1
|
Akturk A. Enrichment of Cellulose Acetate Nanofibrous Scaffolds with Retinyl Palmitate and Clove Essential Oil for Wound Healing Applications. ACS OMEGA 2023; 8:5553-5560. [PMID: 36816664 PMCID: PMC9933185 DOI: 10.1021/acsomega.2c06881] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
The use of biocompatible materials and fabrication methods is of particular importance in the development of wound dressings. Cellulose acetate (CA) has excellent properties for wound dressing applications, but it is insufficient for the wound healing process due to its lack of bioactive and antibacterial properties. In this study, CA was electrospun with retinyl palmitate (RP) and clove essential oil (CLV) to fabricate a novel antibacterial and antioxidant biomaterial. The effects of RP and CLV incorporation on the surface morphology, fiber diameter, antioxidant activity, antibacterial activity, cell viability, and release behavior of the fabricated CA mats were investigated. In light of these studies, it was determined that the nanofiber mat, fabricated with a 15% w/v CA polymer concentration, a 1% w/w RP ratio, and a 5% w/w CLV ratio, was biocompatible with L929 fibroblast cells with antibacterial and antioxidant properties. Overall, results showed that this nanofiber offers promise for use as a wound dressing.
Collapse
|
2
|
Ermini ML, Summa M, Zamborlin A, Frusca V, Mapanao AK, Mugnaioli E, Bertorelli R, Voliani V. Copper nano-architecture topical cream for the accelerated recovery of burnt skin. NANOSCALE ADVANCES 2023; 5:1212-1219. [PMID: 36798506 PMCID: PMC9926901 DOI: 10.1039/d2na00786j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Skin burns are debilitating injuries with significant morbidity and mortality associated with infections and sepsis, particularly in immunocompromised patients. In this context, nanotechnology can provide pioneering approaches for the topical treatment of burnt skin. Herein, the significant recovery of radiation-damaged skin by exploiting copper ultrasmall-in-nano architectures (CuNAs) dispersed in a home-made cosmetic cream is described and compared to other noble metals (such as gold). Owing to their peculiar design and components, CuNAs elicit a substantial recovery from burned skin in in vivo models after one topical application, and a significant anti-inflammatory effect is highlighted by reducing cytokine expression. The treatment exhibited neither significant toxicity nor the alteration of copper metabolism in the target organs because of the CuNA biocompatibility. This study may open new horizons in the treatment of radiation dermatitis and skin burns caused by other external events.
Collapse
Affiliation(s)
- Maria Laura Ermini
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia Piazza San Silvestro 12 - 56127 Pisa Italy
| | - Maria Summa
- Translational Pharmacology, Istituto Italiano di Tecnologia Via Morego 30 - 16163 Genoa Italy
| | - Agata Zamborlin
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia Piazza San Silvestro 12 - 56127 Pisa Italy
- NEST-Scuola Normale Superiore Piazza San Silvestro 12 - 56127 Pisa Italy
| | - Valentina Frusca
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia Piazza San Silvestro 12 - 56127 Pisa Italy
- Institute of Life Sciences, Scuola Superiore Sant'Anna Piazza Martiri della Libertà 33 56127 Pisa Italy
| | - Ana Katrina Mapanao
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia Piazza San Silvestro 12 - 56127 Pisa Italy
- Center for Radiopharmaceutical Sciences, Paul Scherrer Institute 5232 Villigen-PSI Switzerland
| | - Enrico Mugnaioli
- Department of Earth Sciences, University of Pisa Via S. Maria 53 56126 Pisa Italy
| | - Rosalia Bertorelli
- Translational Pharmacology, Istituto Italiano di Tecnologia Via Morego 30 - 16163 Genoa Italy
| | - Valerio Voliani
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia Piazza San Silvestro 12 - 56127 Pisa Italy
- Department of Pharmacy, University of Genoa Viale Cembrano 4 - 16148 Genoa Italy
| |
Collapse
|
3
|
