1
|
Zhang Z. Molecular characterisation and expression profiles of an odorant-binding proteins gene (FoccOBP9) from Frankliniella occidentalis. BULLETIN OF ENTOMOLOGICAL RESEARCH 2025:1-10. [PMID: 39780497 DOI: 10.1017/s0007485324000683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Insect odorant-binding proteins (OBPs) are the key proteins in insect olfactory perception and play an important role in the perception and discrimination of insects. Frankliniella occidentalis is a polyphagous pest and seriously harms the quality and yield of fruits, flowers and crops worldwide. Therefore, the discovery of OBPs has greatly improved the understanding of behavioural response that mediates the chemoreception of F. occidentalis. To identify the OBP gene of F. occidentalis and its sequence and expression, rapid amplification cDNA ends (RACE) and qRT-PCR reaction system were performed. The results showed that the sequence of FoccOBP9 gene was 846 bp and the reading frame was 558 bp, encoding 185 amino acid residues, a 3' non-coding region of 195 bp and a 5' non-coding region of 93 bp.The molecular weight of the protein was about 20.08 kDa, and the isoelectric point was 8.89. FoccOBP9 was similar to AtumGOBP and CnipOBP2 (30%), followed by BdorGOBP, DficGOBP, DsuzGOBP, AalbOBP38, CmarOBP6 and SexiOBP. Phylogenetic analysis of the FoccOBP9 demonstrated that the FoccOBP9 had a relatively close evolutionary relationship with SgreOBP1, AtumGOBP, HeleOBP3, CbowOBP17, CnipOBP2 and CpalOBP2. The prediction of secondary structure showed that FoccOBP9 protein contained 135 amino acid residues forming α-helix, 91 amino acid residues forming β-sheets and 24 amino acid residues forming β-turning. However, three-dimensional structure prediction showed that the FoccOBP9 protein skeleton was composed of six α-helices and the loops connecting these helices. Dynamic observation of the three-dimensional structure revealed that five α-helices (α1, α2, α4, α5, α6) were found in the structure. The expression profiles analysis revealed that FoccOBP9 are highly abundant in antenna significantly, followed by the head and belly, and almost no expression in the chest and foot. Therefore, the identification and analysis of OBP may be useful for monitoring and limiting the damage of F. occidentalis.
Collapse
Affiliation(s)
- Zhike Zhang
- Ningxia Academy of Agriculture and Forestry Sciences, Institute of Plant Protection, Yinchuan, China
| |
Collapse
|
2
|
Luo Y, Chen X, Xu S, Li B, Luo K, Li G. Functional Role of Odorant-Binding Proteins in Response to Sex Pheromone Component Z8-14:Ac in Grapholita molesta (Busck). INSECTS 2024; 15:918. [PMID: 39769520 PMCID: PMC11678869 DOI: 10.3390/insects15120918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/15/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025]
Abstract
The plum fruit moth (PFM), Grapholita funebrana, and the oriental fruit moth (OFM), G. molesta, are closely related fruit moth species that severely damage fruit trees in Rosaceae. Both species share common primary sex pheromone components Z8-12:Ac and E8-12:Ac. The secondary sex pheromone components of PFMs consist of Z8-12:OH, Z8-14:Ac, and Z10-14:Ac, while those of OFMs include Z8-12:OH and 12:OH. Previous researchers have proved that the inclusion of Z8-14:Ac and Z10-14:Ac did not augment PFM catches but inhibited OFM catches in orchards in Europe, thereby maintaining the species-specificity of the PFM sex attractant. However, which of these components, Z8-14:Ac or Z10-14:Ac, plays the major role in inhibiting OFM attraction remains unclear. In the current study, electroantennogram (EAG) assays indicated that both OFM and PFM males exhibited a moderate EAG response to Z8-14:Ac and Z10-14:Ac. Rubber septa loaded with varying ratios of Z8-14:Ac (1% to 30%) or Z10-14:Ac (5% to 110%) combined with a constant dose of Z8-12:Ac and E8-12:Ac produced diverse trapping effects. Sex attractants containing Z8-14:Ac did not significantly affect the trapping of PFM males but drastically reduced the capture of OFM males, with the reduction reaching up to 96.54%. Attractants containing more than 10% of Z10-14:Ac simultaneously reduced the number of OFM and PFM males captured. Z8-14:Ac was indispensable for maintaining the specificity of sex pheromones. Fluorescence competitive binding assays of recombinant GmolPBP2 showed the lowest Ki value (0.66 ± 0.02 μM) among the PBPs/GOBPs from OFMs, suggesting that it is the most likely target for Z8-14:Ac. Molecular dynamic simulation and site-directed mutagenesis assays confirmed that the Phe12 residue, which forms a π-alkyl interaction with Z8-14:Ac, was crucial for GmolPBP2 binding to Z8-14:Ac. In conclusion, Z8-14:Ac is vital to the specificity of PFM sex pheromones inhibiting OFM attractants when added to Z8-12:Ac and E8-12:Ac. This could be potentially used to develop species-specific sex attractants for the PFM.
Collapse
Affiliation(s)
- Yuqing Luo
- Shaanxi Province Key Laboratory of Jujube, College of Life Science, Yan’an University, Yan’an 716000, China; (Y.L.); (X.C.); (B.L.); (K.L.)
| | - Xiulin Chen
- Shaanxi Province Key Laboratory of Jujube, College of Life Science, Yan’an University, Yan’an 716000, China; (Y.L.); (X.C.); (B.L.); (K.L.)
| | - Shiyan Xu
- Shaanxi Province Fruit Industry Research and Development Center, Xi’an 710000, China;
| | - Boliao Li
- Shaanxi Province Key Laboratory of Jujube, College of Life Science, Yan’an University, Yan’an 716000, China; (Y.L.); (X.C.); (B.L.); (K.L.)
| | - Kun Luo
- Shaanxi Province Key Laboratory of Jujube, College of Life Science, Yan’an University, Yan’an 716000, China; (Y.L.); (X.C.); (B.L.); (K.L.)
| | - Guangwei Li
- Shaanxi Province Key Laboratory of Jujube, College of Life Science, Yan’an University, Yan’an 716000, China; (Y.L.); (X.C.); (B.L.); (K.L.)
| |
Collapse
|
3
|
Delclos PJ, Adhikari K, Mai AB, Hassan O, Oderhowho AA, Sriskantharajah V, Trinh T, Meisel R. Trans regulation of an odorant binding protein by a proto-Y chromosome affects male courtship in house fly. eLife 2024; 13:e90349. [PMID: 39422654 PMCID: PMC11488852 DOI: 10.7554/elife.90349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/20/2024] [Indexed: 10/19/2024] Open
Abstract
The male-limited inheritance of Y chromosomes favors alleles that increase male fitness, often at the expense of female fitness. Determining the mechanisms underlying these sexually antagonistic effects is challenging because it can require studying Y-linked alleles while they still segregate as polymorphisms. We used a Y chromosome polymorphism in the house fly, Musca domestica, to address this challenge. Two male determining Y chromosomes (YM and IIIM) segregate as stable polymorphisms in natural populations, and they differentially affect multiple traits, including male courtship performance. We identified differentially expressed genes encoding odorant binding proteins (in the Obp56h family) as candidate agents for the courtship differences. Through network analysis and allele-specific expression measurements, we identified multiple genes on the house fly IIIM chromosome that could serve as trans regulators of Obp56h gene expression. One of those genes is homologous to Drosophila melanogaster CG2120, which encodes a transcription factor that binds near Obp56h. Upregulation of CG2120 in D. melanogaster nervous tissues reduces copulation latency, consistent with this transcription factor acting as a negative regulator of Obp56h expression. The transcription factor gene, which we name speed date, demonstrates a molecular mechanism by which a Y-linked gene can evolve male-beneficial effects.
Collapse
Affiliation(s)
- Pablo J Delclos
- Department of Biology & Biochemistry, University of HoustonHoustonUnited States
| | - Kiran Adhikari
- Department of Biology & Biochemistry, University of HoustonHoustonUnited States
| | - Alexander B Mai
- Department of Biology & Biochemistry, University of HoustonHoustonUnited States
| | - Oluwatomi Hassan
- Department of Biology & Biochemistry, University of HoustonHoustonUnited States
| | | | | | - Tammie Trinh
- Department of Biology & Biochemistry, University of HoustonHoustonUnited States
| | - Richard Meisel
- Department of Biology & Biochemistry, University of HoustonHoustonUnited States
| |
Collapse
|
4
|
Xiao X, Yin XH, Hu SY, Miao HN, Wang Z, Li H, Zhang YJ, Liang P, Gu SH. Overexpression of Two Odorant Binding Proteins Confers Chlorpyrifos Resistance in the Green Peach Aphid Myzus persicae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20101-20113. [PMID: 39223077 DOI: 10.1021/acs.jafc.4c05026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The green peach aphid, Myzus persicae, is a worldwide agricultural pest. Chlorpyrifos has been widely used to control M. persicae for decades, thus leading to a high resistance to chlorpyrifos. Recent studies have found that insect odorant binding proteins (OBPs) play essential roles in insecticide resistance. However, the potential resistance mechanism underlying the cross-link between aphid OBPs and chlorpyrifos remains unclear. In this study, two OBPs (MperOBP3 and MperOBP7) were found overexpressed in M. persicae chlorpyrifos-resistant strains (CRR) compared to chlorpyrifos-sensitive strains (CSS); furthermore, chlorpyrifos can significantly induce the expression of both OBPs. An in vitro binding assay indicated that both OBPs strongly bind with chlorpyrifos; an in vivo RNAi and toxicity bioassay confirmed silencing either of the two OBPs can increase the susceptibility of aphids to chlorpyrifos, suggesting that overexpression of MperOBP3 and MperOBP7 contributes to the development of resistance of M. persicae to chlorpyrifos. Our findings provide novel insights into insect OBPs-mediated resistance mechanisms.
Collapse
Affiliation(s)
- Xing Xiao
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Xin-Hui Yin
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Shi-Yuan Hu
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Hao-Nan Miao
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Zhuo Wang
- Department of Entomology, China Agricultural University, Beijing 100193, China
- Sanya Institute of China Agricultural University, Sanya 572024, China
| | - Hu Li
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Yong-Jun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Pei Liang
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Shao-Hua Gu
- Department of Entomology, China Agricultural University, Beijing 100193, China
- Sanya Institute of China Agricultural University, Sanya 572024, China
| |
Collapse
|
5
|
Zhang Y, Huang Y, Liu Y, Li Z, Yang X, Qin Y. Synergism of ( E)-β-farnesene and Its Analogue to Insecticides against the Green Peach Aphid Myzus persicae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17317-17327. [PMID: 39067067 DOI: 10.1021/acs.jafc.4c04326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
With high aphid-repellent activity but low stability, (E)-β-farnesene (EβF), the major component of the aphid alarm pheromone, can be used as a synergist to insecticides. Some EβF analogues possess both good aphid-repellent activity and stability, but the synergistic effect and related mechanism are still unclear. Therefore, this study investigated the synergistic effect and underlying mechanism of the EβF and its analogue against the aphid Myzus persicae. The results indicated that EβF and the analogue showed significantly synergistic effects to different insecticides, with synergism ratios from 1.524 to 3.446. Mechanistic studies revealed that EβF and the analogue exhibited effective repellent activity, significantly upregulated target OBP genes by 161 to 731%, increased aphid mobility, and thereby enhanced contact with insecticides. This research suggests that the EβF analogue represents a novel synergist for insecticides, with the potential for further application in aphid control owing to its enhanced bioactivity and the possibility of reducing insecticide doses.
Collapse
Affiliation(s)
- Yihan Zhang
- Department of Entomology and MOA Key Laboratory for Monitoring and Environment-Friendly Control of Crop Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yiwen Huang
- Department of Entomology and MOA Key Laboratory for Monitoring and Environment-Friendly Control of Crop Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yan Liu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Zhengxi Li
- Department of Entomology and MOA Key Laboratory for Monitoring and Environment-Friendly Control of Crop Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xinling Yang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Yaoguo Qin
- Department of Entomology and MOA Key Laboratory for Monitoring and Environment-Friendly Control of Crop Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China
| |
Collapse
|
6
|
Yuan T, Mang D, Purba ER, Ye J, Qian J, Rao F, Wang H, Wu Z, Zhang W, Zheng Y, Zhang QH, Li Z, Zhang L. Identification and Functional Analysis of Odorant Binding Proteins in Apriona germari (Hope). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17248-17259. [PMID: 39051932 DOI: 10.1021/acs.jafc.4c02789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Apriona germari (Hope) presents a significant threat as a dangerous wood-boring pest, inflicting substantial harm to forest trees. Investigating the olfactory sensory system of A. germari holds substantial theoretical promise for developing eco-friendly control strategies. To date, however, the olfactory perception mechanism in A. germari remains largely unknown. Therefore, we performed transcriptome sequencing of A. germari across four distinct body parts: antennae, foreleg tarsal segments, mouthparts (maxillary and labial palps), and abdomen terminals, pinpointing the odorant binding protein (OBP) genes and analyzing their expression. We found eight AgerOBPs (5, 19, 23, 25, 29, 59, 63, 70) highly expressed in the antennae. In our competitive binding experiments, AgerOBP23 showed strong binding abilities to the pheromone component fuscumol acetate, eight plant volatiles (farnesol, cis-3-hexenal, nerolidol, myristol acetate, cis-3-hexenyl benzoate, (-)-α-cedrene, 3-ethylacetophenone, and decane), and four insecticides (chlorpyrifos, phoxim, indoxacarb, and cypermethrin). However, AgerOBP29 and AgerOBP63 did not show prominent binding activities to these tested chemicals. Through homology modeling and molecular docking, we identified the key amino acid sites involved in the binding process of AgerOBP23 to these ligands, which shed light on the molecular interactions underlying its binding specificity. Our study suggests that AgerOBP23 may serve as a potential target for future investigations of AgerOBP ligand binding. This approach is consistent with the reverse chemical ecology principle, establishing the groundwork for future studies focusing on attractant or repellent development by exploring further the molecular interactions between OBP and various compounds.
