1
|
Ansari MA, Rao MS, Al-Jarallah A, Babiker FM. Early Time Course of Oxidative Stress in Hippocampal Synaptosomes and Cognitive Loss Following Impaired Insulin Signaling in Rats: Development of Sporadic Alzheimer’s Disease. Brain Res 2022; 1798:148134. [DOI: 10.1016/j.brainres.2022.148134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/19/2022] [Accepted: 10/26/2022] [Indexed: 11/07/2022]
|
2
|
Farella I, Panza R, Capozza M, Laforgia N. Lecithinized superoxide dismutase in the past and in the present: Any role in the actual pandemia of COVID-19? Biomed Pharmacother 2021; 141:111922. [PMID: 34323703 PMCID: PMC8277551 DOI: 10.1016/j.biopha.2021.111922] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/30/2021] [Accepted: 07/12/2021] [Indexed: 01/08/2023] Open
Abstract
The Coronavirus disease 19 (Covid-19) pandemic is devastating the public health: it is urgent to find a viable therapy to reduce the multiorgan damage of the disease. A validated therapeutic protocol is still missing. The most severe forms of the disease are related to an exaggerated inflammatory response. The pivotal role of reactive oxygen species (ROS) in the amplification of inflammation makes the antioxidants a potential therapy, but clinical trials are needed. The lecitinized superoxide dismutase (PC-SOD) could represent a possibility because of bioaviability, safety, and its modulatory effect on the innate immune response in reducing the harmful consequences of oxidative stress. In this review we summarize the evidence on lecitinized superoxide dismutase in animal and human studies, to highlight the rationale for using the PC-SOD to treat COVID-19.
Collapse
Affiliation(s)
- Ilaria Farella
- Neonatology and Neonatal Intensive Care Unit, Department of Biomedical Science and 6 Human Oncology, "Aldo Moro" University of Bari, Policlinico Hospital-Piazza Giulio Cesare n. 11, 70124 Bari, Italy.
| | - Raffaella Panza
- Neonatology and Neonatal Intensive Care Unit, Department of Biomedical Science and 6 Human Oncology, "Aldo Moro" University of Bari, Policlinico Hospital-Piazza Giulio Cesare n. 11, 70124 Bari, Italy.
| | - Manuela Capozza
- Neonatology and Neonatal Intensive Care Unit, Department of Biomedical Science and 6 Human Oncology, "Aldo Moro" University of Bari, Policlinico Hospital-Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| | - Nicola Laforgia
- Neonatology and Neonatal Intensive Care Unit, Department of Biomedical Science and 6 Human Oncology, "Aldo Moro" University of Bari, Policlinico Hospital-Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| |
Collapse
|
3
|
Yang L, Yan S, Zhang Y, Hu X, Guo Q, Yuan Y, Zhang J. Novel enzyme formulations for improved pharmacokinetic properties and anti-inflammatory efficacies. Int J Pharm 2018; 537:268-277. [DOI: 10.1016/j.ijpharm.2017.12.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 12/10/2017] [Accepted: 12/12/2017] [Indexed: 02/06/2023]
|
4
|
Kobeissy FH, Guingab-Cagmat JD, Zhang Z, Moghieb A, Glushakova OY, Mondello S, Boutté AM, Anagli J, Rubenstein R, Bahmad H, Wagner AK, Hayes RL, Wang KKW. Neuroproteomics and Systems Biology Approach to Identify Temporal Biomarker Changes Post Experimental Traumatic Brain Injury in Rats. Front Neurol 2016; 7:198. [PMID: 27920753 PMCID: PMC5118702 DOI: 10.3389/fneur.2016.00198] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/28/2016] [Indexed: 01/15/2023] Open
Abstract
Traumatic brain injury (TBI) represents a critical health problem of which diagnosis, management, and treatment remain challenging. TBI is a contributing factor in approximately one-third of all injury-related deaths in the United States. The Centers for Disease Control and Prevention estimate that 1.7 million people suffer a TBI in the United States annually. Efforts continue to focus on elucidating the complex molecular mechanisms underlying TBI pathophysiology and defining sensitive and specific biomarkers that can aid in improving patient management and care. Recently, the area of neuroproteomics–systems biology is proving to be a prominent tool in biomarker discovery for central nervous system injury and other neurological diseases. In this work, we employed the controlled cortical impact (CCI) model of experimental TBI in rat model to assess the temporal–global proteome changes after acute (1 day) and for the first time, subacute (7 days), post-injury time frame using the established cation–anion exchange chromatography-1D SDS gel electrophoresis LC–MS/MS platform for protein separation combined with discrete systems biology analyses to identify temporal biomarker changes related to this rat TBI model. Rather than focusing on any one individual molecular entity, we used in silico systems biology approach to understand the global dynamics that govern proteins that are differentially altered post-injury. In addition, gene ontology analysis of the proteomic data was conducted in order to categorize the proteins by molecular function, biological process, and cellular localization. Results show alterations in several proteins related to inflammatory responses and oxidative stress in both acute (1 day) and subacute (7 days) periods post-TBI. Moreover, results suggest a differential upregulation of neuroprotective proteins at 7 days post-CCI involved in cellular functions such as neurite growth, regeneration, and axonal guidance. Our study is among the first to assess temporal neuroproteome changes in the CCI model. Data presented here unveil potential neural biomarkers and therapeutic targets that could be used for diagnosis, for treatment and, most importantly, for temporal prognostic assessment following brain injury. Of interest, this work relies on in silico bioinformatics approach to draw its conclusion; further work is conducted for functional studies to validate and confirm the omics data obtained.
