1
|
Song DH, Song CW, Chung J, Jang EH, Kim H, Hur Y, Hur EM, Kim D, Chang JB. In situ silver nanoparticle development for molecular-specific biological imaging via highly accessible microscopies. NANOSCALE ADVANCES 2023; 5:1636-1650. [PMID: 36926569 PMCID: PMC10012848 DOI: 10.1039/d2na00449f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
In biological studies and diagnoses, brightfield (BF), fluorescence, and electron microscopy (EM) are used to image biomolecules inside cells. When compared, their relative advantages and disadvantages are obvious. BF microscopy is the most accessible of the three, but its resolution is limited to a few microns. EM provides a nanoscale resolution, but sample preparation is time-consuming. In this study, we present a new imaging technique, which we termed decoration microscopy (DecoM), and quantitative investigations to address the aforementioned issues in EM and BF microscopy. For molecular-specific EM imaging, DecoM labels proteins inside cells using antibodies bearing 1.4 nm gold nanoparticles (AuNPs) and grows silver layers on the AuNPs' surfaces. The cells are then dried without buffer exchange and imaged using scanning electron microscopy (SEM). Structures labeled with silver-grown AuNPs are clearly visible on SEM, even they are covered with lipid membranes. Using stochastic optical reconstruction microscopy, we show that the drying process causes negligible distortion of structures and that less structural deformation could be achieved through simple buffer exchange to hexamethyldisilazane. Using DecoM, we visualize the nanoscale alterations in microtubules by microtubule-severing proteins that cannot be observed with diffraction-limited fluorescence microscopy. We then combine DecoM with expansion microscopy to enable sub-micron resolution BF microscopy imaging. We first show that silver-grown AuNPs strongly absorb white light, and the structures labeled with them are clearly visible on BF microscopy. We then show that the application of AuNPs and silver development must follow expansion to visualize the labeled proteins clearly with sub-micron resolution.
Collapse
Affiliation(s)
- Dae-Hyeon Song
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology Daejeon Korea
| | - Chang Woo Song
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology Daejeon Korea
| | | | - Eun-Hae Jang
- Laboratory of Neuroscience, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University Seoul Korea
| | - Hyunwoo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology Daejeon Korea
| | - Yongsuk Hur
- BioMedical Research Center, Korea Advanced Institute of Science and Technology Daejeon Korea
| | - Eun-Mi Hur
- Laboratory of Neuroscience, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University Seoul Korea
- BK21 Four Future Veterinary Medicine Leading Education & Research Center, Seoul National University Seoul Korea
| | - Doory Kim
- Department of Chemistry, Hanyang University Seoul Korea
| | - Jae-Byum Chang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology Daejeon Korea
| |
Collapse
|
2
|
Jung M, Kim D, Mun JY. Direct Visualization of Actin Filaments and Actin-Binding Proteins in Neuronal Cells. Front Cell Dev Biol 2020; 8:588556. [PMID: 33324645 PMCID: PMC7726226 DOI: 10.3389/fcell.2020.588556] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/27/2020] [Indexed: 12/15/2022] Open
Abstract
Actin networks and actin-binding proteins (ABPs) are most abundant in the cytoskeleton of neurons. The function of ABPs in neurons is nucleation of actin polymerization, polymerization or depolymerization regulation, bundling of actin through crosslinking or stabilization, cargo movement along actin filaments, and anchoring of actin to other cellular components. In axons, ABP–actin interaction forms a dynamic, deep actin network, which regulates axon extension, guidance, axon branches, and synaptic structures. In dendrites, actin and ABPs are related to filopodia attenuation, spine formation, and synapse plasticity. ABP phosphorylation or mutation changes ABP–actin binding, which regulates axon or dendritic plasticity. In addition, hyperactive ABPs might also be expressed as aggregates of abnormal proteins in neurodegeneration. Those changes cause many neurological disorders. Here, we will review direct visualization of ABP and actin using various electron microscopy (EM) techniques, super resolution microscopy (SRM), and correlative light and electron microscopy (CLEM) with discussion of important ABPs in neuron.
