1
|
Himstead AS, Picton B, Luzzi S, Fote GM, Urgun K, Winslow N, Vadera S. "Mail-slot" Technique for Minimally Invasive Placement of Subdural Grid Electrodes: A Single-institution Experience. World Neurosurg 2024; 189:e191-e203. [PMID: 38866238 DOI: 10.1016/j.wneu.2024.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND In the management of multi-drug-resistant focal epilepsies, intracranial electrode implantation is used for precise localization of the ictal onset zone. In select patients, subdural grid electrode implantation is utilized. Subdural grid placement traditionally requires large craniotomies to visualize the cortex prior to mapping. However, smaller craniotomies may enable shorter operations and reduced risks. We aimed to compare surgical outcomes between patients undergoing traditional large craniotomies with those undergoing tailored "mini" craniotomies (the "mail-slot" technique) for subdural grid placement. METHODS This retrospective cohort study included 23 patients who underwent subdural electrode implantation for epilepsy monitoring between 2014 and 2020. Patients were categorized into mini-craniotomies (n = 9) and traditional large craniotomies (n = 14) groups. Demographics, operative details, and outcomes were reviewed. Craniotomy size and number of electrodes were determined via post hoc radiographs. RESULTS Of the 23 patients studied, the mini group had smaller craniotomy sizes (mean: 22.71 cm2 vs. 65.17 cm2, P < 0.001) and higher electrode-to-size ratios (mean: 4.25 vs. 1.71, P < 0.0001). The mini group had slightly fewer total electrodes (mean: 88.67 vs. 107.43, P = 0.047). No significant differences were found in operative duration, blood loss, invasive electroencephalography duration, complications, or Engel scores between the groups. One patient per group required further invasive epilepsy monitoring for localization; all patients underwent therapeutic surgery. CONCLUSIONS Our findings suggest that mini-craniotomies for subdural grid placement in epilepsy monitoring offer significant advantages, including smaller craniotomy sizes and shorter operation durations, without compromising safety or efficacy. These results support the trend towards minimally invasive, patient-tailored surgical approaches in epilepsy treatment.
Collapse
Affiliation(s)
- Alexander S Himstead
- Department of Neurological Surgery, University of California, Irvine, California, USA.
| | - Bryce Picton
- School of Medicine, University of California, Irvine, California, USA
| | - Sophia Luzzi
- School of Medicine, University of California, Irvine, California, USA
| | - Gianna M Fote
- Department of Neurological Surgery, University of California, Irvine, California, USA
| | - Kamran Urgun
- Department of Neurological Surgery, University of California, Irvine, California, USA
| | - Nolan Winslow
- Department of Neurological Surgery, University of California, Irvine, California, USA
| | - Sumeet Vadera
- Department of Neurological Surgery, University of California, Irvine, California, USA
| |
Collapse
|
2
|
Dreier JP, Lemale CL, Horst V, Major S, Kola V, Schoknecht K, Scheel M, Hartings JA, Vajkoczy P, Wolf S, Woitzik J, Hecht N. Similarities in the Electrographic Patterns of Delayed Cerebral Infarction and Brain Death After Aneurysmal and Traumatic Subarachnoid Hemorrhage. Transl Stroke Res 2024:10.1007/s12975-024-01237-w. [PMID: 38396252 DOI: 10.1007/s12975-024-01237-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/11/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024]
Abstract
While subarachnoid hemorrhage is the second most common hemorrhagic stroke in epidemiologic studies, the recent DISCHARGE-1 trial has shown that in reality, three-quarters of focal brain damage after subarachnoid hemorrhage is ischemic. Two-fifths of these ischemic infarctions occur early and three-fifths are delayed. The vast majority are cortical infarcts whose pathomorphology corresponds to anemic infarcts. Therefore, we propose in this review that subarachnoid hemorrhage as an ischemic-hemorrhagic stroke is rather a third, separate entity in addition to purely ischemic or hemorrhagic strokes. Cumulative focal brain damage, determined by neuroimaging after the first 2 weeks, is the strongest known predictor of patient outcome half a year after the initial hemorrhage. Because of the unique ability to implant neuromonitoring probes at the brain surface before stroke onset and to perform longitudinal MRI scans before and after stroke, delayed cerebral ischemia is currently the stroke variant in humans whose pathophysiological details are by far the best characterized. Optoelectrodes located directly over newly developing delayed infarcts have shown that, as mechanistic correlates of infarct development, spreading depolarizations trigger (1) spreading ischemia, (2) severe hypoxia, (3) persistent activity depression, and (4) transition from clustered spreading depolarizations to a negative ultraslow potential. Furthermore, traumatic brain injury and subarachnoid hemorrhage are the second and third most common etiologies of brain death during continued systemic circulation. Here, we use examples to illustrate that although the pathophysiological cascades associated with brain death are global, they closely resemble the local cascades associated with the development of delayed cerebral infarcts.
Collapse
Affiliation(s)
- Jens P Dreier
- Center for Stroke Research Berlin, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany.
- Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany.
- Einstein Center for Neurosciences Berlin, Berlin, Germany.
| | - Coline L Lemale
- Center for Stroke Research Berlin, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
- Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Viktor Horst
- Center for Stroke Research Berlin, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
- Institute of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sebastian Major
- Center for Stroke Research Berlin, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
- Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Vasilis Kola
- Center for Stroke Research Berlin, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Karl Schoknecht
- Medical Faculty, Carl Ludwig Institute for Physiology, University of Leipzig, Leipzig, Germany
| | - Michael Scheel
- Department of Neuroradiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jed A Hartings
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Stefan Wolf
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Johannes Woitzik
- Department of Neurosurgery, Evangelisches Krankenhaus Oldenburg, University of Oldenburg, Oldenburg, Germany
| | - Nils Hecht
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
3
|
Männlin J, San Antonio-Arce V, Reinacher PC, Scheiwe C, Shah MJ, Urbach H, Schulze-Bonhage A. Safety profile of subdural and depth electrode implantations in invasive EEG exploration of drug-resistant focal epilepsy. Seizure 2023; 110:21-27. [PMID: 37302157 DOI: 10.1016/j.seizure.2023.05.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/15/2023] [Accepted: 05/31/2023] [Indexed: 06/13/2023] Open
Abstract
PURPOSE To analyze the safety profile of subdural and depth electrode implantation in a large monocentric cohort of patients of all ages undergoing intracranial EEG exploration because of drug resistant focal epilepsy diagnosed and implanted by a constant team of epileptologists and neurosurgeons. METHODS We retrospectively analyzed data from 452 implantations in 420 patients undergoing invasive presurgical evaluation at the Freiburg Epilepsy Center from 1999 to 2019 (n = 160 subdural electrodes, n = 156 depth electrodes and n = 136 combination of both approaches). Complications were classified as hemorrhage with or without clinical manifestations, infection-associated and other complications. Furthermore, possible risk factors (age, duration of invasive monitoring, number of electrode contacts used) and changes in complication rates during the study period were analyzed. RESULTS The most frequent complications in both implantation groups were hemorrhages. Subdural electrode explorations caused significantly more symptomatic hemorrhages and required more operative interventions (SDE 9.9%, DE 0.3%, p < 0.05). Hemorrhage risk was higher for grids with 64 contacts than for smaller grids (p < 0.05). The infection rate was very low (0,2%). A transient neurological deficit occurred in 8.8% of all implantations and persisted for at least 3 months in 1.3%. Transient, but not persistent neurological deficits were more common in patients with implanted subdural electrodes than in the depth electrode group. CONCLUSION The use of subdural electrodes was associated with a higher risk of hemorrhage and transient neurological symptoms. However persistent deficits were rare with either approach, demonstrating that intracranial investigations using either subdural electrodes or depth electrodes carry acceptable risks in patients with drug-resistant focal epilepsy.
Collapse
Affiliation(s)
- Julia Männlin
- Freiburg Epilepsy Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Str. 64, Freiburg im Breisgau 79106, Germany.
| | - Victoria San Antonio-Arce
- Freiburg Epilepsy Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Str. 64, Freiburg im Breisgau 79106, Germany; Member of the European Reference Network for Rare and Complex Epilepsies EpiCARE, Germany
| | - Peter Christoph Reinacher
- Department of Stereotactic and Functional Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Str. 64, Freiburg im Breisgau 79106, Germany; Fraunhofer Institute for Laser Technology (ILT), Aachen, Germany
| | - Christian Scheiwe
- Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Str. 64, Freiburg im Breisgau 79106, Germany
| | - Mukesch Johannes Shah
- Department of Stereotactic and Functional Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Str. 64, Freiburg im Breisgau 79106, Germany
| | - Horst Urbach
- Department of Neuroradiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Str. 64, Freiburg im Breisgau 79106, Germany
| | - Andreas Schulze-Bonhage
- Freiburg Epilepsy Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Str. 64, Freiburg im Breisgau 79106, Germany; Member of the European Reference Network for Rare and Complex Epilepsies EpiCARE, Germany.
| |
Collapse
|
4
|
Rahman RK, Tomlinson SB, Katz J, Galligan K, Madsen PJ, Tucker AM, Kessler SK, Kennedy BC. Stereoelectroencephalography before 2 years of age. Neurosurg Focus 2022; 53:E3. [DOI: 10.3171/2022.7.focus22336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/18/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVE
Stereoelectroencephalography (SEEG) is a widely used technique for localizing seizure onset zones prior to resection. However, its use has traditionally been avoided in children under 2 years of age because of concerns regarding pin fixation in the immature skull, intraoperative and postoperative electrode bolt security, and stereotactic registration accuracy. In this retrospective study, the authors describe their experience using SEEG in patients younger than 2 years of age, with a focus on the procedure’s safety, feasibility, and accuracy as well as surgical outcomes.
METHODS
A retrospective review of children under 2 years of age who had undergone SEEG while at Children’s Hospital of Philadelphia between November 2017 and July 2021 was performed. Data on clinical characteristics, surgical procedure, imaging results, electrode accuracy measurements, and postoperative outcomes were examined.
RESULTS
Five patients younger than 2 years of age underwent SEEG during the study period (median age 20 months, range 17–23 months). The mean age at seizure onset was 9 months. Developmental delay was present in all patients, and epilepsy-associated genetic diagnoses included tuberous sclerosis (n = 1), KAT6B (n = 1), and NPRL3 (n = 1). Cortical lesions included tubers from tuberous sclerosis (n = 1), mesial temporal sclerosis (n = 1), and cortical dysplasia (n = 3). The mean number of placed electrodes was 11 (range 6–20 electrodes). Bilateral electrodes were placed in 1 patient. Seizure onset zones were identified in all cases. There were no SEEG-related complications, including skull fracture, electrode misplacement, hemorrhage, infection, cerebrospinal fluid leakage, electrode pullout, neurological deficit, or death. The mean target point error for all electrodes was 1.0 mm. All patients proceeded to resective surgery, with a mean follow-up of 21 months (range 8–53 months). All patients attained a favorable epilepsy outcome, including Engel class IA (n = 2), IC (n = 1), ID (n = 1), and IIA (n = 1).
CONCLUSIONS
SEEG can be safely, accurately, and effectively utilized in children under age 2 with good postoperative outcomes using standard SEEG equipment. With minimal modification, this procedure is feasible in those with immature skulls and guides the epilepsy team’s decision-making for early and optimal treatment of refractory epilepsy through effective localization of seizure onset zones.
Collapse
Affiliation(s)
- Raphia K. Rahman
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Pennsylvania
- Rowan University School of Osteopathic Medicine, Stratford, New Jersey
| | - Samuel B. Tomlinson
- Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Joshua Katz
- Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Kathleen Galligan
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Pennsylvania
| | - Peter J. Madsen
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Pennsylvania
- Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Alexander M. Tucker
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Pennsylvania
- Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sudha Kilaru Kessler
- Division of Neurology, Children’s Hospital of Philadelphia, Pennsylvania; and
- Departments of Pediatrics and Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Benjamin C. Kennedy
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Pennsylvania
- Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
5
|
Park SH, Jung IH, Chang KW, Oh MK, Chang JW, Kim SH, Kang HC, Kim HD, Chang WS. Epidural grid, a new methodology of invasive intracranial EEG monitoring: A technical note and experience of a single center. Epilepsy Res 2022; 182:106912. [PMID: 35339854 DOI: 10.1016/j.eplepsyres.2022.106912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 03/10/2022] [Accepted: 03/17/2022] [Indexed: 11/03/2022]
Abstract
INTRODUCTION Subdural grid monitoring (SDG) has the advantage to provide continuous coverage over a larger area of cortex, direct visualization of electrode location and functional mapping. However, SDG can cause direct irritation of the cortex or postoperative headaches due to cerebrospinal fluid (CSF) leakage. Epidural grid monitoring (EDG) without opening the dura is thought to reduce the possibility of these complications. We report our experience with EDG. METHODS We described our surgical technique of EDG in invasive intracranial electroencephalography (iEEG) monitoring. A retrospective review of 30 patients who underwent grid placement of iEEG between March 2019 and December 2020 was performed to compare SDG and EDG. RESULTS Of the 30 patients, 10 patients underwent SDG and 20 patients underwent EDG. There was no difference in age between SDG and EDG groups (p = 0.13). Also, there was no difference in the number of grid electrodes, craniotomy size, number of electrodes per craniotomy area and postoperative complication rate (p = 0.32, 0.84, 0.58 and 0.40). However, the maximum number of electrodes that have been undermined from the bone margin was much higher in SDG group (SDG 4.6 ± 2.2 vs. EDG 2.0 ± 0.9; p = 0.001). The demand for postoperative analgesics was significantly lower in EDG group (SDG 13.4 ± 9.1 vs. EDG 4.1 ± 4.3; p = 0.012); and the demand for postoperative antiemetics also tended to be low (SDG 4.6 ± 3.6 vs. EDG 1.8 ± 1.6; p = 0.078). CONCLUSIONS There was no significant difference in craniotomy and electrode insertion between the two groups; however, the EDG group showed less postoperative headache and nausea. Though not in direct contact with the cortex, the quality of the electrophysiological signal received through the electrode in EDG is comparable to that of the SDG. The EDG enables to detect the onset of seizure and delineate the epileptogenic zone sufficiently. Moreover, functional mapping is possible with EDG. Therefore, EDG has the sufficient potential to replace SDG for monitoring of the lateral surface of brain.