Collapse
Affiliation(s)
- Firas H Kobeissy
- Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Psychiatry, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | | | - Zhiqun Zhang
- Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Psychiatry, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Ahmed Moghieb
- Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Psychiatry, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Olena Y Glushakova
- Department of Neurosurgery, Virginia Commonwealth University School of Medicine , Richmond, VA , USA
| | - Stefania Mondello
- Department of Neurosciences, University of Messina , Messina , Italy
| | - Angela M Boutté
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research , Silver Spring, MD , USA
| | - John Anagli
- NeuroTheranostics Inc., Detroit, MI, USA; Henry Ford Health System, Detroit, MI, USA
| | - Richard Rubenstein
- Department of Neurology, SUNY Downstate Medical Center, Brooklyn, NY, USA; Department of Physiology and Pharmacology, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Hisham Bahmad
- Faculty of Medicine, Beirut Arab University, Beirut, Lebanon; Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Amy K Wagner
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ronald L Hayes
- Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Psychiatry, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Department of Neurosurgery, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Kevin K W Wang
- Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Psychiatry, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
5
|
Li M, Zhu L, Wang W. Improving the thermostability and stress tolerance of an archaeon hyperthermophilic superoxide dismutase by fusion with a unique N-terminal domain. SPRINGERPLUS 2016; 5:241. [PMID: 27026935 PMCID: PMC4771647 DOI: 10.1186/s40064-016-1854-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 02/15/2016] [Indexed: 11/10/2022]
Abstract
The superoxide dismutase from the archaeon Sulfolobus solfataricus (SOD Ss ) is a well-studied hyperthermophilic SOD with crystal structure and possible thermostability factors characterized. Previously, we discovered an N-terminal domain (NTD) in a thermophilic SOD from Geobacillus thermodenitrificans NG80-2 which confers heat resistance on homologous mesophilic SODs. The present study therefore aimed to further improve the thermostability and stress tolerance of SOD Ss via fusion with this NTD. The recombinant protein, rSOD Ss , exhibited improved thermophilicity, higher working temperature, improved thermostability, broader pH stability, and enhanced tolerance to inhibitors and organic media than SOD Ss without any alterations in its oligomerization state. These results suggest that the NTD is an excellent candidate for improving stability of both mesophilic and thermophilic SOD from either bacteria or archaea via simple genetic manipulation. Therefore, this study provides a general, feasible and highly useful strategy for generating extremely thermostable SODs for industrial applications.
Collapse
Affiliation(s)
- Mingchang Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin, 300457 People's Republic of China
| | - Lin Zhu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin, 300457 People's Republic of China
| | - Wei Wang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin, 300457 People's Republic of China ; Tianjin Key Laboratory of Microbial Functional Genomics, TEDA, Tianjin, 300457 People's Republic of China
| |
Collapse
|
6
|
Broeyer FJF, Osanto S, Suzuki J, de Jongh F, van Slooten H, Tanis BC, Bruning T, Bax JJ, Ritsema van Eck HJ, de Kam ML, Cohen AF, Mituzhima Y, Burggraaf J. Evaluation of lecithinized human recombinant super oxide dismutase as cardioprotectant in anthracycline-treated breast cancer patients. Br J Clin Pharmacol 2015; 78:950-60. [PMID: 24844787 DOI: 10.1111/bcp.12429] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 05/15/2014] [Indexed: 12/19/2022] Open
Abstract
AIM Anthracycline-induced cardiotoxicity is (partly) mediated by free radical overload. A randomized study was performed in breast cancer patients to investigate whether free radical scavenger super oxide dismutase (SOD) protects against anthracycline-induced cardiotoxicity as measured by changes in echo, electrocardiography and an array of biomarkers. METHOD AND RESULTS Eighty female, chemotherapy-naïve breast cancer patients (median age 49, range 24-67 years) scheduled for four or five courses of adjuvant 3 weekly doxorubicin plus cyclophosphamide (AC) chemotherapy, were randomly assigned to receive 80 mg PC-SOD (human recombinant SOD bound to lecithin) or placebo, administered intravenously (i.v.) immediately prior to each AC course. The primary end point was protection against cardiac damage evaluated using echocardiography, QT assessments and a set of biochemical markers for myocardial function, oxidative stress and inflammation. Assessments were performed before and during each course of chemotherapy, and at 1, 4 and 9 months after completion of the chemotherapy regimen. In all patients cardiac effects such as increases in NT-proBNP concentration and prolongation of the QTc interval were noticed. There were no differences between the PC-SOD and placebo-treated patients in systolic or diastolic cardiac function or for any other of the biomarkers used to assess the cardiac effects of anthracyclines. CONCLUSION PC-SOD at a dose of 80 mg i.v. is not cardioprotective in patients with breast carcinoma treated with anthracyclines.
