1
|
Corley C, Craig A, Sadek S, Marusich JA, Chehimi SN, White AM, Holdiness LJ, Reiner BC, Gipson CD. Enhancing translation: A need to leverage complex preclinical models of addictive drugs to accelerate substance use treatment options. Pharmacol Biochem Behav 2024; 243:173836. [PMID: 39067531 PMCID: PMC11344688 DOI: 10.1016/j.pbb.2024.173836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/11/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Preclinical models of addictive drugs have been developed for decades to model aspects of the clinical experience in substance use disorders (SUDs). These include passive exposure as well as volitional intake models across addictive drugs and have been utilized to also measure withdrawal symptomatology and potential neurobehavioral mechanisms underlying relapse to drug seeking or taking. There are a number of Food and Drug Administration (FDA)-approved medications for SUDs, however, many demonstrate low clinical efficacy as well as potential sex differences, and we also note gaps in the continuum of care for certain aspects of clinical experiences in individuals who use drugs. In this review, we provide a comprehensive update on both frequently utilized and novel behavioral models of addiction with a focus on translational value to the clinical experience and highlight the need for preclinical research to follow epidemiological trends in drug use patterns to stay abreast of clinical treatment needs. We then note areas in which models could be improved to enhance the medications development pipeline through efforts to enhance translation of preclinical models. Next, we describe neuroscience efforts that can be leveraged to identify novel biological mechanisms to enhance medications development efforts for SUDs, focusing specifically on advances in brain transcriptomics approaches that can provide comprehensive screening and identification of novel targets. Together, the confluence of this review demonstrates the need for careful selection of behavioral models and methodological parameters that better approximate the clinical experience combined with cutting edge neuroscience techniques to advance the medications development pipeline for SUDs.
Collapse
Affiliation(s)
- Christa Corley
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Ashley Craig
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Safiyah Sadek
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | | | - Samar N Chehimi
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ashley M White
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Lexi J Holdiness
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Benjamin C Reiner
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Cassandra D Gipson
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
2
|
Toivainen S, Xu L, Gobbo F, Della Valle A, Coppola A, Heilig M, Domi E. Different mechanisms underlie compulsive alcohol self-administration in male and female rats. Biol Sex Differ 2024; 15:17. [PMID: 38368341 PMCID: PMC10874042 DOI: 10.1186/s13293-024-00592-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/09/2024] [Indexed: 02/19/2024] Open
Abstract
BACKGROUND Sex is an important factor in the progression and treatment of alcohol addiction, and therapeutic approaches may have to be tailored to potential sex differences. This highlights the importance of understanding sex differences in behaviors that reflect key elements of clinical alcohol addiction, such as continued use despite negative consequences ("compulsive use"). Studies in experimental animals can help provide an understanding of the role sex plays to influence these behaviors. METHODS Large populations of genetically heterogeneous male and female Wistar rats were tested in an established model of compulsive alcohol self-administration, operationalized as alcohol responding despite contingent foot shock punishment. We also tested baseline (fixed ratio, unpunished) operant alcohol self-administration, motivation to self-administer alcohol (progressive ratio), and temporal discounting for alcohol reward. In search of predictors of compulsivity, animals were screened for novelty-induced place preference, anxiety-like behavior, pain sensitivity and corticosterone levels. The estrous cycle was monitored throughout the study. RESULTS Unpunished self-administration of alcohol did not differ between males and females when alcohol intake was corrected for body weight. Overall, females showed higher levels of compulsive responding for alcohol. Compulsive response rates showed bimodal distributions in male but not in female rats when intermediate shock intensities were used (0.2 and 0.25 mA); at higher shock intensities, responding was uniformly suppressed in both males and females. We also found less steep discounting in females when alcohol was devalued by delaying its delivery. Males exhibited a stronger motivation to obtain alcohol under unpunished conditions, while females showed higher corticosterone levels at baseline. Factor analysis showed that an underlying dimension related to stress and pain predicted compulsivity in females, while compulsivity in males was predicted by a reward factor. We did not find differences in alcohol-related behaviors throughout the various stages of the estrous cycle. CONCLUSIONS Our results suggest that mechanisms promoting compulsivity, a key feature of alcohol addiction, likely differ between males and females. This underscores the importance of considering sex as a biological variable in both preclinical and clinical research, and has potential treatment implications in alcohol addiction.
Collapse
Affiliation(s)
- Sanne Toivainen
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, S-581 85, Linköping, Sweden
| | - Li Xu
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, S-581 85, Linköping, Sweden
| | - Francesco Gobbo
- Centre for Discovery Brain Sciences, University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Andrea Della Valle
- School of Pharmacy, Center for Neuroscience, University of Camerino, 62032, Camerino, Italy
| | - Andrea Coppola
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, S-581 85, Linköping, Sweden
| | - Markus Heilig
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, S-581 85, Linköping, Sweden
| | - Esi Domi
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, S-581 85, Linköping, Sweden.
- School of Pharmacy, Center for Neuroscience, University of Camerino, 62032, Camerino, Italy.
| |
Collapse
|
3
|
Decker S, Davis G, Vahora I, Vukovic A, Patel P, Suryanarayanan A. Desformylflustrabromine (dFBr), a positive allosteric modulator of α4β2 nicotinic acetylcholine receptors decreases voluntary ethanol consumption and preference in male and female Sprague-Dawley rats. PLoS One 2022; 17:e0273715. [PMID: 36084045 PMCID: PMC9462806 DOI: 10.1371/journal.pone.0273715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 08/11/2022] [Indexed: 11/19/2022] Open
Abstract
Alcohol use disorder is a medical condition that impacts millions of individuals worldwide. Although there are a few pharmacotherapeutic options for alcohol-dependent individuals; there is a need for the development of novel and more effective therapeutic approaches. Alcohol and nicotine are commonly co-abused, and there is evidence that neuronal nicotinic acetylcholine receptors (nAChRs) play a role in both alcohol and nicotine dependence. Desformylflustrabromine (dFBr), a positive allosteric modulator of the α4β2 nAChRs has been shown to reduce nicotine intake, compulsive-like behavior and neuropathic pain in animal models. dFBr has also been previously shown to cross the blood-brain-barrier. We have recently shown that dFBr can attenuate the response to an acute, hypnotic dose of ethanol, via β2 nAchR. Here, we have investigated the effect of dFBr in modulating ethanol consumption using the intermittent access two-bottle choice (IA2BC) model of voluntary ethanol consumption in male and female Sprague Dawley rats. We show that dFBr selectively reduced ethanol but not sucrose consumption in the IA2BC model. Furthermore, dFBr decreased preference for ethanol in both male and female rats. No rebound increase in ethanol intake was observed after the washout period after dFBr treatment. The ability of dFBr to decrease ethanol consumption, along with its previously demonstrated ability to decrease nicotine self-administration in rodents, suggest that dFBr is an attractive therapeutic candidate to target both nicotine and alcohol abuse.