Prezzavento GE, Mas CR, Achaval Rodríguez J, Juárez Calvi RN, Piskulic L, Angelini J, Allasia MB, Smania AM, Moyano AJ. Comparison of Efficacy of Povidone-Iodine, Ethanol, and an Aerosol Formulation of Silver Sulfadiazine in Controlling Microbial Burden on Sutures From Clean Surgeries. J Burn Care Res 2021; 42:975-980. [PMID: 33515461 DOI: 10.1093/jbcr/irab022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In the surgical suture, the implanted thread can be a source of microbial contamination. Implanted materials are frequently described as being substrates prone for biofilm development provoking surgical site infections. Treatment of postsurgical wounds with different topical antimicrobial agents is a current practice applied to every patient. However, to date, there is little evidence on the efficacy of different antiseptic treatments on suture materials in preventing environmental or skin bacterial adhesion and further infection. Here, the authors compared the ability of an aerosol formulation of silver sulfadiazine, vitamin A, and lidocaine (AF-SSD) and of two of the most frequently used topical treatments, povidone-iodine and ethanol, in eradicating or controlling the microbial contamination of suture threads in patients who have undergone clean surgeries. Postsurgical suture threads treated with AF-SSD showed a significantly reduced proportion of contaminated samples containing viable microbial cells compared with those treated with povidone-iodine or ethanol. Furthermore, those samples that were positive for bacterial growth showed a lesser number of viable cells in AF-SSD-treated sutures than those treated with povidone-iodine or ethanol. Confocal laser scanning microscopy showed that AF-SSD-treated postsurgical sutures presented significantly less attached microbial cells than povidone-iodine and ethanol, with scarce observable microbial cells on the surface of the suture. Taken together, the results suggest that treatment with AF-SSD is more effective than the other two antiseptics, and there is a potential for improvement in reducing the microbial burden of implanted materials such as the suture thread.
Collapse
Affiliation(s)
- Gustavo E Prezzavento
- Servicio Cirugía Plástica y Reconstructiva, Hospital Alemán, Buenos Aires, Argentina
| | - Carlos R Mas
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Biológica Ranwel Caputto, Córdoba, Argentina.,CONICET, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Universidad Nacional de Córdoba, Argentina
| | | | | | - Laura Piskulic
- Área Estadística y Procesamiento de Datos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Argentina
| | - Julia Angelini
- Área Estadística y Procesamiento de Datos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Argentina
| | - María B Allasia
- Área Estadística y Procesamiento de Datos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Argentina
| | - Andrea M Smania
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Biológica Ranwel Caputto, Córdoba, Argentina.,CONICET, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Universidad Nacional de Córdoba, Argentina
| | - Alejandro J Moyano
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Biológica Ranwel Caputto, Córdoba, Argentina.,CONICET, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Universidad Nacional de Córdoba, Argentina
| |
Collapse
|
4
|
Carazo A, Macáková K, Matoušová K, Krčmová LK, Protti M, Mladěnka P. Vitamin A Update: Forms, Sources, Kinetics, Detection, Function, Deficiency, Therapeutic Use and Toxicity. Nutrients 2021; 13:1703. [PMID: 34069881 PMCID: PMC8157347 DOI: 10.3390/nu13051703] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/07/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022] Open
Abstract
Vitamin A is a group of vital micronutrients widely present in the human diet. Animal-based products are a rich source of the retinyl ester form of the vitamin, while vegetables and fruits contain carotenoids, most of which are provitamin A. Vitamin A plays a key role in the correct functioning of multiple physiological functions. The human organism can metabolize natural forms of vitamin A and provitamin A into biologically active forms (retinol, retinal, retinoic acid), which interact with multiple molecular targets, including nuclear receptors, opsin in the retina and, according to the latest research, also some enzymes. In this review, we aim to provide a complex view on the present knowledge about vitamin A ranging from its sources through its physiological functions to consequences of its deficiency and metabolic fate up to possible pharmacological administration and potential toxicity. Current analytical methods used for its detection in real samples are included as well.
Collapse
Affiliation(s)
- Alejandro Carazo
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic;
| | - Kateřina Macáková
- Department of Pharmacognosy, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic;
| | - Kateřina Matoušová
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Králové, Czech Republic; (K.M.); (L.K.K.)
| | - Lenka Kujovská Krčmová
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Králové, Czech Republic; (K.M.); (L.K.K.)