Collapse
Affiliation(s)
- So Hee Park
- Department of Neurosurgery, Brain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - In-Ho Jung
- Department of Neurosurgery, Brain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyung Won Chang
- Department of Neurosurgery, Brain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Maeng Keun Oh
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jin Woo Chang
- Department of Neurosurgery, Brain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Se Hee Kim
- Department of Pediatric, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hoon-Chul Kang
- Department of Pediatric, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Heung Dong Kim
- Department of Pediatric, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Won Seok Chang
- Department of Neurosurgery, Brain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Xu R, Achberger J, von Wedel D, Vajkoczy P, Onken J, Schneider UC. Utilization of Epidural Electrodes as a Diagnostic Tool in Intractable Epilepsy—A Technical Note. MICROMACHINES 2022; 13:mi13030397. [PMID: 35334689 PMCID: PMC8949231 DOI: 10.3390/mi13030397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 11/16/2022]
Abstract
The utilization of epidural electrodes in the preoperative evaluation of intractable epilepsy is a valuable but underrepresented tool. In recent years, we have adapted the use of cylindrical epidural 1-contact electrodes (1-CE) instead of Peg electrodes. 1-CEs are more versatile since their explantation is a possible bedside procedure. Here we report our experience with 1-CEs as well as associated technical nuances. This retrospective analysis included 56 patients with intractable epilepsy who underwent epidural electrode placement for presurgical evaluation at the Department of Neurosurgery at the Charité University Hospital from September 2011 to July 2021. The median age at surgery was 36.3 years (range: 18–87), with 30 (53.6%) female and 26 (46.4%) male patients. Overall, 507 electrodes were implanted: 93 Fo electrodes, 33 depth electrodes, and 381 epidural electrodes, with a mean total surgical time of 100.5 ± 38 min and 11.8 ± 5 min per electrode. There was a total number of 24 complications in 21 patients (8 Fo electrode dislocations, 6 CSF leaks, 6 epidural electrode dislocations or malfunction, 3 wound infections, and 2 hemorrhages); 11 of these required revision surgery. The relative electrode complication rates were 3/222 (1.4%) in Peg electrodes and 3/159 (1.9%) in 1-CE. In summary, epidural recording via 1-CE is technically feasible, harbours an acceptable complication rate, and adequately replaces Peg electrodes.
Collapse
Affiliation(s)
- Ran Xu
- Department of Neurosurgery, Charité—Universitätsmedizin Berlin, 13437 Berlin, Germany; (R.X.); (J.A.); (D.v.W.); (P.V.); (J.O.)
- BIH Charité (Junior) (Digital) Clinician Scientist Program, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, Charitéplatz 1, 10117 Berlin, Germany
| | - Johannes Achberger
- Department of Neurosurgery, Charité—Universitätsmedizin Berlin, 13437 Berlin, Germany; (R.X.); (J.A.); (D.v.W.); (P.V.); (J.O.)
| | - Dario von Wedel
- Department of Neurosurgery, Charité—Universitätsmedizin Berlin, 13437 Berlin, Germany; (R.X.); (J.A.); (D.v.W.); (P.V.); (J.O.)
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité—Universitätsmedizin Berlin, 13437 Berlin, Germany; (R.X.); (J.A.); (D.v.W.); (P.V.); (J.O.)
| | - Julia Onken
- Department of Neurosurgery, Charité—Universitätsmedizin Berlin, 13437 Berlin, Germany; (R.X.); (J.A.); (D.v.W.); (P.V.); (J.O.)
| | - Ulf C. Schneider
- Department of Neurosurgery, Charité—Universitätsmedizin Berlin, 13437 Berlin, Germany; (R.X.); (J.A.); (D.v.W.); (P.V.); (J.O.)
- Cantonal Hospital of Lucerne, Spitalstraβe 16, 6000 Lucerne, Switzerland
- Correspondence:
| |
Collapse
|
7
|
Otani M, Matsuhashi M, Ikeda A, Miyamoto S, Takahashi R. [Epidural electrodes could safely delineate ictal focus of hyperkinetic seizure in intractable frontal lobe epilepsy]. Rinsho Shinkeigaku 2022; 62:130-134. [PMID: 35095047 DOI: 10.5692/clinicalneurol.cn-001634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A 42-year-old male had intractable hyperkinetic seizure since childhood. Bottom-of-sulcus dysplasia was shown by MRI to be most likely an ictal focus, whereas ictal semiology suggested possible focus in the left frontal cortex. Scalp-recorded EEG could not delineate ictal EEG change at all partly because of violent hyperkinetic seizure, and thus intracranial EEG study by epidural electrodes was conducted as the best procedure for the safety concern. It showed ictal focus over the bottom-of-sulcus dysplasia and thus it was completely resected with seizure free more then 20 years until now. It was concluded that epidural electrodes are regarded as safe invasive recording method especially for violent hyperkinetic seizure, and that can provide us with essential information before epilepsy surgery.
Collapse
Affiliation(s)
- Mayumi Otani
- Department of Neurology, Kyoto University Graduate School of Medicine
| | - Masao Matsuhashi
- Department of Epilepsy, Movement Disorders and Physiology, Kyoto University Graduate School of Medicine
| | - Akio Ikeda
- Department of Epilepsy, Movement Disorders and Physiology, Kyoto University Graduate School of Medicine
| | - Susumu Miyamoto
- Department of Neurosurgery, Kyoto University Graduate School of Medicine
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine
| |
Collapse
|
8
|
Stereo-electroencephalography (SEEG) in pediatric epilepsy: Utility in children with and without prior epilepsy surgery failure. Epilepsy Res 2021; 177:106765. [PMID: 34537417 DOI: 10.1016/j.eplepsyres.2021.106765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/30/2021] [Accepted: 09/10/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND When noninvasive modalities fail to adequately localize the seizure onset zone (SOZ) in children with medically refractory epilepsy, invasive interrogation with stereo-electroencephalography (SEEG) or subdural electrodes may be required. Our center utilizes SEEG for invasive monitoring in a carefully selected population of children, many of whom have seizures despite a prior surgical resection. We describe the cohort of patients who underwent SEEG in the first 5 years of its employment in our institution, almost half of which had a history of a failed epilepsy surgery. METHODS We retrospectively reviewed the records of the first 44 consecutive children who underwent SEEG at Nicklaus Children's Hospital (Miami, Florida), a large, level 4 epilepsy referral center. Patient demographic, clinical, radiographic, and electrophysiological information was collected prospectively. Student's t-test was used for sampling of means and analysis of variance (ANOVA) for evaluation of variance beyond 2 means; chi-square test of independence was used to assess the relationship between categorical variables. RESULTS There were 44 patients in this cohort, of whom 17 (38.6 %) were male. The mean age of seizure onset was 6.2 years. Twenty-one patients (47.7 %) had previously failed an epilepsy surgery. Patients with a history of prior epilepsy surgery failure were older at SEEG implantation (17.6 vs. 13.7 years; p = 0.043), were more likely to have SEEG for identification of resection margins (9 vs. 4; p = 0.034), and had fewer electrodes placed (5.9 vs. 7.5; p = 0.016). No difference was seen in complication rates between groups with only 3/297 electrodes placed associated with complications, all of which were minor. Post-SEEG, 29 (65.9 %) patients underwent focal resection, 7 patients had VNS insertion, 3 underwent RNS placement, and 5 had no further intervention. The majority of patients that underwent resection in both groups experienced an improvement in seizures (Engel class I-III), reported by 13/15 (86.7 %) in those naive to surgery and 10/14 (71.4 %) in those with prior surgical failure. Seizure-freedom was much lower in those with prior epilepsy surgery, seen in only 4/14 (28.6 %) versus 8/15 (53.3 %). CONCLUSION Our data supports current literature on SEEG as a safe and effective method of electrophysiological evaluation in children naive to surgery and adds that it is a safe technique in children with a history of failed epilepsy surgery. There was no difference in complication rates, which were <1 % in both groups. A favorable outcome was seen in the majority of patients in both groups; the seizure freedom rate, however, was much lower in those with prior epilepsy surgery.
Collapse
|
9
|
Larzabal C, Bonnet S, Costecalde T, Auboiroux V, Charvet G, Chabardes S, Aksenova T, Sauter-Starace F. Long-term stability of the chronic epidural wireless recorder WIMAGINE in tetraplegic patients. J Neural Eng 2021; 18. [PMID: 34425566 DOI: 10.1088/1741-2552/ac2003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 08/23/2021] [Indexed: 11/12/2022]
Abstract
Objective.The evaluation of the long-term stability of ElectroCorticoGram (ECoG) signals is an important scientific question as new implantable recording devices can be used for medical purposes such as Brain-Computer Interface (BCI) or brain monitoring.Approach.The long-term clinical validation of wireless implantable multi-channel acquisition system for generic interface with neurons (WIMAGINE), a wireless 64-channel epidural ECoG recorder was investigated. The WIMAGINE device was implanted in two quadriplegic patients within the context of a BCI protocol. This study focused on the ECoG signal stability in two patients bilaterally implanted in June 2017 (P1) and in November 2019 (P2).Methods. The ECoG signal was recorded at rest prior to each BCI session resulting in a 32 month and in a 14 month follow-up for P1 and P2 respectively. State-of-the-art signal evaluation metrics such as root mean square (RMS), the band power (BP), the signal to noise ratio (SNR), the effective bandwidth (EBW) and the spectral edge frequency (SEF) were used to evaluate stability of signal over the implantation time course. The time-frequency maps obtained from task-related motor activations were also studied to investigate the long-term selectivity of the electrodes.Mainresults.Based on temporal linear regressions, we report a limited decrease of the signal average level (RMS), spectral distribution (BP) and SNR, and a remarkable steadiness of the EBW and SEF. Time-frequency maps obtained during motor imagery, showed a high level of discrimination 1 month after surgery and also after 2 years.Conclusions.The WIMAGINE epidural device showed high stability over time. The signal evaluation metrics of two quadriplegic patients during 32 months and 14 months respectively provide strong evidence that this wireless implant is well-suited for long-term ECoG recording.Significance.These findings are relevant for the future of implantable BCIs, and could benefit other patients with spinal cord injury, amyotrophic lateral sclerosis, neuromuscular diseases or drug-resistant epilepsy.
Collapse
Affiliation(s)
| | - Stéphane Bonnet
- University Grenoble Alpes, CEA, LETI, DTBS, Grenoble 38000, France
| | - Thomas Costecalde
- University Grenoble Alpes, CEA, LETI, Clinatec, Grenoble 38000, France
| | - Vincent Auboiroux
- University Grenoble Alpes, CEA, LETI, Clinatec, Grenoble 38000, France
| | - Guillaume Charvet
- University Grenoble Alpes, CEA, LETI, Clinatec, Grenoble 38000, France
| | - Stéphan Chabardes
- University Grenoble Alpes, Grenoble University Hospital, Grenoble 38000, France
| | - Tetiana Aksenova
- University Grenoble Alpes, CEA, LETI, Clinatec, Grenoble 38000, France
| | | |
Collapse
|
10
|
Ahnood A, Cheriton R, Bruneau A, Belcourt JA, Ndabakuranye JP, Lemaire W, Hilkes R, Fontaine R, Cook JPD, Hinzer K, Prawer S. Laser Driven Miniature Diamond Implant for Wireless Retinal Prostheses. ACTA ACUST UNITED AC 2020; 4:e2000055. [PMID: 33084251 DOI: 10.1002/adbi.202000055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 09/03/2020] [Indexed: 01/16/2023]
Abstract
The design and benchtop operation of a wireless miniature epiretinal stimulator implant is reported. The implant is optically powered and controlled using safe illumination at near-infrared wavelengths. An application-specific integrated circuit (ASIC) hosting a digital control unit is used to control the implant's electrodes. The ASIC is powered using an advanced photovoltaic (PV) cell and programmed using a single photodiode. Diamond packaging technology is utilized to achieve high-density integration of the implant optoelectronic circuitry, as well as individual connections between a stimulator chip and 256 electrodes, within a 4.6 mm × 3.7 mm × 0.9 mm implant package. An ultrahigh efficiency PV cell with a monochromatic power conversion efficiency of 55% is used to power the implant. On-board photodetection circuity with a bandwidth of 3.7 MHz is used for forward data telemetry of stimulation parameters. In comparison to implants which utilize inductively coupled coils, laser power delivery enables a high degree of miniaturization and lower surgical complexity. The device presented combines the benefits of implant miniaturization and a flexible stimulation strategy provided by a dedicated stimulator chip. This development provides a route to fully wireless miniaturized minimally invasive implants with sophisticated functionalities.