Collapse
Affiliation(s)
- Steven Decker
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA, United States of America
| | - Gregory Davis
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA, United States of America
| | - Imran Vahora
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA, United States of America
| | - Alen Vukovic
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA, United States of America
| | - Parth Patel
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA, United States of America
| | - Asha Suryanarayanan
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA, United States of America
- * E-mail:
| |
Collapse
|
4
|
Quadir SG, Arleth GM, Jahad JV, Echeveste Sanchez M, Effinger DP, Herman MA. Sex differences in affective states and association with voluntary ethanol intake in Sprague-Dawley rats. Psychopharmacology (Berl) 2022; 239:589-604. [PMID: 35044485 DOI: 10.1007/s00213-021-06052-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/27/2021] [Indexed: 01/11/2023]
Abstract
Alcohol use disorders (AUDs) are a major problem across the USA. While AUD remains a complex human condition, it is difficult to isolate the directionality of anxiety and ethanol (EtOH) drinking from outside influences. The present study sought to investigate the relationship between affective states and EtOH intake using male and female Sprague-Dawley rats. Using complementary tests of anxiety- and depressive-like behavior, we found sex- and test-specific differences in basal affective behavior such that females displayed enhanced anxiety-like behavior in the splash test and males displayed enhanced anxiety-like behavior in the novelty-suppressed feeding test. Although, there were no sex differences in EtOH intake and no correlation between baseline anxiety-like behavior and subsequent EtOH intake, we did find that depressive-like behavior predicted future EtOH intake in female rats only. In addition, we observed an increase in depressive-like behavior is male rats in both the water and EtOH drinking groups (compared to baseline levels). Furthermore, post-drinking anxiety-like behavior, but not depressive-like behavior predicted subsequent EtOH intake in female rats. Lastly, we found a history of EtOH intake decreased pain thresholds in male and female rats, but increased anxiety-like and depressive-like behavior was associated with decreased thermal sensitivity only in EtOH-drinking males. Together, these experiments provide important information on the complex interaction between negative affect and EtOH intake and how these two contexts reciprocally do, or do not, influence each other in a sex-specific manner.
Collapse
Affiliation(s)
- S G Quadir
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - G M Arleth
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - J V Jahad
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - M Echeveste Sanchez
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - D P Effinger
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - M A Herman
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
5
|
Giacometti LL, Barker JM. Sex differences in the glutamate system: Implications for addiction. Neurosci Biobehav Rev 2020; 113:157-168. [PMID: 32173404 DOI: 10.1016/j.neubiorev.2020.03.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 01/21/2020] [Accepted: 03/08/2020] [Indexed: 12/21/2022]
Abstract
Clinical and preclinical research have identified sex differences in substance use and addiction-related behaviors. Historically, substance use disorders are more prevalent in men than women, though this gap is closing. Despite this difference, women appear to be more susceptible to the effects of many drugs and progress to substance abuse treatment more quickly than men. While the glutamate system is a key regulator of addiction-related behaviors, much of the work implicating glutamate signaling and glutamatergic circuits has been conducted in men and male rodents. An increasing number of studies have identified sex differences in drug-induced glutamate alterations as well as sex and estrous cycle differences in drug seeking behaviors. This review will describe sex differences in the glutamate system with an emphasis on implications for substance use disorders, highlighting the gaps in our current understanding of how innate and drug-induced alterations in the glutamate system may contribute to sex differences in addiction-related behaviors.
Collapse
Affiliation(s)
- L L Giacometti
- Department of Pharmacology and Physiology, Drexel University College of Medicine, United States.
| | - J M Barker
- Department of Pharmacology and Physiology, Drexel University College of Medicine, United States.
| |
Collapse
|
6
|
Datta U, Schoenrock SE, Bubier JA, Bogue MA, Jentsch JD, Logan RW, Tarantino LM, Chesler EJ. Prospects for finding the mechanisms of sex differences in addiction with human and model organism genetic analysis. GENES, BRAIN, AND BEHAVIOR 2020; 19:e12645. [PMID: 32012419 PMCID: PMC7060801 DOI: 10.1111/gbb.12645] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/26/2020] [Accepted: 01/27/2020] [Indexed: 02/06/2023]
Abstract
Despite substantial evidence for sex differences in addiction epidemiology, addiction-relevant behaviors and associated neurobiological phenomena, the mechanisms and implications of these differences remain unknown. Genetic analysis in model organism is a potentially powerful and effective means of discovering the mechanisms that underlie sex differences in addiction. Human genetic studies are beginning to show precise risk variants that influence the mechanisms of addiction but typically lack sufficient power or neurobiological mechanistic access, particularly for the discovery of the mechanisms that underlie sex differences. Our thesis in this review is that genetic variation in model organisms are a promising approach that can complement these investigations to show the biological mechanisms that underlie sex differences in addiction.
Collapse
Affiliation(s)
- Udita Datta
- Center for Systems Neurogenetics of Addiction, The Jackson LaboratoryBar HarborMaine
| | - Sarah E. Schoenrock
- Center for Systems Neurogenetics of Addiction, Department of GeneticsUniversity of North Carolina at Chapel HillChapel HillNorth Carolina
| | - Jason A. Bubier
- Center for Systems Neurogenetics of Addiction, The Jackson LaboratoryBar HarborMaine
| | - Molly A. Bogue
- Center for Systems Neurogenetics of Addiction, The Jackson LaboratoryBar HarborMaine
| | - James D. Jentsch
- Center for Systems Neurogenetics of Addiction, PsychologyState University of New York at BinghamtonBinghamtonNew York
| | - Ryan W. Logan
- Center for Systems Neurogenetics of Addiction, PsychiatryUniversity of Pittsburgh School of MedicinePittsburghPennsylvania
| | - Lisa M. Tarantino
- Center for Systems Neurogenetics of Addiction, Department of GeneticsUniversity of North Carolina at Chapel HillChapel HillNorth Carolina
| | - Elissa J. Chesler
- Center for Systems Neurogenetics of Addiction, The Jackson LaboratoryBar HarborMaine
| |
Collapse
|
7
|
Early life stress and the propensity to develop addictive behaviors. Int J Dev Neurosci 2019; 78:156-169. [PMID: 31255718 DOI: 10.1016/j.ijdevneu.2019.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 06/03/2019] [Accepted: 06/13/2019] [Indexed: 12/14/2022] Open
Abstract
There is a vast literature on effects of early life manipulations in rodents much of which is aimed at investigating the long-term consequences related to emotion and cognition in adulthood. Less is known about how these manipulations affect responses reflective of alcohol (AUD) and substance (SUD) use disorders. The purpose of this paper is to review the literature of studies that employed early life manipulations and assessed behavioral responses to psychoactive substances, specifically alcohol, opiates, and stimulants, in rodents. While the findings with alcohol are more limited and mixed, studies with opiates and stimulants show strong support for the ability of these manipulations to enhance behavioral responsivity to these substances in line with epidemiological data. Some outcomes show sex differences. The mechanisms that influence these enduring changes may reflect epigenetic alterations. Several studies support a role for altered DNA methylation (and other epigenetic mechanisms) as biological responses to early environmental insults. The chemical changes induced by DNA methylation affect transcriptional activity of DNA and thus can have a long-term impact on the individual's phenotype. Such effects are particularly robust when they occur during sensitive periods of brain development (e.g., first postnatal weeks in rodents). We review this emerging literature as it relates to the known neurobiology of AUDs and SUDs and suggest new avenues of research. Such findings will have implications for the treatment and prevention of AUDs and SUDs and could provide insight into factors that support resiliency.