Collapse
Affiliation(s)
- Minkyo Jung
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu, South Korea
| | - Doory Kim
- Department of Chemistry, Research Institute for Convergence of Basic Sciences, Institute of Nano Science and Technology, Research Institute for Natural Sciences, Hanyang University, Seoul, South Korea
| | - Ji Young Mun
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu, South Korea
| |
Collapse
|
3
|
Santarella-Mellwig R, Haselmann U, Schieber NL, Walther P, Schwab Y, Antony C, Bartenschlager R, Romero-Brey I. Correlative Light Electron Microscopy (CLEM) for Tracking and Imaging Viral Protein Associated Structures in Cryo-immobilized Cells. J Vis Exp 2018. [PMID: 30247481 PMCID: PMC6235138 DOI: 10.3791/58154] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Due to its high resolution, electron microscopy (EM) is an indispensable tool for virologists. However, one of the main difficulties when analyzing virus-infected or transfected cells via EM are the low efficiencies of infection or transfection, hindering the examination of these cells. In order to overcome this difficulty, light microscopy (LM) can be performed first to allocate the subpopulation of infected or transfected cells. Thus, taking advantage of the use of fluorescent proteins (FPs) fused to viral proteins, LM is used here to record the positions of the "positive-transfected" cells, expressing a FP and growing on a support with an alphanumeric pattern. Subsequently, cells are further processed for EM via high pressure freezing (HPF), freeze substitution (FS) and resin embedding. The ultra-rapid freezing step ensures excellent membrane preservation of the selected cells that can then be analyzed at the ultrastructural level by transmission electron microscopy (TEM). Here, a step-by-step correlative light electron microscopy (CLEM) workflow is provided, describing sample preparation, imaging and correlation in detail. The experimental design can be also applied to address many cell biology questions.
Collapse
Affiliation(s)
| | - Uta Haselmann
- Department of Infectious Diseases, Molecular Virology, Heidelberg University
| | | | - Paul Walther
- Central Facility for Electron Microscopy, Ulm University
| | | | | | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University; Heidelberg Partner Site, German Center for Infection Research;
| | - Inés Romero-Brey
- Department of Infectious Diseases, Molecular Virology, Heidelberg University;
| |
Collapse
|
4
|
Abstract
Array tomography encompasses light and electron microscopy modalities that offer unparalleled opportunities to explore three-dimensional cellular architectures in extremely fine structural and molecular detail. Fluorescence array tomography achieves much higher resolution and molecular multiplexing than most other fluorescence microscopy methods, while electron array tomography can capture three-dimensional ultrastructure much more easily and rapidly than traditional serial-section electron microscopy methods. A correlative fluorescence/electron microscopy mode of array tomography furthermore offers a unique capacity to merge the molecular discrimination strengths of multichannel fluorescence microscopy with the ultrastructural imaging strengths of electron microscopy. This essay samples the first decade of array tomography, highlighting applications in neuroscience.
Collapse
|
5
|
Reifarth M, Hoeppener S, Schubert US. Uptake and Intracellular Fate of Engineered Nanoparticles in Mammalian Cells: Capabilities and Limitations of Transmission Electron Microscopy-Polymer-Based Nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30. [PMID: 29325211 DOI: 10.1002/adma.201703704] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/14/2017] [Indexed: 06/07/2023]
Abstract
In order to elucidate mechanisms of nanoparticle (NP)-cell interactions, a detailed knowledge about membrane-particle interactions, intracellular distributions, and nucleus penetration capabilities, etc. becomes indispensable. The utilization of NPs as additives in many consumer products, as well as the increasing interest of tailor-made nanoobjects as novel therapeutic and diagnostic platforms, makes it essential to gain deeper insights about their biological effects. Transmission electron microscopy (TEM) represents an outstanding method to study the uptake and intracellular fate of NPs, since this technique provides a resolution far better than the particle size. Additionally, its capability to highlight ultrastructural details of the cellular interior as well as membrane features is unmatched by other approaches. Here, a summary is provided on studies utilizing TEM to investigate the uptake and mode-of-action of tailor-made polymer nanoparticles in mammalian cells. For this purpose, the capabilities as well as limitations of TEM investigations are discussed to provide a detailed overview on uptake studies of common nanoparticle systems supported by TEM investigations. Furthermore, methodologies that can, in particular, address low-contrast materials in electron microscopy, i.e., polymeric and polymer-modified nanoparticles, are highlighted.