Collapse
|
7
|
A novel mechanism of protein thermostability: a unique N-terminal domain confers heat resistance to Fe/Mn-SODs. Sci Rep 2014; 4:7284. [PMID: 25445927 PMCID: PMC4250934 DOI: 10.1038/srep07284] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 11/14/2014] [Indexed: 11/22/2022] Open
Abstract
Superoxide dismutases (SODs), especially thermostable SODs, are widely applied in medical treatments, cosmetics, food, agriculture, and other industries given their excellent antioxidant properties. A novel thermostable cambialistic SOD from Geobacillus thermodenitrificans NG80-2 exhibits maximum activity at 70°C and high thermostability over a broad range of temperatures (20–80°C). Unlike other reported SODs, this enzyme contains an extra repeat-containing N-terminal domain (NTD) of 244 residues adjacent to the conserved functional SODA domain. Deletion of the NTD dramatically decreased its optimum active temperature (OAT) to 30°C and also impaired its thermostability. Conversely, appending the NTD to a mesophilic counterpart from Bacillus subtilis led to a moderately thermophilic enzyme (OAT changed from 30 to 55°C) with improved heat resistance. Temperature-dependant circular dichroism analysis revealed the enhanced conformational stability of SODs fused with this NTD. Furthermore, the NTD also contributes to the stress resistance of host proteins without altering their metal ion specificity or oligomerisation form except for a slight effect on their pH profile. We therefore demonstrate that the NTD confers outstanding thermostability to the host protein. To our knowledge, this is the first discovery of a peptide capable of remarkably improving protein thermostability and provides a novel strategy for bioengineering thermostable SODs.
Collapse
|
8
|
Liu YZ, Chen JK, Li ZP, Zhao T, Ni M, Li DJ, Jiang CL, Shen FM. High-salt diet enhances hippocampal oxidative stress and cognitive impairment in mice. Neurobiol Learn Mem 2014; 114:10-5. [PMID: 24752150 DOI: 10.1016/j.nlm.2014.04.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 04/09/2014] [Accepted: 04/09/2014] [Indexed: 10/25/2022]
Abstract
Previous evidence suggests that a high-salt (HS) diet may increase oxidative stress and contribute to the development of hypertension that is already present. Oxidative stress is thought to play a critical role in the development of neurodegenerative diseases. Lower dietary sodium intake putatively contributes to a lower rate of cognitive impairment; however, the specific effects of HS diet on cognitive function remain poorly understood. In this work, C57BL/6J mice were administered a normal-salt (NS) diet (0.4% NaCl) or a HS diet (7.0% NaCl) for 12 weeks, and cognitive ability and oxidative stress in the brain were measured. It was found that the HS diet significantly impaired retention of spatial memory. Additionally, superoxide anion production in the hippocampus was significantly increased in the HS diet mice compared with that in the NS mice. Interestingly, the antioxidant defense capacities for HS diet mice were markedly reduced in the hippocampus, but not in the cerebral cortex, compared with the NS mice. Taken together, these data demonstrate that HS diet directly impairs retention of spatial memory, which may be related to the increased oxidative stress observed in the hippocampus.
Collapse
Affiliation(s)
- Yun-Zi Liu
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China; Laboratory of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical University, Shanghai 200433, China
| | - Ji-Kuai Chen
- Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Zhang-Peng Li
- Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Ting Zhao
- Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Min Ni
- Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Dong-Jie Li
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Chun-Lei Jiang
- Laboratory of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical University, Shanghai 200433, China
| | - Fu-Ming Shen
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China; Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
9
|
Mendes Arent A, de Souza LF, Walz R, Dafre AL. Perspectives on molecular biomarkers of oxidative stress and antioxidant strategies in traumatic brain injury. BIOMED RESEARCH INTERNATIONAL 2014; 2014:723060. [PMID: 24689052 PMCID: PMC3943200 DOI: 10.1155/2014/723060] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 12/04/2013] [Accepted: 12/09/2013] [Indexed: 11/23/2022]
Abstract
Traumatic brain injury (TBI) is frequently associated with abnormal blood-brain barrier function, resulting in the release of factors that can be used as molecular biomarkers of TBI, among them GFAP, UCH-L1, S100B, and NSE. Although many experimental studies have been conducted, clinical consolidation of these biomarkers is still needed to increase the predictive power and reduce the poor outcome of TBI. Interestingly, several of these TBI biomarkers are oxidatively modified to carbonyl groups, indicating that markers of oxidative stress could be of predictive value for the selection of therapeutic strategies. Some drugs such as corticosteroids and progesterone have already been investigated in TBI neuroprotection but failed to demonstrate clinical applicability in advanced phases of the studies. Dietary antioxidants, such as curcumin, resveratrol, and sulforaphane, have been shown to attenuate TBI-induced damage in preclinical studies. These dietary antioxidants can increase antioxidant defenses via transcriptional activation of NRF2 and are also known as carbonyl scavengers, two potential mechanisms for neuroprotection. This paper reviews the relevance of redox biology in TBI, highlighting perspectives for future studies.
