PTH fragments has the potential of enhancing fracture healing in long bones and should be further explored in preclinical and in clinical studies.
Collapse
Affiliation(s)
- Nimrod Rozen
- Department of Anatomy and Cell Biology, The Rappaport Family Faculty of Medicine, Technion-Israel Institute of Technology, PO Box 9649, Haifa 31096, Israel
| | | | | | | | | | | |
Collapse
|