Collapse
Affiliation(s)
- Arman Ahnood
- School of Physics, University of Melbourne, Parkville, VIC, 3010, Australia.,School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia
| | - Ross Cheriton
- National Research Council of Canada, Ottawa, ON, K1A 0R6, Canada.,iBIONICS, Ottawa, ON, K2H 8S9, Canada
| | | | - James A Belcourt
- School of Physics, University of Melbourne, Parkville, VIC, 3010, Australia
| | | | - William Lemaire
- Interdisciplinary Institute for Technological Innovation, Université de Sherbrooke, Sherbrooke, QC, J1K 0A5, Canada
| | - Rob Hilkes
- iBIONICS, Ottawa, ON, K2H 8S9, Canada.,Gezell Inc. Gatineau, Gatineau, QC, J9A1L8, Canada
| | - Réjean Fontaine
- Interdisciplinary Institute for Technological Innovation, Université de Sherbrooke, Sherbrooke, QC, J1K 0A5, Canada
| | - John P D Cook
- Centre for Research in Photonics, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Karin Hinzer
- Centre for Research in Photonics, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Steven Prawer
- School of Physics, University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
11
|
Tong BA, Esquenazi Y, Johnson J, Zhu P, Tandon N. The Brain is Not Flat: Conformal Electrode Arrays Diminish Complications of Subdural Electrode Implantation, A Series of 117 Cases. World Neurosurg 2020; 144:e734-e742. [PMID: 32949797 DOI: 10.1016/j.wneu.2020.09.063] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/12/2020] [Accepted: 09/12/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Intracranial recordings are integral to evaluating patients with pharmacoresistant epilepsy whom noninvasive testing fails to localize seizure focus. Although stereo-electroencephalography is the preferred method of intracranial recordings in most centers, subdural electrode (SDE) implantation is necessary in selected cases. OBJECTIVE To identify imaging correlates that predict SDE complications (extra-axial fluid collections [EFCs]), and determine if modifications that diminish stiffness of electrode sheets reduce complications. METHODS A prospective epilepsy surgery database was used to identify adults undergoing craniotomy for SDE implantation over a 14-year period. EFCs and midline shift were measured via magnetic resonance imaging and computed tomography imaging. Correlation analyses and multivariable logistic regression explored associations between use of conformal arrays, serial order of patients, previous ipsilateral intracranial surgery, midline shift, number of SDEs, and neurologic complications. RESULTS A total of 111 consecutive patients (59 female) underwent 117 craniotomies (mean, 115 electrode contacts) for SDE implantation. There were 8 surgical complications, 3 in the first 17 (17.7%). and 5 (after electrode modifications) in a subsequent 100 craniotomies (5.0%). We noted an increase in electrode numbers implanted over time (P < 0.001) and decreased midline shift with conformal grids (ρ = - 0.32; P < 0.001). A multivariable regression showed that midline shift correlated with complications (odds ratio, 2.32; 95% confidence interval, 1.12-4.78; P = 0.023). CONCLUSIONS Hemorrhagic complications after SDE implantation are difficult to detect because of artifact from electrodes, but predictable by prominent midline shift (>4 mm). Risks inherent to SDE implantation may be minimized using conformal grids. With symptomatic EFCs, a single electrode cable exit site allows hematoma evacuation without terminating intracranial recordings.
Collapse
Affiliation(s)
- Brian A Tong
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at UT Health, Houston, Texas, USA
| | - Yoshua Esquenazi
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at UT Health, Houston, Texas, USA
| | - Jessica Johnson
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at UT Health, Houston, Texas, USA
| | - Ping Zhu
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at UT Health, Houston, Texas, USA
| | - Nitin Tandon
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at UT Health, Houston, Texas, USA; Texas Institute of Restorative Neurotechnologies, UT Health, Houston, Texas, USA.
| |
Collapse
|
12
|
Pavone L, Moyanova S, Mastroiacovo F, Fazi L, Busceti C, Gaglione A, Martinello K, Fucile S, Bucci D, Prioriello A, Nicoletti F, Fornai F, Morales P, Senesi R. Chronic neural interfacing with cerebral cortex using single-walled carbon nanotube-polymer grids. J Neural Eng 2020; 17:036032. [PMID: 32485702 DOI: 10.1088/1741-2552/ab98db] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE The development of electrode arrays able to reliably record brain electrical activity is a critical issue in brain machine interface (BMI) technology. In the present study we undertook a comprehensive physico-chemical, physiological, histological and immunohistochemical characterization of new single-walled carbon nanotubes (SWCNT)-based electrode arrays grafted onto medium-density polyethylene (MD-PE) films. APPROACH The long-term electrical stability, flexibility, and biocompatibility of the SWCNT arrays were investigated in vivo in laboratory rats by two-months recording and analysis of subdural electrocorticogram (ECoG). Ex-vivo characterization of a thin flexible and single probe SWCNT/polymer electrode is also provided. MAIN RESULTS The SWCNT arrays were able to capture high quality and very stable ECoG signals across 8 weeks. The histological and immunohistochemical analyses demonstrated that SWCNT arrays show promising biocompatibility properties and may be used in chronic conditions. The SWCNT-based arrays are flexible and stretchable, providing low electrode-tissue impedance, and, therefore, high compliance with the irregular topography of the cortical surface. Finally, reliable evoked synaptic local field potentials in rat brain slices were recorded using a special SWCNT-polymer-based flexible electrode. SIGNIFICANCE The results demonstrate that the SWCNT arrays grafted in MD-PE are suitable for manufacturing flexible devices for subdural ECoG recording and might represent promising candidates for long-term neural implants for epilepsy monitoring or neuroprosthetic BMI.
Collapse
Affiliation(s)
- Luigi Pavone
- Department of Life and Health 'V. Tiberio', University of Molise, Campobasso, Italy. IRCCS Neuromed, Via Atinense 18, 86077, Pozzilli (IS), Italy. These authors contributed equally. Author to whom any correspondence should be addressed
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Baek DH, Ahn S, Kim HS, Kim DW. Fabrication of Donut-Type Neural Electrode for Visual Information as Well as Surface Electrical Stimulation. J Med Biol Eng 2020. [DOI: 10.1007/s40846-020-00540-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
14
|
Tandon N, Tong BA, Friedman ER, Johnson JA, Von Allmen G, Thomas MS, Hope OA, Kalamangalam GP, Slater JD, Thompson SA. Analysis of Morbidity and Outcomes Associated With Use of Subdural Grids vs Stereoelectroencephalography in Patients With Intractable Epilepsy. JAMA Neurol 2020; 76:672-681. [PMID: 30830149 DOI: 10.1001/jamaneurol.2019.0098] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Importance A major change has occurred in the evaluation of epilepsy with the availability of robotic stereoelectroencephalography (SEEG) for seizure localization. However, the comparative morbidity and outcomes of this minimally invasive procedure relative to traditional subdural electrode (SDE) implantation are unknown. Objective To perform a comparative analysis of the relative efficacy, procedural morbidity, and epilepsy outcomes consequent to SEEG and SDE in similar patient populations and performed by a single surgeon at 1 center. Design, Setting and Participants Overall, 239 patients with medically intractable epilepsy underwent 260 consecutive intracranial electroencephalographic procedures to localize their epilepsy. Procedures were performed from November 1, 2004, through June 30, 2017, and data were analyzed in June 2017 and August 2018. Interventions Implantation of SDE using standard techniques vs SEEG using a stereotactic robot, followed by resection or laser ablation of the seizure focus. Main Outcomes and Measures Length of surgical procedure, surgical complications, opiate use, and seizure outcomes using the Engel Epilepsy Surgery Outcome Scale. Results Of the 260 cases included in the study (54.6% female; mean [SD] age at evaluation, 30.3 [13.1] years), the SEEG (n = 121) and SDE (n = 139) groups were similar in age (mean [SD], 30.1 [12.2] vs 30.6 [13.8] years), sex (47.1% vs 43.9% male), numbers of failed anticonvulsants (mean [SD], 5.7 [2.5] vs 5.6 [2.5]), and duration of epilepsy (mean [SD], 16.4 [12.0] vs17.2 [12.1] years). A much greater proportion of SDE vs SEEG cases were lesional (99 [71.2%] vs 53 [43.8%]; P < .001). Seven symptomatic hemorrhagic sequelae (1 with permanent neurological deficit) and 3 infections occurred in the SDE cohort with no clinically relevant complications in the SEEG cohort, a marked difference in complication rates (P = .003). A greater proportion of SDE cases resulted in resection or ablation compared with SEEG cases (127 [91.4%] vs 90 [74.4%]; P < .001). Favorable epilepsy outcomes (Engel class I [free of disabling seizures] or II [rare disabling seizures]) were observed in 57 of 75 SEEG cases (76.0%) and 59 of 108 SDE cases (54.6%; P = .003) amongst patients undergoing resection or ablation, at 1 year. An analysis of only nonlesional cases revealed good outcomes in 27 of 39 cases (69.2%) vs 9 of 26 cases (34.6%) at 12 months in SEEG and SDE cohorts, respectively (P = .006). When considering all patients undergoing evaluation, not just those undergoing definitive procedures, favorable outcomes (Engel class I or II) for SEEG compared with SDE were similar (57 of 121 [47.1%] vs 59 of 139 [42.4%] at 1 year; P = .45). Conclusions and Relevance This direct comparison of large matched cohorts undergoing SEEG and SDE implantation reveals distinctly better procedural morbidity favoring SEEG. These modalities intrinsically evaluate somewhat different populations, with SEEG being more versatile and applicable to a range of scenarios, including nonlesional and bilateral cases, than SDE. The significantly favorable adverse effect profile of SEEG should factor into decision making when patients with pharmacoresistant epilepsy are considered for intracranial evaluations.
Collapse
Affiliation(s)
- Nitin Tandon
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health, Houston.,Mischer Neuroscience Institute, Memorial Hermann Hospital, Texas Medical Center, Houston
| | - Brian A Tong
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health, Houston
| | - Elliott R Friedman
- Department of Radiology, McGovern Medical School, University of Texas Health, Houston
| | - Jessica A Johnson
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health, Houston.,Mischer Neuroscience Institute, Memorial Hermann Hospital, Texas Medical Center, Houston
| | - Gretchen Von Allmen
- Department of Pediatrics, McGovern Medical School, University of Texas Health, Houston
| | - Melissa S Thomas
- Department of Neurology, McGovern Medical School, University of Texas Health, Houston
| | - Omotola A Hope
- Department of Neurology, McGovern Medical School, University of Texas Health, Houston
| | | | - Jeremy D Slater
- Department of Neurology, McGovern Medical School, University of Texas Health, Houston
| | - Stephen A Thompson
- Department of Neurology, McGovern Medical School, University of Texas Health, Houston
| |
Collapse
|
15
|
Gnatkovsky V, Cattalini A, Antonini A, Spreafico L, Saini M, Noè F, Alessi C, Librizzi L, Uva L, Marras CE, de Curtis M, Ferrari S. Recording Electrical Brain Activity with Novel Stretchable Electrodes Based on Supersonic Cluster Beam Implantation Nanotechnology on Conformable Polymers. Int J Nanomedicine 2020; 14:10079-10089. [PMID: 31920304 PMCID: PMC6935312 DOI: 10.2147/ijn.s224243] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/25/2019] [Indexed: 11/23/2022] Open
Abstract
Background Multielectrodes are implanted in central and peripheral nervous systems for rehabilitation and diagnostic purposes. The physical resistance of intracranial devices to mechanical stress is critical and fractures or electrode displacement may occur. We describe here a new recording device with stretchable properties based on Supersonic Cluster Beam Implantation (SCBI) technology with high mechanical adaptability to displacement and movement. Results The capability of SCBI-based multichannel electrodes to record brain electrical activity was compared to glass/silicon microelectrodes in acute in vitro experiments on the isolated guinea pig brain preparation. Field potentials and power frequency analysis demonstrated equal recording features for SCBI and standard electrodes. Chronic in vivo epidural implantation of the SCBI electrodes confirmed excellent long-term recording properties in comparison to standard EEG metal electrodes. Tissue biocompatibility was demonstrated by neuropathological evaluation of the brain tissue 2 months after the implantation of the devices in the subarachnoid space. Conclusion We confirm the biocompatibility of novel SCBI-based stretchable electrode devices and demonstrate their suitability for recording electrical brain activity in pre-clinical settings.