Collapse
Affiliation(s)
- André Mendes Arent
- Department of Biochemistry, Federal University of Santa Catarina, Biological Sciences Centre, 88040-900 Florianópolis, SC, Brazil
- Faculty of Medicine, University of South Santa Catarina (Unisul), 88137-270 Palhoça, SC, Brazil
- Neurosurgery Service, São José Regional Hospital (HRSJ-HMG), 88103-901 São José, SC, Brazil
| | - Luiz Felipe de Souza
- Department of Biochemistry, Federal University of Santa Catarina, Biological Sciences Centre, 88040-900 Florianópolis, SC, Brazil
| | - Roger Walz
- Applied Neurosciences Centre (CeNAp) and Department of Medical Clinics, University Hospital, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Alcir Luiz Dafre
- Department of Biochemistry, Federal University of Santa Catarina, Biological Sciences Centre, 88040-900 Florianópolis, SC, Brazil
| |
Collapse
|
10
|
Cloning and characterization of a new manganese superoxide dismutase from deep-sea thermophile Geobacillus sp. EPT3. World J Microbiol Biotechnol 2013; 30:1347-57. [DOI: 10.1007/s11274-013-1536-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 10/21/2013] [Indexed: 10/26/2022]
|
11
|
Suzuki J, Broeyer F, Cohen A, Takebe M, Burggraaf J, Mizushima Y. Pharmacokinetics of PC-SOD, a Lecithinized Recombinant Superoxide Dismutase, After Single- and Multiple-Dose Administration to Healthy Japanese and Caucasian Volunteers. J Clin Pharmacol 2013; 48:184-92. [DOI: 10.1177/0091270007309705] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
Abstract
In vitro models of traumatic brain injury (TBI) are helping elucidate the pathobiological mechanisms responsible for dysfunction and delayed cell death after mechanical stimulation of the brain. Researchers have identified compounds that have the potential to break the chain of molecular events set in motion by traumatic injury. Ultimately, the utility of in vitro models in identifying novel therapeutics will be determined by how closely the in vitro cascades recapitulate the sequence of cellular events that play out in vivo after TBI. Herein, the major in vitro models are reviewed, and a discussion of the physical injury mechanisms and culture preparations is employed. A comparison between the efficacy of compounds tested in vitro and in vivo is presented as a critical evaluation of the fidelity of in vitro models to the complex pathobiology that is TBI. We conclude that in vitro models were greater than 88% predictive of in vivo results.
Collapse
Affiliation(s)
- Barclay Morrison
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
| | | | | | | |
Collapse
|
13
|
Raimondi S, Uccelletti D, Amaretti A, Leonardi A, Palleschi C, Rossi M. Secretion of Kluyveromyces lactis Cu/Zn SOD: strategies for enhanced production. Appl Microbiol Biotechnol 2009; 86:871-8. [DOI: 10.1007/s00253-009-2353-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 10/16/2009] [Accepted: 11/09/2009] [Indexed: 11/28/2022]
|
14
|
Wu CH, Chou CC. Enhancement of aglycone, vitamin K2 and superoxide dismutase activity of black soybean through fermentation with Bacillus subtilis BCRC 14715 at different temperatures. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:10695-700. [PMID: 19919117 DOI: 10.1021/jf902752t] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In the present study, the change in the content and activity of some functional constituents including aglycone, the bioactive form of isoflavone, vitamin K2, and superoxide dismutase (SOD) of black soybeans during their solid fermentation with Bacillus subtilis BCRC 14715 at different temperatures (35, 40, 45, and 50 degrees C) for 18 h was investigated. It was generally found that fermentation resulted in an enhancement of these constituents, regardless of fermentation temperature, while varying the fermentation temperature of black soybeans produced variations in the enhancement. The 50 degrees C -fermented black soybean showed the most marked increase in the content of daidzein and genistein aglycone. On the other hand, the highest SOD activity and vitamin K2 content were found in the black soybeans fermented at 45 and 40-45 degrees C, respectively. Thus functional properties of black soybeans can be further improved through fermentation with B. subtilis BCRC 14715.