- Department of Analytical Chemistry, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Michele Protti
- The Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum–University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy;
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic;
| |
Collapse
|
5
|
Codelivery of hydrophilic and hydrophobic drugs in a microneedle patch for the treatment of skin pigmentation. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.04.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
Pinto F, Fonseca LP, Souza S, Oliva A, de Barros DP. Topical distribution and efficiency of nanostructured lipid carriers on a 3D reconstructed human epidermis model. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101616] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
7
|
Pinto F, de Barros DP, Reis C, Fonseca LP. Optimization of nanostructured lipid carriers loaded with retinoids by central composite design. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111468] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
8
|
Moyano AJ, Mas CR, Colque CA, Smania AM. Dealing with biofilms of Pseudomonas aeruginosa and Staphylococcus aureus: In vitro evaluation of a novel aerosol formulation of silver sulfadiazine. Burns 2019; 46:128-135. [PMID: 31420266 DOI: 10.1016/j.burns.2019.07.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 06/11/2019] [Accepted: 07/18/2019] [Indexed: 12/17/2022]
Abstract
The risk of infection of skin and soft tissue chronic wounds by gram-negative and gram-positive pathogens growing in biofilms is a major health-care concern. In this study we test a formulation of silver sulfadiazine, vitamin A and lidocaine (AF-SSD) for aerosol administration against biofilms of Pseudomonas aeruginosa and biofilms of methicillin-resistant (MRSA) and methicillin-sensitive (MSSA) strains of Staphylococcus aureus. The aerosol allows the administration of AF-SSD without the direct contact with the wound and avoids contamination of the product after reiterative usage. We evaluated in vitro the anti-biofilm activity of AF-SSD by carrying out different technical approaches such as resazurin assays to measure metabolic activity/viability, crystal violet staining assays to determine biofilm biomass, counting of CFUs and live/dead staining for confocal microscopy analysis. AF-SSD clearly affected biofilm viability, biomass and structure, in the three bacterial strains tested. AF-SSD displayed a strong anti-biofilm effect, showing total bactericidal activity on biofilms of P. aeruginosa at a 400-fold dilution of the product, and after a 100-fold and 10-fold dilution for MRSA and MSSA, respectively. Considering the benefits of aerosol administration, our results support this kind of formulation as a potential improvement over conventional treatments with silver sulfadiazine.
Collapse
Affiliation(s)
- Alejandro J Moyano
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Biológica Ranwel Caputto, Córdoba, Argentina; CONICET, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina.
| | - Carlos R Mas
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Biológica Ranwel Caputto, Córdoba, Argentina; CONICET, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| | - Claudia A Colque
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Biológica Ranwel Caputto, Córdoba, Argentina; CONICET, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| | - Andrea M Smania
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Biológica Ranwel Caputto, Córdoba, Argentina; CONICET, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina.
| |
Collapse
|
9
|
Abstract
Vitamin A is an essential micronutrient that comes in multiple forms, including retinols, retinals, and retinoic acids. Dietary vitamin A is absorbed as retinol from preformed retinoids or as pro-vitamin A carotenoids that are converted into retinol in the enterocyte. These are then delivered to the liver for storage via chylomicrons and later released into the circulation and to its biologically active tissues bound to retinol-binding protein. Vitamin A is a crucial component of many important and diverse biological functions, including reproduction, embryological development, cellular differentiation, growth, immunity, and vision. Vitamin A functions mostly through nuclear retinoic acid receptors, retinoid X receptors, and peroxisome proliferator-activated receptors. Retinoids regulate the growth and differentiation of many cell types within skin, and its deficiency leads to abnormal epithelial keratinization. In wounded tissue, vitamin A stimulates epidermal turnover, increases the rate of re-epithelialization, and restores epithelial structure. Retinoids have the unique ability to reverse the inhibitory effects of anti-inflammatory steroids on wound healing. In addition to its role in the inflammatory phase of wound healing, retinoic acid has been demonstrated to enhance production of extracellular matrix components such as collagen type I and fibronectin, increase proliferation of keratinocytes and fibroblasts, and decrease levels of degrading matrix metalloproteinases.