Collapse
Affiliation(s)
- Martin Reifarth
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743, Jena, Germany
- Jena Center of Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Stephanie Hoeppener
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743, Jena, Germany
- Jena Center of Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Ulrich S Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743, Jena, Germany
- Jena Center of Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| |
Collapse
|
6
|
Abstract
Probes are essential to visualize proteins in their cellular environment, both using light microscopy as well as electron microscopy (EM). Correlated light microscopy and electron microscopy (CLEM) requires probes that can be imaged simultaneously by both optical and electron-dense signals. Existing combinatorial probes often have impaired efficiency, need ectopic expression as a fusion protein, or do not target endogenous proteins. Here, we present FLIPPER-bodies to label endogenous proteins for CLEM. Fluorescent Indicator and Peroxidase for Precipitation with EM Resolution (FLIPPER), the combination of a fluorescent protein and a peroxidase, is fused to a nanobody against a target of interest. The modular nature of these probes allows an easy exchange of components to change its target or color. A general FLIPPER-body targeting GFP highlights histone2B-GFP both in fluorescence and in EM. Similarly, endogenous EGF receptors and HER2 are visualized at nm-scale resolution in ultrastructural context. The small and flexible FLIPPER-body outperforms IgG-based immuno-labeling, likely by better reaching the epitopes. Given the modular domains and possibilities of nanobody generation for other targets, FLIPPER-bodies have high potential to become a universal tool to identify proteins in immuno-CLEM with increased sensitivity compared to current approaches.
Collapse
|
7
|
Lemercier N, Middel V, Hentsch D, Taubert S, Takamiya M, Beil T, Vonesch JL, Baumbach T, Schultz P, Antony C, Strähle U. Microtome-integrated microscope system for high sensitivity tracking of in-resin fluorescence in blocks and ultrathin sections for correlative microscopy. Sci Rep 2017; 7:13583. [PMID: 29051533 PMCID: PMC5648784 DOI: 10.1038/s41598-017-13348-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 09/22/2017] [Indexed: 12/02/2022] Open
Abstract
Many areas of biological research demand the combined use of different imaging modalities to cover a wide range of magnifications and measurements or to place fluorescent patterns into an ultrastructural context. A technically difficult problem is the efficient specimen transfer between different imaging modalities without losing the coordinates of the regions-of-interest (ROI). Here, we report a new and highly sensitive integrated system that combines a custom designed microscope with an ultramicrotome for in-resin-fluorescence detection in blocks, ribbons and sections on EM-grids. Although operating with long-distance lenses, this system achieves a very high light sensitivity. Our instrumental set-up and operating workflow are designed to investigate rare events in large tissue volumes. Applications range from studies of individual immune, stem and cancer cells to the investigation of non-uniform subcellular processes. As a use case, we present the ultrastructure of a single membrane repair patch on a muscle fiber in intact muscle in a whole animal context.
Collapse
Affiliation(s)
- Nicolas Lemercier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1, rue Laurent Fries, 67404, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, 1, rue Laurent Fries, 67404, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, 1, rue Laurent Fries, 67404, Illkirch, France.,Université de Strasbourg, 1, rue Laurent Fries, 67404, Illkirch, France
| | - Volker Middel
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Didier Hentsch
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1, rue Laurent Fries, 67404, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, 1, rue Laurent Fries, 67404, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, 1, rue Laurent Fries, 67404, Illkirch, France.,Université de Strasbourg, 1, rue Laurent Fries, 67404, Illkirch, France
| | - Serge Taubert
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1, rue Laurent Fries, 67404, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, 1, rue Laurent Fries, 67404, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, 1, rue Laurent Fries, 67404, Illkirch, France.,Université de Strasbourg, 1, rue Laurent Fries, 67404, Illkirch, France
| | - Masanari Takamiya
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Tanja Beil
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Jean-Luc Vonesch
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1, rue Laurent Fries, 67404, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, 1, rue Laurent Fries, 67404, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, 1, rue Laurent Fries, 67404, Illkirch, France.,Université de Strasbourg, 1, rue Laurent Fries, 67404, Illkirch, France
| | - Tilo Baumbach
- Laboratory for Applications of Synchrotron Radiation, Karlsruhe Institute of Technology, Kaiserstr. 12, 76131, Karlsruhe, Germany
| | - Patrick Schultz
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1, rue Laurent Fries, 67404, Illkirch, France. .,Centre National de la Recherche Scientifique, UMR7104, 1, rue Laurent Fries, 67404, Illkirch, France. .,Institut National de la Santé et de la Recherche Médicale, U964, 1, rue Laurent Fries, 67404, Illkirch, France. .,Université de Strasbourg, 1, rue Laurent Fries, 67404, Illkirch, France.