Collapse
Affiliation(s)
- Vadym Gnatkovsky
- Unit of Epileptology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Alessandro Cattalini
- Unit of Epileptology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | | | | | | | - Francesco Noè
- Unit of Epileptology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Camilla Alessi
- Unit of Epileptology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Laura Librizzi
- Unit of Epileptology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Laura Uva
- Unit of Epileptology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Carlo Efisio Marras
- Neurosurgery Unit, Department of Neuroscience and Neurorehabilitation, IRCCS Bambino Gesù Children's Hospital, Roma, Italy
| | - Marco de Curtis
- Unit of Epileptology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | | |
Collapse
|
16
|
Surgical outcomes related to invasive EEG monitoring with subdural grids or depth electrodes in adults: A systematic review and meta-analysis. Seizure 2019; 70:12-19. [DOI: 10.1016/j.seizure.2019.06.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 06/17/2019] [Accepted: 06/17/2019] [Indexed: 01/05/2023] Open
|
17
|
Goldstein HE, Youngerman BE, Shao B, Akman CI, Mandel AM, McBrian DK, Riviello JJ, Sheth SA, McKhann GM, Feldstein NA. Safety and efficacy of stereoelectroencephalography in pediatric focal epilepsy: a single-center experience. J Neurosurg Pediatr 2018; 22:444-452. [PMID: 30028270 DOI: 10.3171/2018.5.peds1856] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Patients with medically refractory localization-related epilepsy (LRE) may be candidates for surgical intervention if the seizure onset zone (SOZ) can be well localized. Stereoelectroencephalography (SEEG) offers an attractive alternative to subdural grid and strip electrode implantation for seizure lateralization and localization; yet there are few series reporting the safety and efficacy of SEEG in pediatric patients. METHODS The authors review their initial 3-year consecutive experience with SEEG in pediatric patients with LRE. SEEG coverage, SOZ localization, complications, and preliminary seizure outcomes following subsequent surgical treatments are assessed. RESULTS Twenty-five pediatric patients underwent 30 SEEG implantations, with a total of 342 electrodes placed. Ten had prior resections or ablations. Seven had no MRI abnormalities, and 8 had multiple lesions on MRI. Based on preimplantation hypotheses, 7 investigations were extratemporal (ET), 1 was only temporal-limbic (TL), and 22 were combined ET/TL investigations. Fourteen patients underwent bilateral investigations. On average, patients were monitored for 8 days postimplant (range 3-19 days). Nearly all patients were discharged home on the day following electrode explantation. There were no major complications. Minor complications included 1 electrode deflection into the subdural space, resulting in a minor asymptomatic extraaxial hemorrhage; and 1 in-house and 1 delayed electrode superficial scalp infection, both treated with local wound care and oral antibiotics. SEEG localized the hypothetical SOZ in 23 of 25 patients (92%). To date, 18 patients have undergone definitive surgical intervention. In 2 patients, SEEG localized the SOZ near eloquent cortex and subdural grids were used to further delineate the seizure focus relative to mapped motor function just prior to resection. At last follow-up (average 21 months), 8 of 15 patients with at least 6 months of follow-up (53%) were Engel class I, and an additional 6 patients (40%) were Engel class II or III. Only 1 patient was Engel class IV. CONCLUSIONS SEEG is a safe and effective technique for invasive SOZ localization in medically refractory LRE in the pediatric population. SEEG permits bilateral and multilobar investigations while avoiding large craniotomies. It is conducive to deep, 3D, and perilesional investigations, particularly in cases of prior resections. Patients who are not found to have focally localizable seizures are spared craniotomies.
Collapse
Affiliation(s)
- Hannah E Goldstein
- 1Department of Neurological Surgery, Columbia University Medical Center, Columbia-Presbyterian, New York
| | - Brett E Youngerman
- 1Department of Neurological Surgery, Columbia University Medical Center, Columbia-Presbyterian, New York
| | - Belinda Shao
- 2Division of Pediatric Neurosurgery, Department of Neurological Surgery, Children's Hospital of New York, Columbia-Presbyterian, New York
| | - Cigdem I Akman
- 3Department of Neurology, Child Neurology Division, Children's Hospital of New York, Columbia-Presbyterian, New York, New York; and
| | - Arthur M Mandel
- 3Department of Neurology, Child Neurology Division, Children's Hospital of New York, Columbia-Presbyterian, New York, New York; and
| | - Danielle K McBrian
- 3Department of Neurology, Child Neurology Division, Children's Hospital of New York, Columbia-Presbyterian, New York, New York; and
| | - James J Riviello
- 4Department of Neurology and Developmental Neuroscience, Texas Children's Hospital, Houston, Texas
| | - Sameer A Sheth
- 1Department of Neurological Surgery, Columbia University Medical Center, Columbia-Presbyterian, New York
| | - Guy M McKhann
- 1Department of Neurological Surgery, Columbia University Medical Center, Columbia-Presbyterian, New York
| | - Neil A Feldstein
- 2Division of Pediatric Neurosurgery, Department of Neurological Surgery, Children's Hospital of New York, Columbia-Presbyterian, New York
| |
Collapse
|
18
|
Staljanssens W, Strobbe G, Van Holen R, Keereman V, Gadeyne S, Carrette E, Meurs A, Pittau F, Momjian S, Seeck M, Boon P, Vandenberghe S, Vulliemoz S, Vonck K, van Mierlo P. EEG source connectivity to localize the seizure onset zone in patients with drug resistant epilepsy. NEUROIMAGE-CLINICAL 2017; 16:689-698. [PMID: 29034162 PMCID: PMC5633847 DOI: 10.1016/j.nicl.2017.09.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 09/01/2017] [Accepted: 09/12/2017] [Indexed: 11/25/2022]
Abstract
Electrical source imaging (ESI) from interictal scalp EEG is increasingly validated and used as a valuable tool in the presurgical evaluation of epilepsy as a reflection of the irritative zone. ESI of ictal scalp EEG to localize the seizure onset zone (SOZ) remains challenging. We investigated the value of an approach for ictal imaging using ESI and functional connectivity analysis (FC). Ictal scalp EEG from 111 seizures in 27 patients who had Engel class I outcome at least 1 year following resective surgery was analyzed. For every seizure, an artifact-free epoch close to the seizure onset was selected and ESI using LORETA was applied. In addition, the reconstructed sources underwent FC using the spectrum-weighted Adaptive Directed Transfer Function. This resulted in the estimation of the SOZ in two ways: (i) the source with maximal power after ESI, (ii) the source with the strongest outgoing connections after combined ESI and FC. Next, we calculated the distance between the estimated SOZ and the border of the resected zone (RZ) for both approaches and called this the localization error ((i) LEpow and (ii) LEconn respectively). By comparing LEpow and LEconn, we assessed the added value of FC. The source with maximal power after ESI was inside the RZ (LEpow = 0 mm) in 31% of the seizures and estimated within 10 mm from the border of the RZ (LEpow ≤ 10 mm) in 42%. Using ESI and FC, these numbers increased to 72% for LEconn = 0 mm and 94% for LEconn ≤ 10 mm. FC provided a significant added value to ESI alone (p < 0.001). ESI combined with subsequent FC is able to localize the SOZ in a non-invasive way with high accuracy. Therefore it could be a valuable tool in the presurgical evaluation of epilepsy. ESI + functional connectivity analysis allows localizing the SOZ with high accuracy. Functional connectivity analysis offered a significant added value to ESI. The method is robust for inter- and intra-patient variability. The method could be a useful tool in the presurgical evaluation of epilepsy.
Collapse
Affiliation(s)
- Willeke Staljanssens
- Medical Image and Signal Processing Group, Department of Electronics and Information Systems, Ghent University - imec, De Pintelaan 185, 9000 Ghent, Belgium
| | | | - Roel Van Holen
- Medical Image and Signal Processing Group, Department of Electronics and Information Systems, Ghent University - imec, De Pintelaan 185, 9000 Ghent, Belgium
| | - Vincent Keereman
- Medical Image and Signal Processing Group, Department of Electronics and Information Systems, Ghent University - imec, De Pintelaan 185, 9000 Ghent, Belgium.,Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology, Department of Neurology, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Stefanie Gadeyne
- Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology, Department of Neurology, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Evelien Carrette
- Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology, Department of Neurology, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Alfred Meurs
- Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology, Department of Neurology, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Francesca Pittau
- EEG and Epilepsy Unit, Neurology Department, University Hospitals and Faculty of Medicine of Geneva, Rue Gabrielle-Perret-Gentil 4, 1205 Geneva, Switzerland
| | - Shahan Momjian
- Department of Neurosurgery, University Hospitals of Geneva and University of Geneva, rue Gabrielle-Perret-Gentil 4, 1205 Geneva, Switzerland
| | - Margitta Seeck
- Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology, Department of Neurology, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Paul Boon
- Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology, Department of Neurology, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Stefaan Vandenberghe
- Medical Image and Signal Processing Group, Department of Electronics and Information Systems, Ghent University - imec, De Pintelaan 185, 9000 Ghent, Belgium
| | - Serge Vulliemoz
- EEG and Epilepsy Unit, Neurology Department, University Hospitals and Faculty of Medicine of Geneva, Rue Gabrielle-Perret-Gentil 4, 1205 Geneva, Switzerland.,Functional Brain Mapping Lab, Department of Fundamental Neurosciences, University of Geneva, rue Gabrielle-Perret-Gentil 4, 1205 Geneva, Switzerland
| | - Kristl Vonck
- Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology, Department of Neurology, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Pieter van Mierlo
- Medical Image and Signal Processing Group, Department of Electronics and Information Systems, Ghent University - imec, De Pintelaan 185, 9000 Ghent, Belgium.,Functional Brain Mapping Lab, Department of Fundamental Neurosciences, University of Geneva, rue Gabrielle-Perret-Gentil 4, 1205 Geneva, Switzerland
| |
Collapse
|
19
|
van der Loo LE, Schijns OEMG, Hoogland G, Colon AJ, Wagner GL, Dings JTA, Kubben PL. Methodology, outcome, safety and in vivo accuracy in traditional frame-based stereoelectroencephalography. Acta Neurochir (Wien) 2017; 159:1733-1746. [PMID: 28676892 PMCID: PMC5557874 DOI: 10.1007/s00701-017-3242-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 05/31/2017] [Indexed: 11/24/2022]
Abstract
Background Stereoelectroencephalography (SEEG) is an established diagnostic technique for the localization of the epileptogenic zone in drug-resistant epilepsy. In vivo accuracy of SEEG electrode positioning is of paramount importance since higher accuracy may lead to more precise resective surgery, better seizure outcome and reduction of complications. Objective To describe experiences with the SEEG technique in our comprehensive epilepsy center, to illustrate surgical methodology, to evaluate in vivo application accuracy and to consider the diagnostic yield of SEEG implantations. Methods All patients who underwent SEEG implantations between September 2008 and April 2016 were analyzed. Planned electrode trajectories were compared with post-implantation trajectories after fusion of pre- and postoperative imaging. Quantitative analysis of deviation using Euclidean distance and directional errors was performed. Explanatory variables for electrode accuracy were analyzed using linear regression modeling. The surgical methodology, procedure-related complications and diagnostic yield were reported. Results Seventy-six implantations were performed in 71 patients, and a total of 902 electrodes were implanted. Median entry and target point deviations were 1.54 mm and 2.93 mm. Several factors that predicted entry and target point accuracy were identified. The rate of major complications was 2.6%. SEEG led to surgical therapy of various modalities in 53 patients (69.7%). Conclusions This study demonstrated that entry and target point localization errors can be predicted by linear regression models, which can aid in identification of high-risk electrode trajectories and further enhancement of accuracy. SEEG is a reliable technique, as demonstrated by the high accuracy of conventional frame-based implantation methodology and the good diagnostic yield.
Collapse
|
20
|
Abstract
While open surgical resection for medically refractory epilepsy remains the gold standard in current neurosurgical practice, modern techniques have targeted areas for improvement over open surgical resection. This review focuses on how a variety of these new techniques are attempting to address these various limitations. Stereotactic electroencephalography offers the possibility of localizing deep epileptic foci, improving upon subdural grid placement which limits localization to neocortical regions. Laser interstitial thermal therapy (LITT) and stereotactic radiosurgery can minimally or non-invasively ablate specific regions of interest, with near real-time feedback for laser interstitial thermal therapy. Finally, neurostimulation offers the possibility of seizure reduction without needing to ablate or resect any tissue. However, because these techniques are still being evaluated in current practice, there are no evidence-based guidelines for their use, and more research is required to fully evaluate their proper role in the current management of medically refractory epilepsy.
