1
|
Luque EM, Díaz-Luján CM, Paira DA, de Loredo N, Torres PJ, Cantarelli VI, Fretes R, Motrich RD, Martini AC. Ghrelin misbalance affects mice embryo implantation and pregnancy success by uterine immune dysregulation and nitrosative stress. Front Endocrinol (Lausanne) 2023; 14:1288779. [PMID: 38107518 PMCID: PMC10722256 DOI: 10.3389/fendo.2023.1288779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/09/2023] [Indexed: 12/19/2023] Open
Abstract
Introduction In a previous study we found that ghrelin (Ghrl) misbalance during the peri-implantation period significantly impaired fetus development. In this study we aimed to evaluate the putative mechanisms underlying these effects, including embryo implantation success, uterine nitric oxide synthase (NOS) activity, nitric oxide synthesis and the inflammatory/immune uterine profile. Methods Ghrelin misbalance was induced by injecting 4nmol/animal/day of Ghrl (hyperghrelinemia) or 6nmol/animal/day of a Ghrl antagonist (Ant: (D-Lys3)GHRP-6) from day 3 to 8 of pregnancy. Control animals (C) were injected with de vehicle. Females were euthanized at pregnancy day 8 and their uteri excised in order to evaluate: the percentage of reabsorbed embryos (microscopically), eNOS, iNOS and nytrotirosine expression (by immunohistochemistry), nitrite synthesis (by Griess technique), VEGF, IL-10, IL-17, IL-6, MMP9 and GM-CSF expression (by qPCR) and leukocyte infiltration by flow cytometry (evaluating T cells, NK cells, granulocytes, dendritic cells and macrophages). Results Ant-treatment significantly increased the percentage of reabsorbed embryos and the uterine expression of eNOS, iNOS and nytrotirosine. (D-Lys3)GHRP-6-treatment increased also the expression of the inflammatory cytokines IL-6, IL-17 and MMP9, and decreased that of IL-10 (anti-inflammatory). Moreover, Ant-treatment increased also the NK cells population and that of CD11b+ dendritic cells; and decreased T cells percentages. Similarly, hyperghrelinemia showed a significant increase vs. C on eNOS, iNOS and nytrotirosineuterine expression and a decrease in T cells percentages. Conclusion Ghrl misbalance during the peri-implantation period induces pro-inflammatory changes and nitrosative stress in the gravid uterus, impairing significantly embryo implantation and/or development.
Collapse
Affiliation(s)
- Eugenia Mercedes Luque
- Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Investigaciones en Ciencias de la Salud (INICSA), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)/Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| | - Cintia María Díaz-Luján
- Instituto de Biología Celular, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Daniela Andrea Paira
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)/Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| | - Nicolás de Loredo
- Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Pedro Javier Torres
- Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Investigaciones en Ciencias de la Salud (INICSA), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)/Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| | - Verónica Inés Cantarelli
- Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Investigaciones en Ciencias de la Salud (INICSA), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)/Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| | - Ricardo Fretes
- Instituto de Investigaciones en Ciencias de la Salud (INICSA), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)/Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
- Instituto de Biología Celular, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Rubén Darío Motrich
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)/Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| | - Ana Carolina Martini
- Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Investigaciones en Ciencias de la Salud (INICSA), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)/Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| |
Collapse
|
2
|
Li R, Yao G, Zhou L, Zhang M, Yan J. The ghrelin-GHSR-1a pathway inhibits high glucose-induced retinal angiogenesis in vitro by alleviating endoplasmic reticulum stress. EYE AND VISION 2022; 9:20. [PMID: 35668539 PMCID: PMC9172001 DOI: 10.1186/s40662-022-00291-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/17/2022] [Indexed: 11/18/2022]
Abstract
Background To investigate the effect of ghrelin, a brain-gut peptide hormone, on high glucose-induced retinal angiogenesis in vitro and explore its association with endoplasmic reticulum (ER) stress. Methods Human retinal microvascular endothelial cells (HRMECs) were first divided into control and high-glucose groups, and the mRNA and protein expression levels of the receptor for ghrelin [growth hormone secretin receptor 1a, (GHSR-1a)] in cells were determined. HRMECs were then treated with high glucose alone or in combination with ghrelin or siGHSR-1a, and cell viability, migration, tube formation and the expression of the ER stress-related proteins PERK, ATF4 and CHOP were detected. Finally, to clarify whether the effects of ghrelin are related to ER stress, tunicamycin, an inducer of ER stress, was used to treat HRMECs, and cell viability, cell migration, and tube formation were evaluated. Results GHSR-1a expression in HRMECs at both the mRNA and protein levels was inhibited by high-glucose treatment. Under high-glucose conditions, ghrelin promoted cell viability and inhibited migration and tube formation, which were blocked by siGHSR-1a treatment. Ghrelin inhibited the increases in the protein levels of p-PERK, ATF4 and CHOP induced by high-glucose treatment, and combination treatment with siGHSR-1a reversed this effect of ghrelin. When tunicamycin was added, the effects of ghrelin on cell viability, migration and tube formation were all weakened. Conclusions This study experimentally revealed that ghrelin can inhibit high glucose-induced retinal angiogenesis in vitro through GHSR-1a, and alleviation of ER stress may be one of the mechanisms underlying this effect.
Collapse
|
3
|
Russo C, Valle MS, Russo A, Malaguarnera L. The Interplay between Ghrelin and Microglia in Neuroinflammation: Implications for Obesity and Neurodegenerative Diseases. Int J Mol Sci 2022; 23:ijms232113432. [PMID: 36362220 PMCID: PMC9654207 DOI: 10.3390/ijms232113432] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Numerous studies have shown that microglia are capable of producing a wide range of chemokines to promote inflammatory processes within the central nervous system (CNS). These cells share many phenotypical and functional characteristics with macrophages, suggesting that microglia participate in innate immune responses in the brain. Neuroinflammation induces neurometabolic alterations and increases in energy consumption. Microglia may constitute an important therapeutic target in neuroinflammation. Recent research has attempted to clarify the role of Ghre signaling in microglia on the regulation of energy balance, obesity, neuroinflammation and the occurrence of neurodegenerative diseases. These studies strongly suggest that Ghre modulates microglia activity and thus affects the pathophysiology of neurodegenerative diseases. This review aims to summarize what is known from the current literature on the way in which Ghre modulates microglial activity during neuroinflammation and their impact on neurometabolic alterations in neurodegenerative diseases. Understanding the role of Ghre in microglial activation/inhibition regulation could provide promising strategies for downregulating neuroinflammation and consequently for diminishing negative neurological outcomes.
Collapse
Affiliation(s)
- Cristina Russo
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
| | - Maria Stella Valle
- Laboratory of Neuro-Biomechanics, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Antonella Russo
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Lucia Malaguarnera
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
- Correspondence:
| |
Collapse
|
4
|
Kasprzak A, Adamek A. Role of the Ghrelin System in Colitis and Hepatitis as Risk Factors for Inflammatory-Related Cancers. Int J Mol Sci 2022; 23:ijms231911188. [PMID: 36232490 PMCID: PMC9569806 DOI: 10.3390/ijms231911188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 02/05/2023] Open
Abstract
It is not known exactly what leads to the development of colorectal cancer (CRC) and hepatocellular carcinoma (HCC), but there are specific risk factors that increase the probability of their occurrence. The unclear pathogenesis, too-late diagnosis, poor prognosis as a result of high recurrence and metastasis rates, and repeatedly ineffective therapy of both cancers continue to challenge both basic science and practical medicine. The ghrelin system, which is comprised of ghrelin and alternative peptides (e.g., obestatin), growth hormone secretagogue receptors (GHS-Rs), and ghrelin-O-acyl-transferase (GOAT), plays an important role in the physiology and pathology of the gastrointestinal (GI) tract. It promotes various physiological effects, including energy metabolism and amelioration of inflammation. The ghrelin system plays a role in the pathogenesis of inflammatory bowel diseases (IBDs), which are well known risk factors for the development of CRC, as well as inflammatory liver diseases which can trigger the development of HCC. Colitis-associated cancer serves as a prototype of inflammation-associated cancers. Little is known about the role of the ghrelin system in the mechanisms of transformation of chronic inflammation to low- and high-grade dysplasia, and, finally, to CRC. HCC is also associated with chronic inflammation and fibrosis arising from different etiologies, including alcoholic and nonalcoholic fatty liver diseases (NAFLD), and/or hepatitis B (HBV) and hepatitis C virus (HCV) infections. However, the exact role of ghrelin in the progression of the chronic inflammatory lesions into HCC is still unknown. The aim of this review is to summarize findings on the role of the ghrelin system in inflammatory bowel and liver diseases in order to better understand the impact of this system on the development of inflammatory-related cancers, namely CRC and HCC.
Collapse
Affiliation(s)
- Aldona Kasprzak
- Department of Histology and Embryology, University of Medical Sciences, Święcicki Street 6, 60-781 Poznań, Poland
- Correspondence: ; Tel.: +48-61-8546441; Fax: +48-61-8546440
| | - Agnieszka Adamek
- Department of Infectious Diseases, Hepatology and Acquired Immunodeficiencies, University of Medical Sciences, Szwajcarska Street 3, 61-285 Poznań, Poland
| |
Collapse
|
5
|
Li B, Dou Z, Zhang L, Zhu L, Cao Y, Yu Q. Ghrelin Alleviates Intestinal Dysfunction in Sepsis Through the KLF4/MMP2 Regulatory Axis by Activating SIRT1. Front Immunol 2021; 12:646775. [PMID: 33968038 PMCID: PMC8102724 DOI: 10.3389/fimmu.2021.646775] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/23/2021] [Indexed: 12/14/2022] Open
Abstract
Intestinal barrier dysfunction is an important contributor to morbidity caused by sepsis. This study investigates the molecular mechanism by which Ghrelin affects intestinal dysfunction in rat model of sepsis. A rat model of sepsis was established by cecal ligation and puncture (CLP), revealing that Ghrelin was downregulated when sepsis occurs. Increases in the levels of inflammatory factors tumor necrosis factor α (TNF-α), interleukin-1 (IL-1β), IL-6, gastrin, γ-H2AX and 8-OHdG was also detected in this model system, as was an overall increase in oxidative stress. Introduction of exogenous Ghrelin inhibited these increases in inflammatory response and oxidative stress, leading to a reduction of overall sepsis-induced intestinal dysfunction. Ghrelin was then shown to activate SIRT1 expression in vitro, while SIRT1 was found to co-express with KLF4, which in turn was predicted to bind to matrix metalloproteinase 2 (MMP2) promoter. Finally, gain- and loss-of-function experiment demonstrated that SIRT1 upregulated the expression of KLF4 to downregulate MMP2. Collectively, Ghrelin inhibits the oxidative stress and intestinal dysfunction to attenuate sepsis by activating SIRT1 and regulating a KLF4/MMP2 regulatory axis.