Collapse
|
8
|
Hilderbrand ER, Lasek AW. Studying Sex Differences in Animal Models of Addiction: An Emphasis on Alcohol-Related Behaviors. ACS Chem Neurosci 2018; 9:1907-1916. [PMID: 29227676 DOI: 10.1021/acschemneuro.7b00449] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Animal models are essential for understanding the biological factors that contribute to drug and alcohol addiction and discovering new pharmacotherapies to treat these disorders. Alcohol (ethanol) is the most commonly abused drug in the world, and as the prevalence of alcohol use disorder (AUD) increases, so does the need for effective pharmacotherapies. In particular, treatments with high efficacy in the growing number of female AUD sufferers are needed. Female animals remain underrepresented in biomedical research and sex differences in the brain's response to alcohol are poorly understood. To help bridge the gender gap in addiction research, this Review discusses strategies that researchers can use to examine sex differences in the context of several common animal models of AUD. Self-administration, two-bottle choice, drinking in the dark, and conditioned place preference are discussed, with a focus on the role of estrogen as a mediator of sex differences in alcohol-related behaviors.
Collapse
|
9
|
Nieto SJ, Quave CB, Kosten TA. Naltrexone alters alcohol self-administration behaviors and hypothalamic-pituitary-adrenal axis activity in a sex-dependent manner in rats. Pharmacol Biochem Behav 2018; 167:50-59. [PMID: 29486222 PMCID: PMC6011835 DOI: 10.1016/j.pbb.2018.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/07/2018] [Accepted: 02/19/2018] [Indexed: 10/18/2022]
Abstract
BACKGROUND The mu-opioid antagonist, naltrexone (NTX), is a FDA-approved treatment for alcohol use disorder (AUD); however, the data on whether it differentially affects males vs. females are mixed. NTX increases hypothalamic-pituitary-adrenal (HPA) axis activity that associates with subjective responses to alcohol and craving in individuals with AUD. The present study tested for sex differences in the ability of NTX to decrease appetitive and consummatory behaviors in rats in operant alcohol self-administration. Because the opioid system and HPA axis are sexually dimorphic, we examined NTX's effect on adrenocorticotropic hormone (ACTH) and corticosterone (CORT) levels. METHODS Male and female Sprague-Dawley rats (n's = 6-8) were trained to lever press for alcohol (10% v/v) under a fixed-ratio 2 schedule of reinforcement. NTX doses (0, 0.1-10 mg/kg) were assessed in tests conducted under a progressive ratio schedule of reinforcement. Separate groups of alcohol and water drinking rats (n's = 8) were used to assess NTX's (10 mg/kg) effects on HPA axis hormones. RESULTS NTX decreased consummatory behaviors for alcohol in a dose-related manner, but not appetitive behaviors in males. In females, NTX decreased appetitive behaviors for alcohol in a dose-dependent manner, but only decreased consummatory behaviors at the highest (10 mg/kg) NTX dose. NTX increased ACTH levels in alcohol drinking females in diestrus, but not in other groups. However, NTX increased CORT levels for longer durations in alcohol drinking males relative to alcohol drinking females in diestrus. CONCLUSIONS Our findings suggest that NTX selectively reduces consummatory behaviors for alcohol in males and appetitive behaviors in females, while also showing differential sex effects on HPA hormones.
Collapse
Affiliation(s)
- Steven J Nieto
- University of Houston, Department of Psychology & Texas Institute for Measurement, Evaluation and Statistics (TIMES), Houston, TX 77204-6022, United States
| | - Cana B Quave
- University of Houston, Department of Psychology & Texas Institute for Measurement, Evaluation and Statistics (TIMES), Houston, TX 77204-6022, United States
| | - Therese A Kosten
- University of Houston, Department of Psychology & Texas Institute for Measurement, Evaluation and Statistics (TIMES), Houston, TX 77204-6022, United States.
| |
Collapse
|
10
|
Priddy BM, Carmack SA, Thomas LC, Vendruscolo JCM, Koob GF, Vendruscolo LF. Sex, strain, and estrous cycle influences on alcohol drinking in rats. Pharmacol Biochem Behav 2016; 152:61-67. [PMID: 27498303 DOI: 10.1016/j.pbb.2016.08.001] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 08/01/2016] [Accepted: 08/03/2016] [Indexed: 11/24/2022]
Abstract
Although women appear to be more vulnerable to alcohol-induced pathophysiology than men, the neurobiological basis for sex differences is largely unknown, partially because most studies on alcohol drinking are conducted in male subjects only. The present study examined sex differences in alcohol consumption in two rat strains, Long Evans and Wistar, using multiple behavioral paradigms. The effects of the estrous cycle on alcohol consumption were monitored throughout the study. The results indicated that females drank more alcohol than males when given either continuous or intermittent access to alcohol (vs. water) in their home cages (voluntary drinking). Under operant conditions, no sex or strain differences were found in drinking prior to development of alcohol dependence. However, upon dependence induction by chronic, intermittent alcohol vapor exposure, Wistar rats of both sexes substantially escalated their alcohol intake compared with their nondependent drinking levels, whereas Long Evans rats only exhibited a moderate escalation of drinking. Under these conditions, the estrous cycle had no effect on alcohol drinking in any strain and drinking model. Thus, strain, sex, and drinking conditions interact to modulate nondependent and dependent alcohol drinking. The present results emphasize the importance of including sex and strain as biological variables in exploring individual differences in alcohol drinking and dependence.
Collapse
Affiliation(s)
- Brittany M Priddy
- Neurobiology of Addiction Section, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Stephanie A Carmack
- Neurobiology of Addiction Section, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Lisa C Thomas
- Neurobiology of Addiction Section, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Janaina C M Vendruscolo
- Neurobiology of Addiction Section, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - George F Koob
- Neurobiology of Addiction Section, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Leandro F Vendruscolo
- Neurobiology of Addiction Section, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA.