| | - Claude Antony
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1, rue Laurent Fries, 67404, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, 1, rue Laurent Fries, 67404, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, 1, rue Laurent Fries, 67404, Illkirch, France.,Université de Strasbourg, 1, rue Laurent Fries, 67404, Illkirch, France.,Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Uwe Strähle
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
8
|
VAN ELSLAND D, BOS E, PAWLAK J, OVERKLEEFT H, KOSTER A, VAN KASTEREN S. Correlative light and electron microscopy reveals discrepancy between gold and fluorescence labelling. J Microsc 2017; 267:309-317. [DOI: 10.1111/jmi.12567] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 02/17/2017] [Accepted: 03/27/2017] [Indexed: 10/19/2022]
Affiliation(s)
- D.M. VAN ELSLAND
- Division of Bio-organic Synthesis, Leiden Institute of Chemistry, Gorlaeus Laboratories; Leiden University; Leiden The Netherlands
- Institute for Chemical Immunology, Gorlaeus Laboratories; Leiden University; Leiden The Netherlands
| | - E. BOS
- Department of Molecular Cell Biology, Section Electron Microscopy; Leiden University Medical Center; Leiden The Netherlands
| | - J.B. PAWLAK
- Division of Bio-organic Synthesis, Leiden Institute of Chemistry, Gorlaeus Laboratories; Leiden University; Leiden The Netherlands
- Institute for Chemical Immunology, Gorlaeus Laboratories; Leiden University; Leiden The Netherlands
| | - H.S. OVERKLEEFT
- Division of Bio-organic Synthesis, Leiden Institute of Chemistry, Gorlaeus Laboratories; Leiden University; Leiden The Netherlands
- Institute for Chemical Immunology, Gorlaeus Laboratories; Leiden University; Leiden The Netherlands
| | - A.J. KOSTER
- Department of Molecular Cell Biology, Section Electron Microscopy; Leiden University Medical Center; Leiden The Netherlands
| | - S.I. VAN KASTEREN
- Division of Bio-organic Synthesis, Leiden Institute of Chemistry, Gorlaeus Laboratories; Leiden University; Leiden The Netherlands
- Institute for Chemical Immunology, Gorlaeus Laboratories; Leiden University; Leiden The Netherlands
| |
Collapse
|
9
|
Eid L, Parent M. Preparation of Non-human Primate Brain Tissue for Pre-embedding Immunohistochemistry and Electron Microscopy. J Vis Exp 2017. [PMID: 28448038 DOI: 10.3791/55397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Despite all the technological advances at the light microscopy level, electron microscopy remains the only tool in neuroscience to examine and characterize ultrastructural and morphological details of neurons, such as synaptic contacts. Good preservation of brain tissue for electron microscopy can be obtained by rigorous cryo-fixation methods, but these techniques are rather costly and limit the use of immunolabeling, which is crucial to understand the connectivity of identified neuronal systems. Freeze-substitution methods have been developed to allow the combination of cryo-fixation with immunolabeling. However, the reproducibility of these methodological approaches usually relies on costly freezing devices. Moreover, achieving reliable results with this technique is very time-consuming and skill-challenging. Hence, the traditional chemically fixed brain, particularly with acrolein fixative, remains a time-efficient and low-cost method to combine electron microscopy with immunohistochemistry. Here, we provide a reliable experimental protocol using chemical acrolein fixation that leads to the preservation of primate brain tissue and is compatible with pre-embedding immunohistochemistry and transmission electron microscopic examination.
Collapse
Affiliation(s)
- Lara Eid
- Centre de recherche de l'Institut universitaire en santé mentale de Québec, Department of Psychiatry and Neuroscience, Université Laval; Centre de recherche du CHU Sainte-Justine;
| | - Martin Parent
- Centre de recherche de l'Institut universitaire en santé mentale de Québec, Department of Psychiatry and Neuroscience, Université Laval
| |
Collapse
|
10
|
Biazik J, Vihinen H, Anwar T, Jokitalo E, Eskelinen EL. The versatile electron microscope: An ultrastructural overview of autophagy. Methods 2015; 75:44-53. [DOI: 10.1016/j.ymeth.2014.11.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/19/2014] [Accepted: 11/20/2014] [Indexed: 01/08/2023] Open
|
11
|
Liedtke W. A precisely defined role for the tip link-associated protein TMIE in the mechanoelectrical transduction channel complex of inner ear hair cells. Neuron 2015; 84:889-91. [PMID: 25475183 DOI: 10.1016/j.neuron.2014.11.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Inner ear hair cells transduce sound waves and acceleration. In the quest to identify the molecular machinery underlying mechanoelectrical transduction, Zhao et al. (2014) in this issue of Neuron reveal that the TMIE protein, essential for hearing, physically interacts with tip link protein protocadherin-15.