Collapse
Affiliation(s)
- Bin Li
- Department of Critical Medicine, The First Hospital of Lanzhou University, Lanzhou, China
| | - Zhimin Dou
- Department of Critical Medicine, The First Hospital of Lanzhou University, Lanzhou, China
| | - Lei Zhang
- Department of Critical Medicine, The First Hospital of Lanzhou University, Lanzhou, China
| | - Lei Zhu
- Department of Critical Medicine, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yongqiang Cao
- Department of Critical Medicine, The First Hospital of Lanzhou University, Lanzhou, China
| | - Qin Yu
- Department of Respiratory, The First Hospital of Lanzhou University (The First School of Clinical Medicine), Lanzhou, China
| |
Collapse
|
6
|
Martin AM, Cassirer EF, Waits LP, Plowright RK, Cross PC, Andrews KR. Genomic association with pathogen carriage in bighorn sheep ( Ovis canadensis). Ecol Evol 2021; 11:2488-2502. [PMID: 33767816 PMCID: PMC7981200 DOI: 10.1002/ece3.7159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/03/2022] Open
Abstract
Genetic composition can influence host susceptibility to, and transmission of, pathogens, with potential population-level consequences. In bighorn sheep (Ovis canadensis), pneumonia epidemics caused by Mycoplasma ovipneumoniae have been associated with severe population declines and limited recovery across North America. Adult survivors either clear the infection or act as carriers that continually shed M. ovipneumoniae and expose their susceptible offspring, resulting in high rates of lamb mortality for years following the outbreak event. Here, we investigated the influence of genomic composition on persistent carriage of M. ovipneumoniae in a well-studied bighorn sheep herd in the Wallowa Mountains of Oregon, USA. Using 10,605 SNPs generated using RADseq technology for 25 female bighorn sheep, we assessed genomic diversity metrics and employed family-based genome-wide association methodologies to understand variant association and genetic architecture underlying chronic carriage. We observed no differences among genome-wide diversity metrics (heterozygosity and allelic richness) between groups. However, we identified two variant loci of interest and seven associated candidate genes, which may influence carriage status. Further, we found that the SNP panel explained ~55% of the phenotypic variance (SNP-based heritability) for M. ovipneumoniae carriage, though there was considerable uncertainty in these estimates. While small sample sizes limit conclusions drawn here, our study represents one of the first to assess the genomic factors influencing chronic carriage of a pathogen in a wild population and lays a foundation for understanding genomic influence on pathogen persistence in bighorn sheep and other wildlife populations. Future research should incorporate additional individuals as well as distinct herds to further explore the genomic basis of chronic carriage.
Collapse
Affiliation(s)
- Alynn M. Martin
- United States Geological SurveyNorthern Rocky Mountain Science CenterBozemanMTUSA
| | | | | | - Raina K. Plowright
- Department of Microbiology and ImmunologyMontana State UniversityBozemanMTUSA
| | - Paul C. Cross
- United States Geological SurveyNorthern Rocky Mountain Science CenterBozemanMTUSA
| | - Kimberly R. Andrews
- Institute for Bioinformatics and Evolutionary Studies (IBEST)University of IdahoMoscowIDUSA
| |
Collapse
|
7
|
Farokhnia M, Portelli J, Lee MR, McDiarmid GR, Munjal V, Abshire KM, Battista JT, Browning BD, Deschaine SL, Akhlaghi F, Leggio L. Effects of exogenous ghrelin administration and ghrelin receptor blockade, in combination with alcohol, on peripheral inflammatory markers in heavy-drinking individuals: Results from two human laboratory studies. Brain Res 2020; 1740:146851. [PMID: 32339499 PMCID: PMC8715722 DOI: 10.1016/j.brainres.2020.146851] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022]
Abstract
The ghrelin system has been garnering interest for its role in different neuropsychiatric disorders, including alcohol use disorder (AUD). Accordingly, targeting the ghrelin system is under investigation as a potential novel therapeutic approach. While alcohol provokes the immune system and inflammatory responses, ghrelin has potent immunomodulatory and anti-inflammatory properties. The present study aimed to shed light on the "crosstalk" between ghrelin and inflammation by examining the effects of exogenous ghrelin administration and ghrelin receptor blockade on peripheral inflammatory markers in the context of two human laboratory studies with alcohol administration. Non-treatment-seeking, heavy-drinking individuals with alcohol dependence, the majority of whom were African American males, were enrolled. In the first randomized, crossover, double-blind, placebo-controlled human laboratory study, participants underwent two experimental paradigms - an intravenous alcohol self-administration (IV-ASA) and an intravenous alcohol clamp (IV-AC) - each consisting of two counterbalanced sessions (ghrelin, placebo). A loading dose of intravenous ghrelin (3 mcg/kg) or placebo, followed by a continuous ghrelin (16.9 ng/kg/min) or placebo infusion was administered. In the second dose-escalating, single-blind, placebo-controlled human laboratory phase 1b study, participants were dosed with an oral ghrelin receptor blocker (PF-5190457) and underwent an oral alcohol challenge. Repeated blood samples were collected, and plasma concentrations of the following inflammatory markers were measured: C-reactive protein (CRP), interleukin (IL)-6, IL-10, IL-18, and tumor necrosis factor alpha (TNF-α). During the IV-ASA experiment, significant drug × time interaction effects were observed for IL-6 (F3,36 = 3.345, p = 0.030) and IL-10 (F3,53.2 = 4.638, p = 0.006), indicating that ghrelin, compared to placebo, significantly reduced blood concentrations of the proinflammatory cytokine IL-6, while increasing blood concentrations of the anti-inflammatory cytokine IL-10. No significant drug × time interaction effects were observed during the IV-AC experiment, possibly because of its much shorter duration and/or smaller sample. Treatment with PF-5190457, compared to placebo, had no significant effect on the inflammatory markers investigated. In conclusion, a supraphysiologic pharmacological challenge with exogenous ghrelin in heavy-drinking individuals produced anti-inflammatory effects in the context of intravenous alcohol administration. On the contrary, ghrelin receptor blockade did not lead to any change in the inflammatory markers included in this study. Mechanistic studies are required to better understand the interaction between ghrelin, alcohol, and inflammatory processes.
Collapse
Affiliation(s)
- Mehdi Farokhnia
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, MD, United States; Center on Compulsive Behaviors, National Institutes of Health, Bethesda, MD, United States; Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Jeanelle Portelli
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, MD, United States
| | - Mary R Lee
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, MD, United States
| | - Gray R McDiarmid
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, MD, United States
| | - Vikas Munjal
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, MD, United States
| | - Kelly M Abshire
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, MD, United States
| | - Jillian T Battista
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, MD, United States
| | - Brittney D Browning
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, MD, United States
| | - Sara L Deschaine
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, MD, United States
| | - Fatemeh Akhlaghi
- Clinical Pharmacokinetics Research Laboratory, Department of Biomedical & Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, United States
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, MD, United States; Center on Compulsive Behaviors, National Institutes of Health, Bethesda, MD, United States; Medication Development Program, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, United States; Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University, Providence, RI, United States.
| |
Collapse
|
8
|
Akalu Y, Molla MD, Dessie G, Ayelign B. Physiological Effect of Ghrelin on Body Systems. Int J Endocrinol 2020; 2020:1385138. [PMID: 32565790 PMCID: PMC7267865 DOI: 10.1155/2020/1385138] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/08/2020] [Accepted: 05/13/2020] [Indexed: 02/06/2023] Open
Abstract
Ghrelin is a relatively novel multifaceted hormone that has been found to exert a plethora of physiological effects. In this review, we found/confirmed that ghrelin has effect on all body systems. It induces appetite; promotes the use of carbohydrates as a source of fuel while sparing fat; inhibits lipid oxidation and promotes lipogenesis; stimulates the gastric acid secretion and motility; improves cardiac performance; decreases blood pressure; and protects the kidneys, heart, and brain. Ghrelin is important for learning, memory, cognition, reward, sleep, taste sensation, olfaction, and sniffing. It has sympatholytic, analgesic, antimicrobial, antifibrotic, and osteogenic effects. Moreover, ghrelin makes the skeletal muscle more excitable and stimulates its regeneration following injury; delays puberty; promotes fetal lung development; decreases thyroid hormone and testosterone; stimulates release of growth hormone, prolactin, glucagon, adrenocorticotropic hormone, cortisol, vasopressin, and oxytocin; inhibits insulin release; and promotes wound healing. Ghrelin protects the body by different mechanisms including inhibition of unwanted inflammation and induction of autophagy. Having a clear understanding of the ghrelin effect in each system has therapeutic implications. Future studies are necessary to elucidate the molecular mechanisms of ghrelin actions as well as its application as a GHSR agonist to treat most common diseases in each system without any paradoxical outcomes on the other systems.
Collapse
Affiliation(s)
- Yonas Akalu
- Department of Physiology, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Meseret Derbew Molla
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Gashaw Dessie
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Birhanu Ayelign
- Department of Immunology and Molecular Biology, School of Biomedical and Laboratory Science, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
9
|
Nikitopoulou I, Kampisiouli E, Jahaj E, Vassiliou AG, Dimopoulou I, Mastora Z, Tsakiris S, Perreas K, Tzanela M, Routsi C, Orfanos SE, Kotanidou A. Ghrelin alterations during experimental and human sepsis. Cytokine 2019; 127:154937. [PMID: 31830702 DOI: 10.1016/j.cyto.2019.154937] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 10/24/2019] [Accepted: 11/19/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND Ghrelin is a hormone mainly produced by cells of the gastric mucosa, which has been shown to possess anti-inflammatory and immunomodulatory properties. The objective of the study was to investigate ghrelin levels during sepsis, as well as in an experimental sepsis model. METHODS All consecutive admissions to the ICU of a tertiary hospital in Athens, Greece were screened for eligibility during the study. Thirty four non-septic patients upon ICU admission who subsequently developed sepsis were enrolled. Clinical data and scores were recorded, and blood samples were obtained at baseline (upon ICU admission), and at sepsis development. Total and active ghrelin, leptin, and cytokines were measured. Moreover, lipopolysaccharide (LPS) was administered to mice in order to induce endotoxemia and at specified time points, blood and tissue samples were collected. RESULTS In patients, serum total and active ghrelin concentrations were significantly elevated in sepsis compared to baseline (553.8 ± 213.4 vs 193.5 ± 123.2, p < 0.001; 254.3 ± 70.6 vs 56.49 ± 16.3, p < 0.001). Active ghrelin levels at the sepsis stage were inversely correlated with SOFA score and length of stay in the ICU (p = 0.023 and p = 0.027 respectively). In the mouse endotoxemia model ghrelin levels were elevated following LPS treatment, and the same trend was observed for leptin, TNFα and IL-6. Ghrelin administration managed to reduce IL-6 levels in mouse serum and in BALF. Pulmonary expression of ghrelin and its receptor GHSR1a was found decreased in LPS-treated mice. CONCLUSIONS In a well-defined cohort of ICU patients, we have demonstrated that active and total ghrelin increase in sepsis. The same is true for the experimental sepsis model used in the study. The inverse correlation of active ghrelin levels with SOFA score and length of ICU stay among septic patients is indicative of a potential protective role of active ghrelin during the septic process.