Collapse
Affiliation(s)
- Tingting Yuan
- Anhui Provincial Key Laboratory of Microbial Control, Anhui Provincial Key Laboratory of Forest Resources and Silviculture, Engineering Research Center of Fungal Biotechnology, Ministry of Education, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Dingze Mang
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei 2-24-16, Tokyo 184-8588, Japan
| | - Endang R Purba
- Scientific Imaging Section, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Jia Ye
- Anhui Provincial Key Laboratory of Microbial Control, Anhui Provincial Key Laboratory of Forest Resources and Silviculture, Engineering Research Center of Fungal Biotechnology, Ministry of Education, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Jiali Qian
- Anhui Provincial Key Laboratory of Microbial Control, Anhui Provincial Key Laboratory of Forest Resources and Silviculture, Engineering Research Center of Fungal Biotechnology, Ministry of Education, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Fuqiang Rao
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou 310008, China
| | - Haichao Wang
- Anhui Provincial Key Laboratory of Microbial Control, Anhui Provincial Key Laboratory of Forest Resources and Silviculture, Engineering Research Center of Fungal Biotechnology, Ministry of Education, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Zhenchen Wu
- Anhui Provincial Key Laboratory of Microbial Control, Anhui Provincial Key Laboratory of Forest Resources and Silviculture, Engineering Research Center of Fungal Biotechnology, Ministry of Education, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Wenjing Zhang
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Yongxin Zheng
- Anhui Provincial Key Laboratory of Microbial Control, Anhui Provincial Key Laboratory of Forest Resources and Silviculture, Engineering Research Center of Fungal Biotechnology, Ministry of Education, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Qing-He Zhang
- Sterling International, Inc.,, Spokane, Washington 99216, United States
| | - Zhaoqun Li
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou 310008, China
| | - Longwa Zhang
- Anhui Provincial Key Laboratory of Microbial Control, Anhui Provincial Key Laboratory of Forest Resources and Silviculture, Engineering Research Center of Fungal Biotechnology, Ministry of Education, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
7
|
Gao P, Tan J, Peng X, Qu M, Chen M. Key residues involved in the interaction between chlorpyrifos and a chemosensory protein in Rhopalosiphum padi: Implication for tracking chemical residues via insect olfactory proteins. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172361. [PMID: 38614339 DOI: 10.1016/j.scitotenv.2024.172361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024]
Abstract
The development of advanced biosensors for tracking chemical residues and detecting environmental pollution is of great significance. Insect chemical sensory proteins, including chemosensory proteins (CSPs), are easy to synthesize and purify and have been used to design proteins for specific biosensor applications. Chlorpyrifos is one of the most commonly used chemicals for controlling insect pests in agriculture. This organophosphate is harmful to aquatic species and has long-term negative consequences for the ecosystem. CSPs can bind and carry a variety of environmental chemicals, including insecticides. However, the mechanism by which CSPs bind to insecticides in aphids has not been clarified. In this study, we discovered that RpCSP1 from Rhopalosiphum padi has a higher affinity for chlorpyrifos, with a Ki value of 4.763 ± 0.491 μM. Multispectral analysis revealed the physicochemical binding mechanism between RpCSP1 and chlorpyrifos. Computational simulation analysis demonstrated that the main factor promoting the development of the RpCSP1-chlorpyrifos complex is polar solvation energy. Four residues (Arg33, Glu94, Gln145, Lys153) were essential in facilitating the interaction between RpCSP1 and chlorpyrifos. Our research has improved knowledge of the relationship between CSPs and organophosphorus pesticides. This knowledge contributes to the advancement of biosensor chips for tracking chemical residues and detecting environmental pollution through the use of CSPs.
Collapse
Affiliation(s)
- Ping Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas,Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Junjie Tan
- State Key Laboratory of Crop Stress Biology for Arid Areas,Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiong Peng
- State Key Laboratory of Crop Stress Biology for Arid Areas,Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Mingjing Qu
- Shandong Academy of Agricultural Sciences, Shandong Peanut Research Institute, Qingdao, Shandong, 266100, China
| | - Maohua Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas,Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
8
|
Pullmann-Lindsley H, Huff RM, Boyi J, Pitts RJ. Odorant receptors for floral- and plant-derived volatiles in the yellow fever mosquito, Aedes aegypti (Diptera: Culicidae). PLoS One 2024; 19:e0302496. [PMID: 38709760 PMCID: PMC11073699 DOI: 10.1371/journal.pone.0302496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/04/2024] [Indexed: 05/08/2024] Open
Abstract
Adult mosquitoes require regular sugar meals, including nectar, to survive in natural habitats. Both males and females locate potential sugar sources using sensory proteins called odorant receptors (ORs) activated by plant volatiles to orient toward flowers or honeydew. The yellow fever mosquito, Aedes aegypti (Linnaeus, 1762), possesses a large gene family of ORs, many of which are likely to detect floral odors. In this study, we have uncovered ligand-receptor pairings for a suite of Aedes aegypti ORs using a panel of environmentally relevant, plant-derived volatile chemicals and a heterologous expression system. Our results support the hypothesis that these odors mediate sensory responses to floral odors in the mosquito's central nervous system, thereby influencing appetitive or aversive behaviors. Further, these ORs are well conserved in other mosquitoes, suggesting they function similarly in diverse species. This information can be used to assess mosquito foraging behavior and develop novel control strategies, especially those that incorporate mosquito bait-and-kill technologies.
Collapse
Affiliation(s)
| | - Robert Mark Huff
- Department of Biology, Baylor University, Waco, TX, United States of America
| | - John Boyi
- Department of Biology, Baylor University, Waco, TX, United States of America
| | - Ronald Jason Pitts
- Department of Biology, Baylor University, Waco, TX, United States of America
| |
Collapse
|
9
|
Tu J, Wang Z, Yang F, Liu H, Qiao G, Zhang A, Wang S. The Female-Biased General Odorant Binding Protein 2 of Semiothisa cinerearia Displays Binding Affinity for Biologically Active Host Plant Volatiles. BIOLOGY 2024; 13:274. [PMID: 38666886 PMCID: PMC11048283 DOI: 10.3390/biology13040274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024]
Abstract
Herbivorous insects rely on volatile chemical cues from host plants to locate food sources and oviposition sites. General odorant binding proteins (GOBPs) are believed to be involved in the detection of host plant volatiles. In the present study, one GOBP gene, ScinGOBP2, was cloned from the antennae of adult Semiothisa cinerearia. Reverse-transcription PCR and real-time quantitative PCR analysis revealed that the expression of ScinGOBP2 was strongly biased towards the female antennae. Fluorescence-based competitive binding assays revealed that 8 of the 27 host plant volatiles, including geranyl acetone, decanal, cis-3-hexenyl n-valerate, cis-3-hexenyl butyrate, 1-nonene, dipentene, α-pinene and β-pinene, bound to ScinGOBP2 (KD = 2.21-14.94 μM). The electrical activities of all eight ScinGOBP2 ligands were confirmed using electroantennography. Furthermore, oviposition preference experiments showed that eight host volatiles, such as decanal, cis-3-hexenyl n-valerate, cis-3-hexenyl butyrate, and α-pinene, had an attractive effect on female S. cinerearia, whereas geranyl acetone, 1-nonene, β-pinene, and dipentene inhibited oviposition in females. Consequently, it can be postulated that ScinGOBP2 may be implicated in the perception of host plant volatiles and that ScinGOBP2 ligands represent significant semiochemicals mediating the interactions between plants and S. cinerearia. This insight could facilitate the development of a chemical ecology-based approach for the management of S. cinerearia.
Collapse
Affiliation(s)
- Jingjing Tu
- Key Laboratory of Environment Friendly Management on Fruit and Vegetable Pests in North China (Coconstructed by the Ministry and Province), Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.T.); (Z.W.); (F.Y.); (H.L.); (G.Q.)
- College of Bioscience and Resources Environment, Beijing University of Agriculture, Beijing 102206, China;
| | - Zehua Wang
- Key Laboratory of Environment Friendly Management on Fruit and Vegetable Pests in North China (Coconstructed by the Ministry and Province), Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.T.); (Z.W.); (F.Y.); (H.L.); (G.Q.)
| | - Fan Yang
- Key Laboratory of Environment Friendly Management on Fruit and Vegetable Pests in North China (Coconstructed by the Ministry and Province), Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.T.); (Z.W.); (F.Y.); (H.L.); (G.Q.)
| | - Han Liu
- Key Laboratory of Environment Friendly Management on Fruit and Vegetable Pests in North China (Coconstructed by the Ministry and Province), Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.T.); (Z.W.); (F.Y.); (H.L.); (G.Q.)
| | - Guanghang Qiao
- Key Laboratory of Environment Friendly Management on Fruit and Vegetable Pests in North China (Coconstructed by the Ministry and Province), Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.T.); (Z.W.); (F.Y.); (H.L.); (G.Q.)
| | - Aihuan Zhang
- College of Bioscience and Resources Environment, Beijing University of Agriculture, Beijing 102206, China;
| | - Shanning Wang
- Key Laboratory of Environment Friendly Management on Fruit and Vegetable Pests in North China (Coconstructed by the Ministry and Province), Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.T.); (Z.W.); (F.Y.); (H.L.); (G.Q.)
| |
Collapse
|
10
|
Wu ZR, Pei YW, Zhang XQ, Lu M, Liu XL. Different binding properties of odorant-binding protein 8 to insecticides in Orius sauteri. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 200:105842. [PMID: 38582604 DOI: 10.1016/j.pestbp.2024.105842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 04/08/2024]
Abstract
Chemical sensing systems are vital in the growth and development of insects. Orius sauteri (Poppius) (Hemiptera: Anthocoridae) is an important natural enemy of many pests. The molecular mechanism of odorant binding proteins (OBPs) binding with common insecticides is still unknow in O. sauteri. In this study, we expressed in vitro OsauOBP8 and conducted fluorescence competition binding assay to investigate the function of OsauOBP8 to insecticides. The results showed that OsauOBP8 could bind with four common insecticides (phoxim, fenitrothion, chlorpyrifos, deltamethrin). Subsequently, we used molecular docking to predict and obtained candidate six amino acid residues (K4, K6, K13, R31, K49, K55) and then mutated. The result showed that three key residues (K4, K6, R31) play important role in OsauOBP8 bound to insecticides. Our study identified the key binding sites of OsauOBP8 to insecticides and help to better understand the molecular mechanism of OBPs to insecticides in O. sauteri.
Collapse
Affiliation(s)
- Zhe-Ran Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yi-Wen Pei
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Xiao-Qing Zhang
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China
| | - Min Lu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.
| | - Xiao-Long Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.
| |
Collapse
|
11
|
Yan J, Luo P, Wu Y, Peng G, Liu Y, Song C, Lu W, Liu H, Dong Z. Morphological and genetic differences in legs of a polygamous beetle between sexes, Glenea cantor (Coleopter: Cerambycidae: Lamiinae). PLoS One 2024; 19:e0297365. [PMID: 38329988 PMCID: PMC10852293 DOI: 10.1371/journal.pone.0297365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/03/2024] [Indexed: 02/10/2024] Open
Abstract
The legs of insects play an important role in their daily behaviour, especially reproduction. Entomologists have performed much research on the role of the leg in different behaviours of beetles, an important group in the insect family, but relatively little has been done to study the ultrastructure and transcriptome of their legs. Hence, we systematically studied the ultrastructure and gene expression of the leg of G. cantor, a polygynous beetle, and compared its male and female diversity. In this study, we found the fore-leg, mid-leg and hind-leg of the female were significantly longer than those of the male. From the perspective of intuitive structural differences, we also compared the ultrastructures of the adhesion structure (tarsal) of males and females. The tarsal functional structure of the adult leg mainly includes sensilla and an adhesion structure. The sensilla on the tarsal joint mainly include sensilla chaetica (SCh II, SCh III) and sensilla trichodea (ST II). The adhesion structure includes disc-shaped bristles (di), lanceolate bristles (la), serrated bristles (se), spatula-shaped bristles (spl) and mushroom-shaped bristles (mus). Although there was no significant difference in sensillum distribution or type between males and females, there were significant differences in the distribution and species of adhesion structures between the fore-leg, mid-leg, and hind-leg of the same sex and between males and females. Therefore, different adhesion structures play different roles in various behaviours of beetles. On the other hand, the transcriptome results of male and female legs were screened for a subset of olfaction- and mechanics-related genes. We discovered that the male leg showed upregulation of 1 odorant binding protein (OBP), 2 Olfactory receptors (ORs) and 2 Chemosensory proteins (CSPs). Meanwhile, the female leg showed upregulation of 3 OBPs, 1 OR, 1 Gustatory receptor (GR) and 3 Mechanosensitive proteins (MSPs). An in-depth examination of the ultrastructure and molecular composition of the legs can elucidate its function in the reproductive behavior of G. cantor. Moremore, this investigation will serve as a cornerstone for subsequent research into the underlying behavioral mechanisms.
Collapse
Affiliation(s)
- Jun Yan
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Ping Luo
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yao Wu
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Guandi Peng
- Jiangxi Provincial Department of Forestry, Nanchang, China
| | - Yini Liu
- Jiangxi University of Chinese Medicine, Nanchang, China
| | | | - Wen Lu
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, China
| | - Hongning Liu
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Zishu Dong
- Jiangxi University of Chinese Medicine, Nanchang, China
| |
Collapse
|
12
|
Qian Q, Guo X, Wu L, Cui J, Gao H, Yang Y, Xu H, Lu Z, Zhu P. Molecular Characterization of Plant Volatile Compound Interactions with Cnaphalocrocis medinalis Odorant-Binding Proteins. PLANTS (BASEL, SWITZERLAND) 2024; 13:479. [PMID: 38498446 PMCID: PMC10892019 DOI: 10.3390/plants13040479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/30/2024] [Accepted: 02/04/2024] [Indexed: 03/20/2024]
Abstract
Odorant-binding proteins (OBPs) play important roles in the insect olfactory system since they bind external odor molecules to trigger insect olfactory responses. Previous studies have identified some plant-derived volatiles that attract the pervasive insect pest Cnaphalocrocis medinalis (Lepidoptera: Pyralidae), such as phenylacetaldehyde, benzyl acetate, 1-heptanol, and hexanal. To characterize the roles of CmedOBPs in the recognition of these four volatiles, we analyzed the binding abilities of selected CmedOBPs to each of the four compounds, as well as the expression patterns of CmedOBPs in different developmental stages of C. medinalis adult. Antennaes of C. medinalis adults were sensitive to the studied plant volatile combinations. Expression levels of multiple CmedOBPs were significantly increased in the antennae of 2-day-old adults after exposure to volatiles. CmedOBP1, CmedOBP6, CmedPBP1, CmedPBP2, and CmedGOBP2 were significantly up-regulated in the antennae of volatile-stimulated female and male adults when compared to untreated controls. Fluorescence competition assays confirmed that CmedOBP1 could strongly bind 1-heptanol, hexanal, and phenylacetaldehyde; CmedOBP15 strongly bound benzyl acetate and phenylacetaldehyde; and CmedOBP26 could weakly bind 1-heptanol. This study lays a theoretical foundation for further analysis of the mechanisms by which plant volatiles can attract C. medinalis. It also provides a technical basis for the future development of efficient plant volatile attractants of C. medinalis.