Collapse
Affiliation(s)
- Robert A McGovern
- Department of Neurological Surgery, The Neurological Institute, Columbia University Medical Center, 710 W. 168th St, New York, NY, 10032, USA.
| | - Garrett P Banks
- Department of Neurological Surgery, The Neurological Institute, Columbia University Medical Center, 710 W. 168th St, New York, NY, 10032, USA
| | - Guy M McKhann
- Department of Neurological Surgery, The Neurological Institute, Columbia University Medical Center, 710 W. 168th St, New York, NY, 10032, USA
| |
Collapse
|
21
|
Implications for a Wireless, External Device System to Study Electrocorticography. SENSORS 2017; 17:s17040761. [PMID: 28375161 PMCID: PMC5421721 DOI: 10.3390/s17040761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/23/2017] [Accepted: 03/27/2017] [Indexed: 11/30/2022]
Abstract
Implantable neuronal interfaces to the brain are an important keystone for future medical applications. However, entering this field of research is difficult since such an implant requires components from many different areas of technology. Since the complete avoidance of wires is important due to the risk of infections and other long-term problems, means for wirelessly transmitting data and energy are a necessity which adds to the requirements. In recent literature, many high-tech components for such implants are presented with remarkable properties. However, these components are typically not freely available for such a system. Every group needs to re-develop their own solution. This raises the question if it is possible to create a reusable design for an implant and its external base-station, such that it allows other groups to use it as a starting point. In this article, we try to answer this question by presenting a design based exclusively on commercial off-the-shelf components and studying the properties of the resulting system. Following this idea, we present a fully wireless neuronal implant for simultaneously measuring electrocorticography signals at 128 locations from the surface of the brain. All design files are available as open source.
Collapse
|
22
|
Rubinger L, Hazrati LN, Ahmed R, Rutka J, Snead C, Widjaja E. Microscopic and macroscopic infarct complicating pediatric epilepsy surgery. Epilepsia 2017; 58:393-401. [PMID: 28111751 DOI: 10.1111/epi.13667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2016] [Indexed: 11/26/2022]
Abstract
OBJECTIVE There is some suggestion that microscopic infarct could be associated with invasive monitoring, but it is unclear if the microscopic infarct is also visible on imaging and associated with neurologic deficits. The aims of this study were to assess the rates of microscopic and macroscopic infarct and other major complications of pediatric epilepsy surgery, and to determine if these complications were higher following invasive monitoring. METHODS We reviewed the epilepsy surgery data from a tertiary pediatric center, and collected data on microscopic infarct on histology and macroscopic infarct on postoperative computed tomography (CT) or magnetic resonance imaging (MRI) done one day after surgery and major complications. RESULTS Three hundred fifty-two patients underwent surgical resection and there was one death. Forty-two percent had invasive monitoring. Thirty patients (9%) had microscopic infarct. Univariable analyses showed that microscopic infarct was higher among patients with invasive monitoring relative to no invasive monitoring (20% vs. 0.5%, respectively, p < 0.001). Eighteen patients (5%) had macroscopic infarct on CT or MRI. Univariable analysis showed no significant difference in macroscopic infarct between invasive monitoring and no invasive monitoring (8% vs. 3%, respectively, p = 0.085). One patient with microscopic infarct had transient right hemiparesis, and two with both macroscopic and microscopic infarct had unexpected persistent neurologic deficits. Thirty-two major complications (9.1%) were reported, with no difference in major complications between invasive monitoring and no invasive monitoring (10% vs. 7%, p = 0.446). In the multivariable analysis, invasive monitoring increased the odds of microscopic infarct (odds ratio [OR] 15.87, p = 0.009), but not macroscopic infarct (OR 2.6, p = 0.173) or major complications (OR 1.4, p = 0.500), after adjusting for age at surgery, sex, age at seizure onset, operative type, and operative location. SIGNIFICANCE Microscopic infarct was associated with invasive monitoring, and none of the patients had permanent neurologic deficits. Macroscopic infarct was not associated with invasive monitoring, and two patients with macroscopic infarct had persistent neurologic deficits.
Collapse
Affiliation(s)
- Luc Rubinger
- Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Lili-Naz Hazrati
- Department of Pathology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Raheel Ahmed
- Department of Neurosurgery, Hospital for Sick Children, Toronto, Ontario, Canada
| | - James Rutka
- Department of Neurosurgery, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Carter Snead
- Division of Neurology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Elysa Widjaja
- Division of Neurology, Hospital for Sick Children, Toronto, Ontario, Canada.,Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
23
|
Yang M, Ma Y, Li W, Shi X, Hou Z, An N, Zhang C, Liu L, Yang H, Zhang D, Liu S. A Retrospective Analysis of Stereoelectroencephalography and Subdural Electroencephalography for Preoperative Evaluation of Intractable Epilepsy. Stereotact Funct Neurosurg 2017; 95:13-20. [DOI: 10.1159/000453275] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 11/07/2016] [Indexed: 11/19/2022]
|
24
|
Alomar S, Jones J, Maldonado A, Gonzalez-Martinez J. The Stereo-Electroencephalography Methodology. Neurosurg Clin N Am 2016; 27:83-95. [PMID: 26615111 DOI: 10.1016/j.nec.2015.08.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The stereo-electroencephalography (SEEG) methodology and technique was developed almost 60 years ago in Europe. The efficacy and safety of SEEG has been proven. The main advantage is the possibility to study the epileptogenic neuronal network in its dynamic and 3-dimensional aspect, with optimal time and space correlation, with the clinical semiology of the patient's seizures. The main clinical challenge for the near future remains in the further refinement of specific selection criteria for the different methods of invasive monitoring, with the ultimate goal of comparing and validating the results (long-term seizure-free outcome) obtained from different methods of invasive monitoring.
Collapse
Affiliation(s)
- Soha Alomar
- Department of Neurosurgery, Epilepsy Center, Neurological Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Jaes Jones
- Department of Neurosurgery, Epilepsy Center, Neurological Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Andres Maldonado
- Department of Neurosurgery, Epilepsy Center, Neurological Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Jorge Gonzalez-Martinez
- Department of Neurosurgery, Epilepsy Center, Neurological Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| |
Collapse
|
25
|
Abstract
In the approximately 1% of children affected by epilepsy, pharmacoresistance and early age of seizure onset are strongly correlated with poor cognitive outcomes, depression, anxiety, developmental delay, and impaired activities of daily living. These children often require multiple surgical procedures, including invasive diagnostic procedures with intracranial electrodes to identify the seizure-onset zone. The recent development of minimally invasive surgical techniques, including stereotactic electroencephalography (SEEG) and MRI-guided laser interstitial thermal therapy (MRgLITT), and new applications of neurostimulation, such as responsive neurostimulation (RNS), are quickly changing the landscape of the surgical management of pediatric epilepsy. In this review, the authors discuss these various technologies, their current applications, and limitations in the treatment of pediatric drug-resistant epilepsy, as well as areas for future research. The development of minimally invasive diagnostic and ablative surgical techniques together with new paradigms in neurostimulation hold vast potential to improve the efficacy and reduce the morbidity of the surgical management of children with drug-resistant epilepsy.
Collapse
Affiliation(s)
- Michael Karsy
- 1 Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, Salt Lake City, USA ; 2 Division of Neurosurgery, University of Vermont, Burlington, USA ; 3 Division of Pediatric Neurosurgery, Primary Children's Hospital, Salt Lake City, USA
| | - Jian Guan
- 1 Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, Salt Lake City, USA ; 2 Division of Neurosurgery, University of Vermont, Burlington, USA ; 3 Division of Pediatric Neurosurgery, Primary Children's Hospital, Salt Lake City, USA
| | - Katrina Ducis
- 1 Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, Salt Lake City, USA ; 2 Division of Neurosurgery, University of Vermont, Burlington, USA ; 3 Division of Pediatric Neurosurgery, Primary Children's Hospital, Salt Lake City, USA
| | - Robert J Bollo
- 1 Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, Salt Lake City, USA ; 2 Division of Neurosurgery, University of Vermont, Burlington, USA ; 3 Division of Pediatric Neurosurgery, Primary Children's Hospital, Salt Lake City, USA
| |
Collapse
|
26
|
Usefulness of multidetector-row computerized tomographic angiography for the surgical planning in stereoelectroencephalography. Diagn Interv Imaging 2016; 97:333-7. [DOI: 10.1016/j.diii.2015.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 09/04/2015] [Accepted: 10/01/2015] [Indexed: 11/17/2022]
|
27
|
Diamond encapsulated photovoltaics for transdermal power delivery. Biosens Bioelectron 2016; 77:589-97. [DOI: 10.1016/j.bios.2015.10.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 10/03/2015] [Accepted: 10/08/2015] [Indexed: 11/21/2022]
|
28
|
Rolston JD, Englot DJ, Cornes S, Chang EF. Major and minor complications in extraoperative electrocorticography: A review of a national database. Epilepsy Res 2016; 122:26-9. [PMID: 26921853 DOI: 10.1016/j.eplepsyres.2016.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 02/01/2016] [Accepted: 02/09/2016] [Indexed: 10/22/2022]
Abstract
The risk profile of extraoperative electrocorticography (ECoG) is documented almost exclusively by case series from a limited number of academic medical centers. These studies tend to underreport minor complications, like urinary tract infections (UTIs) and deep venous thromboses (DVTs), that nevertheless affect hospital cost, length of stay, and the patient's quality of life. Herein, we used data from the American College of Surgeons (ACS) National Surgical Quality Improvement Program (NSQIP) to estimate the rate of adverse events in extraoperative ECoG surgeries. NSQIP is a validated dataset containing nearly 3 million procedures from over 600 North American hospitals, and uses strict criteria for the documentation of complications. Major complications occurred in 3.4% of 177 extraoperative ECoG cases, while minor complications occurred in 9.6%. The most common minor complication was bleeding requiring a transfusion in 3.4% of cases, followed by sepsis, DVT, and UTI each in 2.3% of cases. No mortality was reported. Overall, in a national database containing a heterogeneous population of hospitals, major complications of extraoperative ECoG were rare (3.4%). Complications such as UTI and DVT tend to be underreported in retrospective case series, yet make up a majority of minor complications for ECoG patients in this dataset.
Collapse
Affiliation(s)
- John D Rolston
- Department of Neurological Surgery, University of California, San Francisco, CA, USA.
| | - Dario J Englot
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Susannah Cornes
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Edward F Chang
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| |
Collapse
|
29
|
Mathon B, Clemenceau S, Hasboun D, Habert MO, Belaid H, Nguyen-Michel VH, Lambrecq V, Navarro V, Dupont S, Baulac M, Cornu P, Adam C. Safety profile of intracranial electrode implantation for video-EEG recordings in drug-resistant focal epilepsy. J Neurol 2015; 262:2699-712. [DOI: 10.1007/s00415-015-7901-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 09/08/2015] [Accepted: 09/09/2015] [Indexed: 11/25/2022]
|
30
|
Brna P, Duchowny M, Resnick T, Dunoyer C, Bhatia S, Jayakar P. The diagnostic utility of intracranial EEG monitoring for epilepsy surgery in children. Epilepsia 2015; 56:1065-70. [DOI: 10.1111/epi.12983] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2015] [Indexed: 01/22/2023]
Affiliation(s)
- Paula Brna
- IWK Health Centre; Dalhousie University; Halifax Nova Scotia Canada
| | - Michael Duchowny
- Brain Institute; Miami Children's Hospital; Miami Florida U.S.A
- Department of Neurology; Miami Children's Hospital; Miami Florida U.S.A
| | - Trevor Resnick
- Brain Institute; Miami Children's Hospital; Miami Florida U.S.A
- Department of Neurology; Miami Children's Hospital; Miami Florida U.S.A
| | | | - Sanjiv Bhatia
- Brain Institute; Miami Children's Hospital; Miami Florida U.S.A
- Division of Neurosurgery; Miami Children's Hospital; Miami Florida U.S.A
| | - Prasanna Jayakar
- Brain Institute; Miami Children's Hospital; Miami Florida U.S.A
- Department of Neurology; Miami Children's Hospital; Miami Florida U.S.A
| |
Collapse
|
31
|
Rolston JD, Ouyang D, Englot DJ, Wang DD, Chang EF. National trends and complication rates for invasive extraoperative electrocorticography in the USA. J Clin Neurosci 2015; 22:823-7. [PMID: 25669117 PMCID: PMC5501272 DOI: 10.1016/j.jocn.2014.12.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 12/16/2014] [Indexed: 11/19/2022]
Abstract
Invasive electrocorticography (ECoG) is used in patients when it is difficult to localize epileptogenic foci for potential surgical resection. As MR neuroimaging has improved over the past decade, we hypothesized the utilization of ECoG diminishing over time. Using the USA Nationwide Inpatient Sample, we collected demographic and complication data on patients receiving ECoG over the years 1988-2008 and compared this to patients with medically refractory epilepsy during the same time period. A total of 695 cases using extraoperative ECoG were identified, corresponding to 3528 cases nationwide and accounting for 1.1% of patients with refractory epilepsy from 1988-2008. African Americans were less likely to receive ECoG than whites, as were patients with government insurance in comparison to those with private insurance. Large, urban, and academic hospitals were significantly more likely to perform ECoG than smaller, rural, and private practice institutions. The most frequent complication was cerebrospinal fluid leak (11.7%) and only one death was reported from the entire cohort, corresponding to an estimated six patients nationally. Invasive ECoG is a relatively safe procedure offered to a growing number of patients with refractory epilepsy each year. However, these data suggest the presence of demographic disparities in those patients receiving ECoG, possibly reflecting barriers due to race and socioeconomic status. Among patients with nonlocalized seizures, ECoG often represents their only hope for surgical treatment. We therefore must further examine the indications and efficacy of ECoG, and more work must be done to understand if and why ECoG is preferentially performed in select socioeconomic groups.