Collapse
Affiliation(s)
- I Nikitopoulou
- GP Livanos and M Simou Laboratories, 1st Department of Critical Care & Pulmonary Services, Medical School, National & Kapodistrian University of Athens, Evangelismos Hospital, Athens, Greece
| | - E Kampisiouli
- 1st Department of Critical Care & Pulmonary Services, Medical School, National & Kapodistrian University of Athens, Evangelismos Hospital, Athens, Greece
| | - E Jahaj
- 1st Department of Critical Care & Pulmonary Services, Medical School, National & Kapodistrian University of Athens, Evangelismos Hospital, Athens, Greece
| | - A G Vassiliou
- GP Livanos and M Simou Laboratories, 1st Department of Critical Care & Pulmonary Services, Medical School, National & Kapodistrian University of Athens, Evangelismos Hospital, Athens, Greece
| | - I Dimopoulou
- 1st Department of Critical Care & Pulmonary Services, Medical School, National & Kapodistrian University of Athens, Evangelismos Hospital, Athens, Greece
| | - Z Mastora
- 1st Department of Critical Care & Pulmonary Services, Medical School, National & Kapodistrian University of Athens, Evangelismos Hospital, Athens, Greece
| | - S Tsakiris
- GP Livanos and M Simou Laboratories, 1st Department of Critical Care & Pulmonary Services, Medical School, National & Kapodistrian University of Athens, Evangelismos Hospital, Athens, Greece
| | - K Perreas
- GP Livanos and M Simou Laboratories, 1st Department of Critical Care & Pulmonary Services, Medical School, National & Kapodistrian University of Athens, Evangelismos Hospital, Athens, Greece
| | - M Tzanela
- Department of Endocrinology, Diabetes and Metabolism, Evangelismos Hospital, Athens, Greece
| | - C Routsi
- 1st Department of Critical Care & Pulmonary Services, Medical School, National & Kapodistrian University of Athens, Evangelismos Hospital, Athens, Greece
| | - S E Orfanos
- GP Livanos and M Simou Laboratories, 1st Department of Critical Care & Pulmonary Services, Medical School, National & Kapodistrian University of Athens, Evangelismos Hospital, Athens, Greece; 1st Department of Critical Care & Pulmonary Services, Medical School, National & Kapodistrian University of Athens, Evangelismos Hospital, Athens, Greece; 2nd Department of Critical Care, Medical School, National & Kapodistrian University of Athens, "Attikon" Hospital, Haidari, Athens, Greece.
| | - A Kotanidou
- GP Livanos and M Simou Laboratories, 1st Department of Critical Care & Pulmonary Services, Medical School, National & Kapodistrian University of Athens, Evangelismos Hospital, Athens, Greece; 1st Department of Critical Care & Pulmonary Services, Medical School, National & Kapodistrian University of Athens, Evangelismos Hospital, Athens, Greece
| |
Collapse
|
10
|
Ereş G, Su Akgün Demirtaş C, Toptaş E, Yılmaz AD, Sengüven B, Kamburoğlu K. Correlations between the Peptide Hormone Ghrelin and Proinflammatory Cytokines in Experimental Periodontitis Models of Female Rats at Different Stages of the Life Cycle. Arch Oral Biol 2019; 108:104518. [PMID: 31472279 DOI: 10.1016/j.archoralbio.2019.104518] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 07/20/2019] [Accepted: 08/06/2019] [Indexed: 01/07/2023]
Abstract
OBJECTIVE The aim of this study was to examine the correlations between the levels of ghrelin and inflammatory and bone metabolism markers in rats with periodontitis. DESIGN Thirty female Wistar rats (6 trial rats and 4 control rats in each group) were divided into pubertal, adult and postmenopausal groups. Periodontitis was induced by ligatures. On the 21 st day, blood was collected and all rats were then sacrificed. The levels of osteocalcin, osteoprotegerin, alkaline phosphatase, tumour necrosis factor alpha (TNF-α), interleukin 1 beta (IL-1β), acylated ghrelin, total ghrelin and soluble receptor activator of nuclear factor-kB ligands in the blood samples were measured using enzyme-linked immunosorbent assays. The jaws were decalcified in a Tris-EDTA solution and embedded in paraffin and 4-5 μm sections were cut for IL-β, TNF -α and ghrelin staining. RESULTS Significantly higher serum alkaline phosphatase levels were detected in the trial rats in the pubertal group than in the control rats (p = 0.033). In the postmenopausal group, ghrelin levels positively correlated with interleukin 1 beta levels (r = 0.708, p < 0.05). Among all trial rats, the postmenopausal group exhibited significantly higher levels of acylated ghrelin than the other groups (p = 0.001). Significantly higher osteoprotegerin levels were observed in the control rats than in the trial rats in the postmenopausal group (p = 0.012). Inflammation scores were significantly higher in adult trial rats than in controls (p = 0.024); significantly higher TNF-α levels were detected in postmenopausal experimental rats than in the adult experimental group (p = 0.025). CONCLUSIONS We concluded that total ghrelin levels in serum only correlated with IL-β levels in postmenopausal rats.
Collapse
Affiliation(s)
- Gülden Ereş
- Department of Periodontology, Faculty of Dentistry, Ankara University, Ankara, Turkey.
| | | | - Ece Toptaş
- Department of Periodontology, Faculty of Dentistry, Ankara University, Ankara, Turkey.
| | - Ayça Dilara Yılmaz
- Molecular Biology Laboratory, Faculty of Dentistry, Ankara University, Ankara, Turkey.
| | - Burcu Sengüven
- Department of Oral Pathology, Faculty of Dentistry, Gazi University, Ankara, Turkey.
| | - Kıvanç Kamburoğlu
- Department of Dentomaxillofacial Radiology, Faculty of Dentistry, Ankara University, Ankara, Turkey.
| |
Collapse
|
11
|
Yang C, Gao J, Du J, Yang X, Jiang J. Altered Neuroendocrine Immune Responses, a Two-Sword Weapon against Traumatic Inflammation. Int J Biol Sci 2017; 13:1409-1419. [PMID: 29209145 PMCID: PMC5715524 DOI: 10.7150/ijbs.21916] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/23/2017] [Indexed: 12/22/2022] Open
Abstract
During the occurrence and development of injury (trauma, hemorrhagic shock, ischemia and hypoxia), the neuroendocrine and immune system act as a prominent navigation leader and possess an inter-system crosstalk between the reciprocal information dissemination. The fundamental reason that neuroendocrinology and immunology could mix each other and permeate toward the field of traumatology is owing to their same biological languages or chemical information molecules (hormones, neurotransmitters, neuropeptides, cytokines and their corresponding receptors) shared by the neuroendocrine and immune systems. The immune system is not only modulated by the neuroendocrine system, but also can modulate the biological functions of the neuroendocrine system. The interactive linkage of these three systems precipitates the complicated space-time patterns for the courses of traumatic inflammation. Recently, compelling evidence indicates that the network linkage pattern that initiating agents of neuroendocrine responses, regulatory elements of immune cells and effecter targets for immune regulatory molecules arouse the resistance mechanism disorders, which supplies the beneficial enlightenment for the diagnosis and therapy of traumatic complications from the view of translational medicine. Here we review the alternative protective and detrimental roles as well as possible mechanisms of the neuroendocrine immune responses in traumatic inflammation.
Collapse
Affiliation(s)
- Ce Yang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Jie Gao
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Juan Du
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Xuetao Yang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Jianxin Jiang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| |
Collapse
|
12
|
Rivas PMS, Vechiato FMV, Borges BC, Rorato R, Antunes-Rodrigues J, Elias LLK. Increase in hypothalamic AMPK phosphorylation induced by prolonged exposure to LPS involves ghrelin and CB1R signaling. Horm Behav 2017; 93:166-174. [PMID: 28576646 DOI: 10.1016/j.yhbeh.2017.05.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 05/15/2017] [Accepted: 05/28/2017] [Indexed: 12/29/2022]
Abstract
Acute administration of lipopolysaccharide (LPS) from Gram-negative bacteria induces hypophagia. However, the repeated administration of LPS leads to desensitization of hypophagia, which is associated with increased hypothalamic p-AMPK expression. Because ghrelin and endocannabinoids modulate AMPK activity in the hypothalamus, we hypothesized that these neuromodulators play a role in the reversal of tolerance to hypophagia in rats under long-term exposure to LPS. Male Wistar rats were treated with single (1 LPS, 100μg/kg body weight, ip) or repeated injections of LPS over 6days (6 LPS). Food intake was reduced in the 1 LPS, but not in the 6 LPS group. 6 LPS rats showed an increased serum concentration of acylated ghrelin and reduced ghrelin receptor mRNA expression in the hypothalamus. Ghrelin injection (40μg/kg body weight, ip) increased food intake, body weight gain, p-AMPK hypothalamic expression, neuropeptide Y (NPY) and Agouti related peptide (AgRP) mRNA expression in control animals (Saline). However, in 6 LPS rats, ghrelin did not alter these parameters. Central administration of a CB1R antagonist (AM251, 200ng/μl in 5μl/rat) induced hypophagia in 6 LPS animals, suggesting that the endocannabinoid system contributes to preserved food intake during LPS tolerance. In the presence of AM251, the ability of ghrelin to phosphorylate AMPK in the hypothalamus of 6 LPS group was restored, but not its orexigenic effect. Our data highlight that the orexigenic effects of ghrelin require CB1R signaling downstream of AMPK activation. Moreover, CB1R-mediated pathways contribute to the absence of hypophagia during repeated exposure to endotoxin.
Collapse
Affiliation(s)
- Priscila M S Rivas
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Fernanda M V Vechiato
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Beatriz C Borges
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Rodrigo Rorato
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Jose Antunes-Rodrigues
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Lucila L K Elias
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil.
| |
Collapse
|
13
|
Chowen JA, Argente J. Ghrelin: A Link Between Energy Homeostasis and the Immune System. Endocrinology 2017; 158:2077-2081. [PMID: 28881864 DOI: 10.1210/en.2017-00350] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 04/21/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Julie A Chowen
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, 28009 Madrid, Spain
- Centro de Investigación Biomédica en Red: Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28009 Madrid, Spain
| | - Jesús Argente
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, 28009 Madrid, Spain
- Centro de Investigación Biomédica en Red: Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28009 Madrid, Spain
- Department of Pediatrics, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
- IMDEA Food Institute, CEI UAM + CSIC, 28049 Madrid, Spain
| |
Collapse
|
14
|
Oztas B, Sahin D, Kir H, Eraldemir FC, Musul M, Kuskay S, Ates N. The effect of leptin, ghrelin, and neuropeptide-Y on serum Tnf-Α, Il-1β, Il-6, Fgf-2, galanin levels and oxidative stress in an experimental generalized convulsive seizure model. Neuropeptides 2017; 61:31-37. [PMID: 27522536 DOI: 10.1016/j.npep.2016.08.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 08/04/2016] [Indexed: 12/26/2022]
Abstract
The objective of this study is to examine the effects of the endogenous ligands leptin, ghrelin, and neuropeptide Y (NPY) on seizure generation, the oxidant/antioxidant balance, and cytokine levels, which are a result of immune response in a convulsive seizure model. With this goal, Wistar rats were divided into 5 groups-Group 1: Saline, Group 2: Saline+PTZ (65mg/kg), Group 3: leptin (4mg/kg)+PTZ, Group 4: ghrelin (80μg/kg)+PTZ, and Group 5: NPY (60μg/kg)+PTZ. All injections were delivered intraperitoneally, and simultaneous electroencephalography (EEG) records were obtained. Seizure activity was scored by observing seizure behavior, and the onset time, latency, and seizure duration were determined according to the EEG records. At the end of the experiments, blood samples were obtained in all groups to assess the serum TNF-α, IL-1β, IL-6, FGF-2, galanin, nitric oxide (NOֹ), malondialdehyde (MDA), and glutathione (GSH) levels. The electrophysiological and biochemical findings (p<0.05) of this study show that all three peptides have anticonvulsant effects in the pentylenetetrazol (PTZ)-induced generalized tonic-clonic convulsive seizure model. The reduction of the levels of the pro-inflammatory cytokines TNF-α, IL-1β, and IL-6 caused by leptin, ghrelin, and NPY shows that these peptides may have anti-inflammatory effects in epileptic seizures. Also, leptin significantly increases the serum levels of the endogenous anticonvulsive agent galanin. The fact that each one of these endogenous peptides reduces the levels of MDA and increases the serum levels of GSH leads to the belief that they may have protective effects against oxidative damage that is thought to play a role in the pathogenesis of epilepsy. Our study contributes to the clarification of the role of these peptides in the brain in seizure-induced oxidative stress and immune system physiology and also presents new approaches to the etiology and treatment of tendency to epileptic seizures.