Collapse
Affiliation(s)
- Qi Qian
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Q.Q.); (X.G.); (L.W.); (J.C.); (H.G.); (Z.L.)
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Sciences, Hangzhou 310021, China;
| | - Xin Guo
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Q.Q.); (X.G.); (L.W.); (J.C.); (H.G.); (Z.L.)
| | - Lingjie Wu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Q.Q.); (X.G.); (L.W.); (J.C.); (H.G.); (Z.L.)
| | - Jiarong Cui
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Q.Q.); (X.G.); (L.W.); (J.C.); (H.G.); (Z.L.)
| | - Huiying Gao
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Q.Q.); (X.G.); (L.W.); (J.C.); (H.G.); (Z.L.)
| | - Yajun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Sciences, Hangzhou 310021, China;
| | - Hongxing Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Sciences, Hangzhou 310021, China;
| | - Zhongxian Lu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Q.Q.); (X.G.); (L.W.); (J.C.); (H.G.); (Z.L.)
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Sciences, Hangzhou 310021, China;
| | - Pingyang Zhu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Q.Q.); (X.G.); (L.W.); (J.C.); (H.G.); (Z.L.)
| |
Collapse
|
13
|
Rodrigues PADP, Martins JR, Capizzani BC, Hamasaki LTA, Simões ZLP, Teixeira IRDV, Barchuk AR. Transcriptional signature of host shift in the seed beetle Zabrotes subfasciatus. Genet Mol Biol 2024; 47:e20230148. [PMID: 38314880 PMCID: PMC10851049 DOI: 10.1590/1678-4685-gmb-2023-0148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 12/23/2023] [Indexed: 02/07/2024] Open
Abstract
In phytophagous insects, adaptation to a new host is a dynamic process, in which early and later steps may be underpinned by different features of the insect genome. Here, we tested the hypothesis that early steps of this process are underpinned by a shift in gene expression patterns. We set up a short-term artificial selection experiment (10 generations) for the use of an alternative host (Cicer arietinum) on populations of the bean beetle Zabrotes subfasciatus. Using Illumina sequencing on young adult females, we show the selected populations differ in the expression of genes associated to stimuli, signalling, and developmental processes. Particularly, the "C. arietinum" population shows upregulation of histone methylation genes, which may constitute a strategy for fine-tuning the insect global gene expression network. Using qPCR on body regions, we demonstrated that the "Phaseolus vulgaris" population upregulates the genes polygalacturonase and egalitarian and that the expression of an odorant receptor transcript variant changes over generations. Moreover, in this population we detected the existence of vitellogenin (Vg) variants in both males and females, possibly harbouring canonical reproductive function in females and extracellular unknown functions in males. This study provides the basis for future genomic investigations seeking to shed light on the nature of the proximate mechanisms involved in promoting differential gene expression associated to insect development and adaptation to new hosts.
Collapse
Affiliation(s)
- Pedro Augusto da Pos Rodrigues
- University of Georgia, Department of Entomology, Athens, GA, USA
- Instituto Federal Sul de Minas (IFSULDEMINAS), Campus Poços de Caldas, MG, Brazil
| | - Juliana Ramos Martins
- Universidade Federal de Alfenas (UNIFAL-MG), Instituto de Ciências Biomédicas, Departamento de Biologia Celular e do Desenvolvimento, Alfenas, MG, Brazil
| | - Bianca Corrêa Capizzani
- Universidade Federal de Alfenas (UNIFAL-MG), Instituto de Ciências Biomédicas, Departamento de Biologia Celular e do Desenvolvimento, Alfenas, MG, Brazil
| | - Lucas Takashi Araujo Hamasaki
- Universidade Federal de Alfenas (UNIFAL-MG), Instituto de Ciências Biomédicas, Departamento de Biologia Celular e do Desenvolvimento, Alfenas, MG, Brazil
| | - Zilá Luz Paulino Simões
- Universidade de São Paulo, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Biologia, Ribeirão Preto, SP, Brazil
| | | | - Angel Roberto Barchuk
- Universidade Federal de Alfenas (UNIFAL-MG), Instituto de Ciências Biomédicas, Departamento de Biologia Celular e do Desenvolvimento, Alfenas, MG, Brazil
| |
Collapse
|
14
|
Yang H, Liu L, Wang F, Yang W, Huang Q, Wang N, Hu H. The Molecular and Functional Characterization of Sensory Neuron Membrane Protein 1b (SNMP1b) from Cyrtotrachelus buqueti (Coleoptera: Curculionidae). INSECTS 2024; 15:111. [PMID: 38392530 PMCID: PMC10889769 DOI: 10.3390/insects15020111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/24/2024]
Abstract
Sensory neuron membrane proteins (SNMPs) play important roles in insect chemoreception and SNMP1s have been reported to be essential in detecting sex pheromones in Drosophila and some lepidopteran species. However, SNMPs for Cyrtotrachelus buqueti (Coleoptera: Curculionidae), a major insect pest of bamboo plantations, remain uncharacterized. In this study, a novel SNMP gene, CbuqSNMP1b, from C. buqueti was functionally characterized. The expression of CbuqSNMP1b was significantly higher in antennae than in other tissues of both sexes and the expression level was significantly male-biased. Additionally, CbuqSNMP1b showed significantly higher transcription levels in the adult stage and very low transcription levels in other stages, suggesting that CbuqSNMP1b is involved in the process of olfaction. Fluorescence binding assays indicated that CbuqSNMP1b displayed the strongest binding affinity to dibutyl phthalate (Ki = 9.03 μM) followed by benzothiazole (Ki = 11.59 μM) and phenol (Ki = 20.95 μM) among fourteen C. buqueti volatiles. Furthermore, molecular docking revealed key residues in CbuqSNMP1b that interact with dibutyl phthalate, benzothiazole, and phenol. In conclusion, these findings will lay a foundation to further understand the olfactory mechanisms of C. buqueti and promote the development of novel methods for controlling this pest.
Collapse
Affiliation(s)
- Hua Yang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Long Liu
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Fan Wang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Wei Yang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiong Huang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Nanxi Wang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Hongling Hu
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
15
|
Zhai Y, Zhang F, Tian T, Yang Y, Li Y, Ren B, Hong B. The Sequence Characteristics and Binding Properties of the Odorant-Binding Protein SvelOBP1 from Sympiezomias velatus (Coleoptera: Curculionidae) to Jujube Volatiles. Life (Basel) 2024; 14:192. [PMID: 38398701 PMCID: PMC10890569 DOI: 10.3390/life14020192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Sympiezomias velatus (Chevrolat) (Coleoptera: Curculionidae) has caused serious damage on jujube trees (Ziziphus jujuba Mill) in northern China. Semiochemicals emerging from the host are essential in the process of insects identifying and localizing the host. The highly expressed odorant-binding protein 1 of S. velatus (SvelOBP1) was assumed to play a possible role in the recognition of host volatiles. In this study, SvelOBP1 was cloned based on the antennal transcriptome of S. velatus. The recombinant SvelOBP1 protein was expressed in Escherichia coli and purified by Ni-NTA resin. The predicted protein SvelOBP1 belonged to a classic OBP subfamily. The expression patterns revealed that SvelOBP1 was mainly expressed in the antennae of both males and females, whereas the expression of SvelOBP1 in other body parts could be neglected. The fluorescence binding assay indicated that SvelOBP1 displayed very strong binding affinities to dibutyl benzene-1,2-dicarboxylate and (Z)-hex-3-en-1-ol (Ki = 6.66 ± 0.03 and 7.98 ± 0.06 μM). The molecular docking results showed that residues Trp114, Phe115 and Asp110 may be involved in binding to both dibutyl benzene-1,2-dicarboxylate and (Z)-hex-3-en-1-ol and may have a great impact on odorant recognition of S. velatus. Our results provide evidence that SvelOBP1 might participate in the olfactory molecular perception of S. velatus and would promote the development of pest attractants for S. velatus control.
Collapse
Affiliation(s)
- Yingyan Zhai
- Shaanxi Key Laboratory of Qinling Ecological Security, Bio-Agriculture Institute of Shaanxi, Shaanxi Academy of Sciences, Xi’an 710043, China; (Y.Z.); (F.Z.); (T.T.); (Y.Y.)
| | - Feng Zhang
- Shaanxi Key Laboratory of Qinling Ecological Security, Bio-Agriculture Institute of Shaanxi, Shaanxi Academy of Sciences, Xi’an 710043, China; (Y.Z.); (F.Z.); (T.T.); (Y.Y.)
| | - Tianqi Tian
- Shaanxi Key Laboratory of Qinling Ecological Security, Bio-Agriculture Institute of Shaanxi, Shaanxi Academy of Sciences, Xi’an 710043, China; (Y.Z.); (F.Z.); (T.T.); (Y.Y.)
| | - Yiwei Yang
- Shaanxi Key Laboratory of Qinling Ecological Security, Bio-Agriculture Institute of Shaanxi, Shaanxi Academy of Sciences, Xi’an 710043, China; (Y.Z.); (F.Z.); (T.T.); (Y.Y.)
| | - Yang Li
- Chang’an University Journal Center, Chang’an University, Xi’an 710064, China;
| | - Bowen Ren
- Institute of Forest Protection, Shaanxi Academy of Forestry, Xi’an 710016, China;
| | - Bo Hong
- Shaanxi Key Laboratory of Qinling Ecological Security, Bio-Agriculture Institute of Shaanxi, Shaanxi Academy of Sciences, Xi’an 710043, China; (Y.Z.); (F.Z.); (T.T.); (Y.Y.)
| |
Collapse
|
16
|
Pullmann-Lindsley H, Huff R, Boyi J, Pitts RJ. Odorant receptors for floral- and plant-derived volatiles in the yellow fever mosquito, Aedes aegypti (Diptera: Culicidae). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.17.562234. [PMID: 38328195 PMCID: PMC10849520 DOI: 10.1101/2023.10.17.562234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Adult mosquitoes require regular sugar meals, usually floral nectar, to survive and flourish in natural habitats. Both males and females locate potential sugar sources using sensory proteins called odorant receptors activated by plant volatiles that facilitate orientation toward flowers or honeydew. The Yellow Fever mosquito, Aedes aegypti (Linnaeus, 1762), possesses a large repertoire of odorant receptors, many of which are likely to support floral odor detection and nectar-seeking. In this study, we have employed a heterologous expression system and the two-electrode voltage clamping technique to identify environmentally relevant chemical compounds that activate specific odorant receptors. Importantly, we have uncovered ligand-receptor pairings for a suite of Aedes aegypti odorant receptors likely to mediate appetitive or aversive behavioral responses, thus shaping a critical aspect of the life history of a medically important mosquito. Moreover, the high degree of conservation of these receptors in other disease-transmitting species suggests common mechanisms of floral odor detection. This knowledge can be used to further investigate mosquito foraging behavior to either enhance existing, or develop novel, control strategies, especially those that incorporate mosquito bait-and-kill or attractive toxic sugar bait technologies.
Collapse
Affiliation(s)
| | - Robert Huff
- Department of Biology, Baylor University, 101 Bagby Avenue, Waco, TX 76706
| | - John Boyi
- Department of Biology, Baylor University, 101 Bagby Avenue, Waco, TX 76706
| | - R Jason Pitts
- Department of Biology, Baylor University, 101 Bagby Avenue, Waco, TX 76706
| |
Collapse
|
17
|
Qian Q, Cui J, Miao Y, Xu X, Gao H, Xu H, Lu Z, Zhu P. The Plant Volatile-Sensing Mechanism of Insects and Its Utilization. PLANTS (BASEL, SWITZERLAND) 2024; 13:185. [PMID: 38256738 PMCID: PMC10819770 DOI: 10.3390/plants13020185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/07/2024] [Accepted: 01/07/2024] [Indexed: 01/24/2024]
Abstract
Plants and insects are engaged in a tight relationship, with phytophagous insects often utilizing volatile organic substances released by host plants to find food and egg-laying sites. Using plant volatiles as attractants for integrated pest management is vital due to its high efficacy and low environmental toxicity. Using naturally occurring plant volatiles combined with insect olfactory mechanisms to select volatile molecules for screening has proved an effective method for developing plant volatile-based attractant technologies. However, the widespread adoption of this technique is still limited by the lack of a complete understanding of molecular insect olfactory pathways. This paper first describes the nature of plant volatiles and the mechanisms of plant volatile perception by insects. Then, the attraction mechanism of plant volatiles to insects is introduced with the example of Cnaphalocrocis medinalis. Next, the progress of the development and utilization of plant volatiles to manage pests is presented. Finally, the functions played by the olfactory system of insects in recognizing plant volatiles and the application prospects of utilizing volatiles for green pest control are discussed. Understanding the sensing mechanism of insects to plant volatiles and its utilization will be critical for pest management in agriculture.
Collapse
Affiliation(s)
- Qi Qian
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Q.Q.); (J.C.); (Y.M.); (H.G.); (Z.L.)
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Sciences, Hangzhou 310021, China
| | - Jiarong Cui
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Q.Q.); (J.C.); (Y.M.); (H.G.); (Z.L.)
| | - Yuanyuan Miao
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Q.Q.); (J.C.); (Y.M.); (H.G.); (Z.L.)
| | - Xiaofang Xu
- Jinhua Agricultural Technology Extension and Seed Administration Center, Jinhua 321017, China;
| | - Huiying Gao
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Q.Q.); (J.C.); (Y.M.); (H.G.); (Z.L.)
| | - Hongxing Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Sciences, Hangzhou 310021, China
| | - Zhongxian Lu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Q.Q.); (J.C.); (Y.M.); (H.G.); (Z.L.)