| |
Collapse
|
11
|
Meyer AC, Bardo MT. Amphetamine self-administration and dopamine function: assessment of gene × environment interactions in Lewis and Fischer 344 rats. Psychopharmacology (Berl) 2015; 232:2275-85. [PMID: 25566972 PMCID: PMC4465863 DOI: 10.1007/s00213-014-3854-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 12/22/2014] [Indexed: 12/01/2022]
Abstract
RATIONALE Previous research suggests both genetic and environmental influences on substance abuse vulnerability. OBJECTIVES The current work sought to investigate the interaction of genes and environment on the acquisition of amphetamine self-administration as well as amphetamine-stimulated dopamine (DA) release in nucleus accumbens shell using in vivo microdialysis. METHODS Inbred Lewis (LEW) and Fischer (F344) rat strains were raised in either an enriched condition (EC), social condition (SC), or isolated condition (IC). Acquisition of amphetamine self-administration (0.1 mg/kg/infusion) was determined across an incrementing daily fixed ratio (FR) schedule. In a separate cohort of rats, extracellular DA and the metabolite 3,4-dihydroxyphenylacetic acid (DOPAC) were measured in the nucleus accumbens shell following an acute amphetamine injection (1 mg/kg). RESULTS "Addiction-prone" LEW rats had greater acquisition of amphetamine self-administration on a FR1 schedule compared to "addiction-resistant" F344 rats when raised in the SC environment. These genetic differences were negated in both the EC and IC environments, with enrichment buffering against self-administration and isolation enhancing self-administration in both strains. On a FR5 schedule, the isolation-induced increase in amphetamine self-administration was greater in F344 than LEW rats. While no group differences were obtained in extracellular DA, gene × environment differences were obtained in extracellular levels of the metabolite DOPAC. In IC rats only, LEW rats showed attenuation in the amphetamine-induced decrease in DOPAC compared to F344 rats. IC LEW rats also had an attenuated DOPAC response to amphetamine compared to EC LEW rats. CONCLUSIONS The current results demonstrate gene × environment interactions in amphetamine self-administration and amphetamine-induced changes in extracellular DOPAC in nucleus accumbens (NAc) shell. However, the behavioral and neurochemical differences were not related directly, indicating that mechanisms independent of DA metabolism in NAc shell likely mediate the gene × environment effects in amphetamine self-administration.
Collapse
Affiliation(s)
- Andrew C. Meyer
- Department of Psychiatry, University of Vermont, Burlington, VT, USA
| | - Michael T. Bardo
- Department of Psychology, University of Kentucky, Lexington, KY, USA,Center for Drug Abuse Research Translation, Lexington, KY, USA
| |
Collapse
|
12
|
Kuhn C. Emergence of sex differences in the development of substance use and abuse during adolescence. Pharmacol Ther 2015; 153:55-78. [PMID: 26049025 DOI: 10.1016/j.pharmthera.2015.06.003] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 04/29/2015] [Indexed: 12/24/2022]
Abstract
Substance use and abuse begin during adolescence. Male and female adolescent humans initiate use at comparable rates, but males increase use faster. In adulthood, more men than women use and abuse addictive drugs. However, some women progress more rapidly from initiation of use to entry into treatment. In animal models, adolescent males and females consume addictive drugs similarly. However, reproductively mature females acquire self-administration faster, and in some models, escalate use more. Sex/gender differences exist in neurobiologic factors mediating both reinforcement (dopamine, opioids) and aversiveness (CRF, dynorphin), as well as intrinsic factors (personality, psychiatric co-morbidities) and extrinsic factors (history of abuse, environment especially peers and family) which influence the progression from initial use to abuse. Many of these important differences emerge during adolescence, and are moderated by sexual differentiation of the brain. Estradiol effects which enhance both dopaminergic and CRF-mediated processes contribute to the female vulnerability to substance use and abuse. Testosterone enhances impulsivity and sensation seeking in both males and females. Several protective factors in females also influence initiation and progression of substance use including hormonal changes of pregnancy as well as greater capacity for self-regulation and lower peak levels of impulsivity/sensation seeking. Same sex peers represent a risk factor more for males than females during adolescence, while romantic partners increase risk for women during this developmental epoch. In summary, biologic factors, psychiatric co-morbidities as well as personality and environment present sex/gender-specific risks as adolescents begin to initiate substance use.
Collapse
Affiliation(s)
- Cynthia Kuhn
- Department of Pharmacology and Cancer Biology, Box 3813, Duke University Medical Center, Durham, NC 27710, United States.
| |
Collapse
|
13
|
Torres OV, Walker EM, Beas BS, O'Dell LE. Female rats display enhanced rewarding effects of ethanol that are hormone dependent. Alcohol Clin Exp Res 2014; 38:108-15. [PMID: 23909760 PMCID: PMC3842413 DOI: 10.1111/acer.12213] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 05/14/2013] [Indexed: 01/04/2023]
Abstract
BACKGROUND Ethanol (EtOH) abuse is a major health and economic concern, particularly for females who appear to be more sensitive to the rewarding effects of EtOH. This study compared sex differences to the rewarding and aversive effects of EtOH using place-conditioning procedures in rats. METHODS Separate groups of adult (male, female, ovariectomized [OVX] female) and adolescent (male and female) rats received EtOH (0, 0.5, 1.0, 2.0, or 2.5 g/kg, intraperitoneal) and were confined to their initially nonpreferred side of our conditioning apparatus for 30 minutes. On alternate days, they received saline and were confined to the other side. Following 5 drug pairings, the rats were retested for preference behavior. Separate cohorts of the same groups of rats were injected with a similar dose range of EtOH, and blood EtOH levels (BELs) were compared 30 minutes later. RESULTS EtOH produced rewarding or aversive effects in a dose-dependent manner. An intermediate dose of EtOH (1.0 g/kg) produced rewarding effects in adult female, but not in male or OVX female rats, suggesting that ovarian hormones facilitate the rewarding effects of EtOH. Similarly, this intermediate dose of EtOH produced rewarding effects in adolescent female, but not in male rats. The highest dose of EtOH (2.5 g/kg) produced aversive effects that were similar across all adult groups. However, the aversive effects of EtOH were lower in adolescents than adults, suggesting that adolescents are less sensitive to the aversive effects of EtOH. The aversive effects of EtOH did not vary across the estrous cycle in intact adult females. There were also no group differences in BELs, suggesting that our results are not related to EtOH metabolism. CONCLUSION Our results in rats suggest that human females may be more vulnerable to EtOH abuse due to enhanced rewarding effects of this drug that are mediated by the presence of ovarian hormones.
Collapse
Affiliation(s)
- Oscar V Torres
- Department of Psychology, The University of Texas at El Paso, El Paso, Texas
| | | | | | | |
Collapse
|
14
|
Anacker AMJ, Ahern TH, Young LJ, Ryabinin AE. The role of early life experience and species differences in alcohol intake in microtine rodents. PLoS One 2012; 7:e39753. [PMID: 22745824 PMCID: PMC3382173 DOI: 10.1371/journal.pone.0039753] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 05/30/2012] [Indexed: 11/18/2022] Open
Abstract
Social relationships have important effects on alcohol drinking. There are conflicting reports, however, about whether early-life family structure plays an important role in moderating alcohol use in humans. We have previously modeled social facilitation of alcohol drinking in peers in socially monogamous prairie voles. We have also modeled the effects of family structure on the development of adult social and emotional behaviors. Here we assessed whether alcohol intake would differ in prairie voles reared by both parents compared to those reared by a single mother. We also assessed whether meadow voles, a closely related species that do not form lasting reproductive partnerships, would differ in alcohol drinking or in the effect of social influence on drinking. Prairie voles were reared either bi-parentally (BP) or by a single mother (SM). BP- and SM-reared adult prairie voles and BP-reared adult meadow voles were given limited access to a choice between alcohol (10%) and water over four days and assessed for drinking behavior in social and non-social drinking environments. While alcohol preference was not different between species, meadow voles drank significantly lower doses than prairie voles. Meadow voles also had significantly higher blood ethanol concentrations than prairie voles after receiving the same dose, suggesting differences in ethanol metabolism. Both species, regardless of rearing condition, consumed more alcohol in the social drinking condition than the non-social condition. Early life family structure did not significantly affect any measure. Greater drinking in the social condition indicates that alcohol intake is influenced similarly in both species by the presence of a peer. While the ability of prairie voles to model humans may be limited, the lack of differences in alcohol drinking in BP- and SM-reared prairie voles lends biological support to human studies demonstrating no effect of single-parenting on alcohol abuse.