Collapse
Affiliation(s)
- Berrin Oztas
- Sisli Hamidiye Etfal Research and Training Hospital, Department of Biochemistry, Istanbul, Turkey
| | - Deniz Sahin
- Kocaeli University, Faculty of Medicine, Department of Physiology, Kocaeli, Turkey.
| | - Hale Kir
- Kocaeli University, Faculty of Medicine, Department of Biochemistry, Kocaeli, Turkey
| | - Fatma Ceyla Eraldemir
- Kocaeli University, Faculty of Medicine, Department of Biochemistry, Kocaeli, Turkey
| | - Mert Musul
- Carsamba State Hospital, Department of Biochemistry, Samsun, Turkey
| | - Sevinç Kuskay
- Kocaeli University, Faculty of Medicine, Department of Biochemistry, Kocaeli, Turkey
| | - Nurbay Ates
- Kocaeli University, Faculty of Medicine, Department of Physiology, Kocaeli, Turkey
| |
Collapse
|
15
|
Pereira JADS, da Silva FC, de Moraes-Vieira PMM. The Impact of Ghrelin in Metabolic Diseases: An Immune Perspective. J Diabetes Res 2017; 2017:4527980. [PMID: 29082258 PMCID: PMC5610818 DOI: 10.1155/2017/4527980] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 07/07/2017] [Accepted: 07/31/2017] [Indexed: 01/22/2023] Open
Abstract
Obesity and insulin resistance have reached epidemic proportions. Obesogenic conditions are associated with increased risk for the development of other comorbidities and obesity-related diseases. In metabolic disorders, there is chronic low-grade inflammation induced by the activation of immune cells, especially in metabolic relevant organs such as white adipose tissue (WAT). These immune cells are regulated by environmental and systemic cues. Ghrelin is a peptide secreted mainly by X/A-like gastric cells and acts through the growth hormone secretagogue receptor (GHS-R). This receptor is broadly expressed in the central nervous system (CNS) and in several cell types, including immune cells. Studies show that ghrelin induces an orexigenic state, and there is increasing evidence implicating an immunoregulatory role for ghrelin. Ghrelin mainly acts on the innate and adaptive immune systems to suppress inflammation and induce an anti-inflammatory profile. In this review, we discuss the immunoregulatory roles of ghrelin, the mechanisms by which ghrelin acts and potential pharmacological applications for ghrelin in the treatment of obesity-associated inflammatory diseases, such as type 2 diabetes (T2D).
Collapse
Affiliation(s)
- Jéssica Aparecida da Silva Pereira
- Laboratory of Immunometabolism, Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas, São Paulo, SP, Brazil
- Department of Immunology, Institute of Biomedical Science, University of São Paulo, São Paulo, SP, Brazil
| | - Felipe Corrêa da Silva
- Laboratory of Immunometabolism, Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas, São Paulo, SP, Brazil
| | - Pedro Manoel Mendes de Moraes-Vieira
- Laboratory of Immunometabolism, Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas, São Paulo, SP, Brazil
- Department of Immunology, Institute of Biomedical Science, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
16
|
Ozkorucu D, Cetin N, Sav NM, Yildiz B. Urine and serum ghrelin, sCD80 and sCTLA-4 levels in doxorubicin-induced experimental nephrotic syndrome. Int Urol Nephrol 2016; 48:1187-96. [PMID: 26922067 DOI: 10.1007/s11255-016-1249-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 02/16/2016] [Indexed: 12/24/2022]
Abstract
BACKGROUND Nephrotic syndrome (NS) is an immune-mediated disorder associated with hyperlipidemia. NS has been proposed to be mediated through CD80-related T cell immune response, which could be blocked using soluble cytotoxic T lymphocyte-associated s(CTLA)-4. Although ghrelin is a hormone-modulating lipid metabolism and suppressing immune system, the precise role of ghrelin in NS is not well established. METHODS We evaluated the levels of ghrelin, soluble CD80 (sCD80) and sCTLA4 in serum and urine in doxorubicin-induced NS in rats. We also investigated the relation between their levels and the levels of serum total cholesterol (TC), triglyceride, albumin and urine protein. RESULTS While urinary ghrelin levels were significantly lower in the nephrotic rats compared to the control group, serum ghrelin levels were comparable in the nephrotic and control rats. In contrast, serum and urinary sCD80 and sCTLA4 levels were higher in the nephrotic rats than the controls. The urinary ghrelin levels were negatively correlated with the levels of serum triglyceride, TC and urine protein, sCD80 and sCTLA4. The urine sCD80 levels were positively correlated with the TC, urine protein and urine sCTLA4 levels, and negatively correlated with the serum albumin. The urine sCTLA4 levels were positively correlated with the TC and urine protein levels and negatively correlated with the serum albumin levels. In regression analysis, the urine ghrelin levels significantly relate to urine sCD80 levels. Besides, hyperlipidemia in NS did not appear to be related to serum ghrelin levels. CONCLUSION Low urine ghrelin levels might be relevant to pathogenesis of doxorubicin-induced NS. The reduction in urine ghrelin levels might also be associated with increased levels of urine sCTLA4 and sCD80 which reflect proteinuria.
Collapse
Affiliation(s)
- Duygu Ozkorucu
- Department of Pediatric Nephrology, Faculty of Medicine, Eskisehir Osmangazi University, TR-26480, Eskisehir, Turkey
| | - Nuran Cetin
- Department of Pediatric Nephrology, Faculty of Medicine, Eskisehir Osmangazi University, TR-26480, Eskisehir, Turkey
| | - Nadide Melike Sav
- Department of Pediatric Nephrology, Faculty of Medicine, Eskisehir Osmangazi University, TR-26480, Eskisehir, Turkey
| | - Bilal Yildiz
- Department of Pediatric Nephrology, Faculty of Medicine, Eskisehir Osmangazi University, TR-26480, Eskisehir, Turkey.
| |
Collapse
|
17
|
Effect of Weight-Reduction in Obese Mice Lacking Toll-Like Receptor 5 and C57BL/6 Mice Fed a Low-Fat Diet. Mediators Inflamm 2015; 2015:852126. [PMID: 26681840 PMCID: PMC4670872 DOI: 10.1155/2015/852126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/20/2015] [Accepted: 10/25/2015] [Indexed: 12/02/2022] Open
Abstract
Background. This study aims to investigate the effect of feeding low-fat diet (LFD) to diet-induced obesity (DIO) mice lacking TLR5 (TLR5−/−), which have a tendency to develop glucose intolerance with increased adiposity, compared to that in C57BL/6 mice. Results. TLR5−/− and C57BL/6 male mice were divided into three subgroups: (1) control, mice were fed a standard AIN-76A (fat: 11.5 kcal%) diet for 12 weeks; (2) DIO, mice were fed a 58 kcal% high-fat diet (HFD) for 12 weeks; and (3) diet, mice were fed a HFD for 8 weeks to induce obesity and then switched to a 10.5 kcal% LFD for 4 weeks. The glucose intolerance in DIO TLR5−/− mice was more significant than that in DIO C57BL/6 mice and was not attenuated by a switch to the LFD. Weight-reduction with LFD had significantly decreased the epididymal fat mass in C57BL/6 mice but not in TLR5−/− mice. In addition, the LFD-fed TLR5−/− mice showed significantly higher expression of ghrelin in the serum and resistin in the epididymal fat than that in C57BL/6 mice. Conclusions. This study demonstrated that TLR5 gene knockout impairs some effects of weight-reduction in DIO.
Collapse
|
18
|
|
19
|
Yang C, Gao W, Yang X, Wang H, Du J, Zhong H, Zhou L, Zhou J, Zhang Y, Jiang J. CRH knockout inhibits the murine innate immune responses in association with endoplasmic reticulum stress after thermal injury. Surgery 2015; 158:255-65. [DOI: 10.1016/j.surg.2015.01.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 12/18/2014] [Accepted: 01/29/2015] [Indexed: 01/07/2023]
|
20
|
Sun GX, Ding R, Li M, Guo Y, Fan LP, Yue LS, Li LY, Zhao M. Ghrelin attenuates renal fibrosis and inflammation of obstructive nephropathy. J Urol 2014; 193:2107-15. [PMID: 25481038 DOI: 10.1016/j.juro.2014.11.098] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2014] [Indexed: 10/24/2022]
Abstract
PURPOSE Ghrelin is a gastric peptide that modulates multiple biological functions, of which the stimulation of food intake is the most well-known function. Ghrelin also exerts potential anti-inflammatory and antifibrotic properties in different organs but to our knowledge whether ghrelin inhibits the progression of renal fibrosis is unknown. Thus, we investigated the effect and underlying mechanisms of ghrelin in a rat model of renal fibrosis. MATERIALS AND METHODS Male Sprague Dawley® rats were divided into 4 groups, including vehicle or ghrelin treated sham operated groups and vehicle or ghrelin treated unilateral ureteral obstruction groups. Kidneys harvested on postoperative day 7 or 14 were evaluated for renal inflammation, fibrosis and apoptosis, and the expression of profibrotic and proinflammatory factors. RESULTS Ghrelin inhibited renal fibrosis by attenuating collagen production, extracellular matrix deposition, and α-smooth muscle actin and fibronectin expression. Ghrelin administration decreased macrophage infiltration and several proinflammatory cytokines, including tumor necrosis factor-α, interleukin-1β and monocyte chemotactic protein-1, as well as phosphorylated nuclear factor-κB p65. Ghrelin also inhibited myofibroblast accumulation by blocking the transforming growth factor-β1/Smad3 signaling pathway. Furthermore, ghrelin attenuated renal tubular cell apoptosis and epithelial-mesenchymal transition processes induced by unilateral ureteral obstruction injury. CONCLUSIONS These findings indicate that ghrelin is a potent antifibrotic agent that may have therapeutic potential in patients with obstructive nephropathy.