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Sciences, Hangzhou 310021, China
| | - Pingyang Zhu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Q.Q.); (J.C.); (Y.M.); (H.G.); (Z.L.)
| |
Collapse
|
18
|
Liu X, Liao W, Wu Z, Pei Y, Wei Z, Lu M. Binding Properties of Odorant-Binding Protein 7 to Host Volatiles in Larvae of Spodoptera frugiperda. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20671-20679. [PMID: 38103022 DOI: 10.1021/acs.jafc.3c06833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
The chemosensory system is crucial during the growth and development of the moths. Spodoptera frugiperda (Lepidoptera: Noctuidae) is one of the most destructive insect pests. However, there is little functional research on odorant-binding proteins (OBPs) in the larval stage of S. frugiperda. Here, we obtained SfruOBP7 from transcriptomics and conducted the sequence analysis. We used quantitative real-time PCR to explore the expression profiles of SfruOBP7. The function identification showed that SfruOBP7 has a binding ability to 18 plant volatiles. Further molecular docking and site-directed mutant assay revealed that Lys45 and Phe110 were the key binding sites for SfruOBP7 interacting with linalool. In the behavior assays, linalool could attract the larvae, and dsOBP7-treated larvae lost their attraction to linalool. Our results help to reveal the essential molecular mechanism of the olfactory perception in the larvae and design an attractant based on the host volatiles.
Collapse
Affiliation(s)
- XiaoLong Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Wang Liao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - ZheRan Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - YiWen Pei
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - ZhiQiang Wei
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China
| | - Min Lu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| |
Collapse
|
19
|
Li WZ, Kang WJ, Zhou JJ, Shang SQ, Shi SL. The antennal transcriptome analysis and characterizations of odorant-binding proteins in Megachile saussurei (Hymenoptera, Megachilidae). BMC Genomics 2023; 24:781. [PMID: 38102559 PMCID: PMC10724985 DOI: 10.1186/s12864-023-09871-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Odorant-binding proteins (OBPs) are essential in insect's daily behaviors mediated by olfactory perception. Megachile saussurei Radoszkowski (Hymenoptera, Megachilidae) is a principal insect pollinating alfalfa (Medicago sativa) in Northwestern China. The olfactory function have been less conducted, which provides a lot of possibilities for our research. RESULTS Our results showed that 20 OBPs were identified in total. Multiple sequence alignment analysis indicated MsauOBPs were highly conserved with a 6-cysteine motif pattern and all belonged to the classic subfamily, coding 113-196 amino acids and sharing 41.32%-99.12% amino acid identity with known OBPs of other bees. Phylogenetic analysis indicated there were certain homologies existed among MsauOBPs and most sequences were clustered with that of Osmia cornuta (Hymenoptera, Megachilidae). Expression analysis showed the identified OBPs were mostly enriched in antennae instead of other four body parts, especially the MsauOBP2, MsauOBP3, MsauOBP4, MsauOBP8, MsauOBP11 and MsauOBP17, in which the MsauOBP2, MsauOBP4 and MsauOBP8 presented obvious tissue-biased expression pattern. Molecular docking results indicated MsauOBP4 might be the most significant protein in recognizing alfalfa flower volatile 3-Octanone, while MsauOBP13 might be the most crucial protein identifying (Z)-3-hexenyl acetate. It was also found the lysine was a momentous hydrophilic amino acid in docking simulations. CONCLUSION In this study, we identified and analyzed 20 OBPs of M. saussurei. The certain homology existed among these OBPs, while some degree of divergence could also be noticed, indicating the complex functions that different MsauOBPs performed. Besides, the M. saussurei and Osmia cornuta were very likely to share similar physiological functions as most of their OBPs were clustered together. MsauOBP4 might be the key protein in recognizing 3-Octanone, while MsauOBP13 might be the key protein in binding (Z)-3-hexenyl acetate. These two proteins might contribute to the alfalfa-locating during the pollination process. The relevant results may help determine the highly specific and effective attractants for M. saussurei in alfalfa pollination and reveal the molecular mechanism of odor-evoked pollinating behavior between these two species.
Collapse
Affiliation(s)
- Wei-Zhen Li
- Key Laboratory of Grassland Ecosystem of Ministry of Education, and Sino-U.S. Centers for Grazingland Ecosystem Sustainability, College of Grassland Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wen-Juan Kang
- Key Laboratory of Grassland Ecosystem of Ministry of Education, and Sino-U.S. Centers for Grazingland Ecosystem Sustainability, College of Grassland Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jing-Jiang Zhou
- College of Plant Protection, Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, Gansu Agricultural University, Lanzhou, 730070, China
- Department of Biological Chemistry, Rothamsted Research, Harpenden, Hertfordshire, UK
| | - Su-Qin Shang
- College of Plant Protection, Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Shang-Li Shi
- Key Laboratory of Grassland Ecosystem of Ministry of Education, and Sino-U.S. Centers for Grazingland Ecosystem Sustainability, College of Grassland Science, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
20
|
Liu XL, Wu ZR, Liao W, Zhang XQ, Pei YW, Lu M. The binding affinity of two general odorant binding proteins in Spodoptera frugiperda to general volatiles and insecticides. Int J Biol Macromol 2023; 252:126338. [PMID: 37591429 DOI: 10.1016/j.ijbiomac.2023.126338] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 08/19/2023]
Abstract
Spodoptera frugiperda is a kind of polyphagous pest, and can damage a large number different host plants around the worldwide. The molecular mechanisms of two general odorant binding proteins (GOBPs) binding with general volatiles and insecticides are still blank. In this study, we investigated the function of two GOBPs in S. frugiperda, by expressing two SfruGOBPs and tested the binding affinities by the fluorescence competition binding assays. The results exhibited that SfruGOBP1 has binding affinities to 4 of 38 general volatiles and 3 of 7 insecticides. In contrast, SfruGOBP2 showed a broader ligand-binding spectrum to 21 volatiles and 4 insecticides, suggesting SfruGOBP2 may plays a more important role in perceiving host volatiles than SfruGOBP1. Furthermore, we used molecular docking and site-directed mutagenesis assay to explored the key amino acid residues of two SfruGOBP to insecticides ligand. This study provides some valuable information to exploring the olfactory mechanism of two GOBPs bound the host plant volatiles and insecticides in S. frugiperda.
Collapse
Affiliation(s)
- Xiao-Long Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Zhe-Ran Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Wang Liao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Xiao-Qing Zhang
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yi-Wen Pei
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Min Lu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.
| |
Collapse
|
21
|
Akula S, Welinder C, Fu Z, Olsson AK, Hellman L. Identification of the Major Protein Components of Human and Cow Saliva. Int J Mol Sci 2023; 24:16838. [PMID: 38069163 PMCID: PMC10705902 DOI: 10.3390/ijms242316838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/21/2023] [Accepted: 11/26/2023] [Indexed: 12/18/2023] Open
Abstract
Cows produce saliva in very large quantities to lubricate and facilitate food processing. Estimates indicate an amount of 50-150 L per day. Human saliva has previously been found to contain numerous antibacterial components, such as lysozyme, histatins, members of the S-100 family and lactoferrin, to limit pathogen colonization. Cows depend on a complex microbial community in their digestive system for food digestion. Our aim here was to analyze how this would influence the content of their saliva. We therefore sampled saliva from five humans and both nose secretions and saliva from six cows and separated the saliva on SDS-PAGE gradient gels and analyzed the major protein bands with LC-MS/MS. The cow saliva was found to be dominated by a few major proteins only, carbonic anhydrase 6, a pH-stabilizing enzyme and the short palate, lung and nasal epithelium carcinoma-associated protein 2A (SPLUNC2A), also named bovine salivary protein 30 kDa (BSP30) or BPIFA2B. This latter protein has been proposed to play a role in local antibacterial response by binding bacterial lipopolysaccharides (LPSs) and inhibiting bacterial growth but may instead, according to more recent data, primarily have surfactant activity. Numerous peptide fragments of mucin-5B were also detected in different regions of the gel in the MS analysis. Interestingly, no major band on gel was detected representing any of the antibacterial proteins, indicating that cows may produce them at very low levels that do not harm the microbial flora of their digestive system. The nose secretions of the cows primarily contained the odorant protein, a protein thought to be involved in enhancing the sense of smell of the olfactory receptors and the possibility of quickly sensing potential poisonous food components. High levels of secretory IgA were also found in one sample of cow mouth drippings, indicating a strong upregulation during an infection. The human saliva was more complex, containing secretory IgA, amylase, carbonic anhydrase 6, lysozyme, histatins and a number of other less abundant proteins, indicating a major difference to the saliva of cows that show very low levels of antibacterial components, most likely to not harm the microbial flora of the rumen.
Collapse
Affiliation(s)
- Srinivas Akula
- Department of Cell and Molecular Biology, Uppsala University, The Biomedical Center, Box 596, SE-751 24 Uppsala, Sweden; (S.A.); (Z.F.)
| | - Charlotte Welinder
- Department of Clinical Sciences Lund, Division of Mass Spectrometry, Lund University, SE-221 00 Lund, Sweden;
| | - Zhirong Fu
- Department of Cell and Molecular Biology, Uppsala University, The Biomedical Center, Box 596, SE-751 24 Uppsala, Sweden; (S.A.); (Z.F.)
| | - Anna-Karin Olsson
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Box 582, SE-751 23 Uppsala, Sweden;
| | - Lars Hellman
- Department of Cell and Molecular Biology, Uppsala University, The Biomedical Center, Box 596, SE-751 24 Uppsala, Sweden; (S.A.); (Z.F.)
| |
Collapse
|
22
|
Huang Y, Hu W, Hou YM. Host plant recognition by two odorant-binding proteins in Rhynchophorus ferrugineus (Coleoptera: Curculionidae). PEST MANAGEMENT SCIENCE 2023; 79:4521-4534. [PMID: 37421364 DOI: 10.1002/ps.7654] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/09/2023] [Accepted: 07/08/2023] [Indexed: 07/10/2023]
Abstract
BACKGROUND Rhynchophorus ferrugineus, the red palm weevil (RPW), is a key pest that attacks many economically important palm species and that has evolved a sensitive and specific olfactory system to seek palm hosts. Odorant-binding proteins (OBPs) not only play crucial roles in its olfactory perception process but are also important molecular targets for the development of new approaches for pest management. RESULTS Analysis of the tissue expression profiles of RferOBP8 and RferOBP11 revealed that these two Rhynchophorus ferrugineus odorant binding proteins (RferOBPs) exhibited high expression in the antennae and showed sexual dimorphism. We analyzed the volatiles of seven host plants by gas chromatography-mass spectrometry and screened 13 potential ligands by molecular docking. The binding affinity of two recombinant OBPs to aggregation pheromones and 13 palm odorants was tested by fluorescence competitive binding assays. The results revealed that eight tested palm volatiles and ferrugineol have high binding affinities with RferOBP8 or RferOBP11. Behavioral trials showed that these eight odor compounds could elicit an attraction response in adult RPW. RNA interference analysis indicated that the reduction in the expression levels of the two RferOBPs led to a decrease in behavioral responses to these volatiles. CONCLUSION These results suggest that RferOBP8 and RferOBP11 are involved in mediating the responses of RPW to palm volatiles and to aggregation pheromones and may play important roles in RPW host-seeking. This study also provides a theoretical foundation for the promising application of novel molecular targets in the development of new behavioral interference strategies for RPW management in the future. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Ying Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Province Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wei Hu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Province Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - You-Ming Hou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Province Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
23
|
Huang G, Liu Z, Gu S, Zhang B, Sun J. Identification and functional analysis of odorant-binding proteins of the parasitoid wasp Scleroderma guani reveal a chemosensory synergistic evolution with the host Monochamus alternatus. Int J Biol Macromol 2023; 249:126088. [PMID: 37532193 DOI: 10.1016/j.ijbiomac.2023.126088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/25/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
Scleroderma guani is a generalist ectoparasitoid of wood-boring insects. The chemosensory genes expressed in its antennae play crucial roles in host-seeking. In the present study, we identified 14 OBP genes for the first time from the antennae transcriptomes and genomic data of S. guani. The expression profiles of 14 OBPs were tested by RT-qPCR, and the RT-qPCR results showed that SguaOBP2/5/6/11/12/13 were specifically highly expressed in the female antennae. Then we performed ligand binding assays to test the interactions between six selected SguaOBPs with host specific chemical compounds from M. alternatus and pines. The binding results indicated that SguaOBP12 had a higher binding affinity with longifolene, β-caryophyllene, α-pinene, β-pinene, myrcene, butylated hydroxytoluene, and 3-carene. SguaOBP11 had a high or medium binding affinity with them. Furthermore, both SguaOBP11 and SguaOBP12 had a medium binding affinity with the aggregation pheromone of Monochamus species, 2-undecyloxy-1-ethanol. Finally, by using molecular docking and RNAi, we further explored the molecular interactions and behavioral functions of SguaOBP11 and SguaOBP12 with these vital odor molecules. Our study contributes to the further understanding of chemical communications between S. guani and its host, and further exploration for its role as a more effective biological control agent.