Collapse
Affiliation(s)
- John D Rolston
- Department of Neurological Surgery, University of California, San Francisco, 505 Parnassus Avenue, Box 0112, San Francisco, CA 94143-0112, USA.
| | - David Ouyang
- Department of Neurological Surgery, University of California, San Francisco, 505 Parnassus Avenue, Box 0112, San Francisco, CA 94143-0112, USA
| | - Dario J Englot
- Department of Neurological Surgery, University of California, San Francisco, 505 Parnassus Avenue, Box 0112, San Francisco, CA 94143-0112, USA
| | - Doris D Wang
- Department of Neurological Surgery, University of California, San Francisco, 505 Parnassus Avenue, Box 0112, San Francisco, CA 94143-0112, USA
| | - Edward F Chang
- Department of Neurological Surgery, University of California, San Francisco, 505 Parnassus Avenue, Box 0112, San Francisco, CA 94143-0112, USA
| |
Collapse
|
32
|
Raftopoulos C, Vaz G, Tassigny D, Van Rijckevorsel K. Invasive EEG in refractory epilepsy: insertion of subdural grids through linear craniectomy reduces complications and remains effective. Neurochirurgie 2015; 61:16-21. [PMID: 25592807 DOI: 10.1016/j.neuchi.2014.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 08/12/2014] [Accepted: 09/03/2014] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To evaluate our technique of implanting subdural grids by linear craniectomy under computer-assisted navigation for invasive electroencephalography in medically refractory epilepsy. MATERIAL AND METHOD We report results from our first 38 consecutive patients with medically refractory epilepsy who underwent subdural grids implantation by linear craniectomy. For each case, a preoperative MRI was performed for navigation followed by a postoperative MRI for localization control of the intracranial electrode contacts. A linear skin incision, adapted to the depth and type of subdural electrode (strip or grid) and compatible with possible subsequent therapeutic surgery, was carried out. One or two linear craniectomies (maximal length 6cm, width 1cm) were then drilled with a bevel. The dura mater was incised under microscopic guidance to avoid opening the arachnoid. The required subdural electrodes were then slipped subdurally through each linear craniectomy (letter-box technique). RESULTS Forty-one invasive electroencephalographies were performed with 28 (68%) bilateral. For all invasive electroencephalographies, at least one subdural grid was implanted. Sixty-one subdural grids were implanted in total, 52 with 20 contacts and nine with 32 contacts. No cerebrospinal fluid leakage, no infection, no neurological deficit and no permanent complications were observed. Three subdural grids (5%) were not positioned exactly as planned but this had no consequence for the invasive electroencephalography analysis. CONCLUSION The implantation of 61 consecutive subdural grids for invasive electroencephalography through linear craniectomies was associated with no transient or permanent complications in this population. This letter-box technique appears to be practical and safe without limiting explorative efficacy.
Collapse
Affiliation(s)
- C Raftopoulos
- Department of Neurosurgery, University Hospital St-Luc, Université Catholique de Louvain, 10, Avenue Hippocrate, 1200 Brussels, Belgium.
| | - G Vaz
- Department of Neurosurgery, University Hospital St-Luc, Université Catholique de Louvain, 10, Avenue Hippocrate, 1200 Brussels, Belgium
| | - D Tassigny
- Department of Neurosurgery, University Hospital St-Luc, Université Catholique de Louvain, 10, Avenue Hippocrate, 1200 Brussels, Belgium
| | - K Van Rijckevorsel
- Department of Neurology, UCL Center for Refractory Epilepsy, University Hospital St-Luc, Université Catholique de Louvain, 10, Avenue Hippocrate, 1200 Brussels, Belgium
| |
Collapse
|
33
|
Salam MT, Gélinas S, Desgent S, Duss S, Bernier Turmel F, Carmant L, Sawan M, Nguyen DK. Subdural porous and notched mini-grid electrodes for wireless intracranial electroencephalographic recordings. J Multidiscip Healthc 2014; 7:573-86. [PMID: 25525368 PMCID: PMC4266360 DOI: 10.2147/jmdh.s64269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Intracranial electroencephalography (EEG) studies are widely used in the presurgical evaluation of drug-refractory patients with partial epilepsy. Because chronic implantation of intracranial electrodes carries a risk of infection, hemorrhage, and edema, it is best to limit the number of electrodes used without compromising the ability to localize the epileptogenic zone (EZ). There is always a risk that an intracranial study may fail to identify the EZ because of suboptimal coverage. We present a new subdural electrode design that will allow better sampling of suspected areas of epileptogenicity with lower risk to patients. METHOD Impedance of the proposed electrodes was characterized in vitro using electrochemical impedance spectroscopy. The appearance of the novel electrodes on magnetic resonance imaging (MRI) was tested by placing the electrodes into a gel solution (0.9% NaCl with 14 g gelatin). In vivo neural recordings were performed in male Sprague Dawley rats. Performance comparisons were made using microelectrode recordings from rat cortex and subdural/depth recordings from epileptic patients. Histological examinations of rat brain after 3-week icEEG intracerebral electroencephalography (icEEG) recordings were performed. RESULTS The in vitro results showed minimum impedances for optimum choice of pure gold materials for electrode contacts and wire. Different attributes of the new electrodes were identified on MRI. The results of in vivo recordings demonstrated signal stability, 50% noise reduction, and up to 6 dB signal-to-noise ratio (SNR) improvement as compared to commercial electrodes. The wireless icEEG recording system demonstrated on average a 2% normalized root-mean-square (RMS) deviation. Following the long-term icEEG recording, brain histological results showed no abnormal tissue reaction in the underlying cortex. CONCLUSION The proposed subdural electrode system features attributes that could potentially translate into better icEEG recordings and allow sampling of large of areas of epileptogenicity at lower risk to patients. Further validation for use in humans is required.
Collapse
Affiliation(s)
| | - Sébastien Gélinas
- Polystim Neurotechnologies Laboratory, Polytechnique Montréal, QC, Canada
| | - Sébastien Desgent
- Research Center, Sainte-Justine University Hospital Center (CHU Sainte-Justine), Université de Montréal, QC, Canada
| | - Sandra Duss
- Research Center, Sainte-Justine University Hospital Center (CHU Sainte-Justine), Université de Montréal, QC, Canada
| | - Félix Bernier Turmel
- Polystim Neurotechnologies Laboratory, Polytechnique Montréal, QC, Canada ; Neurology Service, Department of Medicine, Notre-Dame Hospital, Centre Hospitalier de l'Université de Montréal (CHUM), QC, Canada
| | - Lionel Carmant
- Research Center, Sainte-Justine University Hospital Center (CHU Sainte-Justine), Université de Montréal, QC, Canada
| | - Mohamad Sawan
- Polystim Neurotechnologies Laboratory, Polytechnique Montréal, QC, Canada
| | - Dang Khoa Nguyen
- Neurology Service, Department of Medicine, Notre-Dame Hospital, Centre Hospitalier de l'Université de Montréal (CHUM), QC, Canada
| |
Collapse
|
34
|
Stereoelectroencephalography in children with cortical dysplasia: technique and results. Childs Nerv Syst 2014; 30:1853-7. [PMID: 25296546 DOI: 10.1007/s00381-014-2499-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 07/11/2014] [Indexed: 10/24/2022]
Abstract
The stereoelectroencephalophraphy (SEEG) method was developed in France by Jean Tailarach and Jean Bancaud during the 50s and has been mostly used in France and Italy, as the method of choice for extraoperative invasive mapping in refractory focal epilepsy. Subsequently, for more than 60 years, SEEG has shown to be a valuable tool for preoperative decision-making in focal epilepsy. Nevertheless, there are few reports addressing the utility and safety of the SEEG methodology applied to children and adolescents. In this chapter, we will discuss the current results of SEEG in pediatric patients with difficult to localize epilepsy. Details regarding surgical technique and clinical results will be presented.
Collapse
|
35
|
Placement of subdural grids in pediatric patients: technique and results. Childs Nerv Syst 2014; 30:1897-904. [PMID: 25296551 DOI: 10.1007/s00381-014-2534-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 08/13/2014] [Indexed: 10/24/2022]
Abstract
PURPOSE The purpose of this study is to describe common indications and technique for the application of chronic invasive electrodes in the pediatric patient suffering from medically intractable epilepsy. METHODS This chapter was prepared based on a retrospective review of the literature and personal experience based from a large tertiary epilepsy center. CONCLUSIONS Invasive subdural recordings are a safe and efficacious tool to identify the epileptogenic zone and its relationship to functional cortex in highly selected patients with medically refractory epilepsy. The ability to localize the EZ approaches 90 to 100 %, but seizure-free outcome is more complex depending greatly on the experience of the surgical team and the extent of resection.
Collapse
|
36
|
Indications and selection criteria for invasive monitoring in children with cortical dysplasia. Childs Nerv Syst 2014; 30:1823-9. [PMID: 25296543 DOI: 10.1007/s00381-014-2497-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 07/11/2014] [Indexed: 10/24/2022]
Abstract
PURPOSE In order to presurgically define the anatomical location of the epileptogenic zone (EZ) and its proximity to possible cortical and subcortical eloquent areas in pediatric patients with medically intractable focal epilepsy, an array of noninvasive tools are available: recorded seizure semiology, scalp electroencephalographic (EEG) recordings (ictal and interictal epileptic patterns), magnetic resonance imaging (MRI), positron emission tomography (PET), ictal single-photon emission computed tomography (SPECT), neuropsychological testing, and/or magnetoencephalography. When the noninvasive tools fail or are insufficient in precisely localizing the EZ and its functional and anatomical interphase with potential eloquent cortical areas, invasive extra-operative monitoring procedures might be needed. DISCUSSION In this chapter, we will discuss the main goals of extra-operative invasive evaluation for children with medically intractable epilepsy in whom cortical dysplasia is a possible etiology. We will specifically discuss the possible indications, surgical strategies, results, and morbidity associated with the placement of subdural and stereoelectroencephalography (SEEG) electrodes. The rationale behind the choice of each one of the above techniques will also be discussed.
Collapse
|
37
|
Yang PF, Zhang HJ, Pei JS, Tian J, Lin Q, Mei Z, Zhong ZH, Jia YZ, Chen ZQ, Zheng ZY. Intracranial electroencephalography with subdural and/or depth electrodes in children with epilepsy: techniques, complications, and outcomes. Epilepsy Res 2014; 108:1662-70. [PMID: 25241139 DOI: 10.1016/j.eplepsyres.2014.08.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 08/23/2014] [Indexed: 10/24/2022]
Abstract
Intracranial electroencephalographic monitoring with subdural and/or depth electrodes is widely used for the surgical localization of epileptic foci in patients with intractable partial epilepsy; however, data on safety and surgical outcome with this technique are still inadequate. The aims of this study were to assess the morbidity of intracranial recordings and the surgical outcomes in epileptic children. We retrospectively reviewed the clinical data for 137 children with epilepsy (mean age at implantation: 12.6 ± 3.8 years) who underwent intracranial monitoring with the implantation of strip or grid subdural electrodes and/or intracerebral depth electrodes from September 2004 to September 2011 at a tertiary epilepsy center in China. Complications were classified using five grades of severity (including mortality) and were further classified as either minor or severe. Outcome was classified according to Engel's classification. Regression analysis was performed to identify risk factors for complications. The mean duration of implantation was 5.3 ± 1.3 days. Among the 133 patients who underwent resection, 65 (48.9%) were seizure free (Engel Class I) at last known follow-up, which was >2 years after surgery for all patients. Also, 31 (23.3%) patients had a significant reduction in seizures (Engel Class II). Complications of any type were documented in 29 (21.7%) patients; 15 of these patients had intracranial hematoma. The results of multivariate analysis showed that the only independent risk factor for intracranial hematoma was number of electrode contacts. The most common pathologic diagnosis was focal cortical dysplasia (n=58). Our results showed that intracranial electroencephalographic monitoring in children provides good surgical outcomes and the level of risk is acceptable. When using this technique strategies such as using as few electrode contacts as possible should be adopted to minimize the risk of intracranial hematoma.