Collapse
Affiliation(s)
- Allison M. J. Anacker
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Todd H. Ahern
- Center for Behavioral Neuroscience, Department of Psychology, Quinnipiac University, Hamden, Connecticut, United States of America
| | - Larry J. Young
- Center for Translational Social Neuroscience, Department of Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Andrey E. Ryabinin
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, United States of America
- * E-mail:
| |
Collapse
|
15
|
Lenz B, Müller CP, Stoessel C, Sperling W, Biermann T, Hillemacher T, Bleich S, Kornhuber J. Sex hormone activity in alcohol addiction: integrating organizational and activational effects. Prog Neurobiol 2011; 96:136-63. [PMID: 22115850 DOI: 10.1016/j.pneurobio.2011.11.001] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Revised: 11/03/2011] [Accepted: 11/08/2011] [Indexed: 01/06/2023]
Abstract
There are well-known sex differences in the epidemiology and etiopathology of alcohol dependence. Male gender is a crucial risk factor for the onset of alcohol addiction. A directly modifying role of testosterone in alcohol addiction-related behavior is well established. Sex hormones exert both permanent (organizational) and transient (activational) effects on the human brain. The sensitive period for these effects lasts throughout life. In this article, we present a novel early sex hormone activity model of alcohol addiction. We propose that early exposure to sex hormones triggers structural (organizational) neuroadaptations. These neuroadaptations affect cellular and behavioral responses to adult sex hormones, sensitize the brain's reward system to the reinforcing properties of alcohol and modulate alcohol addictive behavior later in life. This review outlines clinical findings related to the early sex hormone activity model of alcohol addiction (handedness, the second-to-fourth-finger length ratio, and the androgen receptor and aromatase) and includes clinical and preclinical literature regarding the activational effects of sex hormones in alcohol drinking behavior. Furthermore, we discuss the role of the hypothalamic-pituitary-adrenal and -gonadal axes and the opioid system in mediating the relationship between sex hormone activity and alcohol dependence. We conclude that a combination of exposure to sex hormones in utero and during early development contributes to the risk of alcohol addiction later in life. The early sex hormone activity model of alcohol addiction may prove to be a valuable tool in the development of preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Bernd Lenz
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University of Erlangen-Nuremberg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Roger-Sánchez C, Aguilar MA, Rodríguez-Arias M, Aragon CM, Miñarro J. Age- and sex-related differences in the acquisition and reinstatement of ethanol CPP in mice. Neurotoxicol Teratol 2011; 34:108-15. [PMID: 21843635 DOI: 10.1016/j.ntt.2011.07.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 07/28/2011] [Accepted: 07/29/2011] [Indexed: 11/30/2022]
Abstract
Many people begin to experiment with alcohol during adolescence, an important developmental period during which sex differences in the effects of ethanol appear. In the present study we evaluated the effect of ethanol (0, 0.625, 1.25 or 2.5 g/kg) on the acquisition of a conditioned place preference (CPP) in early and late adolescent male and female mice. In addition, we assessed the capacity of ethanol to induce reinstatement of the CPP after its extinction. CPP was induced in early and late adolescent females with 2.5 g/kg, and in early adolescent males with 1.25 or 2.5 g/kg of ethanol. No CPP was observed in late adolescent males. Priming with ethanol reinstated the CPP induced by the highest dose in early adolescent male and early and late adolescent female mice. Our data suggest that early adolescents of both sex and late adolescent females are particularly vulnerable to the effects of ethanol.
Collapse
Affiliation(s)
- C Roger-Sánchez
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiología, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain
| | | | | | | | | |
Collapse
|
17
|
Carroll ME, Anker JJ. Sex differences and ovarian hormones in animal models of drug dependence. Horm Behav 2010; 58:44-56. [PMID: 19818789 DOI: 10.1016/j.yhbeh.2009.10.001] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 09/25/2009] [Accepted: 10/01/2009] [Indexed: 10/20/2022]
Abstract
Increasing evidence indicates the presence of sex differences in many aspects of drug abuse. Most studies reveal that females exceed males during the initiation, escalation, extinction, and reinstatement (relapse) of drug-seeking behavior, but males are more sensitive than females to the aversive effects of drugs such as drug withdrawal. Findings from human and animal research indicate that circulating levels of ovarian steroid hormones account for these sex differences. Estrogen (E) facilitates drug-seeking behavior, while progesterone (P) and its metabolite, allopregnanalone (ALLO), counteract the effects of E and reduce drug seeking. Estrogen and P influence other behaviors that are affiliated with drug abuse such as drug-induced locomotor sensitization and conditioned place preference. The enhanced vulnerability to drug seeking in females vs. males is also additive with the other risk factors for drug abuse (e.g., adolescence, sweet preference, novelty reactivity, and impulsivity). Finally, treatment studies using behavioral or pharmacological interventions, including P and ALLO, also indicate that females show greater treatment effectiveness during several phases of the addiction process. The neurobiological basis of sex differences in drug abuse appears to be genetic and involves the influence of ovarian hormones and their metabolites, the hypothalamic pituitary adrenal (HPA) axis, dopamine (DA), and gamma-hydroxy-butyric acid (GABA). Overall, sex and hormonal status along with other biological risk factors account for a continuum of addiction-prone and -resistant animal models that are valuable for studying drug abuse prevention and treatment strategies.
Collapse
Affiliation(s)
- Marilyn E Carroll
- Department of Psychiatry, University of Minnesota, MMC 392, Minneapolis, MN 55455, USA.
| | | |
Collapse
|
18
|
Oitzl MS, Champagne DL, van der Veen R, de Kloet ER. Brain development under stress: hypotheses of glucocorticoid actions revisited. Neurosci Biobehav Rev 2009; 34:853-66. [PMID: 19631685 DOI: 10.1016/j.neubiorev.2009.07.006] [Citation(s) in RCA: 250] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 06/05/2009] [Accepted: 07/16/2009] [Indexed: 12/23/2022]
Abstract
One of the conundrums in today's stress research is why some individuals flourish and others perish under similar stressful conditions. It is recognized that this individual variability in adaptation to stress depends on the outcome of the interaction of genetic and cognitive/emotional inputs in which glucocorticoid hormones and receptors play a crucial role. Hence one approach towards understanding individual variation in stress coping is how glucocorticoid actions can change from protective to harmful. To address this question we focus on four hypotheses that are connected and not mutual exclusive. First, the classical Glucocorticoid Cascade Hypothesis, in which the inability to cope with chronic stress causes a vicious cycle of excess glucocorticoid and downregulation of glucocorticoid receptors (GR) in the hippocampus triggering a feed-forward cascade of degeneration and disease. Second, the Balance Hypothesis, which takes also the limbic mineralocorticoid receptors (MR) into account and proposes that an integral limbic MR:GR imbalance is causal to altered processing of information in circuits underlying fear, reward, social behaviour and resilience, dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis and impairment of behavioural adaptation. The MR:GR balance is altered by gene variants of these receptor complexes and experience-related factors, which can induce lasting epigenetic changes in the expression of these receptors. A particular potent epigenetic stimulus is the maternal environment which is fundamental for the Maternal Mediation Hypothesis. The outcome of perinatal gene x environment interaction, and thus of MR:GR-mediated functions depends however, on the degree of 'matching' with environmental demands in later life. The Predictive Adaptation Hypothesis therefore presents a conceptual framework to examine the role of glucocorticoids in understanding individual phenotypic differences in stress-related behaviours over the lifespan.