Collapse
Affiliation(s)
- Guangzhen Huang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhudong Liu
- Hebei Basic Science Center for Biotic Interactions/College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Shaohua Gu
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Bin Zhang
- Hebei Basic Science Center for Biotic Interactions/College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Jianghua Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Hebei Basic Science Center for Biotic Interactions/College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China.
| |
Collapse
|
24
|
Dong JF, Wang K, Sun YL, Tian CH, Wang SL. Antennal transcriptome analysis of odorant-binding proteins and characterization of GOBP2 in the variegated cutworm Peridroma saucia. Front Physiol 2023; 14:1241324. [PMID: 37637146 PMCID: PMC10450149 DOI: 10.3389/fphys.2023.1241324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/26/2023] [Indexed: 08/29/2023] Open
Abstract
Odorant-binding proteins (OBPs) are expressed at extremely high concentrations in the chemo-sensilla lymph of insects and have long been thought to be crucial for delivering the semiochemicals to the odorant receptors. They are represented by multiple classes: general odorant-binding proteins (GOBP1 and GOBP2) and pheromone-binding proteins. In the current study, we identified a total of 35 OBPs in the antennal transcriptome of Peridroma saucia, a worldwide pest that causes serious damage to various crops. A gene expression value (TPM, transcripts per million) analysis revealed that seven OBPs (PsauPBP1/2/3, PsauGOBP1/2, PsauOBP6, and PsauOBP8) were highly abundant in the antennae. Next, we focused on the expression and functional characterization of PsauGOBP2. Real-time quantitative-PCR analysis demonstrated that PsauGOBP2 was predominantly expressed in the antennae of both sexes. Fluorescence binding assays showed that the recombinant PsauGOBP2 strongly binds to the female sex pheromone components Z11-16: Ac (Ki = 4.2 μM) and Z9-14: Ac (Ki = 4.9 μM) and binds moderately (6 µM ≤ Ki ≤ 13 µM) to the host plant volatiles phenylethyl acetate, β-myrcene, and dodecanol. Further 3D structural modeling and molecular docking revealed that several crucial amino acid residues are involved in ligand binding. The results not only increase our understanding of the olfactory system of P. saucia but also provide insights into the function of PsauGOBP2 that has implications for developing sustainable approaches for P. saucia management.
Collapse
Affiliation(s)
- Jun-Feng Dong
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Ke Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ya-Lan Sun
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Cai-Hong Tian
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Shao-Li Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
25
|
Wang X, Zhao N, Cai L, Liu N, Zhu J, Yang B. High-quality chromosome-level scaffolds of the plant bug Pachypeltis micranthus provide insights into the availability of Mikania micrantha control. BMC Genomics 2023; 24:339. [PMID: 37340339 DOI: 10.1186/s12864-023-09445-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/13/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND The plant bug, Pachypeltis micranthus Mu et Liu (Hemiptera: Miridae), is an effective potential biological control agent for Mikania micrantha H.B.K. (Asteraceae; one of the most notorious invasive weeds worldwide). However, limited knowledge about this species hindered its practical application and research. Accordingly, sequencing the genome of this mirid bug holds great significance in controlling M. micrantha. RESULTS Here, 712.72 Mb high-quality chromosome-level scaffolds of P. micranthus were generated, of which 707.51 Mb (99.27%) of assembled sequences were anchored onto 15 chromosome-level scaffolds with contig N50 of 16.84 Mb. The P. micranthus genome had the highest GC content (42.43%) and the second highest proportion of repetitive sequences (375.82 Mb, 52.73%) than the three other mirid bugs (i.e., Apolygus lucorum, Cyrtorhinus lividipennis, and Nesidiocoris tenuis). Phylogenetic analysis showed that P. micranthus clustered with other mirid bugs and diverged from the common ancestor approximately 200 million years ago. Gene family expansion and/or contraction were analyzed, and significantly expanded gene families associated with P. micranthus feeding and adaptation to M. micrantha were manually identified. Compared with the whole body, transcriptome analysis of the salivary gland revealed that most of the upregulated genes were significantly associated with metabolism pathways and peptidase activity, particularly among cysteine peptidase, serine peptidase, and polygalacturonase; this could be one of the reasons for precisely and highly efficient feeding by the oligophagous bug P. micranthus on M. micrantha. CONCLUSION Collectively, this work provides a crucial chromosome-level scaffolds resource to study the evolutionary adaptation between mirid bug and their host. It is also helpful in searching for novel environment-friendly biological strategies to control M. micrantha.
Collapse
Affiliation(s)
- Xiafei Wang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Ning Zhao
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Liqiong Cai
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| | - Naiyong Liu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Jiaying Zhu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Bin Yang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China.
| |
Collapse
|
26
|
Nakano-Baker O, Fong H, Shukla S, Lee RV, Cai L, Godin D, Hennig T, Rath S, Novosselov I, Dogan S, Sarikaya M, MacKenzie JD. Data-driven design of a multiplexed, peptide-sensitized transistor to detect breath VOC markers of COVID-19. Biosens Bioelectron 2023; 229:115237. [PMID: 36965380 PMCID: PMC10027305 DOI: 10.1016/j.bios.2023.115237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/25/2023] [Accepted: 03/16/2023] [Indexed: 03/25/2023]
Abstract
Exhaled human breath contains a rich mixture of volatile organic compounds (VOCs) whose concentration can vary in response to disease or other stressors. Using simulated odorant-binding proteins (OBPs) and machine learning methods, we designed a multiplex of short VOC- and carbon-binding peptide probes that detect a characteristic "VOC fingerprint". Specifically, we target VOCs associated with COVID-19 in a compact, molecular sensor array that directly transduces vapor composition into multi-channel electrical signals. Rapidly synthesizable, chimeric VOC- and solid-binding peptides were derived from selected OBPs using multi-sequence alignment with protein database structures. Selective peptide binding to targeted VOCs and sensor surfaces was validated using surface plasmon resonance spectroscopy and quartz crystal microbalance. VOC sensing was demonstrated by peptide-sensitized, exposed-channel carbon nanotube transistors. The data-to-device pipeline enables the development of novel devices for non-invasive monitoring, diagnostics of diseases, and environmental exposure assessment.
Collapse
Affiliation(s)
| | - Hanson Fong
- University of Washington Dept. of Materials Science and Engineering, USA
| | | | - Richard V Lee
- University of Washington Dept. of Materials Science and Engineering, USA
| | - Le Cai
- University of Washington Dept. of Materials Science and Engineering, USA
| | - Dennis Godin
- University of Washington Dept. of Biochemistry, USA
| | - Tatum Hennig
- University of Washington Dept. of Atmospheric Chemistry, USA
| | - Siddharth Rath
- University of Washington Dept. of Materials Science and Engineering, USA
| | - Igor Novosselov
- University of Washington Depts. of Mechanical Engineering, Occupational and Environmental Health Sciences, USA
| | - Sami Dogan
- University of Washington School of Dentistry, USA
| | - Mehmet Sarikaya
- University of Washington Depts. of Materials Science and Engineering, Chemical Engineering, Oral Health Sciences, USA
| | - J Devin MacKenzie
- University of Washington Depts. of Materials Science and Engineering, Mechanical Engineering, USA
| |
Collapse
|
27
|
Li ET, Wu HJ, Qin JH, Luo J, Li KB, Cao YZ, Zhang S, Peng Y, Yin J. Involvement of Holotrichia parallela odorant-binding protein 3 in the localization of oviposition sites. Int J Biol Macromol 2023; 242:124744. [PMID: 37148950 DOI: 10.1016/j.ijbiomac.2023.124744] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/29/2023] [Accepted: 05/01/2023] [Indexed: 05/08/2023]
Abstract
Organic fertilizers-derived volatiles attract Holotrichia parallela during oviposition. However, the mechanisms underlying the perception of oviposition cues in H. parallela remain unclear. Here, H. parallela odorant-binding protein 3 (HparOBP3) was identified as a key OBP. Bioinformatics analysis showed that HparOBP3 clustered together with Holotrichia oblita OBP8. HparOBP3 was mainly expressed in the antennae of both sexes. Recombinant HparOBP3 exhibited distinct binding affinities towards 22 compounds released by organic fertilizers. After 48 h of RNA interference (RNAi), the expression of HparOBP3 in male and female antennae was decreased by 90.77 % and 82.30 %, respectively. In addition, silencing of HparOBP3 significantly reduced the electrophysiological responses and tropism of males to cis-3-hexen-1-ol, 1-hexanol, and (Z)-β-ocimene as well as females to cis-3-hexen-1-ol, 1-hexanol, benzaldehyde, and (Z)-β-ocimene. Molecular docking indicated that hydrophobic residues Leu-83, Leu-87, Phe-108, and Ile-120 of HparOBP3 were important amino acids for interacting with ligands. Mutation of the key residue, Leu-83, significantly diminished the binding ability of HparOBP3. Furthermore, acrylic plastic arena bioassays showed that the attraction and oviposition indexes of organic fertilizers to H. parallela were reduced by 55.78 % and 60.11 %, respectively, after silencing HparOBP3. These results suggest that HparOBP3 is essential in mediating the oviposition behavior of H. parallela.
Collapse
Affiliation(s)
- Er-Tao Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road, Beijing 100193, China
| | - Han-Jia Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road, Beijing 100193, China; Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan, China
| | - Jian-Hui Qin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road, Beijing 100193, China
| | - Jing Luo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road, Beijing 100193, China
| | - Ke-Bin Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road, Beijing 100193, China.
| | - Ya-Zhong Cao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road, Beijing 100193, China.
| | - Shuai Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road, Beijing 100193, China.
| | - Yu Peng
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan, China.
| | - Jiao Yin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road, Beijing 100193, China.
| |
Collapse
|
28
|
Dong JF, Sun YL, Wang K, Guo H, Wang SL. Expression, affinity, and binding mode analysis of antennal-binding protein X in the variegated cutworm Peridroma saucia (Hübner). Int J Biol Macromol 2023; 242:124671. [PMID: 37137349 DOI: 10.1016/j.ijbiomac.2023.124671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/17/2023] [Accepted: 04/26/2023] [Indexed: 05/05/2023]
Abstract
The variegated cutworm Peridroma saucia (Hübner) is a worldwide pest that causes serious damage to many crops. Odorant-binding proteins (OBPs) are small soluble proteins involved in the first step of odorant reception. In moths, antennal-binding protein Xs (ABPXs) represent a main subfamily of classic OBPs. However, their functions remain unclear. Here, we cloned the ABPX gene from the antennae of P. saucia. RT-qPCR and western-blot analyses showed that PsauABPX is antenna-predominant and male-biased. Further temporal expression investigation indicated that the expression of PsauABPX started 1 day before eclosion and reached the highest 3 days after eclosion. Next, fluorescence binding assays revealed that recombinant PsauABPX had high binding affinities with P. saucia female sex pheromone components Z11-16: Ac and Z9-14: Ac. Then, molecular docking, molecular dynamics simulation, and site-directed mutagenesis were employed to identify key amino acid residues involved in the binding of PsauABPX to Z11-16: Ac and Z9-14: Ac. The results demonstrated that Val-32, Gln-107 and Tyr-114 are essential for the binding to both sex pheromones. This study not only give us insight into the function and binding mechanism of ABPXs in moths, but could also be used to explore novel strategies to control P. saucia.
Collapse
Affiliation(s)
- Jun-Feng Dong
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471000, China
| | - Ya-Lan Sun
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471000, China
| | - Ke Wang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hao Guo
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China.
| | - Shao-Li Wang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
29
|
He H, Crabbe MJC, Ren Z. Genome-wide identification and characterization of the chemosensory relative protein genes in Rhus gall aphid Schlechtendalia chinensis. BMC Genomics 2023; 24:222. [PMID: 37118660 PMCID: PMC10142413 DOI: 10.1186/s12864-023-09322-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/19/2023] [Indexed: 04/30/2023] Open
Abstract
BACKGROUND The Rhus gall aphid Schlechtendalia chinensis specially uses the only species Rhus chinensis and certain moss species (Mniaceae) as its primary host plant and secondary host plants, respectively. Rhus galls are formed on the primary host by the sucking of aphids, and used in traditional medicine as well as other various areas due to their high tannin contents. Chemoreception is critical for insect behaviors such as host searching, location and identification of mates and reproductive behavior. The process of chemoreception is mediated by a series of protein gene families, including odorant-binding proteins (OBPs), chemosensory proteins (CSPs), olfactory receptors (ORs), gustatory receptors (GRs), ionotropic receptors (IRs), and sensory neuron membrane proteins (SNMPs). However, there have been no reports on the analysis of molecular components related to the chemoreception system of S. chinensis at the genome level. RESULTS We examined the genes of eight OBPs, nine CSPs, 24 ORs, 16 GRs, 22 IRs, and five SNMPs in the S. chinensis genome using homological searches, and these chemosensory genes appeared mostly on chromosome 1. Phylogenetic and gene number analysis revealed that the gene families, e.g., ORs, GRs, CSPs and SNMPs in S. chinensis, have experienced major contractions by comparing to Myzus persicae, while the two gene families OBPs and IRs had slight expansion. The current results might be related to the broader host range of M. persicae versus the specialization of S. chinensis on only a host plant. There were 28 gene pairs between genomes of S. chinensis and Acyrthosiphon pisum in the chemoreceptor gene families by collinear comparison. Ka/Ks ratios (< 1) indicated that the genes of S. chinensis were mainly affected by purification selection during evolution. We also found the lower number and expression level of chemoreception genes in S. chinensis than in other 11 aphid species, such as ORs, GRs and IRs, which play an important role in host search. CONCLUSION Our study firstly identified the genes of the different chemosensory protein gene families in the S. chinensis genome, and analyzed their general features and expression profile, demonstrating the importance of chemoreception in the aphid and providing new information for further functional research.
Collapse
Affiliation(s)
- Hongli He
- School of Life Science, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - M James C Crabbe
- School of Life Science, Shanxi University, Taiyuan, 030006, Shanxi, China
- Wolfson College, Oxford University, Oxford, OX2 6UD, UK
- Institute of Biomedical and Environmental Science & Technology, University of Bedfordshire, Luton, LU1 3JU, UK
| | - Zhumei Ren
- School of Life Science, Shanxi University, Taiyuan, 030006, Shanxi, China.
| |
Collapse
|
30
|
Li JQ, Zhu R, Yao WC, Yu HP, Huang JR, Wang Z, Sun XY, Yuan DH, Sun YY, Emam SS, Dewer Y, Zhu XY, Zhang YN. Chemosensory Protein 2 of Male Athetis lepigone Is Involved in the Perception of Sex Pheromones and Maize Volatiles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6277-6287. [PMID: 37068196 DOI: 10.1021/acs.jafc.3c00565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In moths, the interactions between chemosensory proteins (CSPs) and sex pheromones have yet to be comprehensively investigated. Here, we examined the function of AlepCSP2 in male Athetis lepigone based on protein expression, molecular docking, site-directed mutagenesis, fluorescence competitive binding analyses, and RNA interference (RNAi) experiments. We found that AlepCSP2 showed strong binding affinity for two sex pheromones and five maize volatiles and that binding was optimal under neutral conditions. Furthermore, we identified six amino acids as being key residues involved in the interaction between AlepCSP2 and multiple ligands. Further RNAi showed that siCSP2 males displayed consistently lower electroantennography responses to two sex pheromones and three maize volatiles at different dosages tested, and the mating rate also decreased significantly by 37.50%. These findings will contribute to characterizing the binding mechanisms of moth CSPs to sex pheromones and host volatiles and also identify unique targets for developing novel pest behavior disruptors.