Collapse
Affiliation(s)
- Guang-Xi Sun
- Department of Organ Transplantation and National Key Clinic Specialty, Neurosurgery Institute of Guangdong Province, Department of Neurosurgery (RD), Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Rui Ding
- Department of Organ Transplantation and National Key Clinic Specialty, Neurosurgery Institute of Guangdong Province, Department of Neurosurgery (RD), Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Ming Li
- Department of Organ Transplantation and National Key Clinic Specialty, Neurosurgery Institute of Guangdong Province, Department of Neurosurgery (RD), Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Ying Guo
- Department of Organ Transplantation and National Key Clinic Specialty, Neurosurgery Institute of Guangdong Province, Department of Neurosurgery (RD), Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Li-Pei Fan
- Department of Organ Transplantation and National Key Clinic Specialty, Neurosurgery Institute of Guangdong Province, Department of Neurosurgery (RD), Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Liang-Sheng Yue
- Department of Organ Transplantation and National Key Clinic Specialty, Neurosurgery Institute of Guangdong Province, Department of Neurosurgery (RD), Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Liu-Yang Li
- Department of Organ Transplantation and National Key Clinic Specialty, Neurosurgery Institute of Guangdong Province, Department of Neurosurgery (RD), Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Ming Zhao
- Department of Organ Transplantation and National Key Clinic Specialty, Neurosurgery Institute of Guangdong Province, Department of Neurosurgery (RD), Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China.
| |
Collapse
|
21
|
Prodam F, Filigheddu N. Ghrelin gene products in acute and chronic inflammation. Arch Immunol Ther Exp (Warsz) 2014; 62:369-84. [PMID: 24728531 DOI: 10.1007/s00005-014-0287-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 03/21/2014] [Indexed: 12/27/2022]
Abstract
Ghrelin gene products--the peptides ghrelin, unacylated ghrelin, and obestatin--have several actions on the immune system, opening new perspectives within neuroendocrinology, metabolism and inflammation. The aim of this review is to summarize the available evidence regarding the less known role of these peptides in the machinery of inflammation and autoimmunity, outlining some of their most promising therapeutic applications.
Collapse
Affiliation(s)
- Flavia Prodam
- Departmant of Health Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara, Italy
| | | |
Collapse
|
22
|
Gahete MD, Rincón-Fernández D, Villa-Osaba A, Hormaechea-Agulla D, Ibáñez-Costa A, Martínez-Fuentes AJ, Gracia-Navarro F, Castaño JP, Luque RM. Ghrelin gene products, receptors, and GOAT enzyme: biological and pathophysiological insight. J Endocrinol 2014; 220:R1-24. [PMID: 24194510 DOI: 10.1530/joe-13-0391] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ghrelin is a 28-amino acid acylated hormone, highly expressed in the stomach, which binds to its cognate receptor (GHSR1a) to regulate a plethora of relevant biological processes, including food intake, energy balance, hormonal secretions, learning, inflammation, etc. However, ghrelin is, in fact, the most notorious component of a complex, intricate regulatory system comprised of a growing number of alternative peptides (e.g. obestatin, unacylated ghrelin, and In1-ghrelin, etc.), known (GHSRs) and, necessarily unknown receptors, as well as modifying enzymes (e.g. ghrelin-O-acyl-transferase), which interact among them as well as with other regulatory systems in order to tightly modulate key (patho)-physiological processes. This multiplicity of functions and versatility of the ghrelin system arise from a dual, genetic and functional, complexity. Importantly, a growing body of evidence suggests that dysregulation in some of the components of the ghrelin system can lead to or influence the development and/or progression of highly concerning pathologies such as endocrine-related tumors, inflammatory/cardiovascular diseases, and neurodegeneration, wherein these altered components could be used as diagnostic, prognostic, or therapeutic targets. In this context, the aim of this review is to integrate and comprehensively analyze the multiple components and functions of the ghrelin system described to date in order to define and understand its biological and (patho)-physiological significance.
Collapse
Affiliation(s)
- Manuel D Gahete
- Department of Cell Biology, Physiology and Immunology, Campus Universitario de Rabanales, Edificio Severo Ochoa (C6), Planta 3, University of Córdoba, 14014-Córdoba; Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), University of Córdoba; Reina Sofia University Hospital, Córdoba; and CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
CagA-positive Helicobacter pylori infection and reduced sperm motility, vitality, and normal morphology. DISEASE MARKERS 2013; 35:229-34. [PMID: 24167371 PMCID: PMC3780520 DOI: 10.1155/2013/919174] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 08/20/2013] [Accepted: 08/26/2013] [Indexed: 12/17/2022]
Abstract
Helicobacter pylori (HP) infection, particularly when caused by strains expressing CagA, may be considered a concomitant cause of male and female reduced fertility. This study explored, in 87 HP-infected males, the relationship between infection by CagA-positive HP strains and sperm parameters. HP infection and CagA status were determined by ELISA and Western blotting; semen analysis was performed following WHO guidelines. The amino acid sequence of human enzymes involved in glycolysis and oxidative metabolism were “blasted” with peptides expressed by HP J99.
Thirty-seven patients (42.5%) were seropositive for CagA. Sperm motility (18% versus 32%; P < 0.01), sperm vitality (35% versus 48%; P < 0.01) and the percentage of sperm with normal forms (18% versus 22%; P < 0.05) in the CagA-positive group were significantly reduced versus those in the CagA-negative group. All the considered enzymes showed partial linear homology with HP peptides, but four enzymes aligned with four different segments of the same cag island protein. We hypothesize a relationship between infection by strains expressing CagA and decreased sperm quality. Potentially increased systemic levels of inflammatory cytokines that occur in infection by CagA-positive strains and autoimmune phenomena that involve molecular mimicry could explain the pathogenetic mechanism of alterations observed.
Collapse
|
24
|
King JA, Wasse LK, Stensel DJ, Nimmo MA. Exercise and ghrelin. A narrative overview of research. Appetite 2013; 68:83-91. [PMID: 23624293 DOI: 10.1016/j.appet.2013.04.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 04/11/2013] [Accepted: 04/18/2013] [Indexed: 12/20/2022]
Abstract
Since its discovery in 1999, ghrelin has been implicated in a multiplicity of physiological activities. Most notably, ghrelin has an important influence on energy metabolism and after the identification of its potent appetite stimulating effects ghrelin has been termed the 'hunger hormone'. Exercise is a stimulus which has a significant impact on energy homeostasis and consequently a substantial body of research has investigated the interaction between exercise and ghrelin. This narrative review provides an overview of research relating to the acute and chronic effects of exercise on circulating ghrelin (acylated, unacylated and total). To enhance study comparability, the scope of this review is limited to research undertaken in adult humans and consequently studies involving children and animals are not discussed. Although there is significant ambiguity within much of the early research, our review suggests that acute exercise transiently interferes with the production of acylated ghrelin. Furthermore, the consensus of evidence indicates that exercise training does not influence circulating ghrelin independent of weight loss. Additional research is needed to verify and extend the available literature, particularly by uncovering the mechanisms governing acute exercise-related changes and characterising responses in other populations such as females, older adults, and the obese.
Collapse
Affiliation(s)
- James A King
- School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire LE11 3TU, UK.
| | | | | | | |
Collapse
|
25
|
Méquinion M, Langlet F, Zgheib S, Dickson S, Dehouck B, Chauveau C, Viltart O. Ghrelin: central and peripheral implications in anorexia nervosa. Front Endocrinol (Lausanne) 2013; 4:15. [PMID: 23549309 PMCID: PMC3581855 DOI: 10.3389/fendo.2013.00015] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 02/01/2013] [Indexed: 11/15/2022] Open
Abstract
Increasing clinical and therapeutic interest in the neurobiology of eating disorders reflects their dramatic impact on health. Chronic food restriction resulting in severe weight loss is a major symptom described in restrictive anorexia nervosa (AN) patients, and they also suffer from metabolic disturbances, infertility, osteopenia, and osteoporosis. Restrictive AN, mostly observed in young women, is the third largest cause of chronic illness in teenagers of industrialized countries. From a neurobiological perspective, AN-linked behaviors can be considered an adaptation that permits the endurance of reduced energy supply, involving central and/or peripheral reprograming. The severe weight loss observed in AN patients is accompanied by significant changes in hormones involved in energy balance, feeding behavior, and bone formation, all of which can be replicated in animals models. Increasing evidence suggests that AN could be an addictive behavior disorder, potentially linking defects in the reward mechanism with suppressed food intake, heightened physical activity, and mood disorder. Surprisingly, the plasma levels of ghrelin, an orexigenic hormone that drives food-motivated behavior, are increased. This increase in plasma ghrelin levels seems paradoxical in light of the restrained eating adopted by AN patients, and may rather result from an adaptation to the disease. The aim of this review is to describe the role played by ghrelin in AN focusing on its central vs. peripheral actions. In AN patients and in rodent AN models, chronic food restriction induces profound alterations in the « ghrelin » signaling that leads to the development of inappropriate behaviors like hyperactivity or addiction to food starvation and therefore a greater depletion in energy reserves. The question of a transient insensitivity to ghrelin and/or a potential metabolic reprograming is discussed in regard of new clinical treatments currently investigated.
Collapse
Affiliation(s)
- Mathieu Méquinion
- UMR INSERM 837, Development and Plasticity of Postnatal BrainLille, France
| | - Fanny Langlet
- UMR INSERM 837, Development and Plasticity of Postnatal BrainLille, France
| | - Sara Zgheib
- Pathophysiology of inflammatory of bone diseases, Université Lille Nord de France-ULCO – Lille 2Boulogne sur Mer, France
| | - Suzanne Dickson
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of GothenburgGothenburg, Sweden
- Department of Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of GothenburgGothenburg, Sweden
| | - Bénédicte Dehouck
- UMR INSERM 837, Development and Plasticity of Postnatal BrainLille, France
- Université Lille Nord de France – Université d’ArtoisLiévin, France
| | - Christophe Chauveau
- Pathophysiology of inflammatory of bone diseases, Université Lille Nord de France-ULCO – Lille 2Boulogne sur Mer, France
| | - Odile Viltart
- UMR INSERM 837, Development and Plasticity of Postnatal BrainLille, France
- Université Lille Nord de France-USTL (Lille 1)Villeneuve d’Ascq, France
- *Correspondence: Odile Viltart, Development and Plasticity of the Postnatal Brain, Team 2, Jean-Pierre Aubert Research Center, UMR INSERM 837, Bât Biserte, 1 place de Verdun, 59,045 Lille cedex, France. e-mail:
| |
Collapse
|
26
|
Bottasso O, Bay ML, Besedovsky H, Del Rey A. Adverse neuro-immune-endocrine interactions in patients with active tuberculosis. Mol Cell Neurosci 2012; 53:77-85. [PMID: 23147110 DOI: 10.1016/j.mcn.2012.11.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 11/01/2012] [Accepted: 11/02/2012] [Indexed: 12/21/2022] Open
Abstract
The nervous, endocrine and immune systems play a crucial role in maintaining homeostasis and interact with each other for a successful defensive strategy against injurious agents. However, the situation is different in long-term diseases with marked inflammation, in which defensive mechanisms become altered. In the case of tuberculosis (TB), this is highlighted by several facts: an imbalance of plasma immune and endocrine mediators, that results in an adverse environment for mounting an adequate response against mycobacteria and controlling inflammation; the demonstration that dehidroepiandrosterone (DHEA) secretion by a human adrenal cell line can be inhibited by culture supernatants from Mycobacterium tuberculosis-stimulated peripheral blood mononuclear cells - PBMC - of TB patients, with this effect being partly reverted when neutralizing transforming growth factor-β in such supernantants; the in vitro effects of adrenal steroids on the specific immune response of PBMC from TB patients, that is a cortisol inhibition of mycobacterial antigen-driven lymphoproliferation and interferon-γ production as well as a suppression of TGF-β production in DHEA-treated PBMC; and lastly the demonstration that immune and endocrine compounds participating in the regulation of energy sources and immune activity correlated with the consumption state of TB patients. Collectively, immune-endocrine disturbances of TB patients are involved in critical components of disease pathology with implications in the impaired clinical status and unfavorable disease outcome. This article is part of a Special Issue entitled 'Neuroinflammation in neurodegeneration and neurodysfunction'.