Collapse
Affiliation(s)
- Peng-Fan Yang
- Department of Neurosurgery, Epilepsy Center, Fuzhou General Hospital of Nanjing Command, PLA, Fuzhou 350025, China.
| | - Hui-Jian Zhang
- Department of Pediatric neurology, Epilepsy Center, Fuzhou General Hospital of Nanjing Command, PLA, Fuzhou 350025, China.
| | - Jia-Sheng Pei
- Department of Neurosurgery, Epilepsy Center, Fuzhou General Hospital of Nanjing Command, PLA, Fuzhou 350025, China.
| | - Jun Tian
- Department of Neurosurgery, Epilepsy Center, Fuzhou General Hospital of Nanjing Command, PLA, Fuzhou 350025, China.
| | - Qiao Lin
- Department of Epileptology, Epilepsy Center, Fuzhou General Hospital of Nanjing Command, PLA, Fuzhou 350025, China.
| | - Zhen Mei
- Department of Epileptology, Epilepsy Center, Fuzhou General Hospital of Nanjing Command, PLA, Fuzhou 350025, China.
| | - Zhong-Hui Zhong
- Department of Epileptology, Epilepsy Center, Fuzhou General Hospital of Nanjing Command, PLA, Fuzhou 350025, China.
| | - Yan-Zeng Jia
- Department of Epileptology, Epilepsy Center, Fuzhou General Hospital of Nanjing Command, PLA, Fuzhou 350025, China.
| | - Zi-Qian Chen
- Department of Neuroradiology, Epilepsy Center, Fuzhou General Hospital of Nanjing Command, PLA, Fuzhou 350025, China.
| | - Zhi-Yong Zheng
- Department of Pathology, Epilepsy Center, Fuzhou General Hospital of Nanjing Command, PLA, Fuzhou 350025, China.
| |
Collapse
|
38
|
Baek DH, Lee J, Byeon HJ, Choi H, Young Kim I, Lee KM, Jungho Pak J, Pyo Jang D, Lee SH. A thin film polyimide mesh microelectrode for chronic epidural electrocorticography recording with enhanced contactability. J Neural Eng 2014; 11:046023. [PMID: 25024292 DOI: 10.1088/1741-2560/11/4/046023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Epidural electrocorticography (ECoG) activity may be more reliable and stable than single-unit-activity or local field potential. Invasive brain computer interface (BCI) devices are limited by mechanical mismatching and cellular reactive responses due to differences in the elastic modulus and the motion of stiff electrodes. We propose a mesh-shaped electrode to enhance the contactability between surface of dura and electrode. APPROACH We designed a polyimide (PI) electrode with a mesh pattern for more conformal contact with a curved surface. We compared the contact capability of mesh PI electrodes with conventionally used sheet PI electrode. The electrical properties of the mesh PI electrode were evaluated for four weeks. We recorded the epidural ECoG (eECoG) activity on the surface of rhesus monkey brains while they performed a saccadic task for four months. MAIN RESULTS The mesh PI electrode showed good contact with the agarose brain surface, as evaluated by visual inspection and signal measurement. It was about 87% accurate in predicting the direction of saccade eye movement. SIGNIFICANCE Our results indicate that the mesh PI electrode was flexible and good contact on the curved surface and can record eECoG activity maintaining close contact to dura, which was proved by in vivo and in vitro test.
Collapse
Affiliation(s)
- Dong-Hyun Baek
- School of Bio-convergence Engineering, College of Health Science, Korea University, Seoul, Republic of Korea. Department of Biomedical Engineering, College of Health Science, Korea University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abuelem T, Friedman DE, Agadi S, Wilfong AA, Yoshor D. Interhemispheric subdural electrodes: technique, utility, and safety. Neurosurgery 2014; 73:ons253-60; discussion ons260. [PMID: 23615084 DOI: 10.1227/01.neu.0000430287.08552.83] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Invasive monitoring using subdural electrodes is often valuable for characterizing the anatomic source of seizures in intractable epilepsy. Covering the interhemispheric surface with subdural electrodes represents a particular challenge, with a potentially higher risk of complications than covering the dorsolateral cortex. OBJECTIVE To better understand the safety and utility of interhemispheric subdural electrodes (IHSE). METHODS We retrospectively reviewed the charts of 24 patients who underwent implantation of IHSE by a single neurosurgeon from 2003 to 2010. Generous midline exposure, meticulous preservation of veins, and sharp microdissection were used to facilitate safe interhemispheric grid placement under direct visualization. RESULTS The number of IHSE contacts implanted ranged from 10 to 106 (mean = 39.8) per patient. Monitoring lasted for 5.5 days on average (range, 2-24 days), with an adequate sample of seizures captured in all patients before explantation, and with a low complication rate similar to that reported for grid implantation of the dorsolateral cortex. One patient (of 24) experienced symptomatic mass effect. No other complications clearly related to grid implantation and monitoring, such as clinically evident neurological deficits, infection, hematoma, or infarction, were noted. Among patients implanted with IHSE, monitoring led to a paramedian cortical resection in 67%, a resection in a region not covered by IHSE in 17%, and explantation without resection in 17%. CONCLUSION When clinical factors suggest the possibility of an epileptic focus at or near the midline, invasive monitoring of the paramedian cortex with interhemispheric grids can be safely used to define the epileptogenic zone and map local cortical function.
Collapse
Affiliation(s)
- Tarek Abuelem
- *Department of Neurosurgery, Baylor College of Medicine, Houston, Texas; ‡Department of Neurology, Baylor College of Medicine, Houston, Texas
| | | | | | | | | |
Collapse
|
40
|
Tebo CC, Evins AI, Christos PJ, Kwon J, Schwartz TH. Evolution of cranial epilepsy surgery complication rates: a 32-year systematic review and meta-analysis. J Neurosurg 2014; 120:1415-27. [DOI: 10.3171/2014.1.jns131694] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object
Surgical interventions for medically refractory epilepsy are effective in selected patients, but they are underutilized. There remains a lack of pooled data on complication rates and their changes over a period of multiple decades. The authors performed a systematic review and meta-analysis of reported complications from intracranial epilepsy surgery from 1980 to 2012.
Methods
A literature search was performed to find articles published between 1980 and 2012 that contained at least 2 patients. Patients were divided into 3 groups depending on the procedure they underwent: A) temporal lobectomy with or without amygdalohippocampectomy, B) extratemporal lobar or multilobar resections, or C) invasive electrode placement. Articles were divided into 2 time periods, 1980–1995 and 1996–2012.
Results
Sixty-one articles with a total of 5623 patients met the study's eligibility criteria. Based on the 2 time periods, neurological deficits decreased dramatically from 41.8% to 5.2% in Group A and from 30.2% to 19.5% in Group B. Persistent neurological deficits in these 2 groups decreased from 9.7% to 0.8% and from 9.0% to 3.2%, respectively. Wound infections/meningitis decreased from 2.5% to 1.1% in Group A and from 5.3% to 1.9% in Group B. Persistent neurological deficits were uncommon in Group C, although wound infections/meningitis and hemorrhage/hematoma increased over time from 2.3% to 4.3% and from 1.9% to 4.2%, respectively. These complication rates are additive in patients undergoing implantation followed by resection.
Conclusions
Complication rates have decreased dramatically over the last 30 years, particularly for temporal lobectomy, but they remain an unavoidable consequence of epilepsy surgery. Permanent neurological deficits are rare following epilepsy surgery compared with the long-term risks of intractable epilepsy.
Collapse
Affiliation(s)
- Collin C. Tebo
- 1Department of Neurological Surgery, Weill Cornell Medical College, Cornell University, NewYork-Presbyterian Hospital; and
| | - Alexander I. Evins
- 1Department of Neurological Surgery, Weill Cornell Medical College, Cornell University, NewYork-Presbyterian Hospital; and
| | - Paul J. Christos
- 2Department of Public Health, Division of Biostatistics and Epidemiology, Weill Cornell Medical College, New York, New York
| | - Jennifer Kwon
- 1Department of Neurological Surgery, Weill Cornell Medical College, Cornell University, NewYork-Presbyterian Hospital; and
| | - Theodore H. Schwartz
- 1Department of Neurological Surgery, Weill Cornell Medical College, Cornell University, NewYork-Presbyterian Hospital; and
| |
Collapse
|
41
|
Ruescher J, Iljina O, Altenmüller DM, Aertsen A, Schulze-Bonhage A, Ball T. Somatotopic mapping of natural upper- and lower-extremity movements and speech production with high gamma electrocorticography. Neuroimage 2013; 81:164-177. [PMID: 23643922 DOI: 10.1016/j.neuroimage.2013.04.102] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Revised: 04/02/2013] [Accepted: 04/23/2013] [Indexed: 11/27/2022] Open
|
42
|
Long-term seizure outcomes following resection of supratentorial cavernous malformations. Clin Neurol Neurosurg 2013; 115:2377-81. [PMID: 24075713 DOI: 10.1016/j.clineuro.2013.08.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 08/10/2013] [Accepted: 08/25/2013] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Symptomatic supratentorial cavernous malformations may present with seizure, headache, neurological deficit, or a combination thereof. Factors that contribute to treatment algorithms commonly include patient age, lesion size and location, lesion multiplicity, hemorrhage history, and the ability to control seizure activity with medication. A better appreciation of the impact of patient and lesion characteristics on post-operative seizure control may provide insight into management strategies. To determine long-term seizure outcomes following surgical resection of supratentorial cavernous malformations, the predictive value of characteristics including seizure duration and number, presence of generalized seizures, and lesion multiplicity and size on seizure control rate was evaluated. METHODS We performed a single institution retrospective review of consecutive patients with supratentorial cavernous malformations presenting with at least one seizure between 1995 and 2008. Univariate and multivariate analyses were used to determine the influence of patient and lesion characteristics on postoperative seizure control. RESULTS Fifty-six patients met inclusion criteria. Mean follow-up duration was 87.9 months. At last follow-up there were 46 patients (82.1%) that were free from impairing seizures (Engel Class 1). Ten patients (17.9%) were classified as Engel Class 2-4. Univariate analysis demonstrated that only the presence of multiple cavernomas was associated with worse post-operative seizure outcome (p=0.006). Multivariate analysis demonstrated that multiple cavernomas remained a significant predictor for development of worse seizure outcome controlling for number and duration of seizures prior to operation, presence of generalized tonic-clonic seizures, and size (odds ratio, 0.17; 95% confidence interval, 0.03, 0.99). CONCLUSION Resection of supratentorial cavernomas is associated with a high rate of postoperative seizure freedom. The presence of multiple cavernomas is predictive of seizure persistence following surgery.
Collapse
|
43
|
Cardinale F, Cossu M, Castana L, Casaceli G, Schiariti MP, Miserocchi A, Fuschillo D, Moscato A, Caborni C, Arnulfo G, Lo Russo G. Stereoelectroencephalography: surgical methodology, safety, and stereotactic application accuracy in 500 procedures. Neurosurgery 2013; 72:353-66; discussion 366. [PMID: 23168681 DOI: 10.1227/neu.0b013e31827d1161] [Citation(s) in RCA: 379] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Stereoelectroencephalography (SEEG) methodology, originally developed by Talairach and Bancaud, is progressively gaining popularity for the presurgical invasive evaluation of drug-resistant epilepsies. OBJECTIVE To describe recent SEEG methodological implementations carried out in our center, to evaluate safety, and to analyze in vivo application accuracy in a consecutive series of 500 procedures with a total of 6496 implanted electrodes. METHODS Four hundred nineteen procedures were performed with the traditional 2-step surgical workflow, which was modified for the subsequent 81 procedures. The new workflow entailed acquisition of brain 3-dimensional angiography and magnetic resonance imaging in frameless and markerless conditions, advanced multimodal planning, and robot-assisted implantation. Quantitative analysis for in vivo entry point and target point localization error was performed on a sub--data set of 118 procedures (1567 electrodes). RESULTS The methodology allowed successful implantation in all cases. Major complication rate was 12 of 500 (2.4%), including 1 death for indirect morbidity. Median entry point localization error was 1.43 mm (interquartile range, 0.91-2.21 mm) with the traditional workflow and 0.78 mm (interquartile range, 0.49-1.08 mm) with the new one (P < 2.2 × 10). Median target point localization errors were 2.69 mm (interquartile range, 1.89-3.67 mm) and 1.77 mm (interquartile range, 1.25-2.51 mm; P < 2.2 × 10), respectively. CONCLUSION SEEG is a safe and accurate procedure for the invasive assessment of the epileptogenic zone. Traditional Talairach methodology, implemented by multimodal planning and robot-assisted surgery, allows direct electrical recording from superficial and deep-seated brain structures, providing essential information in the most complex cases of drug-resistant epilepsy.