Collapse
Affiliation(s)
- Jian-Qiao Li
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Rui Zhu
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Wei-Chen Yao
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Hui-Ping Yu
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Jian-Rong Huang
- Henan Key Laboratory of Crop Pest Control, MOA's Regional Key Lab of Crop IPM in Southern Part of Northern China, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Zhen Wang
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Xin-Yue Sun
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Di-Hua Yuan
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Yuan-Yuan Sun
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Sekina S Emam
- Phytotoxicity Research Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, 7 Nadi El-Seid Street, Dokki, Giza 12618, Egypt
| | - Youssef Dewer
- Phytotoxicity Research Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, 7 Nadi El-Seid Street, Dokki, Giza 12618, Egypt
| | - Xiu-Yun Zhu
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Ya-Nan Zhang
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| |
Collapse
|
31
|
Yang HH, Li SP, Yin MZ, Zhu XY, Li JB, Zhang YN, Li XM. Functional differentiation of two general odorant-binding proteins to sex pheromones in Spodoptera frugiperda. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 191:105348. [PMID: 36963930 DOI: 10.1016/j.pestbp.2023.105348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
A precise chemosensory system can help insects complete various important behavioral responses by accurately identifying different external odorants. Therefore, deeply understanding the mechanism of insect recognition of important odorants will help us develop efficient and environmentally-friendly behavioral inhibitors. Spodoptera frugiperda is a polyphagous pest that feeds on >350 different host plants worldwide and also harms maize production in China. However, the molecular mechanism of the first step for males to use odorant-binding proteins (OBPs) to recognize sex pheromones remains unclear. Here, we obtained 50 OBPs from the S. frugiperda genome, and the expression level of SfruGOBP1 in females was significantly higher than that in males, whereas SfruGOBP2 displayed male-biased expression. Fluorescence competitive binding assays showed that only SfruGOBP2 showed binding affinities for the four sex pheromones of female S. frugiperda. Subsequently, we identified some key amino acid residues that can participate in the interaction between SfruGOBP2 and sex pheromones using molecular docking and site-directed mutagenesis methods. These findings will help us explore the interaction mechanism between GOBPs and sex pheromones in moths, and provide important target genes for developing new mating inhibitors of S. frugiperda in the future.
Collapse
Affiliation(s)
- Hui-Hui Yang
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Shu-Peng Li
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Mao-Zhu Yin
- Institute of Plant Protection, Suzhou Academy of Agricultural Sciences, Suzhou 234000, China
| | - Xiu-Yun Zhu
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Jin-Bu Li
- Institute of Plant Protection, Suzhou Academy of Agricultural Sciences, Suzhou 234000, China.
| | - Ya-Nan Zhang
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China.
| | - Xiao-Ming Li
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China.
| |
Collapse
|
32
|
He H, Li J, Zhang Z, Yan M, Zhang B, Zhu C, Yan W, Shi B, Wang Y, Zhao C, Yan F. A plant virus enhances odorant-binding protein 5 (OBP5) in the vector whitefly for more actively olfactory orientation to the host plant. PEST MANAGEMENT SCIENCE 2023; 79:1410-1419. [PMID: 36480018 DOI: 10.1002/ps.7313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/12/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) is a notorious agricultural pest and the effective vector of many plant viruses worldwide. Cucurbit chlorotic yellows virus (CCYV), exclusively transmitted by B. tabaci in a semipersistent manner, is a serious causal agent in cucurbit crops in many countries. Plant viruses can manipulate the behaviors of insect vectors to promote the spread of themselves, but underlying mechanisms are remaining unclear. RESULTS In this study, our observations indicated that B. tabaci, when carrying CCYV, oriented more actively to the host plant cucumber. Transcriptome analysis and quantitative polymerase chain reaction with reverse transcription analysis showed that the odorant-binding protein 5 (OBP5) was upregulated with viral acquisition. Sequence and phylogenetic analysis showed that BtabOBP5 was highly homologous with nine OBPs from other hemipteran insects. In addition, OBP5-silenced whiteflies significantly altered their orientation behavior towards cucumber plants and towards some typical volatile organic compounds released from cucumbers. CONCLUSION This study described a novel mechanism by which the olfactory system of vector insects could be regulated by a semipersistent plant virus, thereby affecting insect olfactory behavior and relationship with host plants. These results provided a basis for developing potential olfaction-based pest management strategies in the future. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Haifang He
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Jingjing Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Zelong Zhang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Minghui Yan
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Beibei Zhang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Chaoqiang Zhu
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Weili Yan
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Baozheng Shi
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Yaxin Wang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Chenchen Zhao
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Fengming Yan
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
33
|
A Highly Expressed Antennae Odorant-Binding Protein Involved in Recognition of Herbivore-Induced Plant Volatiles in Dastarcus helophoroides. Int J Mol Sci 2023; 24:ijms24043464. [PMID: 36834874 PMCID: PMC9962305 DOI: 10.3390/ijms24043464] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Natural enemies such as parasitoids and parasites depend on sensitive olfactory to search for their specific hosts. Herbivore-induced plant volatiles (HIPVs) are vital components in providing host information for many natural enemies of herbivores. However, the olfactory-related proteins involved in the recognition of HIPVs are rarely reported. In this study, we established an exhaustive tissue and developmental expression profile of odorant-binding proteins (OBPs) from Dastarcus helophoroides, an essential natural enemy in the forestry ecosystem. Twenty DhelOBPs displayed various expression patterns in different organs and adult physiological states, suggesting a potential involvement in olfactory perception. In silico AlphaFold2-based modeling and molecular docking showed similar binding energies between six DhelOBPs (DhelOBP4, 5, 6, 14, 18, and 20) and HIPVs from Pinus massoniana. While in vitro fluorescence competitive binding assays showed only recombinant DhelOBP4, the most highly expressed in the antennae of emerging adults could bind to HIPVs with high binding affinities. RNAi-mediated behavioral assays indicated that DhelOBP4 was an essential functional protein for D. helophoroides adults recognizing two behaviorally attractive substances: p-cymene and γ-terpinene. Further binding conformation analyses revealed that Phe 54, Val 56, and Phe 71 might be the key binding sites for DhelOBP4 interacting with HIPVs. In conclusion, our results provide an essential molecular basis for the olfactory perception of D. helophoroides and reliable evidence for recognizing the HIPVs of natural enemies from insect OBPs' perspective.
Collapse
|
34
|
Lechuga-Paredes P, Segura-León OL, Cibrián-Tovar J, Torres-Huerta B, Velázquez-González JC, Cruz-Jaramillo JL. Odorant-Binding and Chemosensory Proteins in Anthonomus eugenii (Coleoptera: Curculionidae) and Their Tissue Expression. Int J Mol Sci 2023; 24:ijms24043406. [PMID: 36834814 PMCID: PMC9961831 DOI: 10.3390/ijms24043406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 02/11/2023] Open
Abstract
The pepper weevil Anthonomus eugenii is one of the most damaging pests to the pepper crop. To offer alternative management strategies to insecticides, several studies have identified the semiochemicals that are involved in the pepper weevil's aggregation and mating behavior; however, there is no information on its perireceptor molecular mechanism, to date. In this study, bioinformatics tools were used to functionally annotate and characterize the A. eugenii head transcriptome and their probable coding proteins. We identified twenty-two transcripts belonging to families related to chemosensory processes, seventeen corresponding to odorant-binding proteins (OBP), and six to chemosensory proteins (CSP). All results matched with closely related Coleoptera: Curculionidae homologous proteins. Likewise, twelve OBP and three CSP transcripts were experimentally characterized by RT-PCR in different female and male tissues. The results by sex and tissue display the different expression patterns of the AeugOBPs and AeugCSPs; some are present in both sexes and all tissues, while others show expressions with higher specificity, which suggests diverse physiological functions in addition to chemo-detection. This study provides information to support the understanding of odor perception in the pepper weevil.
Collapse
Affiliation(s)
- Pablo Lechuga-Paredes
- Colegio de Postgraduados, Campus Montecillo, Mexico-Texcoco Highway, Km. 36.5 Montecillo, Texcoco 56230, Mexico
| | - Obdulia Lourdes Segura-León
- Colegio de Postgraduados, Campus Montecillo, Mexico-Texcoco Highway, Km. 36.5 Montecillo, Texcoco 56230, Mexico
- Correspondence: ; Tel.: +52-554-009-3079
| | - Juan Cibrián-Tovar
- Colegio de Postgraduados, Campus Montecillo, Mexico-Texcoco Highway, Km. 36.5 Montecillo, Texcoco 56230, Mexico
| | - Brenda Torres-Huerta
- Colegio de Postgraduados, Campus Montecillo, Mexico-Texcoco Highway, Km. 36.5 Montecillo, Texcoco 56230, Mexico
| | | | - José Luis Cruz-Jaramillo
- Bioinformatics and Technologies Department, Solaria Biodata, Antonio Ortega 817, Benito Juárez, Mexico City 03100, Mexico
| |
Collapse
|
35
|
Mamtha R, Kiran T, Chandramohan V, Gowrishankar BS, Manjulakumari D. Genome-wide identification and expression analysis of the mating-responsive genes in the male accessory glands of Spodoptera litura (Lepidoptera: Noctuidae). J Genet Eng Biotechnol 2023; 21:11. [PMID: 36723695 PMCID: PMC9892375 DOI: 10.1186/s43141-023-00466-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/14/2023] [Indexed: 02/02/2023]
Abstract
BACKGROUND Mating elicits significant changes in gene expression and leads to subsequent physiological and behavioural modifications in insects. The reproductive success of both sexes is contributed immensely by the male accessory gland (MAG) proteins that are transferred along with sperms to the female reproductive tract during mating where they facilitate several processes that modify the post-mating behaviour. The mating-responsive genes in the MAGs have been identified and reported in many insects but have not been well-characterized in the important agricultural pest Spodoptera litura. Here, we present RNA sequencing analysis to identify mating-responsive genes from the accessory glands of virgin males and males interrupted during mating. RESULTS Overall, 91,744 unigenes were generated after clustering the assembled transcript sequences of both samples, while the total number of transcripts annotated was 48,708 based on sequence homology against the non-redundant (NR) database. Comparative transcriptomics analysis revealed 16,969 genes that were differentially expressed between the two groups, including 9814 up-regulated and 7155 down-regulated genes. Among the top 80 genes that were selected for heat map analysis, several prominent genes including odorant binding protein, cytochrome P450, heat shock proteins, juvenile hormone binding protein, carboxypeptidases and serine protease were differentially expressed. CONCLUSIONS The identified genes are known or predicted to promote several processes that modify the female post-mating behaviour. Future studies with the individual MAG protein or in combination will be required to recognize the precise mechanisms by which these proteins alter female physiology and reproductive behaviour. Thus, our study provides essential data to address fundamental questions about reproduction within and among insects and also paves way for further exploration of the functions of these proteins in female insects.
Collapse
Affiliation(s)
- R. Mamtha
- grid.37728.390000 0001 0730 3862Department of Microbiology & Biotechnology, Bangalore University, Bengaluru, Karnataka 560056 India
| | - Tannavi Kiran
- grid.37728.390000 0001 0730 3862Department of Microbiology & Biotechnology, Bangalore University, Bengaluru, Karnataka 560056 India
| | - Vivek Chandramohan
- grid.444321.40000 0004 0501 2828Department of Biotechnology, Siddaganga Institute of Technology, Tumakuru, Karnataka 572103 India
| | - B. S. Gowrishankar
- grid.444321.40000 0004 0501 2828Department of Biotechnology, Siddaganga Institute of Technology, Tumakuru, Karnataka 572103 India
| | - D. Manjulakumari
- grid.37728.390000 0001 0730 3862Department of Microbiology & Biotechnology, Bangalore University, Bengaluru, Karnataka 560056 India
| |
Collapse
|
36
|
Li LL, Xu BQ, Li CQ, Li BL, Luo K, Li GW, Chen XL. Functional disparity of four pheromone-binding proteins from the plum fruit moth Grapholita funebrana Treitscheke in detection of sex pheromone components. Int J Biol Macromol 2023; 225:1267-1279. [PMID: 36423808 DOI: 10.1016/j.ijbiomac.2022.11.186] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022]
Abstract
Grapholita funebrana, also known as the plum fruit moth, is an oligophagous pest species that causes enormous economic losses of the fruits of Rosaceae. An eco-friendly method for the control of G. funebrana besides chemical control has not yet been developed. The sex pheromone communication system plays an important role in moth courtship and mating, in which pheromone-binding proteins (PBPs) are critical. In this research, we identified four PBPs, namely, GfunPBP1.1, GfunPBP1.2, GfunPBP2, and GfunPBP3, from the antennae of G. funebrana. The results of real-time quantitative PCR (RT-qPCR) showed that all four GfunPBPs were overwhelmingly expressed in the antennae and that GfunPBP1.2 and GfunPBP2 showed male-biased expression patterns, whereas GfunPBP1.1 and GfunPBP3 were equally expressed between sexes. The results of ligand-binding assays illustrated that although all four recombinant GfunPBPs (rGfunPBPs) had binding activity with the tested sex pheromone compounds, their preferred ligands were significantly different. rGfunPBP2 had the strongest binding affinity to Z8-12:Ac and Z8-12:OH; rGfunPBP1.1 preferred to bind Z8-14:Ac, Z10-14:Ac, and 12:OH more than to the other three GfunPBPs; and rGfunPBP1.2 exhibited stronger binding affinity to E8-12:Ac than to the other rGfunPBPs. Molecular docking results demonstrated that hydrophobic forces, especially van der Waals forces and hydrogen bonds, were the most important forces that maintained GfunPBP-pheromone ligand complexes. This study will improve our understanding of the sex pheromone recognition mechanisms of G. funebrana and promote the development of novel strategies for controlling G. funebrana.