Collapse
Affiliation(s)
- Monica E Polcz
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Adrian Barbul
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,The Tennessee Valley Nashville VA Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
10
|
Affiliation(s)
- Wilbur Johnson
- 1 Senior Scientific Writer/Analyst, Cosmetic Ingredient Review, Washington, DC, USA
| |
Collapse
|
11
|
Yan J, Xia Q, Wamer WG, Boudreau MD, Warbritton A, Howard PC, Fu PP. Levels of retinyl palmitate and retinol in the skin of SKH-1 mice topically treated with retinyl palmitate and concomitant exposure to simulated solar light for thirteen weeks. Toxicol Ind Health 2016; 23:581-9. [DOI: 10.1177/0748233708090904] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- J Yan
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas, USA
| | - Q Xia
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas, USA
| | - WG Wamer
- Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland, USA
| | - MD Boudreau
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas, USA
| | - A Warbritton
- Toxicological Pathology Associates, Jefferson, Arkansas, USA
| | - PC Howard
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas, USA
| | - PP Fu
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas, USA
| |
Collapse
|
12
|
Baldwin TJ, Rood KA, Kelly EJ, Hall JO. Dermatopathy in juvenile Angus cattle due to vitamin A deficiency. J Vet Diagn Invest 2012; 24:763-6. [PMID: 22585959 DOI: 10.1177/1040638712445767] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In juvenile cattle, vitamin A deficiency is reported most commonly as a neurological condition; only rarely are there dermatologic manifestations. In the current study, alopecia, severe epidermal and follicular orthokeratosis, and acanthosis due to hypovitaminosis A are reported in 2 of 32 Angus calves, with a third animal suspected. Affected animals responded to vitamin A supplementation, and no additional calves displayed signs. Vitamin A acts on skin by regulating DNA transcription in keratinocytes, reducing the number of tonofilaments and desmosomes, both involved in cell-to-cell adhesion. Hence, adequate levels of dietary vitamin A are necessary for normal keratinocyte turnover, and deficiencies result in retention of keratinized cells (orthokeratosis). The present report reminds diagnosticians to consider vitamin A deficiency in cases of orthokeratotic dermatopathy in cattle.
Collapse
Affiliation(s)
- Thomas J Baldwin
- Utah Veterinary Diagnostic Laboratory, 950 East 1400 North, Logan, UT 84341, USA.
| | | | | | | |
Collapse
|
13
|
Kim SC, Lee HJ, Joo JH, Yoon JH, Choi JY. Vitamin A deficiency induces fluid hyposecretion from the airway submucosal glands of mice. J Nutr 2012; 142:739-43. [PMID: 22399523 DOI: 10.3945/jn.111.154047] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Vitamin A deficiency (VAD) alters the phenotype of airway epithelium and attenuates the epithelial defense system, and many studies have reported the association of VAD with respiratory disease. In this study, we investigated changes in submucosal glands (SMG) in a mouse model of VAD. C57BL/6 mice were fed a vitamin A-devoid diet and the others were fed a control diet (1.2 mg retinol/kg). The areas of serous and mucous cells of SMG were measured in 4-, 8-, and 20-wk-old male mice. The volume and lysozyme concentration of glandular secretions were also measured. The 2 groups did not differ in body weight or general morbidity at 3-10 wk of age, although serum retinol concentrations were greater in the control mice than in the VAD mice after 4 wk. Upon histological evaluation, we found that the areal ratio of serous cells:total SMG cells was significantly lower after 8 wk in the VAD mice compared with the control mice, although the total area of SMG did not differ between groups throughout the 20-wk experiment. The number of secretory bubbles did not differ between the groups, but total secretion volume was reduced by 35% in 8-wk-old VAD mice compared with controls. Furthermore, the concentration of lysozyme in secretions from 8-wk-old VAD mice was also less than in controls, compounding the effect of diminished secretion volume. In this study, we found serous cell hypotrophy/hypoplasia and dysfunction in VAD mice, which may contribute to the susceptibility to airway infection linked to VAD.