Collapse
Affiliation(s)
- Melly S Oitzl
- Division of Medical Pharmacology, Leiden/Amsterdam Centre for Drug Research (LACDR)/Leiden University Medical Centre (LUMC), University of Leiden, Einsteinweg 55, P.O. Box 9502, 2300 RA Leiden, The Netherlands.
| | | | | | | |
Collapse
|
19
|
Pinto E, Ansseau M. [Genetic factors of alcohol-dependence]. L'ENCEPHALE 2008; 35:461-9. [PMID: 19853720 DOI: 10.1016/j.encep.2008.03.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Accepted: 03/11/2008] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Alcohol dependence is a complex and multifactorial disease resulting both from neurobiological mechanisms and environmental factors. It is frequently associated with comorbid psychiatric disorders or with specific personality or behavioral features. Although action can be taken on the environment in order to decrease the risk of the illness, current methods used to prevent or to treat this pathology show moderate efficacy: problematic consumption of ethanol in the general population as well as relapse rates under treatment in dependent patients remain indeed very high. LITERATURE FINDINGS It is therefore of major importance to broaden our knowledge of alcohol dependence and its comorbidities so as to improve both their prevention and treatment. In this perspective, recent progress in the field of neurosciences may contribute to achieve this goal. Precisely, genetics is a promising way benefiting from many advances in genetic epidemiology, cellular and molecular biology, neuroimaging and pharmacology. In parallel with a better understanding of the neurobiology of addictions and associated behaviors, these techniques led to the identification of brain mechanisms in which a genetic variation may influence the individual vulnerability towards alcohol dependence. Moreover, there is growing evidence that alcoholism results from the interaction of genetic and environmental factors influencing both its expression and its course. Given the fact that alcohol-dependence seems highly heritable (50 to 60% of the variance in both men and women), this review assesses the role of some of the genomic regions linked with the disease, as well as the principal variants of candidate genes identified as specifically involved in the predisposition. Polymorphisms of genes influencing alcohol metabolism, GABAergic, dopaminergic and serotonergic neurotransmission seem, indeed, at stake in the development of alcohol-dependence and its related features such as personality, behavior, impulse control or craving. In the future, a better characterization of the links between genotypes and phenotypes will probably increase our ability to treat alcoholic patients.
Collapse
Affiliation(s)
- E Pinto
- Service de Psychiatrie et de Psychologie Médicale, Université de Liège, CHU Sart-Tilman, BP 35, 4000 Liège, Belgique.
| | | |
Collapse
|
20
|
Verheij MMM, Cools AR. Twenty years of dopamine research: individual differences in the response of accumbal dopamine to environmental and pharmacological challenges. Eur J Pharmacol 2008; 585:228-44. [PMID: 18423601 DOI: 10.1016/j.ejphar.2008.02.084] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Revised: 02/07/2008] [Accepted: 02/13/2008] [Indexed: 11/30/2022]
Abstract
Individual differences in the dopaminergic system of the nucleus accumbens of rats have extensively been reported. These individual differences have frequently been used to explain individual differences in response to environmental and pharmacological challenges. Remarkably, only little attention is paid to the factors that underlie these individual differences. This review gives an overview of the studies that have been performed in our institute during the last 20 years to investigate individual differences in accumbal dopamine release. Data are summarised demonstrating that individual differences in accumbal dopamine release are due to individual differences in: the functional reactivity of the noradrenergic system, the accumbal concentration of vesicular monoamine transporters and tyrosine hydroxylase as well as in the quantal size of the presynaptic pools of dopamine. Our data are embedded in the available literature to create a model that illustrates the putative hardware giving rise to the individual-specific release of accumbal dopamine. An important role is contributed to individual differences in the reactivity of the: hypothalamic-pituitary-adrenal axes, the reactivity of second messenger systems as well in the aminergic reactivity of the accumbens shell and core. The consequences of the individual-specific make-up and reactivity of the nucleus accumbens on the regulation of behaviour and the response to drugs of abuse will also be discussed. Apart from agents that interact with dopaminergic receptors, re-uptake or breakdown, noradrenergic agents as well as agents that interact with vesicular monoamine transporters or tyrosine hydroxylase are suggested to have therapeutic effects in subjects that are suffering from diseases in which the dopaminergic system is disturbed.
Collapse
Affiliation(s)
- Michel M M Verheij
- Department of Cognitive Neuroscience (CNS), Division of Psychoneuropharmacology (PNF), Radboud University Nijmegen Medical Centre, 6525 EZ, Nijmegen, The Netherlands.
| | | |
Collapse
|
21
|
Ellenbroek BA, van der Kam EL, van der Elst MCJ, Cools AR. Individual differences in drug dependence in rats: the role of genetic factors and life events. Eur J Pharmacol 2005; 526:251-8. [PMID: 16253227 DOI: 10.1016/j.ejphar.2005.09.032] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2005] [Revised: 06/28/2005] [Accepted: 09/23/2005] [Indexed: 12/15/2022]
Abstract
Drug dependence and addiction is a chronic mental illness that has far reaching consequences for society in terms of economic loss, health costs and judicial problems. A crucial question in drug addiction, is what factors are involved in its aetiology, and especially what mediates the shit from use to abuse. As in most other mental illnesses, addiction can best be described using the so-called three hit model, which states that a disease results from an interaction between genetic factors, early lie events and late environmental factors. However, the precise nature of these factors still remains to be elucidated. This present review discusses the results from an animal model in which these three different hit are currently being investigated. The apomorphine susceptible (APO-SUS) and apomorphine unsusceptible (APO-UNSUS) rats, originally selected on the basis of their behavioural response to the dopaminergic agonist apomorphine, were recently found to be genetically different in the number of gene copies of a component of the gamma-secretase complex called Aph-1b. Whereas APO-UNSUS rats have three copies of the gene, APO-SUS rats have either 1 or 2 copies. In addition we have shown that these rats show differences in cocaine and alcohol self-administration, and that both early life events and late environmental factors can alter this self-administration behaviour. Thus, the data so far support the hypothesis that the APO-SUS and APO-UNSUS rats offer an interesting animal model for drug dependence in which genes and environment interact. We finally propose a theoretical model which can explain this gene-environment interaction.