Collapse
Affiliation(s)
- Lin-Lin Li
- Shaanxi Province Key Laboratory of Jujube, College of Life Science, Yan'an University, Yan'an 716000, China
| | - Bing-Qiang Xu
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumchi 830091, China
| | - Chun-Qin Li
- Shaanxi Province Key Laboratory of Jujube, College of Life Science, Yan'an University, Yan'an 716000, China
| | - Bo-Liao Li
- Shaanxi Province Key Laboratory of Jujube, College of Life Science, Yan'an University, Yan'an 716000, China
| | - Kun Luo
- Shaanxi Province Key Laboratory of Jujube, College of Life Science, Yan'an University, Yan'an 716000, China
| | - Guang-Wei Li
- Shaanxi Province Key Laboratory of Jujube, College of Life Science, Yan'an University, Yan'an 716000, China.
| | - Xiu-Lin Chen
- Shaanxi Province Key Laboratory of Jujube, College of Life Science, Yan'an University, Yan'an 716000, China.
| |
Collapse
|
37
|
Li R, Shan S, Song X, Khashaveh A, Wang S, Yin Z, Lu Z, Dhiloo KH, Zhang Y. Plant volatile ligands for male-biased MmedOBP14 stimulate orientation behavior of the parasitoid wasp Microplitis mediator. Int J Biol Macromol 2022; 223:1521-1529. [PMID: 36400212 DOI: 10.1016/j.ijbiomac.2022.11.149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022]
Abstract
As an important class of chemosensory-associated proteins, odorant binding proteins (OBPs) play a key role in the perception of olfactory signals for insects. Parasitoid wasp Microplitis mediator relies on its sensitive olfactory system to locate host larvae of Noctuidae and Geometridae. In the present study, MmedOBP14, a male-biased OBP in M. mediator, was functionally investigated. In fluorescence competitive binding assays, the recombinant MmedOBP14 showed strong binding abilities to five plant volatiles: β-ionone, 3,4-dimethylacetophenone, 4-ethylacetophenone, acetophenone and ocimene. Homology modeling and molecular docking results indicated that the binding sites of all five ligands were similar and concentrated in the binding pocket of MmedOBP14. Except acetophenone, the remaining four ligands at 1, 10 and 100 μg/μL caused strong antennal electrophysiological responses in adults M. mediator, and males showed more obvious EAG responses to most ligands than females. In behavioral trials, males were attracted by low concentrations of MmedOBP14 ligands, whereas high doses of β-ionone and acetophenone had a repellent effect on males. Moreover, 1 μg/μL of 3,4-dimethylacetophenone showed the strongest attractiveness to female wasps. These findings suggest that MmedOBP14 may play a more important role in the perception of plant volatiles for male wasps to locate habitat, supplement nutrition and search partners.
Collapse
Affiliation(s)
- Ruijun Li
- College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
| | - Shuang Shan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xuan Song
- College of Plant Protection, Hebei Agricultural University, Baoding 071000, China.; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Adel Khashaveh
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shanning Wang
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Zixuan Yin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ziyun Lu
- IPM Center of Hebei Province, Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture, Plant Protection Institute, Hebei Academy of Agricultural and Forestry Sciences, Baoding, Hebei 071000, China
| | - Khalid Hussain Dhiloo
- Department of Entomology, Faculty of Crop Protection, Sindh Agriculture University, Tandojam 70060, Pakistan
| | - Yongjun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China..
| |
Collapse
|
38
|
Chen L, Tian Z, Hu J, Wang XY, Wang MQ, Lu W, Wang XP, Zheng XL. Molecular Characterization and Expression Patterns of Two Pheromone-Binding Proteins from the Diurnal Moth Phauda flammans (Walker) (Lepidoptera: Zygaenoidea: Phaudidae). Int J Mol Sci 2022; 24:ijms24010385. [PMID: 36613830 PMCID: PMC9820377 DOI: 10.3390/ijms24010385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Sex pheromone-binding proteins (PBPs) play an important role in sex pheromone recognition in Lepidoptera. However, the mechanisms of chemical communication mediating the response to sex pheromones remain unclear in the diurnal moths of the superfamily Zygaenoidea. In this study, Phauda flammans (Walker) (Lepidoptera: Zygaenoidea: Phaudidae) was used as a model insect to explore the molecular mechanism of sex pheromone perception in the superfamily Zygaenoidea. Two novel pheromone-binding proteins (PflaPBP1 and PflaPBP2) from P. flammans were identified. The two pheromone-binding proteins were predominantly expressed in the antennae of P. flammans male and female moths, in which PflaPBP1 had stronger binding affinity to the female sex pheromones Z-9-hexadecenal and (Z, Z, Z)-9, 12, 15-octadecatrienal, PflaPBP2 had stronger binding affinity only for (Z, Z, Z)-9, 12, 15-octadecatrienal, and no apparent binding affinity to Z-9-hexadecenal. The molecular docking results indicated that Ile 170 and Leu 169 are predicted to be important in the binding of the sex pheromone to PflaPBP1 and PflaPBP2. We concluded that PflaPBP1 and PflaPBP2 may be responsible for the recognition of two sex pheromone components and may function differently in female and male P. flammans. These results provide a foundation for the development of pest control by exploring sex pheromone blocking agents and the application of sex pheromones and their analogs for insect pests in the superfamily Zygaenoidea.
Collapse
Affiliation(s)
- Lian Chen
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
- Xianning Academy of Agricultural Sciences, Xianning 437000, China
| | - Zhong Tian
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jin Hu
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Xiao-Yun Wang
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Man-Qun Wang
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wen Lu
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Xiao-Ping Wang
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xia-Lin Zheng
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
- Correspondence: or ; Tel.: +86-0771-3235-612
| |
Collapse
|
39
|
Wu ZR, Fan JT, Tong N, Guo JM, Li Y, Lu M, Liu XL. Transcriptome analysis and identification of chemosensory genes in the larvae of Plagiodera versicolora. BMC Genomics 2022; 23:845. [PMID: 36544089 PMCID: PMC9773597 DOI: 10.1186/s12864-022-09079-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND In insects, the chemosensory system is crucial in guiding their behaviors for survival. Plagiodera versicolora (Coleoptera: Chrysomelidae), is a worldwide leaf-eating forest pest in salicaceous trees. There is little known about the chemosensory genes in P. versicolora. Here, we conducted a transcriptome analysis of larvae heads in P. versicolora. RESULTS In this study, 29 odorant binding proteins (OBPs), 6 chemosensory proteins (CSPs), 14 odorant receptors (ORs), 13 gustatory receptors (GRs), 8 ionotropic receptors (IRs) and 4 sensory neuron membrane proteins (SNMPs) were identified by transcriptome analysis. Compared to the previous antennae and foreleg transcriptome data in adults, 12 OBPs, 2 CSPs, 5 ORs, 4 IRs, and 7 GRs were newly identified in the larvae. Phylogenetic analyses were conducted and found a new candidate CO2 receptor (PverGR18) and a new sugar receptor (PverGR23) in the tree of GRs. Subsequently, the dynamic expression profiles of various genes were analyzed by quantitative real-time PCR. The results showed that PverOBP31, OBP34, OBP35, OBP38, and OBP40 were highly expressed in larvae, PverOBP33 and OBP37 were highly expressed in pupae, and PverCSP13 was highly expressed in eggs, respectively. CONCLUSIONS We identified a total of 74 putative chemosensory genes based on a transcriptome analysis of larvae heads in P. versicolora. This work provides new information for functional studies on the chemoreception mechanism in P. versicolora.
Collapse
Affiliation(s)
- Zhe-Ran Wu
- grid.34418.3a0000 0001 0727 9022State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Jian-Ting Fan
- grid.443483.c0000 0000 9152 7385School of Forestry and Biotechnology, Zhejiang A & F University, National Joint Local Engineering Laboratory for High-Efficient Preparation of Biopesticide, Lin’an, 311300 China
| | - Na Tong
- grid.34418.3a0000 0001 0727 9022State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Jin-Meng Guo
- grid.27871.3b0000 0000 9750 7019Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/ Department of Entomology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yang Li
- grid.34418.3a0000 0001 0727 9022State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Min Lu
- grid.34418.3a0000 0001 0727 9022State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Xiao-Long Liu
- grid.34418.3a0000 0001 0727 9022State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062 China
| |
Collapse
|
40
|
Godoy R, Arias I, Venthur H, Quiroz A, Mutis A. Characterization of Two Aldehyde Oxidases from the Greater Wax Moth, Galleria mellonella Linnaeus. (Lepidoptera: Pyralidae) with Potential Role as Odorant-Degrading Enzymes. INSECTS 2022; 13:1143. [PMID: 36555053 PMCID: PMC9782417 DOI: 10.3390/insects13121143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 06/17/2023]
Abstract
Odorant-degrading enzymes (ODEs) are proposed to degrade/inactivate volatile organic compounds (VOCs) on a millisecond timescale. Thus, ODEs play an important role in the insect olfactory system as a reset mechanism. The inhibition of these enzymes could incapacitate the olfactory system and, consequently, disrupt chemical communication, promoting and complementing the integrated pest management strategies. Here, we report two novel aldehyde oxidases, AOX-encoding genes GmelAOX2 and GmelAOX3, though transcriptomic analysis in the greater wax moth, Galleria mellonella. GmelAOX2 was clustered in a clade with ODE function, according to phylogenetic analysis. Likewise, to unravel the profile of volatiles that G. mellonella might face besides the sex pheromone blend, VOCs were trapped from honeycombs and the identification was made by gas chromatography-mass spectrometry. Semi-quantitative RT-PCR showed that GmelAXO2 has a sex-biased expression, and qRT-PCR indicated that both GmelAOX2 and GmelAOX3 have a higher relative expression in male antennae rather than female antennae. A functional assay revealed that antennal extracts had the strongest enzymatic activity against undecanal (4-fold) compared to benzaldehyde (control). Our data suggest that these enzymes have a crucial role in metabolizing sex pheromone compounds as well as plant-derived aldehydes, which are related to honeycombs and the life cycle of G. mellonella.
Collapse
Affiliation(s)
- Ricardo Godoy
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Temuco 4811230, Chile
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile
| | - Ignacio Arias
- Carrera Bioquímica, Universidad de La Frontera, Temuco 4811230, Chile
| | - Herbert Venthur
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile
- Centro de Investigación Biotecnológica Aplicada al Medio Ambiente, CIBAMA, Universidad de La Frontera, Temuco 4811230, Chile
| | - Andrés Quiroz
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile
- Centro de Investigación Biotecnológica Aplicada al Medio Ambiente, CIBAMA, Universidad de La Frontera, Temuco 4811230, Chile
| | - Ana Mutis
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile
- Centro de Investigación Biotecnológica Aplicada al Medio Ambiente, CIBAMA, Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
41
|
Zhu XY, Li JB, Liu J, Dewer Y, Zhang H, Zhang HR, Zhang D, Zhang XY, Wan ZW, Yin MZ, Li XM, Zhang YN. Binding properties of odorant-binding protein 4 from bean bug Riptortus pedestris to soybean volatiles. INSECT MOLECULAR BIOLOGY 2022; 31:760-771. [PMID: 35833827 DOI: 10.1111/imb.12802] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
The bean bug Riptortus pedestris is a notorious insect pest that can damage various crops, especially soybean, in East Asia. In insects, the olfactory system plays a crucial role in host finding and feeding behaviour in which the odorant-binding proteins (OBPs) are believed to be involved in initial step in this system. In this study, we produced the R. pedestris adult antennae-expressed RpedOBP4 protein using a recombinant expression system in E. coli. Fluorescence competitive binding confirmed that RpedOBP4 has binding affinities to 7 of 20 soybean volatiles (ligands), and that a neutral condition is the best environment for it. The binding property of RpedOBP4 to these ligands was further revealed by integrating data from molecular docking, site-directed mutagenesis and ligand binding assays. This demonstrated that five amino acid residues (I30, L33, Y47, I57 and Y121) are involved in the binding process of RpedOBP4 to corresponding ligands. These findings will not only help us to more thoroughly explore the olfactory mechanism of R. pedestris during feeding on soybean, but also lead to the identification of key candidate targets for developing environmental and efficient behaviour inhibitors to prevent population expansion of R. pedestris in the future.
Collapse
Affiliation(s)
- Xiu-Yun Zhu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Jin-Bu Li
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Institute of Plant Protection, Suzhou Academy of Agricultural Sciences, Suzhou, China
| | - Jia Liu
- Institute of Millet, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Youssef Dewer
- Phytotoxicity Research Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, Giza, Egypt
| | - Hui Zhang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Hui-Ru Zhang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Dong Zhang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Xiao-Ya Zhang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Zhi-Wei Wan
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Mao-Zhu Yin
- Institute of Plant Protection, Suzhou Academy of Agricultural Sciences, Suzhou, China
| | - Xiao-Ming Li
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Ya-Nan Zhang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, China
| |
Collapse
|
42
|
Chang X, Bi Y, Chi H, Fang Q, Lu Z, Wang F, Ye G. Identification and Expression Analysis of Odorant-Binding and Chemosensory Protein Genes in Virus Vector Nephotettix cincticeps. INSECTS 2022; 13:1024. [PMID: 36354848 PMCID: PMC9698027 DOI: 10.3390/insects13111024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
The insect odorant binding proteins (OBPs) and chemosensory proteins (CSPs) are involved in the perception and discrimination of insects to host odor cues. Nephotettix cincticeps, one of the destructive pests of rice plants, not only directly damages hosts by sucking, but also indirectly transmits plant viruses in the field. Previous study found that two rice volatiles ((E)-β-caryophyllene and 2-heptanol) induced by rice dwarf virus (RDV) mediated the olfactory behavior of N. cincticeps, which may promote virus dispersal. However, the OBPs and CSPs in N. cincticeps are still unknown. In this study, to identify the OBP and CSP genes in N. cincticeps, transcriptomic analyses were performed. In total, 46,623 unigenes were obtained. Twenty putative OBP and 13 CSP genes were discovered and identified. Phylogenetic analyses revealed that five putative OBPs belonged to the plus-C OBP family, and the other classic OBPs and CSPs were distributed among other orthologous groups. A total of 12 OBP and 10 CSP genes were detected, and nine OBP and three CSP genes were highly expressed in N. cincticeps antennae compared with other tissues. This study, for the first time, provides a valuable resource to well understand the molecular mechanism of N. cincticeps in the perception and discrimination of the two volatiles induced by RDV infection.