Collapse
Affiliation(s)
- Chia-Hsuan Wu
- Graduate Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | | |
Collapse
|
15
|
Petrov T. Amelioration of hypoperfusion after traumatic brain injury by in vivo endothelin-1 knockout. Can J Physiol Pharmacol 2009; 87:379-86. [PMID: 19448736 DOI: 10.1139/y09-022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endothelin 1 (ET-1) is one of the most powerful vasoconstrictors in the brain. Its expression is upregulated after traumatic brain injury (TBI) and is a major factor in the ensuing hypoperfusion. Attenuation of ET-1 effects has been mainly achieved by blockade of its receptors. The result of a direct blockade of ET-1 mRNA synthesis is not known. We used the Marmarou's model to inflict injury to male Sprague-Dawley rats injected with antisense ET-1 oligodeoxynucleotides (ODNs) before injury. Laser Doppler flowmetry in noninjured rats (2 groups, i.e., untreated and animals that received cODNs) revealed a constant cerebral blood flow of approximately 14 mL.min-1.100 g-1, whereas the values from injured animals pretreated with control ODNs (cODNs) or from animals subjected to TBI alone were approximately 8.0 mL.min-1.100 g-1 during the 18-48 h time period post-TBI. After antisense ET-1 ODNs pretreatment, however, cerebral blood flow in injured animals was approximately 17 mL.min-1.100 g-1 during the 6-48 h time period. Antisense ET-1 ODNs-treated animals also had 19%-29% larger microvessel cross-sectional area and approximately one-third less ET-1 immunoreactivity in the 50-75% range after injury than did cODNs-treated animals after TBI. The results indicate that this direct in vivo approach is an effective therapeutic intervention for the restoration of cerebral blood flow after TBI.
Collapse
Affiliation(s)
- Theodor Petrov
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201, USA.
| |
Collapse
|
16
|
Abstract
BACKGROUND This review summarizes promising approaches for the treatment of traumatic brain injury (TBI) that are in either preclinical or clinical trials. OBJECTIVE The pathophysiology underlying neurological deficits after TBI is described. An overview of select therapies for TBI with neuroprotective and neurorestorative effects is presented. METHODS A literature review of preclinical TBI studies and clinical TBI trials related to neuroprotective and neurorestorative therapeutic approaches is provided. RESULTS/CONCLUSION Nearly all Phase II/III clinical trials in neuroprotection have failed to show any consistent improvement in outcome for TBI patients. The next decade will witness an increasing number of clinical trials that seek to translate preclinical research discoveries to the clinic. Promising drug- or cell-based therapeutic approaches include erythropoietin and its carbamylated form, statins, bone marrow stromal cells, stem cells singularly or in combination or with biomaterials to reduce brain injury via neuroprotection and promote brain remodeling via angiogenesis, neurogenesis, and synaptogenesis with a final goal to improve functional outcome of TBI patients. In addition, enriched environment and voluntary physical exercise show promise in promoting functional outcome after TBI, and should be evaluated alone or in combination with other treatments as therapeutic approaches for TBI.
Collapse
Affiliation(s)
- Ye Xiong
- Henry Ford Health System, Department of Neurosurgery, Detroit, MI 48202, USA
| | | | | |
Collapse
|
17
|
Ansari MA, Roberts KN, Scheff SW. Oxidative stress and modification of synaptic proteins in hippocampus after traumatic brain injury. Free Radic Biol Med 2008; 45:443-52. [PMID: 18501200 PMCID: PMC2586827 DOI: 10.1016/j.freeradbiomed.2008.04.038] [Citation(s) in RCA: 239] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Revised: 04/16/2008] [Accepted: 04/21/2008] [Indexed: 10/22/2022]
Abstract
Oxidative stress, an imbalance between oxidants and antioxidants, contributes to the pathogenesis of traumatic brain injury (TBI). Oxidative neurodegeneration is a key mediator of exacerbated morphological responses and deficits in behavioral recoveries. The present study assessed early hippocampal sequential imbalance to possibly enhance antioxidant therapy. Young adult male Sprague-Dawley rats were subjected to a unilateral moderate cortical contusion. At various times post-TBI, animals were killed and the hippocampus was analyzed for antioxidants (GSH, GSSG, glutathione peroxidase, glutathione reductase, glutathione-S-transferase, glucose-6-phosphate dehydrogenase, superoxide dismutase, and catalase) and oxidants (acrolein, 4-hydroxynonenal, protein carbonyl, and 3-nitrotyrosine). Synaptic markers (synapsin I, postsynaptic density protein 95, synapse-associated protein 97, growth-associated protein 43) were also analyzed. All values were compared with those for sham-operated animals. Significant time-dependent changes in antioxidants were observed as early as 3 h posttrauma and paralleled increases in oxidants (4-hydroxynonenal, acrolein, and protein carbonyl), with peak values obtained at 24-48 h. Time-dependent changes in synaptic proteins (synapsin I, postsynaptic density protein 95, and synapse-associated protein 97) occurred well after levels of oxidants peaked. These results indicate that depletion of antioxidant systems following trauma could adversely affect synaptic function and plasticity. Early onset of oxidative stress suggests that the initial therapeutic window following TBI appears to be relatively short, and it may be necessary to stagger selective types of antioxidant therapy to target specific oxidative components.