Collapse
Affiliation(s)
- Bart A Ellenbroek
- Department of Psychoneuropharmacology, University of Nijmegen, P.O. Box 9101, The Netherlands.
| | | | | | | |
Collapse
|
22
|
van der Kam EL, Ellenbroek BA, Cools AR. Gene - environment interactions determine the individual variability in cocaine self-administration. Neuropharmacology 2005; 48:685-95. [PMID: 15814103 DOI: 10.1016/j.neuropharm.2004.12.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2004] [Revised: 11/29/2004] [Accepted: 12/17/2004] [Indexed: 11/22/2022]
Abstract
Research into factors that determine the propensity to self-administer cocaine has shown that stressors can determine the amount of cocaine self-administered as well as the rate of acquisition. However, the interaction between the genetic make-up of the animal and stress is unknown. This study investigated this interaction by using the genetic animal model consisting of apomorphine susceptible (APO-SUS) and unsusceptible (APO-UNSUS) rats. Animals were allowed to self-administer 0.25 mg/kg cocaine under stressful and habituated conditions. This study revealed that the amount of cocaine consumed was highly dependent on the genetic make-up of the animal as well as the amount of stress during self-administration. Under habituated circumstances the APO-UNSUS rats took far more cocaine than the APO-SUS rats. Under stressful circumstances, however, the APO-SUS rats took far more cocaine than the APO-UNSUS rats. This difference in the amount consumed by APO-SUS and APO-UNSUS rats is likely to be due to the specific neurobiological features of their dopaminergic and, possibly, noradrenergic system as well as the reactivity of their HPA-axis. It is suggested that the amount of a drug consumed and, accordingly, its addictive potential and 'drug-vulnerability' are determined by the interaction between the genetic make-up of the animals and stress, and not by either component alone.
Collapse
Affiliation(s)
- Elizabeth L van der Kam
- Department of Psychoneuropharmacology, Nijmegen Institute of Neuroscience, Radboud University Nijmegen Medical Center, the Netherlands.
| | | | | |
Collapse
|
23
|
van der Elst MCJ, Verheij MMM, Roubos EW, Ellenbroek BA, Veening JG, Cools AR. A single exposure to novelty differentially affects the accumbal dopaminergic system of apomorphine-susceptible and apomorphine-unsusceptible rats. Life Sci 2005; 76:1391-406. [PMID: 15670618 DOI: 10.1016/j.lfs.2004.10.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2004] [Accepted: 10/23/2004] [Indexed: 11/20/2022]
Abstract
Individual differences in responses to mild, acute stressors in laboratory animals have commonly been observed in behavioural tests and at the level of hypothalamic-pituitary-adrenal axis responses. These differences are associated with dopamine transmission in the nucleus accumbens. Although the effect of mild stressors on dopamine transmission has been studied with microdialysis, it has not been studied at the level of the catecholaminergic network in the nucleus accumbens. In this study we have used microdialysis to measure extracellular concentrations of dopamine in vivo and immunocytochemistry for the enzyme tyrosine hydroxylase to assess the effect of a single exposure to novelty on the neurochemistry of the nucleus acc umbens in apomorphine-susceptible and apomorphine-unsusceptible rats. These rats are a valid animal model for studying individual differences in responses to environmental stressors and drugs of abuse. We demonstrated that a mild stressor like novelty increased the extracellular concentration of dopamine in the nucleus accumbens in apomorphine-susceptible rats to a larger and longer-lasting degree than in apomorphine-unsusceptible rats. Furthermore we demonstrated that novelty increased the tyrosine hydroxylase-immunoreactive fibre network in the nucleus accumbens shell of apomorphine-susceptible rats, which are rats that are particularly reactive to stressors, but not in the shell of apomorphine-unsusceptible rats, which are rats that are relatively stress-resistant. In conclusion, we have shown that the accumbal dopaminergic system of apomorphine-susceptible rats is more sensitive to an environmental stressor than that of apomorphine-unsusceptible rats. Combined with the fact that these animals also differ in their sensitivity to drugs of abuse, which are known to affect the dopaminergic system, these data provide a solid basis for further studying the differences in the dopaminergic responsiveness to drugs of abuse between apomorphine-susceptible and apomorphine-unsusceptible rats.
Collapse
Affiliation(s)
- Martine C J van der Elst
- Department of Psychoneuropharmacology, Nijmegen Institute for Neurosciences, University, of Nijmegen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
24
|
van der Kam EL, Coolen JCM, Ellenbroek BA, Cools AR. The effects of stress on alcohol consumption: mild acute and sub-chronic stressors differentially affect apomorphine susceptible and unsusceptible rats. Life Sci 2005; 76:1759-70. [PMID: 15698854 DOI: 10.1016/j.lfs.2004.10.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2004] [Accepted: 10/02/2004] [Indexed: 11/30/2022]
Abstract
The aim of this study was to investigate the effects of mild acute and mild sub-chronic challenges on alcohol intake and preference in the genetically selected ratlines of apomorphine susceptible (APO-SUS) and apomorphine unsusceptible (APO-UNSUS) animals. Animals from both lines were subjected to the 24 hr continuous alcohol vs. water paradigm under baseline conditions, after a single stressor and after multiple stressors. The intake of alcohol in ml was measured and converted to two values, namely intake in g/kg/24 hour of, and preference for, alcohol. This study shows that under baseline conditions the APO-UNSUS animals consume/prefer more alcohol than the APO-SUS animals. After an acute challenge the APO-SUS animals show a large increase in consumption, whereas the APO-UNSUS animals display only a small increase. Furthermore, sub-chronic challenges can further increase the consumption of the APO-UNSUS rat, but not that of the APO-SUS rat. The APO-SUS/ APO-UNSUS rats represent a good model to study the interaction between genetic factors and stress on directing alcohol consumption.
Collapse
Affiliation(s)
- E L van der Kam
- Department of Psychoneuropharmacology (234), Nijmegen Institute of Neuroscience, UMC St Radboud, PO BOX 9101, 6500 HB Nijmegen, the Netherlands.
| | | | | | | |
Collapse
|
25
|
van der Elst MCJ, Roubos EW, Ellenbroek BA, Veening JG, Cools AR. Apomorphine-susceptible rats and apomorphine-unsusceptible rats differ in the tyrosine hydroxylase-immunoreactive network in the nucleus accumbens core and shell. Exp Brain Res 2004; 160:418-23. [PMID: 15502992 DOI: 10.1007/s00221-004-2025-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2003] [Accepted: 06/14/2004] [Indexed: 10/26/2022]
Abstract
Individual variability in behavioural responses to stressors such as novelty and drugs of abuse is a well-known phenomenon in both animals and man. These individual differences are largely associated with differences in dopamine transmission in mesolimbic areas such as the nucleus accumbens. Apomorphine-susceptible (APO-SUS) rats and apomorphine-unsusceptible (APO-UNSUS) rats serve as a valid animal model for individual differences and these two types of rat differ in a number of behavioural, physiological, endocrinological and pharmacological parameters. In order to study the differences in the catecholaminergic network in the nucleus accumbens, possibly underlying at least some of the differences between the two types of rat, we quantified the extent of the tyrosine-hydroxylase immunoreactive (TH-IR) network and the number of TH-IR varicosities in subareas of the nucleus accumbens core and shell in naive rats. This study shows that the nucleus accumbens of APO-SUS rats has a more extensive fibre network and more varicosities than the nucleus accumbens of APO-UNSUS rats, and that the subarea of the shell contains more varicosities than the subarea of the core. These data provide a basis for further studying the structural and neurochemical properties of the nucleus accumbens contributing to individual differences in response to stressors such as novelty and drugs of abuse.