Collapse
Affiliation(s)
- Xuefei Chang
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Diseases and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yaluan Bi
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Diseases and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Haipeng Chi
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Qi Fang
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Diseases and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhaozhi Lu
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Fang Wang
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Diseases and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Gongyin Ye
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Diseases and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
43
|
Zhao H, Li G, Cui X, Wang H, Liu Z, Yang Y, Xu B. Review on effects of some insecticides on honey bee health. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 188:105219. [PMID: 36464327 DOI: 10.1016/j.pestbp.2022.105219] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 04/03/2022] [Accepted: 08/26/2022] [Indexed: 06/17/2023]
Abstract
Insecticides, one of the main agrochemicals, are useful for controlling pests; however, the indiscriminate use of insecticides has led to negative effects on nontarget insects, especially honey bees, which are essential for pollination services. Different classes of insecticides, such as neonicotinoids, pyrethroids, chlorantraniliprole, spinosad, flupyradifurone and sulfoxaflor, not only negatively affect honey bee growth and development but also decrease their foraging activity and pollination services by influencing their olfactory sensation, memory, navigation back to the nest, flight ability, and dance circuits. Honey bees resist the harmful effects of insecticides by coordinating the expression of genes related to immunity, metabolism, and detoxification pathways. To our knowledge, more research has been conducted on the effects of neonicotinoids on honey bee health than those of other insecticides. In this review, we summarize the current knowledge regarding the effects of some insecticides, especially neonicotinoids, on honey bee health. Possible strategies to increase the positive impacts of insecticides on agriculture and reduce their negative effects on honey bees are also discussed.
Collapse
Affiliation(s)
- Hang Zhao
- College of Life Sciences, Qufu Normal University, Qufu 273165, China
| | - Guilin Li
- College of Life Sciences, Qufu Normal University, Qufu 273165, China
| | - Xuepei Cui
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Hongfang Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Zhenguo Liu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Yuewei Yang
- College of Life Sciences, Qufu Normal University, Qufu 273165, China.
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, China.
| |
Collapse
|
44
|
Ma S, Li LL, Yao WC, Yin MZ, Li JQ, Xu JW, Dewer Y, Zhu XY, Zhang YN. Two Odorant-Binding Proteins Involved in the Recognition of Sex Pheromones in Spodoptera litura Larvae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12372-12382. [PMID: 36129378 DOI: 10.1021/acs.jafc.2c04335] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Usually, the recognition of sex pheromone signals is restricted to adult moths. Here, our behavioral assay showed that fourth-instar Spodoptera litura larvae are attracted to cabbage laced with minor sex pheromones Z9,E12-tetradecadienyl acetate (Z9,E12-14:Ac) or Z9-tetradecenyl acetate (Z9-14:Ac). Seven odorant-binding proteins (OBPs) were upregulated after exposure to Z9,E12-14:Ac, and one OBP was upregulated after exposure to Z9-14:Ac. Fluorescence competitive binding assays showed that GOBP2 and OBP7 bound to sex pheromones. RNAi treatment significantly downregulated GOBP2 and OBP7 mRNA expression by 70.37 and 63.27%, respectively. The siOBP-treated larvae were not attracted to Z9,E12-14:Ac or Z9-14:Ac, and the corresponding preference indices were significantly lower than those in siGFP-treated larvae. Therefore, we concluded that GOBP2 and OBP7 are involved in the attraction of S. litura larvae to food containing Z9,E12-14:Ac and Z9-14:Ac. These results provide an important basis for exploring the olfactory mechanisms underlying sex pheromone attraction in moth larvae.
Collapse
Affiliation(s)
- Sai Ma
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei 235000, China
| | - Lu Lu Li
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei 235000, China
| | - Wei-Chen Yao
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei 235000, China
| | - Mao-Zhu Yin
- Institute of Plant Protection, Suzhou Academy of Agricultural Sciences, Suzhou 234000, China
| | - Jian-Qiao Li
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei 235000, China
| | - Ji-Wei Xu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei 235000, China
| | - Youssef Dewer
- Phytotoxicity Research Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, 7 Nadi El-Seid Street, Dokki 12618, Giza, Egypt
| | - Xiu-Yun Zhu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei 235000, China
| | - Ya-Nan Zhang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei 235000, China
| |
Collapse
|
45
|
Liu H, Sun X, Shi Z, An X, Khashaveh A, Li Y, Gu S, Zhang Y. Identification and functional analysis of odorant-binding proteins provide new control strategies for Apolygus lucorum. Int J Biol Macromol 2022; 224:1129-1141. [DOI: 10.1016/j.ijbiomac.2022.10.197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/05/2022]
|
46
|
Zhang Y, Feng K, Mei R, Li W, Tang F. Analysis of the Antennal Transcriptome and Identification of Tissue-specific Expression of Olfactory-related Genes in Micromelalopha troglodyta (Lepidoptera: Notodontidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2022; 22:8. [PMID: 36165424 PMCID: PMC9513789 DOI: 10.1093/jisesa/ieac056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Indexed: 06/16/2023]
Abstract
Micromelalopha troglodyta (Graeser) has been one of the most serious pests on poplars in China. We used Illumina HiSeq 2000 sequencing to construct an antennal transcriptome and identify olfactory-related genes. In total, 142 transcripts were identified, including 74 odorant receptors (ORs), 32 odorant-binding proteins (OBPs), 13 chemosensory proteins (CSPs), 20 ionotropic receptors (IRs), and 3 sensory neuron membrane proteins (SNMPs). The genetic relationships were obtained by the phylogenetic tree, and the tissue-specific expression of important olfactory-related genes was determined by quantitative real-time PCR (qRT-PCR). The results showed that most of these genes are abundantly expressed in the antennae and head. In most insects, olfaction plays a key role in foraging, host localization, and searching for mates. Our research lays the foundation for future research on the molecular mechanism of the olfactory system in M. troglodyta. In addition, this study provides a theoretical basis for exploring the relationship between M. troglodyta and their host plants, and for the biological control of M. troglodyta using olfactory receptor as targets.
Collapse
Affiliation(s)
| | | | - Ruolan Mei
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Wei Li
- College of Life Sciences, Yangtze University, Jingzhou 434025, Hubei Province, China
| | | |
Collapse
|
47
|
Wu Z, Tong N, Li Y, Guo J, Lu M, Liu X. Foreleg Transcriptomic Analysis of the Chemosensory Gene Families in Plagiodera versicolora (Coleoptera: Chrysomelidae). INSECTS 2022; 13:763. [PMID: 36135464 PMCID: PMC9503008 DOI: 10.3390/insects13090763] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/17/2022] [Accepted: 08/20/2022] [Indexed: 06/16/2023]
Abstract
Plagiodera versicolora (Coleoptera: Chrysomelidae) is a worldwide leaf-eating forest pest in salicaceous trees. The forelegs play important roles in the chemoreception of insects. In this study, we conducted a transcriptome analysis of adult forelegs in P. versicolora and identified a total of 53 candidate chemosensory genes encoding 4 chemosensory proteins (CSPs), 19 odorant binding proteins (OBPs), 10 odorant receptors (ORs), 10 gustatory receptors (GRs), 6 ionotropic receptors (IRs), and 4 sensory neuron membrane proteins (SNMPs). Compared with the previous antennae transcriptome data, 1 CSP, 4 OBPs, 1 OR, 3 IRs, and 4 GRs were newly identified in the forelegs. Subsequently, the tissue expression profiles of 10 P. versicolora chemosensory genes were performed by real-time quantitative PCR. The results showed that PverOBP25, PverOBP27, and PverCSP6 were highly expressed in the antennae of both sexes. PverCSP11 and PverIR9 are predominately expressed in the forelegs than in the antennae. In addition, the expression levels of PverGR15 in female antennae and forelegs were significantly higher than those in the male antennae, implying that it may be involved in some female-specific behaviors such as oviposition site seeking. This work would greatly further the understanding of the chemoreception mechanism in P. versicolora.
Collapse
Affiliation(s)
- Zheran Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Na Tong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yang Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Jinmeng Guo
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China
| | - Min Lu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Xiaolong Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| |
Collapse
|
48
|
Wang GY, Chang YB, Guo JH, Xi JQ, Liang TB, Zhang SX, Yang MM, Hu LW, Mu WJ, Song JZ. Identification and Expression Profiles of Putative Soluble Chemoreception Proteins from Lasioderma serricorne (Coleoptera: Anobiidae) Antennal Transcriptome. ENVIRONMENTAL ENTOMOLOGY 2022; 51:700-709. [PMID: 35666204 DOI: 10.1093/ee/nvac037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Indexed: 06/15/2023]
Abstract
The cigarette beetle, Lasioderma serricorne (Fabricius) (Coleoptera: Anobiidae), is a destructive stored product pest worldwide. Adult cigarette beetles are known to rely on host volatiles and pheromones to locate suitable habitats for oviposition and mating, respectively. However, little is known about the chemosensory mechanisms of these pests. Soluble chemoreception proteins are believed to initiate olfactory signal transduction in insects, which play important roles in host searching and mating behaviors. In this study, we sequenced the antennal transcriptome of L. serricorne and identified 14 odorant-binding proteins (OBPs), 5 chemosensory proteins (CSPs), and 2 Niemann-Pick C2 proteins (NPC2). Quantitative realtime PCR (qPCR) results revealed that several genes (LserOBP2, 3, 6, and 14) were predominantly expressed in females, which might be involved in specific functions in this gender. The five LserOBPs (LserOBP1, 4, 8, 10, and 12) that were highly expressed in the male antennae might encode proteins involved in specific functions in males. These findings will contribute to a better understanding of the olfactory system in this stored product pest and will assist in the development of efficient and environmentally friendly strategies for controlling L. serricorne.
Collapse
Affiliation(s)
- Gui-Yao Wang
- Key Laboratory of Eco-environment and Leaf Tobacco Quality, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Yan-Bin Chang
- Key Laboratory of Eco-environment and Leaf Tobacco Quality, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Jian-Hua Guo
- Key Laboratory of Eco-environment and Leaf Tobacco Quality, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Jia-Qin Xi
- Key Laboratory of Eco-environment and Leaf Tobacco Quality, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Tai-Bo Liang
- Key Laboratory of Eco-environment and Leaf Tobacco Quality, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Shi-Xiang Zhang
- Key Laboratory of Eco-environment and Leaf Tobacco Quality, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Meng-Meng Yang
- Key Laboratory of Eco-environment and Leaf Tobacco Quality, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Li-Wei Hu
- Key Laboratory of Eco-environment and Leaf Tobacco Quality, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Wen-Jun Mu
- Key Laboratory of Eco-environment and Leaf Tobacco Quality, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Ji-Zhen Song
- Key Laboratory of Eco-environment and Leaf Tobacco Quality, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| |
Collapse
|
49
|
Hu P, Hao E, Yang Z, Qiu Z, Fu H, Lu J, He Z, Huang Y. EsigGOBP1: The Key Protein Binding Alpha-Phellandrene in Endoclita signifer Larvae. Int J Mol Sci 2022; 23:9269. [PMID: 36012538 PMCID: PMC9409361 DOI: 10.3390/ijms23169269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
Endoclita signifer larvae show olfactory recognition towards volatiles of eucalyptus trunks and humus soils. Further, EsigGOBP1 was identified through larval head transcriptome and speculated as the main odorant-binding proteins in E. signifer larvae. In this study, the highest expression of EsigGOBP1 was only expressed in the heads of 3rd instar larvae of E. signifer, compared with the thorax and abdomen; this was consistent with the phenomenon of habitat transfer of 3rd instar larvae, indicating that EsigGOBP1 was a key OBP gene in E. signifer larvae. Results of fluorescence competition binding assays (FCBA) showed that EsigGOBP1 had high binding affinities to eight GC-EAD active ligands. Furthermore, screening of key active odorants for EsigGOBP1 and molecular docking analysis, indicated that EsigGOBP1 showed high binding activity to alpha-phellandrene in 3rd instar larvae of E. signifer. Conformational analysis of the EsigGOBP1-alpha-phellandrene complex, showed that MET49 and GLU38 were the key sites involved in binding. These results demonstrated that EsigGOBP1 is a key odorant-binding protein in E. signifer larvae, which recognizes and transports eight key volatiles from eucalyptus trunk, especially the main eucalyptus trunks volatile, alpha-phellandrene. Taken together, our results showed that EsigGOBP1 is involved in host selection of E. signifer larvae, which would aid in developing EsigGOBP1 as molecular targets for controlling pests at the larval stage.
Collapse
Affiliation(s)
- Ping Hu
- Forestry College, Guangxi University, Nanning 540003, China
| | - Enhua Hao
- Forestry College, Beijing Forestry University, Beijing 100083, China
| | - Zhende Yang
- Forestry College, Guangxi University, Nanning 540003, China
| | - Zhisong Qiu
- Forestry College, Guangxi University, Nanning 540003, China
| | - Hengfei Fu
- Forestry College, Guangxi University, Nanning 540003, China
| | - Jintao Lu
- Forestry College, Guangxi University, Nanning 540003, China
| | - Ziting He
- Forestry College, Guangxi University, Nanning 540003, China
| | - Yingqi Huang
- Forestry College, Guangxi University, Nanning 540003, China
| |
Collapse
|
50
|
Marwein CB, Das KS, Lyngdoh Nonglait KC, Kharthangmaw JM, Choudhury S. Scanning electron microscopic studies of the antennal sensilla of
Aplosonyx chalybaeus
(Hope) (Coleoptera: Chrysomelidae). Microsc Res Tech 2022; 85:3664-3673. [DOI: 10.1002/jemt.24219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Cynthia Bansara Marwein
- Entomology Laboratory, Department of Zoology North‐Eastern Hill University Shillong Meghalaya India
| | - Khirod Sankar Das
- Entomology Laboratory, Department of Zoology North‐Eastern Hill University Shillong Meghalaya India
| | | | - Joycy Mary Kharthangmaw
- Entomology Laboratory, Department of Zoology North‐Eastern Hill University Shillong Meghalaya India
| | - Sudipta Choudhury
- Entomology Laboratory, Department of Zoology North‐Eastern Hill University Shillong Meghalaya India
| |
Collapse
|