Collapse
Affiliation(s)
- Francesco Cardinale
- Claudio Munari Centre for Epilepsy and Parkinson Surgery, Niguarda Ca' Granda Hospital, Milano, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Vale F, Pollock G, Dionisio J, Benbadis S, Tatum W. Outcome and complications of chronically implanted subdural electrodes for the treatment of medically resistant epilepsy. Clin Neurol Neurosurg 2013; 115:985-90. [DOI: 10.1016/j.clineuro.2012.10.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 09/18/2012] [Accepted: 10/13/2012] [Indexed: 10/27/2022]
|
45
|
Hersh EH, Virk MS, Shao H, Tsiouris AJ, Bonci GA, Schwartz TH. Bone flap explantation, steroid use, and rates of infection in patients with epilepsy undergoing craniotomy for implantation of subdural electrodes. J Neurosurg 2013; 119:48-53. [DOI: 10.3171/2013.3.jns121489] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object
Subdural implantation of electrodes is commonly performed to localize an epileptic focus. Whether to temporarily explant the bone plate and whether to treat patients with perioperative steroid agents is unclear. The authors' aim was to evaluate the utility and risk of bone plate explantation and perioperative steroid use.
Methods
The authors reviewed the records of all patients who underwent unilateral craniotomy for electrode implantation performed between November 2001 and June 2011 at their institution. Patients were divided into 3 groups: Group 1 (n = 24), bone explanted, no perioperative steroid use; Group 2 (n = 42), bone left in place, no perioperative steroid use; Group 3 (n = 25), bone left in place, steroid agents administered perioperatively. Complications, mass effect, and seizure rates were examined by means of statistical analysis.
Results
Of 324 cranial epilepsy surgeries, 91 were unilateral subdural electrode implants that met our inclusion criteria. A total of 11 infections were reported, and there was a significantly higher rate of infection when the bone was explanted (8 cases [33.3%]) than when the bone was left in place (3 cases [4.5%], p < 0.01). Leaving the bone in place also increased the rate of asymptomatic subdural hematomas and frequency of seizures, although there was no increase in midline shift, severity of headache, or rate of emergency reoperation. The use of steroid agents did not appear to have an effect on any of the outcome measures.
Conclusions
Temporary bone flap explantation during craniotomy for implantation of subdural electrodes can result in high rates of infection, possibly due to the frequent change of hands in transferring the bone to the bone bank. Leaving the bone in place may increase the frequency of seizures and appearance of asymptomatic subdural hematomas but does not increase the rate of complications. These results may be institution dependent.
Collapse
Affiliation(s)
| | | | | | - A. John Tsiouris
- 4Neuroradiology, Weill Cornell Medical College, NewYork-Presbyterian Hospital, New York, New York
| | - Gregory A. Bonci
- 4Neuroradiology, Weill Cornell Medical College, NewYork-Presbyterian Hospital, New York, New York
| | | |
Collapse
|
46
|
Arya R, Mangano FT, Horn PS, Holland KD, Rose DF, Glauser TA. Adverse events related to extraoperative invasive EEG monitoring with subdural grid electrodes: a systematic review and meta-analysis. Epilepsia 2013; 54:828-39. [PMID: 23294329 DOI: 10.1111/epi.12073] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2012] [Indexed: 11/29/2022]
Abstract
PURPOSE Implantation of subdural grids and invasive electroencephalography (EEG) monitoring is important to define the ictal-onset zone and eloquent cortex in selected patients with medically refractory epilepsy. The objective of this systematic review is to summarize data about adverse events related to this procedure. METHODS English-language studies published up to July 2012, reporting such adverse events were reviewed. Outcome measures included demographic variables; surgical protocol including number of subdural electrodes implanted per patient, duration of monitoring, antibiotic, and steroid prophylaxis; and adverse events. KEY FINDINGS Twenty-one studies were identified including a total of 2,542 patients. The reported mean number of electrodes per patient and duration of monitoring varied from 52 to 95 and 5 to 17 days, respectively. There is a trend toward more uniform use of antibiotics and steroids in the perioperative period. Neurologic infections (pooled prevalence 2.3%, 95% confidence interval 1.5-3.1), superficial infections (3.0%, 1.9-4.1), intracranial hemorrhage (4.0%, 3.2-4.8), and elevated intracranial pressure (2.4%, 1.5-3.3) were found to be the most common adverse events. Up to 3.5% of patients required additional surgical procedure(s) for management of these adverse events. Increased number of electrodes (≥67) was found to be independently associated with increased incidence of adverse events. SIGNIFICANCE Although providing critical information for patients with medically refractory epilepsy, subdural grids implantation and invasive EEG monitoring entails risks of infection, hemorrhage, and elevated intracranial pressure. The prevalence estimates, likely to be conservative due to selective reporting, are expected to be helpful in counseling patients.
Collapse
Affiliation(s)
- Ravindra Arya
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Drenckhahn C, Brabetz C, Major S, Wiesenthal D, Woitzik J, Dreier JP. Criteria for the diagnosis of noninfectious and infectious complications after aneurysmal subarachnoid hemorrhage in DISCHARGE-1. ACTA NEUROCHIRURGICA. SUPPLEMENT 2013; 115:153-159. [PMID: 22890662 DOI: 10.1007/978-3-7091-1192-5_30] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Patients with aneurysmal subarachnoid hemorrhage (aSAH) frequently develop secondary noninfectious and infectious complications that have an important impact on clinical course and outcome. We here report on criteria for the diagnosis of the most important complications after aSAH based on clinical status, neuroimaging, and laboratory tests, including cerebrospinal fluid parameters. These criteria will be used for a retrospective analysis of aSAH patients who were recruited at the Charité Berlin for the CoOperative Study on Brain Injury Depolarisations (COSBID) before the Depolarisations in Ischaemia after Subarachnoid Haemorrhage-1 (DISCHARGE-1) trial started. Moreover, they serve for the survey of complications in DISCHARGE-1. We also report on a customized, Web-based database that has been developed for the documentation of the clinical course after aSAH. This database is used for the COSBID outcome study on aSAH and for DISCHARGE-1.
Collapse
|
48
|
Derrey S, Lebas A, Parain D, Baray MG, Marguet C, Freger P, Proust F. Delayed intracranial hematoma following stereoelectroencephalography for intractable epilepsy: case report. J Neurosurg Pediatr 2012; 10:525-8. [PMID: 23020171 DOI: 10.3171/2012.8.peds12114] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Intracranial bleeding following stereoelectroencephalography (sEEG) is rare and commonly occurs early after electrode implantation. The authors report the case of a delayed intracranial hematoma following sEEG. This 10-year-old boy was referred to the authors' department to undergo an sEEG study for intractable epilepsy, with the hypothesis of a single localized epileptic zone in the left precentral region. To perform the exploration, 14 depth electrodes were implanted under stereotactic conditions. The results of a postoperative CT scan performed routinely at the end of the surgical procedure were normal. Eight days later, following an epileptic seizure, the child's condition worsened. The neurological examination revealed a left hemiparesis, agitation, and coma due to a right subdural hematoma with intraparenchymal bleeding. Despite a surgical evacuation followed by a decompressive craniectomy, the curative treatments were stopped 1 week later due to severe diffuse ischemic lesions found on MRI studies. This is the first observation of a delayed hematoma following an sEEG procedure. The mechanism underlying this complication remains unclear, but the rupture of a growing pseudoaneurysm caused by the electrode's implantation or the tearing of a neighboring vessel by an electrode were suspected. In consequence, physicians must remain vigilant during the entire sEEG recording period and probably also several days after electrode removal.
Collapse
Affiliation(s)
- Stéphane Derrey
- Department of Neurosurgery, Rouen University Hospital, 1 rue de Germont, Rouen, France.
| | | | | | | | | | | | | |
Collapse
|
49
|
Bekelis K, Radwan TA, Desai A, Moses ZB, Thadani VM, Jobst BC, Bujarski KA, Darcey TM, Roberts DW. Subdural interhemispheric grid electrodes for intracranial epilepsy monitoring: feasibility, safety, and utility. J Neurosurg 2012; 117:1182-8. [DOI: 10.3171/2012.8.jns12258] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object
Intracranial monitoring for epilepsy has been proven to enhance diagnostic accuracy and provide localizing information for surgical treatment of intractable seizures. The authors investigated their experience with interhemispheric grid electrodes (IHGEs) to assess the hypothesis that they are feasible, safe, and useful.
Methods
Between 1992 and 2010, 50 patients underwent IHGE implantation (curvilinear double-sided 2 × 8 or 3 × 8 grids) as part of arrays for invasive seizure monitoring, and their charts were retrospectively reviewed.
Results
Of the 50 patients who underwent intracranial investigation with IHGEs, 38 eventually underwent resection of the seizure focus. These 38 patients had a mean age of 30.7 years (range 11–58 years), and 63% were males. Complications as a result of IHGE implantation consisted of transient leg weakness in 1 patient. Of all the patients who underwent resective surgery, 21 (55.3%) had medial frontal resections, 9 of whom (43%) had normal MRI results. Localization in all of these cases was possible only because of data from IHGEs, and the extent of resection was tailored based on these data. Of the 17 patients (44.7%) who underwent other cortical resections, IHGEs were helpful in excluding medial seizure onset. Twelve patients did not undergo resection because of nonlocalizable or multifocal disease; in 2 patients localization to the motor cortex precluded resection. Seventy-one percent of patients who underwent resection had Engel Class I outcome at the 2-year follow-up.
Conclusions
The use of IHGEs in intracranial epilepsy monitoring has a favorable risk profile and in the authors' experience proved to be a valuable component of intracranial investigation, providing the sole evidence for resection of some epileptogenic foci.
Collapse
Affiliation(s)
| | | | | | | | - Vijay M. Thadani
- 2Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon; and
- 3Dartmouth Medical School, Hanover, New Hampshire
| | - Barbara C. Jobst
- 2Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon; and
- 3Dartmouth Medical School, Hanover, New Hampshire
| | - Krzysztof A. Bujarski
- 2Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon; and
- 3Dartmouth Medical School, Hanover, New Hampshire
| | - Terrance M. Darcey
- 1Section of Neurosurgery,
- 2Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon; and
- 3Dartmouth Medical School, Hanover, New Hampshire
| | - David W. Roberts
- 1Section of Neurosurgery,
- 2Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon; and
- 3Dartmouth Medical School, Hanover, New Hampshire
| |
Collapse
|
50
|
Jech R, Mueller K, Urgošík D, Sieger T, Holiga Š, Růžička F, Dušek P, Havránková P, Vymazal J, Růžička E. The subthalamic microlesion story in Parkinson's disease: electrode insertion-related motor improvement with relative cortico-subcortical hypoactivation in fMRI. PLoS One 2012; 7:e49056. [PMID: 23145068 PMCID: PMC3492182 DOI: 10.1371/journal.pone.0049056] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 10/08/2012] [Indexed: 11/19/2022] Open
Abstract
Electrode implantation into the subthalamic nucleus for deep brain stimulation in Parkinson's disease (PD) is associated with a temporary motor improvement occurring prior to neurostimulation. We studied this phenomenon by functional magnetic resonance imaging (fMRI) when considering the Unified Parkinson's Disease Rating Scale (UPDRS-III) and collateral oedema. Twelve patients with PD (age 55.9± (SD)6.8 years, PD duration 9-15 years) underwent bilateral electrode implantation into the subthalamic nucleus. The fMRI was carried out after an overnight withdrawal of levodopa (OFF condition): (i) before and (ii) within three days after surgery in absence of neurostimulation. The motor task involved visually triggered finger tapping. The OFF/UPDRS-III score dropped from 33.8±8.7 before to 23.3±4.8 after the surgery (p<0.001), correlating with the postoperative oedema score (p<0.05). During the motor task, bilateral activation of the thalamus and basal ganglia, motor cortex and insula were preoperatively higher than after surgery (p<0.001). The results became more enhanced after compensation for the oedema and UPDRS-III scores. In addition, the rigidity and axial symptoms score correlated inversely with activation of the putamen and globus pallidus (p<0.0001). One month later, the OFF/UPDRS-III score had returned to the preoperative level (35.8±7.0, p = 0.4).In conclusion, motor improvement induced by insertion of an inactive electrode into the subthalamic nucleus caused an acute microlesion which was at least partially related to the collateral oedema and associated with extensive impact on the motor network. This was postoperatively manifested as lowered movement-related activation at the cortical and subcortical levels and differed from the known effects of neurostimulation or levodopa. The motor system finally adapted to the microlesion within one month as suggested by loss of motor improvement and good efficacy of deep brain stimulation.
Collapse
Affiliation(s)
- Robert Jech
- Dept. of Neurology and Center of Clinical Neuroscience, Charles University in Prague, 1st Faculty of Medicine and General University Hospital, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | | | |
Collapse
|