Collapse
Affiliation(s)
- Martine C J van der Elst
- Department of Psychoneuropharmacology, Nijmegen Institute for Neurosciences, University of Nijmegen, Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
26
|
Teunis MAT, Heijnen CJ, Cools AR, Kavelaars A. Reduced splenic natural killer cell activity in rats with a hyperreactive dopaminergic system. Psychoneuroendocrinology 2004; 29:1058-64. [PMID: 15219657 DOI: 10.1016/j.psyneuen.2003.09.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2003] [Revised: 06/20/2003] [Accepted: 09/30/2003] [Indexed: 11/20/2022]
Abstract
Interactions between the nervous system and the immune system have been recognized as important regulatory processes in determining the activity of the immune response. We have previously shown that rats, which differ in the reactivity of the dopaminergic system (APO-SUS and APO-UNSUS rats), also differ in experimental metastasis formation and in susceptibility to autoimmunity. APO-SUS rats have a high response to administration of apomorphine and can be characterized as hyperdopaminergic, whereas their APO-UNSUS counterparts show low susceptibility to apomorphine and have a hypodopaminergic phenotype. In this study we investigated whether the decreased experimental metastasis formation of APO-SUS rats compared to APO-UNSUS rats is associated with higher natural killer cell activity in APO-SUS rats. Surprisingly, splenic NK cell activity of hyperdopaminergic APO-SUS female as well as male rats is significantly lower than NK cell activity of their hypodopaminergic APO-UNSUS counterparts. The reduced splenic NK activity of female APO-SUS rats is associated with lower percentages of NK cells in the spleen cell population. In contrast, male APO-SUS and APO-UNSUS rats show similar numbers of NK cells in the spleen. There was no difference in plasma dopamine levels between APO-SUS and APO-UNSUS rats and i.p. treatment of rats with the dopaminergic agonist quinpirole did not alter NK cell activity. In conclusion, our data demonstrate that differences in the reactivity of the dopaminergic system are associated with differences in splenic NK cell activity. Moreover, our data demonstrate that in this model lower splenic NK cell activity is not related to increased experimental lung metastasis formation.
Collapse
Affiliation(s)
- Marc A T Teunis
- Laboratory for Psychoneuroimmunology, Wilhelmina Children's Hospital of the University Medical Center Utrecht, room: KC03.068.0, Lundlaan 6, 3584 EA, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
27
|
Degen SB, Verheij MMM, Cools AR. Genetic background, nature of event, and time of exposure to event direct the phenotypic expression of a particular genotype. Behav Brain Res 2004; 154:107-12. [PMID: 15302116 DOI: 10.1016/j.bbr.2004.01.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2003] [Revised: 01/28/2004] [Accepted: 01/29/2004] [Indexed: 11/24/2022]
Abstract
The aim of this study was to investigate the differential long-term after-effects on the apomorphine-susceptibility in the apomorphine-susceptible (APO-SUS) and apomorphine-unsusceptible (APO-UNSUS) rats of either a saline injection (a mild stressor) or a clonidine-injection (a moderate stressor) applied around the onset of the stress-hypo-responsive-period (SHRP) on postnatal day (PND) 2, 4, 6 or 9. The present study shows that an injection of saline on PND 2 decreases the apomorphine-induced gnawing score in adult APO-SUS rats, but increases this score in adult APO-UNSUS rats; clonidine given on this day has no effect. An injection of saline on PND 4 decreases the apomorphine score in adult APO-SUS rats, but has no effect in adult APO-UNSUS rats. An injection of clonidine on PND 4 counteracts the long-term after-effects of a saline injection on this PND in adult APO-SUS rats, but has no effect in adult APO-UNSUS rats. Finally, an injection of clonidine on PND 9 has no effect on the apomorphine score in adult APO-SUS rats, but increases this score in adult APO-UNSUS rats; saline given on this day has no effect. It is concluded that the long-term after-effects of early postnatal stressors depend on the interrelationship between, rather than the separate impact of, the genetic background of the rat, the nature of the event, and time of exposure to the event, thereby implying that these factors direct the phenotypic expression of a particular genotype at adult age.
Collapse
Affiliation(s)
- S B Degen
- Department of Psychoneuropharmacology, University of Nijmegen, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | | |
Collapse
|
28
|
Ploj K, Roman E, Nylander I. Long-term effects of maternal separation on ethanol intake and brain opioid and dopamine receptors in male wistar rats. Neuroscience 2003; 121:787-99. [PMID: 14568037 DOI: 10.1016/s0306-4522(03)00499-8] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Accumulating evidence indicates that an animal's response to a drug can be profoundly affected by early environmental influences. The brain opioid and dopamine systems may play a critical role in these effects, since various types of stress and drugs of abuse promote alterations in these brain systems. To study this further, we investigated long-term behavioural and neurochemical effects of repeated maternal separation in male Wistar rats. The pups were separated in litters daily from their dams for either 15 min (MS15) or 360 min (MS360) from postnatal days 1-21. Analysis of the kappa- and delta-opioid, dopamine D(1)- and D(2)-like receptors with receptor autoradiography revealed long-term neurochemical changes in several brain areas. D(1)-like receptor binding was affected in the hippocampus and D(2)-like receptor binding in the ventral tegmental area and the periaqueductal gray, whereas minor changes were seen in opioid receptor density after maternal separation. At 10-13 weeks of age, MS15 rats had a lower ethanol intake whereas, the MS360 rats consumed more 8% ethanol solution compared with MS15 and animal facility-reared rats. Ethanol consumption altered kappa-receptor density in several brain areas, for example the amygdala, substantia nigra and the periaqueductal gray. D(1)-like receptor binding was affected in distinct brain areas, including the nucleus accumbens, where also delta-opioid receptor density was changed in addition to the frontal cortex. Ethanol-induced changes were observed in D(2)-like receptor density in the ventral tegmental area in MS360, and in the ventral tegmental area and frontal-parietal cortex in animal facility-reared rats. These findings show that early experiences can induce long-lasting changes in especially brain dopamine receptor density and that ethanol consumption induces alterations in opioid and dopamine receptor density in distinct brain areas. It is also suggested that changes induced by repeated MS15 may provide protection against high voluntary ethanol intake.
Collapse
Affiliation(s)
- K Ploj
- Department of Pharmaceutical Biosciences, Division of Pharmacology, Box 591, Uppsala University, SE-751 24 Uppsala, Sweden
| | | | | |
Collapse
|