Collapse
Affiliation(s)
- Mubeen A. Ansari
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, U.S.A
| | - Kelly N. Roberts
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, U.S.A
| | - Stephen W. Scheff
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, U.S.A
- Spinal Cord Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, U.S.A
- Corresponding author. Send correspondence to Stephen W. Scheff, 101 Sanders-Brown, Center on Aging, University of Kentucky, Lexington, KY 40536-0230, U.S.A. Tel: (859)257-1412, Ext. 270; Fax: (859)323-2866. E-mail addresses:
| |
Collapse
|
18
|
Characterization of the superoxide dismutase SOD1 gene of Kluyveromyces marxianus L3 and improved production of SOD activity. Appl Microbiol Biotechnol 2008; 77:1269-77. [DOI: 10.1007/s00253-007-1270-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 10/30/2007] [Accepted: 10/31/2007] [Indexed: 10/22/2022]
|
19
|
Qiu W, Zhang Y, Sheng H, Zhang J, Wang W, Liu W, Chen K, Zhou J, Xu Z. Effects of therapeutic mild hypothermia on patients with severe traumatic brain injury after craniotomy. J Crit Care 2007; 22:229-35. [PMID: 17869973 DOI: 10.1016/j.jcrc.2006.06.011] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2005] [Revised: 02/09/2006] [Accepted: 06/14/2006] [Indexed: 01/01/2023]
Abstract
PURPOSE We investigated the effects of therapeutic mild hypothermia on patients with severe traumatic brain injury after craniotomy (TBI). METHODS Eighty patients with severe TBI after unilateral craniotomy were randomized into a therapeutic hypothermia group with the brain temperature maintained at 33 degrees C to 35 degrees C for 4 days, and a normothermia control group in the intensive care unit. Vital signs, intracranial pressure, serum superoxide dismutase level, Glasgow Outcome Scale scores, and complications were prospectively analyzed. RESULTS The mean intracranial pressure values of the therapeutic hypothermia group at 24, 48, and 72 hours after injury were much lower than those of the control group (23.49 +/- 2.38, 24.68 +/- 1.71, and 22.51 +/- 2.44 vs 25.87 +/- 2.18, 25.90 +/- 1.86, and 24.57 +/- 3.95 mm Hg; P = .000, .000, and .003, respectively). The mean serum superoxide dismutase levels of the therapeutic hypothermia group at days 3 and 7 were much higher than those of the control group at the same time point (533.0 +/- 103.4 and 600.5 +/- 82.9 vs 458.7 +/- 68.1 and 497.0 +/- 57.3 mug/L, respectively; P = .000). The percentage of favorable neurologic outcome 1 year after injury was 70.0% and 47.5%, respectively (P = .041). Complications, including pulmonary infections (57.5% in the therapeutic hypothermia group vs 32.5% in the control group; P = .025) were managed without severe sequelae. CONCLUSIONS Therapeutic mild hypothermia provides a promising way in the intensive care unit for patients with severe TBI after craniotomy.
Collapse
Affiliation(s)
- Wusi Qiu
- Department of Neurosurgery, Hangzhou Second Hospital, School of Medicine, Hangzhou Normal College, Hangzhou 310012, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Broeyer FJF, van Aken BE, Suzuki J, Kemme MJB, Schoemaker HC, Cohen AF, Mizushima Y, Burggraaf J. The pharmacokinetics and effects of a long-acting preparation of superoxide dismutase (PC-SOD) in man. Br J Clin Pharmacol 2007; 65:22-9. [PMID: 17610527 PMCID: PMC2291268 DOI: 10.1111/j.1365-2125.2007.02965.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
AIM To study the pharmacokinetics (PK), safety and tolerability of single rising doses up to 80 mg of superoxide dismutase covalently linked to lecithin (PC-SOD) in healthy White volunteers. METHODS This double-blind, placebo-controlled, four-period cross-over study was performed in eight healthy volunteers (four male/four female). Three doses of PC-SOD (20, 40 and 80 mg) and placebo were administered intravenously in randomized order. Serum and urinary PC-SOD concentrations were measured predose and up to 96 h after dosing. In addition to standard safety measurements, the urinary excretion of N-acetyl-beta-glucosaminidase, alpha-glutathione S-transferase (alpha-GST) and pi-GST was measured to evaluate renal function. The PK of PC-SOD was analysed using noncompartmental and compartmental methods. RESULTS All treatments were well tolerated, and no obvious relationship between adverse events and treatment was observed. No effects of PC-SOD on renal function could be detected. Dose normalized C(max) and AUC were not different between the different dosages, indicating linearity of plasma concentrations with dose. Estimated PC-SOD clearance was 2.54 ml min(-1)[95% confidence interval (CI) 2.07, 2.83]. The terminal half-life was estimated to be 1.54 days (95% CI 0.93, 2.15). SOD activity was elevated above baseline for 19 +/- 6 h after the 80-mg dose. CONCLUSIONS Single intravenous administrations of PC-SOD in doses up to 80 mg were well tolerated in healthy White male and female volunteers. With the doses used, SOD activity was linearly related to the dose; after the 80-mg dose it was present for an appreciable period. These findings suggest that it is worthwhile to investigate PC-SOD in clinical conditions characterized by a high radical overload.