Collapse
Affiliation(s)
- Oscar Bottasso
- Instituto de Inmunología, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Argentina.
| | | | | | | |
Collapse
|
27
|
Klein S, Parvizi N. Visualization of immunoreactive growth hormone in cultured peripheral bovine lymphocytes. Growth Horm IGF Res 2012; 22:59-63. [PMID: 22341304 DOI: 10.1016/j.ghir.2012.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 01/10/2012] [Accepted: 01/20/2012] [Indexed: 11/19/2022]
Abstract
Growth hormone (GH) has been shown to be released by immune cells in vitro. Thus, the intracellular confinement of GH immunoreactivity was investigated in cultured bovine lymphocytes using con-focal microscopy. Peripheral blood lymphocytes from cows in early pregnancy (10-20 days post insemination; pi) or during mid-pregnancy (day 110-140 pi) were harvested and cultured for 48 h in presence of phytohemagglutinin-M (PHA-M) or served as controls. Thereafter, immunocytochemistry was conducted using a homologous GH-antibody. Double staining (GH-antibody and directly DYE 549 labeled CD3-antibody) was performed to classify the cells. Con-focal laser scanning was applied verifying the immunofluorescence labeling. Interestingly, the presence of GH immunoreactivity in the cytoplasm, which indicates GH synthesis, was restricted to small cells. Whereas, few T-like cells revealed surface bound GH. Lowest immunoreactivity, concerning the number of the total labeled cells as well as the intensity of labeling was recorded in early pregnancy. Stimulation with PHA-M enhanced total labeled cells in early pregnancy. In contrast, PHA-M had no such effects in mid-pregnancy. The results confirm the specific regulation of synthesis of lymphocytic GH during pregnancy in the cow. The identification of cells producing GH and the elucidation of the mechanisms underlying the expression of GH in larger number of cells during mid-pregnancy than in the early pregnancy need further investigations.
Collapse
Affiliation(s)
- Sabine Klein
- Department of Functional Genomics and Bioregulation, Institute of Farm Animal Genetics Mariensee, FLI, Höltystr. 10, 31535 Neustadt, Germany
| | | |
Collapse
|
28
|
Pharmacological characterization of the ghrelin receptor mediating its inhibitory action on inflammatory pain in rats. Amino Acids 2012; 43:1751-9. [PMID: 22407485 PMCID: PMC3448055 DOI: 10.1007/s00726-012-1260-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 02/25/2012] [Indexed: 01/23/2023]
Abstract
Recent research suggests a role for ghrelin in the modulation of inflammatory disorders. However, the type of ghrelin receptor (GHS-R) involved in both the anti-inflammatory and anti-hyperalgesic actions of ghrelin remains to be characterized. In this study, we examined whether the inhibitory effect of ghrelin in the development of hyperalgesia and edema induced by intraplantar carrageenan administration depends on an interaction with GHS-R1a. Both central (1 nmol/rat, i.c.v.) and peripheral (40 nmol/kg, i.p.) administration of the selective GHS-R1a agonist EP1572 had no effect on carrageenan-induced hyperalgesia measured by Randall-Selitto test and paw edema. Furthermore, pre-treatment with the selective GHS-R1a antagonist, D-lys(3)-GHRP-6 (3 nmol/rat, i.c.v.) failed to prevent the anti-hyperalgesic and anti-inflammatory effects exerted by central ghrelin administration (1 nmol/rat), thus indicating that the type 1a GHS-R is not involved in these peptide activities. Accordingly, both central (1 and 2 nmol/rat, i.c.v.) and peripheral (40 and 80 nmol/kg, i.p.) administration of desacyl-ghrelin (DAG), which did not bind GHS-R1a, induced a significant reduction of the hyperalgesic and edematous activities of carrageenan. In conclusion, we have shown for the first time that DAG shares with ghrelin an inhibitory role in the development of hyperalgesia, as well as the paw edema induced by carrageenan and that a ghrelin receptor different from type 1a is involved in the anti-inflammatory activities of the peptide.
Collapse
|
29
|
Müller A, Möller M, Adams LA, Warren RM, Hoal EG, van Helden PD. Comparative analysis of a putative tuberculosis-susceptibility gene, MC3R, and pseudogene sequences in cattle, African buffalo, hyena, rhinoceros and other African bovids and ruminants. Cytogenet Genome Res 2012; 136:117-22. [PMID: 22286663 DOI: 10.1159/000335464] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2011] [Indexed: 12/17/2022] Open
Abstract
Studies in humans have suggested the possible involvement of melanocortin-3-receptor (MC3R) and other components of the central melanocortin system in host defense against mycobacteria. We report a genomic DNA nucleotide sequence highly homologous to human MC3R in several bovids and non-bovid African wildlife species. Nucleotide sequence analysis indicates that the orthologous genes of cattle and buffalo are highly homologous (89.4 and 90%, respectively) to the human MC3R gene. Sequence results also identified a typical non-functional, duplicated pseudogene, MC3RP, in 7 species from the family Bovidae. No pseudogene was found in animals outside Bovidae. The presence of the pseudogene in tuberculosis-susceptible species could have possible immunomodulatory effects on susceptibility to bovine tuberculosis infection, as well as a considerable influence on energy metabolism and food conversion efficiency.
Collapse
Affiliation(s)
- A Müller
- DST/NRF Centre of Excellence for Biomedical TB Research/MRC Centre for Molecular and Cellular Biology/ Division of Molecular Biology and Human Genetics, Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa.
| | | | | | | | | | | |
Collapse
|
30
|
Patel K, Dixit VD, Lee JH, Kim JW, Schaffer EM, Nguyen D, Taub DD. Identification of ghrelin receptor blocker, D-[Lys3] GHRP-6 as a CXCR4 receptor antagonist. Int J Biol Sci 2011; 8:108-17. [PMID: 22211109 PMCID: PMC3248652 DOI: 10.7150/ijbs.8.108] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 11/10/2011] [Indexed: 12/19/2022] Open
Abstract
[D-Lys3]-Growth Hormone Releasing Peptide-6 (DLS) is widely utilized in vivo and in vitro as a selective ghrelin receptor (GHS-R) antagonist. Unexpectedly, we identified that DLS also has the ability to block CXCL12 binding and activity through CXCR4 on T cells and peripheral blood mononuclear cells (PBMCs). Moreover, as CXCR4 has been shown to act as a major co-receptor for HIV-1 entry into CD4 positive host cells, we have also found that DLS partially blocks CXCR4-mediated HIV-1 entry and propagation in activated human PBMCs. These data demonstrate that DLS is not the specific and selective antagonist as thought for GHS-R1a and appears to have additional effects on the CXCR4 chemokine receptor. Our findings also suggest that structural analogues that mimic DLS binding properties may also have properties of blocking HIV infectivity, CXCR4 dependent cancer cell migration and attenuating chemokine-mediated immune cell trafficking in inflammatory disorders.
Collapse
Affiliation(s)
- Kalpesh Patel
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Intramural Program, NIH, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Santucci N, D'Attilio L, Kovalevski L, Bozza V, Besedovsky H, del Rey A, Bay ML, Bottasso O. A multifaceted analysis of immune-endocrine-metabolic alterations in patients with pulmonary tuberculosis. PLoS One 2011; 6:e26363. [PMID: 22022605 PMCID: PMC3192801 DOI: 10.1371/journal.pone.0026363] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 09/25/2011] [Indexed: 12/16/2022] Open
Abstract
Our study investigated the circulating levels of factors involved in immune-inflammatory-endocrine-metabolic responses in patients with tuberculosis with the aim of uncovering a relation between certain immune and hormonal patterns, their clinical status and in vitro immune response. The concentration of leptin, adiponectin, IL-6, IL-1β, ghrelin, C-reactive protein (CRP), cortisol and dehydroepiandrosterone (DHEA), and the in vitro immune response (lymphoproliferation and IFN-γ production) was evaluated in 53 patients with active untreated tuberculosis, 27 household contacts and 25 healthy controls, without significant age- or sex-related differences. Patients had a lower body mass index (BMI), reduced levels of leptin and DHEA, and increased concentrations of CRP, IL-6, cortisol, IL-1β and nearly significant adiponectin values than household contacts and controls. Within tuberculosis patients the BMI and leptin levels were positively correlated and decreased with increasing disease severity, whereas higher concentrations of IL-6, CRP, IL-1β, cortisol, and ghrelin were seen in cases with moderate to severe tuberculosis. Household contacts had lower DHEA and higher IL-6 levels than controls. Group classification by means of discriminant analysis and the k-nearest neighbor method showed that tuberculosis patients were clearly different from the other groups, having higher levels of CRP and lower DHEA concentration and BMI. Furthermore, plasma leptin levels were positively associated with the basal in vitro IFN-γ production and the ConA-driven proliferation of cells from tuberculosis patients. Present alterations in the communication between the neuro-endocrine and immune systems in tuberculosis may contribute to disease worsening.
Collapse
Affiliation(s)
- Natalia Santucci
- Instituto de Inmunología, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Luciano D'Attilio
- Instituto de Inmunología, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Leandro Kovalevski
- Instituto de Investigaciones Teóricas y Aplicadas, Escuela de Estadística, Facultad de Ciencias Económicas y Estadística, Universidad Nacional de Rosario, Rosario, Argentina
| | - Verónica Bozza
- Instituto de Inmunología, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Hugo Besedovsky
- Institute of Physiology and Pathophysiology, Marburg, Germany
| | - Adriana del Rey
- Institute of Physiology and Pathophysiology, Marburg, Germany
| | - María Luisa Bay
- Instituto de Inmunología, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Oscar Bottasso
- Instituto de Inmunología, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
32
|
Baatar D, Patel K, Taub DD. The effects of ghrelin on inflammation and the immune system. Mol Cell Endocrinol 2011; 340:44-58. [PMID: 21565248 DOI: 10.1016/j.mce.2011.04.019] [Citation(s) in RCA: 189] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 04/15/2011] [Accepted: 04/22/2011] [Indexed: 12/25/2022]
Abstract
A number of hormones and metabolic mediators signal the brain of changes in the body's energy status and when an imbalance occurs; the brain coordinates the appropriate changes in energy intake and utilization via the control of appetite and food consumption. Under conditions of chronic inflammation and immune activation, there is often a significant loss of body mass and appetite suggesting the presence of shared ligands and signaling pathways mediating "crosstalk" between the immune and neuroendocrine systems. Ghrelin, the endogenous ligand for growth hormone secretagogue receptor (GHS-R), is produced primarily by cells in the stomach and serves as a potent circulating orexigenic hormone controlling food intake, energy expenditure, adiposity and GH secretion. The functional roles of ghrelin and other growth hormone secretagogues (GHS) within the immune system and under states of inflammatory stress and injury are only now coming to light. A number of reports over the past decade have described ghrelin to be a potent anti-inflammatory mediator both in vitro and in vivo and a promising therapeutic agent in the treatment of inflammatory diseases and injury. Moreover, ghrelin has also been shown to promote lymphocyte development in the primary lymphoid organs (bone marrow and thymus) and to ablate age-associated thymic involution. In the current report, we review the literature supporting a role for ghrelin as an anti-inflammatory agent and immunoregulatory hormone/cytokine and its potential use in the treatment of inflammatory diseases and injury.