Collapse
Affiliation(s)
- Sang Cheol Kim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
| | | | | | | | | |
Collapse
|
14
|
Zhou YT, Yin JJ, Lo YM. Application of ESR spin label oximetry in food science. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2011; 49 Suppl 1:S105-S112. [PMID: 22290700 DOI: 10.1002/mrc.2822] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Lipid oxidation attributed to the presence of oxygen has long been a focal area for food science research due in early years mainly to its broad impact on the quality and shelf stability. The need to effectively strategize interventions to detect and eventually eliminate lipid oxidation in food remains as evidence on nutritional and health implications continue to accumulate. Electron spin resonance (ESR) spin label oximetry has been shown capable of detecting dissolved oxygen concentration in both liquid and gaseous phases based on the collision between oxygen and stable free radicals. This review aimed to summarize not just the principles and rationale of ESR spin label oximetry but also the wide spectrum of ESR spin label oximetry applications to date. The feasibility to identify in very early stage oxygen generation and consumption offers a promising tool for controlling lipid oxidation in food and biological systems.
Collapse
Affiliation(s)
- Yu-Ting Zhou
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA
| | | | | |
Collapse
|
15
|
UVA phototransduction drives early melanin synthesis in human melanocytes. Curr Biol 2011; 21:1906-11. [PMID: 22055294 DOI: 10.1016/j.cub.2011.09.047] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 08/02/2011] [Accepted: 09/29/2011] [Indexed: 11/21/2022]
Abstract
Exposure of human skin to solar ultraviolet radiation (UVR), a powerful carcinogen [1] comprising ~95% ultraviolet A (UVA) and ~5% ultraviolet B (UVB) at the Earth's surface, promotes melanin synthesis in epidermal melanocytes [2, 3], which protects skin from DNA damage [4, 5]. UVB causes DNA lesions [6] that lead to transcriptional activation of melanin-producing enzymes, resulting in delayed skin pigmentation within days [7]. In contrast, UVA causes primarily oxidative damage [8] and leads to immediate pigment darkening (IPD) within minutes, via an unknown mechanism [9, 10]. No receptor protein directly mediating phototransduction in skin has been identified. Here we demonstrate that exposure of primary human epidermal melanocytes (HEMs) to UVA causes calcium mobilization and early melanin synthesis. Calcium responses were abolished by treatment with G protein or phospholipase C (PLC) inhibitors or by depletion of intracellular calcium stores. We show that the visual photopigment rhodopsin [11] is expressed in HEMs and contributes to UVR phototransduction. Upon UVR exposure, significant melanin production was measured within one hour; cellular melanin continued to increase in a retinal- and calcium-dependent manner up to 5-fold after 24 hr. Our findings identify a novel UVA-sensitive signaling pathway in melanocytes that leads to calcium mobilization and melanin synthesis and may underlie the mechanism of IPD in human skin.
Collapse
|
16
|
Schreiber R, Taschler U, Preiss-Landl K, Wongsiriroj N, Zimmermann R, Lass A. Retinyl ester hydrolases and their roles in vitamin A homeostasis. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1821:113-23. [PMID: 21586336 PMCID: PMC3242165 DOI: 10.1016/j.bbalip.2011.05.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 04/28/2011] [Accepted: 05/02/2011] [Indexed: 12/16/2022]
Abstract
In mammals, dietary vitamin A intake is essential for the maintenance of adequate retinoid (vitamin A and metabolites) supply of tissues and organs. Retinoids are taken up from animal or plant sources and subsequently stored in form of hydrophobic, biologically inactive retinyl esters (REs). Accessibility of these REs in the intestine, the circulation, and their mobilization from intracellular lipid droplets depends on the hydrolytic action of RE hydrolases (REHs). In particular, the mobilization of hepatic RE stores requires REHs to maintain steady plasma retinol levels thereby assuring constant vitamin A supply in times of food deprivation or inadequate vitamin A intake. In this review, we focus on the roles of extracellular and intracellular REHs in vitamin A metabolism. Furthermore, we will discuss the tissue-specific function of REHs and highlight major gaps in the understanding of RE catabolism. This article is part of a Special Issue entitled Retinoid and Lipid Metabolism.
Collapse
|
17
|
Sodeoka M, Shimizu M. Development of Column-Free Alkoxycarbonyl, Aryloxycarbonyl, and Acyl Transfer Reagents. HETEROCYCLES 2008. [DOI: 10.3987/com-08-s(n)95] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|