Collapse
Affiliation(s)
- F J F Broeyer
- Centre for Human Drug Research, Leiden, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Tsubokawa T, Jadhav V, Solaroglu I, Shiokawa Y, Konishi Y, Zhang JH. Lecithinized Superoxide Dismutase Improves Outcomes and Attenuates Focal Cerebral Ischemic Injury via Antiapoptotic Mechanisms in Rats. Stroke 2007; 38:1057-62. [PMID: 17272760 DOI: 10.1161/01.str.0000257978.70312.1d] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background and Purpose—
Recent studies have shown the antiapoptotic neuroprotective effects of lecithinized superoxide dismutase (PC-SOD) in different forms of brain injury. We tested the effects of PC-SOD in focal cerebral ischemia in the rat middle cerebral artery occlusion model (MCAO).
Methods—
Adult male Sprague-Dawley rats were treated with PC-SOD (0.3, 1.0, and 3.0 mg/kg) administered intravenously after 90 minutes of occlusion (beginning of reperfusion). Physiological parameters, neurological score, and infarct volume were assessed at 24 and 72 hours in 3 groups of animals: sham-operated (n=18), MCAO treated with vehicle (n=26), and MCAO treated with PC-SOD (n=37). Oxidative stress was evaluated by malondialdehyde assay, and the apoptotic mechanisms were studied by Western blotting.
Results—
PC-SOD treatment significantly reduced infarct volume and improved neurological scores at different time points compared with the vehicle-treated group. PC-SOD treatment decreased malondialdehyde levels, cytochrome
c
, and cleaved caspase 3 expression and increased mitochondrial Bcl-2 expression.
Conclusions—
Inhibition of oxidative stress with PC-SOD treatment improves outcomes after focal cerebral ischemia. This neuroprotective effect is likely exerted by antiapoptotic mechanisms.
Collapse
Affiliation(s)
- Tamiji Tsubokawa
- Department of Physiology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA
| | | | | | | | | | | |
Collapse
|
22
|
Dellomonaco C, Amaretti A, Zanoni S, Pompei A, Matteuzzi D, Rossi M. Fermentative production of superoxide dismutase with Kluyveromyces marxianus. J Ind Microbiol Biotechnol 2006; 34:27-34. [PMID: 16909269 DOI: 10.1007/s10295-006-0158-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Accepted: 07/13/2006] [Indexed: 11/30/2022]
Abstract
This work sought to develop a fermentative process for the microbial production of superoxide dismutase (SOD), to overcome extraction from animal tissues. Twenty-eight wild-type yeast strains were screened for SOD productivity. Kluyveromyces marxianus L3 showed the highest SOD activity (62 U mg(-1)) and was used for process development. Oxidative stress conditions and parameters affecting oxygen transfer rate were exploited to improve production. The effects of dilution rate (0.067 vs 0.2 h(-1)), aeration pressure (0.3 vs 1.2 bar) and H(2)O(2) (0 vs 50 mM) were studied during chemostat experiments. Low dilution rate, high pressure and H(2)O(2) resulted in an increase in CuZn-SOD up to 475 U mg(-1). When a regulation of oxygen saturation was applied during batch cultures, CuZn-SOD was progressively higher at 60, 80 and 90% dissolved oxygen tension (DOT) (250, 330 and 630 U mg(-1), respectively). Furthermore, the highest growth rate and biomass yield were achieved at 90% DOT, this being therefore the best DOT condition for high overall productivity. Growth and productivity on different carbon sources were compared. Specific activity was higher on glycerol than on lactose or glucose (496, 454 and 341 U mg(-1), respectively). The highest biomass yield was achieved on lactose. It may be therefore the best substrate for SOD production.
Collapse
|
23
|
Potts MB, Koh SE, Whetstone WD, Walker BA, Yoneyama T, Claus CP, Manvelyan HM, Noble-Haeusslein LJ. Traumatic injury to the immature brain: inflammation, oxidative injury, and iron-mediated damage as potential therapeutic targets. NeuroRx 2006; 3:143-53. [PMID: 16554253 PMCID: PMC3593438 DOI: 10.1016/j.nurx.2006.01.006] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Traumatic brain injury (TBI) is the leading cause of morbidity and mortality among children and both clinical and experimental data reveal that the immature brain is unique in its response and vulnerability to TBI compared to the adult brain. Current therapies for pediatric TBI focus on physiologic derangements and are based primarily on adult data. However, it is now evident that secondary biochemical perturbations play an important role in the pathobiology of pediatric TBI and may provide specific therapeutic targets for the treatment of the head-injured child. In this review, we discuss three specific components of the secondary pathogenesis of pediatric TBI-- inflammation, oxidative injury, and iron-induced damage-- and potential therapeutic strategies associated with each. The inflammatory response in the immature brain is more robust than in the adult and characterized by greater disruption of the blood-brain barrier and elaboration of cytokines. The immature brain also has a muted response to oxidative stress compared to the adult due to inadequate expression of certain antioxidant molecules. In addition, the developing brain is less able to detoxify free iron after TBI-induced hemorrhage and cell death. These processes thus provide potential therapeutic targets that may be tailored to pediatric TBI, including anti-inflammatory agents such as minocycline, antioxidants such as glutathione peroxidase, and the iron chelator deferoxamine.