Collapse
Affiliation(s)
- Dolgor Baatar
- Laboratory of Molecular Biology and Immunology, NIA-IRP, NIH, Biomedical Research Center, Baltimore, MD 21224, USA
| | | | | |
Collapse
|
33
|
Miegueu P, St Pierre D, Broglio F, Cianflone K. Effect of desacyl ghrelin, obestatin and related peptides on triglyceride storage, metabolism and GHSR signaling in 3T3-L1 adipocytes. J Cell Biochem 2011; 112:704-14. [PMID: 21268092 DOI: 10.1002/jcb.22983] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Acyl-ghrelin (AG), desacyl-ghrelin (DAG) and obestatin are all derived from the same gene transcript; however their plasma levels do not necessarily change in parallel. The influence of these peptides towards the development of obesity and their direct effects on adipocyte physiology has not been thoroughly investigated. This study was designed to evaluate the direct effects of peptides of the ghrelin family on preadipocyte proliferation, differentiation and adipocyte lipid and glucose metabolism in 3T3-L1 cells. 3T3 cells were treated with physiological peptide concentrations for 1 h to 9 days, and the relevant assays measured. In preadipocytes, AG, GHRP-6 and DAG stimulated proliferation, measured as (3)H-thymidine incorporation (up to 200%, P < 0.05), while all peptides stimulated differentiation (up to 300%, P < 0.01) as compared to standard differentiation conditions. In adipocytes, FA uptake was increased in a concentration-dependent manner especially with obestatin (three- to fourfold, P < 0.001) and DAG (three- to fivefold, P < 0.001). By contrast, glucose transport was unchanged. DAG and obestatin significantly decreased lipolysis measured as non-esterified fatty acid and glycerol release by 50%, P < 0.05-0.01 and 51%, P < 0.01, respectively. Interestingly, DAG stimulation of FA uptake was blocked with GHSR1 antagonist (D-lys(3))-GHRP-6 (P < 0.05), phospholipase C inhibitor U73122 and phosphatidylinositol-3-kinase inhibitor wortmannin (P < 0.001). Finally, in omental but not subcutaneous human adipose tissue, GHSR1 correlated with BMI (r = 0.549, P < 0.05) and insulin (r = 0.681, P < 0.01). Taken together, these results suggest that ghrelin-related peptides may directly affect adipose tissue metabolism.
Collapse
Affiliation(s)
- Pierre Miegueu
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC, Canada
| | | | | | | |
Collapse
|
34
|
Moretti E, Collodel G, Iacoponi F, Geminiani M, Pascarelli NA, Campagna S, Franci B, Figura N. Detection of obestatin in seminal plasma and its relationship with ghrelin and semen parameters. Fertil Steril 2011; 95:2303-9. [PMID: 21474128 DOI: 10.1016/j.fertnstert.2011.03.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 03/09/2011] [Accepted: 03/09/2011] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To investigate the occurrence of ghrelin and obestatin in human semen. DESIGN Prospective study. SETTING University, center for research and therapy of male infertility. PATIENT(S) 112 consecutively selected men. INTERVENTION(S) Family history, clinical and physical examination, radioimmunoassay for ghrelin and obestatin determinations, semen analysis, annexinV/propidium iodide assay. MAIN OUTCOME MEASURE(S) Ghrelin and obestatin detected in the semen and relationships with semen parameters and conditions influencing semen quality (smoking, varicocele, ex varicocele, leukocytospermia). RESULT(S) The levels of both peptides in semen were higher versus serum. Linear correlations between ghrelin and obestatin levels in serum and in semen were observed. Serum ghrelin levels were negatively correlated with the men's ages. Semen obestatin levels were positively correlated with sperm concentration and motility. Obestatin levels were decreased in the semen of smokers and in the presence of leukocytospermia. CONCLUSION(S) This is the first study on the presence of obestatin in human semen and its relationship with sperm concentration and motility, suggesting a possible role of the peptide in controlling cell proliferation and survival. Further investigations are required to explore the exact role of obestatin and ghrelin in human semen.
Collapse
Affiliation(s)
- Elena Moretti
- Department of Biomedical Sciences, Applied Biology Section, Interdepartmental Centre for Research and Therapy of Male Infertility, University of Siena, Siena, Italy
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Rose MK, Parvizi N. Up-regulation of lymphocytic growth hormone secretion during the luteal phase of cycle and early pregnancy. ACTA ACUST UNITED AC 2011; 167:1-4. [DOI: 10.1016/j.regpep.2010.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 10/12/2010] [Accepted: 11/10/2010] [Indexed: 10/18/2022]
|
36
|
De Winter BY, De Man JG. Interplay between inflammation, immune system and neuronal pathways: Effect on gastrointestinal motility. World J Gastroenterol 2010; 16:5523-35. [PMID: 21105185 PMCID: PMC2992670 DOI: 10.3748/wjg.v16.i44.5523] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Sepsis is a systemic inflammatory response representing the leading cause of death in critically ill patients, mostly due to multiple organ failure. The gastrointestinal tract plays a pivotal role in the pathogenesis of sepsis-induced multiple organ failure through intestinal barrier dysfunction, bacterial translocation and ileus. In this review we address the role of the gastrointestinal tract, the mediators, cell types and transduction pathways involved, based on experimental data obtained from models of inflammation-induced ileus and (preliminary) clinical data. The complex interplay within the gastrointestinal wall between mast cells, residential macrophages and glial cells on the one hand, and neurons and smooth muscle cells on the other hand, involves intracellular signaling pathways, Toll-like receptors and a plethora of neuroactive substances such as nitric oxide, prostaglandins, cytokines, chemokines, growth factors, tryptases and hormones. Multidirectional signaling between the different components in the gastrointestinal wall, the spinal cord and central nervous system impacts inflammation and its consequences. We propose that novel therapeutic strategies should target inflammation on the one hand and gastrointestinal motility, gastrointestinal sensitivity and even pain signaling on the other hand, for instance by impeding afferent neuronal signaling, by activation of the vagal anti-inflammatory pathway or by the use of pharmacological agents such as ghrelin and ghrelin agonists or drugs interfering with the endocannabinoid system.
Collapse
|
37
|
Rejuvenation of the aging thymus: growth hormone-mediated and ghrelin-mediated signaling pathways. Curr Opin Pharmacol 2010; 10:408-24. [PMID: 20595009 DOI: 10.1016/j.coph.2010.04.015] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Revised: 04/28/2010] [Accepted: 04/29/2010] [Indexed: 12/20/2022]
Abstract
One of the major fundamental causes for the aging of the immune system is the structural and functional involution of the thymus, and the associated decline in de novo naïve T-lymphocyte output. This loss of naïve T-cell production weakens the ability of the adaptive immune system to respond to new antigenic stimuli and eventually leads to a peripheral T-cell bias to the memory phenotype. While the precise mechanisms responsible for age-associated thymic involution remain unknown, a variety of theories have been forwarded including the loss of expression of various growth factors and hormones that influence the lymphoid compartment and promote thymic function. Extensive studies examining two hormones, namely growth hormone (GH) and ghrelin (GRL), have demonstrated their contributions to thymus biology. In the current review, we discuss the literature supporting a role for these hormones in thymic physiology and age-associated thymic involution and their potential use in the restoration of thymic function in aged and immunocompromised individuals.
Collapse
|
38
|
Ghrelin in female and male reproduction. INTERNATIONAL JOURNAL OF PEPTIDES 2010; 2010. [PMID: 20700403 PMCID: PMC2911616 DOI: 10.1155/2010/158102] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 12/23/2009] [Accepted: 01/09/2010] [Indexed: 11/23/2022]
Abstract
Ghrelin and one of its functional receptors, GHS-R1a (Growth Hormone Secretagogue Receptor 1a), were firstly studied about 15 years. Ghrelin is a multifunctional peptide hormone that affects several biological functions including food intake, glucose release, cell proliferation… Ghrelin and GHS-R1a are expressed in key cells of both male and female reproductive organs in several species including fishes, birds, and mammals suggesting a well-conserved signal through the evolution and a role in the control of fertility. Ghrelin could be a component of the complex series of nutrient sensors such as adipokines, and nuclear receptors, which regulate reproduction in function of the energy stores. The objective of this paper was to report the available information about the ghrelin system and its role at the level of the hypothalamic-pituitary-gonadal axis in both sexes.
Collapse
|
39
|
Bossenmeyer-Pourié C, Blaise S, Pourié G, Tomasetto C, Audonnet S, Ortiou S, Koziel V, Rio MC, Daval JL, Guéant JL, Beck B. Methyl donor deficiency affects fetal programming of gastric ghrelin cell organization and function in the rat. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 176:270-7. [PMID: 19948829 DOI: 10.2353/ajpath.2010.090153] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Methyl donor deficiency (MDD) during pregnancy influences intrauterine development. Ghrelin is expressed in the stomach of fetuses and influences fetal growth, but MDD influence on gastric ghrelin is unknown. We examined the gastric ghrelin system in MDD-induced intrauterine growth retardation. By using specific markers and approaches (such as periodic acid-Schiff, bromodeoxyuridine, homocysteine, terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling, immunostaining, reverse transcription-polymerase chain reaction), we studied the gastric oxyntic mucosa cellular organization and ghrelin gene expression in the mucosa in 20-day-old fetuses and weanling pups, and plasma ghrelin concentration in weanling rat pups of dams either normally fed or deprived of choline, folate, vitamin B6, and vitamin B12 during gestation and suckling periods. MDD fetuses weighed less than controls; the weight deficit reached 57% at weaning (P < 0.001). Both at the end of gestation and at weaning, they presented with an aberrant gastric oxyntic mucosa formation with loss of cell polarity, anarchic cell migration, abnormal progenitor differentiation, apoptosis, and signs of surface layer erosion. Ghrelin cells were abnormally located in the pit region of oxyntic glands. At weaning, plasma ghrelin levels were decreased (-28%; P < 0.001) despite unchanged mRNA expression in the stomach. This decrease was associated with lower body weight. Taken together, these data indicate that one mechanism through which MDD influences fetal programming is the remodeling of gastric cellular organization, leading to dysfunction of the ghrelin system and dramatic effects on growth.