Collapse
Affiliation(s)
- Mathew B. Potts
- />Department of Neurological Surgery, University of California, 94143 San Francisco, California
| | - Seong-Eun Koh
- />Department of Neurological Surgery, University of California, 94143 San Francisco, California
| | - William D. Whetstone
- />Department of Medicine (Division of Emergency Medicine), University of California, 94143 San Francisco, California
| | - Breset A. Walker
- />Department of Medicine (Division of Emergency Medicine), University of California, 94143 San Francisco, California
| | - Tomoko Yoneyama
- />Department of Neurological Surgery, University of California, 94143 San Francisco, California
| | - Catherine P. Claus
- />Department of Neurological Surgery, University of California, 94143 San Francisco, California
| | - Hovhannes M. Manvelyan
- />Department of Neurological Surgery, University of California, 94143 San Francisco, California
| | | |
Collapse
|
24
|
Leinenweber SB, Sheng H, Lynch JR, Wang H, Batinić-Haberle I, Laskowitz DT, Crapo JD, Pearlstein RD, Warner DS. Effects of a manganese (III) porphyrin catalytic antioxidant in a mouse closed head injury model. Eur J Pharmacol 2006; 531:126-32. [PMID: 16455070 DOI: 10.1016/j.ejphar.2005.12.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2005] [Revised: 12/14/2005] [Accepted: 12/15/2005] [Indexed: 10/25/2022]
Abstract
Closed head injury induces cerebral oxidative stress. The efficacy of a Mn (III) porphyrin catalytic antioxidant was assessed in a mouse closed head injury model. Mice were subjected to closed head injury and treated 15 min later with an i.v. bolus of vehicle or 3 mg/kg MnTE-2-PyP5+. Aconitase activity, Fluoro-Jade staining, glial fibrillary acidic protein immunoreactivity, and rotarod falling latencies were measured. Closed head injury altered all variables. MnTE-2-PyP5+ had no effect on any variable with the exception of attenuation of aconitase inactivation at 2 h post-closed head injury. In a second experiment, mice received 3 mg/kg or 6 mg/kg MnTE-2-PyP5+ or vehicle i.v. 15 min post-closed head injury. Rotarod and Morris water maze latencies were measured. Closed head injury altered performance in both tests. No statistically significant effect of MnTE-2-PyP5+ was observed. We conclude that single dose MnTE-2-PyP5+ does not alter outcome in this mouse closed head injury model.
Collapse
|
25
|
Thomale UW, Griebenow M, Kroppenstedt SN, Unterberg AW, Stover JF. The effect of N-acetylcysteine on posttraumatic changes after controlled cortical impact in rats. Intensive Care Med 2005; 32:149-55. [PMID: 16249925 DOI: 10.1007/s00134-005-2845-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Accepted: 10/10/2005] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The antioxidant potential N-Acetylcysteine (NAC) and its improvement of posttraumatic mitrochondrial dysfunction have been reported. This study investigated the effect of NAC on posttraumatic changes after controlled cortical Impact (CCI) injury. DESIGN AND SETTING Prospective randomized controlled animal study. METHODS A moderate left focal cortical contusion was induced using CCI. Either NAC (163 mg/kg bw) or physiological saline was administered intraperitoneally immediately and 2 and 4 h after trauma. Blood gases, temperature, mean arterial blood pressure (MABP), and intracranial pressure (ICP) were monitored. Twenty-four hours after trauma brains were removed and either posttraumatic edema was quantified gravimetrically (n=24], or contusion volume was determined morphometrically using slices staining and computerized image analysis (n=24]. Laser Doppler flowmetry was used to assess pericontusional cortical perfusion before trauma, 30 min and 4 and 24 h after trauma (n=14]. MEASUREMENTS AND RESULTS Physiological parameters remained within normal limits. ICP measurements and water content in traumatized hemispheres did not differ between the groups. Relative contusion volume of the left hemisphere was slightly but nonsignificantly diminished in NAC-treated animals (4.7+/-0.4% vs. 5.9+/-0.5% in controls). In both groups pericontusional perfusion was significantly reduced at 4 h followed by a state of hyperperfusion at 24 h with no differences between the groups. CONCLUSIONS Despite previously reported neuroprotective abilities of NAC, no positive effect on posttraumatic perfusion, brain edema formation, or contusion volume after focal brain injury was observed in this study.
Collapse
Affiliation(s)
- Ulrich-Wilhelm Thomale
- Department of Neurosurgery, Charité, Virchow Medical Center, Humboldt University, Augustenburger Platz 1, 13353 Berlin, Germany.
| | | | | | | | | |
Collapse
|