Collapse
Affiliation(s)
- Carine Bossenmeyer-Pourié
- INSERM U954, Nutrition, Génétique et Expositions aux Risques Environnementaux, 54505 Vandoeuvre Cedex, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Shah KG, Wu R, Jacob A, Blau SA, Ji Y, Dong W, Marini CP, Ravikumar TS, Coppa GF, Wang P. Human ghrelin ameliorates organ injury and improves survival after radiation injury combined with severe sepsis. Mol Med 2009; 15:407-14. [PMID: 19779631 DOI: 10.2119/molmed.2009.00100] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Accepted: 09/18/2009] [Indexed: 11/06/2022] Open
Abstract
In the terrorist radiation exposure scenario, radiation victims are likely to suffer from additional injuries such as sepsis. Our previous studies have shown that ghrelin is protective in sepsis. However, it remains unknown whether ghrelin ameliorates sepsis-induced organ injury and mortality after radiation exposure. The purpose of this study is to determine whether human ghrelin attenuates organ injury and improves survival in a rat model of radiation combined injury (RCI) and, if so, the potential mechanism responsible for the benefit. To study this, adult male rats were exposed to 5-Gy whole body irradiation followed by cecal ligation and puncture (CLP, a model of sepsis) 48 h thereafter. Human ghrelin (30 nmol/rat) or vehicle (saline) was infused intravenously via an osmotic minipump immediately after radiation exposure. Blood and tissue samples were collected at 20 h after RCI (68 h after irradiation or 20 h after CLP) for various measurements. To determine the longterm effect of human ghrelin after RCI, the gangrenous cecum was removed at 5 h after CLP and 10-d survival was recorded. In addition, vagotomy or sham vagotomy was performed in sham and RCI animals immediately prior to ghrelin administration, and various measurements were performed at 20 h after RCI. Our results showed that serum levels of ghrelin and its gene expression in the stomach were decreased markedly at 20 h after RCI. Administration of human ghrelin attenuated tissue injury markedly, reduced proinflammatory cytokine levels, decreased tissue myeloperoxidase activity, and improved survival after RCI. Furthermore, elevated plasma levels of norepinephrine (NE) after RCI were reduced significantly by ghrelin. However, vagotomy prevented ghrelin's beneficial effects after RCI. In conclusion, human ghrelin is beneficial in a rat model of RCI. The protective effect of human ghrelin appears to be attributed to re-balancing the dysregulated sympathetic/parasympathetic nervous systems.
Collapse
Affiliation(s)
- Kavin G Shah
- The Feinstein Institute for Medical Research and Department of Surgery, North Shore University Hospital and Long Island Jewish Medical Center, Manhasset, New York 11030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
OBJECTIVES We have recently shown that ghrelin, a novel orexigenic hormone, is reduced in sepsis. Ghrelin treatment, mediated through ghrelin receptors in the brain, attenuates sepsis-induced inflammation and mortality. Gut barrier dysfunction is common in sepsis. High-mobility group B1 (HMGB1) increases gut permeability both in vitro and in vivo. However, it remains unknown whether ghrelin has any effects on HMGB1 and gut barrier function in sepsis. We hypothesized that ghrelin decreases HMGB1 release and attenuates sepsis-induced gut barrier dysfunction through central ghrelin receptors. DESIGN Prospective, controlled, and randomized animal study. SETTING A research institute laboratory. SUBJECTS Male adult Sprague-Dawley rats (275-325 g). INTERVENTIONS Cecal ligation and puncture (CLP) followed by injection/infusion of ghrelin. MEASUREMENTS AND MAIN RESULTS Five hours after CLP, a bolus intravenous injection of 2 nmol of ghrelin was followed by a continuous infusion of 12 nmol of ghrelin via an osmotic mini-pump for 15 hrs. Twenty hours after CLP, brain ghrelin levels, serum HMGB1 levels, ileal mucosal permeability to fluorescein isothiocyanate dextran, bacterial counts in the mesenteric lymph nodes complex, and gut water content were determined. In additional groups of animals, bilateral trunk vagotomy was performed at 5 hrs after CLP before ghrelin injection. Furthermore, to confirm the role of central ghrelin receptors in ghrelin's effect, ghrelin (1 nmol) was administered through intracerebroventricular injection at 5 hrs after CLP. Our results showed that brain levels of ghrelin decreased by 34% at 20 hrs after CLP. Intravenous administration of ghrelin completely restored brain levels of ghrelin, significantly reduced the elevated HMGB1 levels, and attenuated gut barrier dysfunction. Vagotomy eliminated ghrelin's inhibition of HMGB1 and attenuation of gut barrier dysfunction. Intracerebroventricular injection of ghrelin decreased serum HMGB1 levels and ameliorated gut barrier dysfunction. CONCLUSIONS Ghrelin reduces serum HMGB1 levels and ameliorates gut barrier dysfunction in sepsis by vagus nerve activation via central ghrelin receptors. Ghrelin can be further developed as a novel agent to protect gut barrier function in sepsis.
Collapse
|
42
|
Patel K, Taub DD. Role of neuropeptides, hormones, and growth factors in regulating thymopoiesis in middle to old age. F1000 BIOLOGY REPORTS 2009; 1:42. [PMID: 20948643 PMCID: PMC2924688 DOI: 10.3410/b1-42] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The deterioration in adaptive immunity and T-lymphocyte output and the narrowing of the T cell receptor repertoire with age are largely attributable to thymic involution. The loss of thymic function with age may be due to diminished numbers of early thymic progenitors and epithelial cells, and the loss of critical tropic factors within the thymic microenvironment. Here we review some of the recent literature demonstrating a role for neuropeptides, hormones, and growth factors that can influence thymopoiesis associated with stress and aging.
Collapse
Affiliation(s)
- Kalpesh Patel
- Laboratory of Immunology, National Institute of Aging, Intramural Research Program, National Institutes of Health, Biomedical Research Center 251 Bayview Boulevard, Room 8C222, Baltimore, MD 21224 USA
| | | |
Collapse
|
43
|
Reduction in hypophyseal growth hormone and prolactin expression due to deficiency in ghrelin receptor signaling is associated with Pit-1 suppression: relevance to the immune system. Brain Behav Immun 2008; 22:1138-45. [PMID: 18602461 PMCID: PMC2783985 DOI: 10.1016/j.bbi.2008.06.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2007] [Revised: 06/06/2008] [Accepted: 06/07/2008] [Indexed: 10/21/2022] Open
Abstract
In mice and in rats, reduced levels of the growth hormone secretagogue receptor (GHS-R1a) results in reduced body weight and lower levels of serum insulin-like growth factor I (IGF-I). However, the mechanism leading to these impairments has not been elucidated. Studies in primary cultures of pituitary cells from very young mice have shown that GHS-R1a agonists, including ghrelin, increase expression of the pituitary-specific transcription factor (Pit-1) that is critical for differentiation of pituitary cells into somatotrophs, lactotrophs, and thyrotrophs. Hence, we hypothesized that ablation of Ghsr would reduce Pit-1 expression and as a consequence reduce growth hormone (GH) production explaining the lower body weight of Ghsr-/- mice. Here, we now show that Pit-1 mRNA levels are significantly lower in the pituitary gland of Ghsr-/- mice compared to wild-type littermates and also with advancing age. This Pit-1 loss is associated with reduced GH mRNA and fewer GH producing cells. To determine whether reduced GH is caused by reduced expression of Pit-1 in Ghsr-/- mice, we also measured prolactin (PRL) expression in the pituitary gland and in the circulation. PRL mRNA was significantly reduced in Ghsr-/- mice compared to wild-type littermates and fewer cells expressed PRL. The reduction in expression of both GH and PRL is consistent with a Pit-1 regulated pathway and demonstrates that the GHS-R has an important role in the pituitary gland as a modulator of Pit-1 expression and provides a possible mechanism to explain the lower plasma IGF-1 and modestly reduced body weight exhibited by Ghsr-/- mice. We also believe that lower systemic and lymphoid hormone expression may also account, in part, for the enhanced thymic involution and reduced thymic output in Ghsr-/- mice.
Collapse
|
44
|
Taub DD. Neuroendocrine interactions in the immune system. Cell Immunol 2008; 252:1-6. [PMID: 18619587 DOI: 10.1016/j.cellimm.2008.05.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Accepted: 05/20/2008] [Indexed: 01/05/2023]
Affiliation(s)
- Dennis D Taub
- Laboratory of Immunology, Clinical Immunology Section, National Institute of Aging-Intramural Research Program, National Institute of Health, Baltimore, MD 21224-6825, USA.
| |
Collapse
|
45
|
Redelman D, Welniak LA, Taub D, Murphy WJ. Neuroendocrine hormones such as growth hormone and prolactin are integral members of the immunological cytokine network. Cell Immunol 2008; 252:111-21. [PMID: 18313040 DOI: 10.1016/j.cellimm.2007.12.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Accepted: 12/07/2007] [Indexed: 11/16/2022]
Abstract
Neuroendocrine hormones such as growth hormone (GH) and prolactin (PRL) have been demonstrated to accelerate the recovery of the immune response after chemotherapy and bone marrow transplantation and to enhance the restoration of immunity in individuals infected with HIV and in normal individuals with compromised immune systems associated with aging. As the mechanism of action of these hormones has been elucidated, it has become clear that they are integral members of the immunological cytokine/chemokine network and share regulatory mechanisms with a wide variety of cytokines and chemokines. The members of this cytokine network induce and can be regulated by members of the suppressor of cytokine signaling (SOCS) family of intracellular proteins. In order to take advantage of the potential beneficial effects of hormones such as GH or PRL, it is essential to take into consideration the overall cytokine network and the regulatory effects of SOCS proteins.
Collapse
Affiliation(s)
- Doug Redelman
- Department of Physiology and Cell Biology, UNR Cytometry Center and Reno, NV 89557, USA
| | | | | | | |
Collapse
|
46
|
Zou CC, Liang L, Zhao ZY. Factors associated with fasting plasma ghrelin levels in children and adolescents. World J Gastroenterol 2008; 14:790-4. [PMID: 18205273 PMCID: PMC2684010 DOI: 10.3748/wjg.14.790] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To measure plasma ghrelin levels in children and adolescents, analyze the associated factors, and investigate the role of ghrelin in obesity, insulin resistance and reproductive physiology.
METHODS: A total of 283 subjects aged 4.8-15.8 year were enrolled. Fasting blood samples were collected and plasma ghrelin levels were measured by radioimmunoassay. Fasting glucose (FG), fasting insulin (FI), baseline testosterone (T), estradiol (E2), prolactin (PRL), luteinizing hormone (LH), follicle-stimulating hormone (FSH), serum total cholesterol (TC), triglyceride (TG), alanine aminotransferase (ALT) and uric acid (UA) were measured. Body mass index (BMI), insulin resistance by homeostasis model (HOMA-IR) and beta cell function by homeostasis model (HOMA-β) were calculated.
RESULTS: The median ghrelin level was 290 ng/L (15.0-1325.0 ng/L). Bivariate correlation analysis showed that ghrelin levels were inversely correlated with BMI, ALT, TG, UA, LH, FI and HOMA-IR (all P < 0.05). No other significant correlation was found between ghrelin levels and age, gender, TC, E2, FSH, PRL, FG and HOMA-β. Stepwise multiple regression analysis showed that only BMI and FI were independent determinants of plasma ghrelin levels in these children and adolescents (P = 0.018 and P = 0.046, respectively), which explained 25.4% of the variance.
CONCLUSION: These data suggest that the lower ghrelin levels in obese subjects may be the result of obesity and hyperinsulinemia, which is very common in obese subjects. Moreover, ghrelin may regulate human reproductive physiology indirectly.
Collapse
|