Collapse
Affiliation(s)
- Wolfgang Liedtke
- Duke University Departments of Neurology, Neurobiology and Anesthesiology, Duke University Clinics for Pain and Palliative Care, Durham, NC 27710, USA.
| |
Collapse
|
12
|
Placental expression of aminopeptidase-Q (laeverin) and its role in the pathophysiology of preeclampsia. Am J Obstet Gynecol 2014; 211:686.e1-31. [PMID: 24959655 DOI: 10.1016/j.ajog.2014.06.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 05/26/2014] [Accepted: 06/18/2014] [Indexed: 11/24/2022]
Abstract
OBJECTIVE The purpose of this study was to investigate the expression and subcellular localization of laeverin, a placenta-specific membrane-bound aminopeptidase, in preeclamptic placentas and its role in trophoblast cell migration and invasion. STUDY DESIGN Expression of laeverin was investigated in 6 normal and 6 preeclamptic placentas with the use of immunofluorescence, sodium dodecylsulfate-polyacrylamide gel electrophoresis with Western blot analysis and immunoelectron microscopy. The role of laeverin in trophoblast migration and invasion was studied with the use of the xCelligence system and Boyden chambers with Matrigel in HTR-8/SVneo cells. The effect of laeverin gene-silencing on selected genes that are involved in cell transformation and tumorigenesis was evaluated by polymerase chain reaction array. The Student t test, Mann-Whitney U test, χ(2) test, or F-test was used to compare groups as appropriate. RESULTS Laeverin was expressed in the cell membrane of villous trophoblasts in third-trimester healthy placentas; in preeclamptic placentas, it was expressed ectopically in the cytoplasm, especially in microvesicles. Immunoelectron microscopy showed laeverin leakage into the fetal capillaries and abundant expression in microvesicles in preeclamptic placentas. Migration and invasion of HTR-8/SVneo cells were reduced by 11.5% (P = .023) and 56.7% (P = .001), respectively, by laeverin gene-silencing. Analysis of downstream pathways affected by laeverin-silencing demonstrated significant down-regulation of integrin A2 (39-fold), integrin B3 (5-fold), and matrix metalloprotease 1 (36-fold). CONCLUSION Expression of laeverin protein is altered in preeclamptic placentas. Its ectopic expression in the cytoplasm and microvesicles, rather than the cell membrane and leakage into the fetal capillaries, may have a role in the pathophysiologic condition of preeclampsia. Laeverin gene appears to be involved in trophoblast cell migration and invasion through interaction with integrins and matrix metalloprotease 1.
Collapse
|
13
|
Mayhew TM. Quantitative immunocytochemistry at the ultrastructural level: a stereology-based approach to molecular nanomorphomics. Cell Tissue Res 2014; 360:43-59. [PMID: 25403623 DOI: 10.1007/s00441-014-2038-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 10/15/2014] [Indexed: 12/16/2022]
Abstract
Biological systems span multiple levels of structural organisation from the macroscopic, via the microscopic, to the nanoscale. Therefore, comprehensive investigation of systems biology requires application of imaging modalities that reveal structure at multiple resolution scales. Nanomorphomics is the part of morphomics devoted to the systematic study of functional morphology at the nanoscale and an important element of its achievement is the combination of immunolabelling and transmission electron microscopy (TEM). The ultimate goal of quantitative immunocytochemistry is to estimate numbers of target molecules (usually peptides, proteins or protein complexes) in biological systems and to map their spatial distributions within them. Immunogold cytochemistry utilises target-specific affinity markers (primary antibodies) and visualisation aids (e.g., colloidal gold particles or silver-enhanced nanogold particles) to detect and localise target molecules at high resolution in intact cells and tissues. In the case of post-embedding labelling of ultrathin sections for TEM, targets are localised as a countable digital readout by using colloidal gold particles. The readout comprises a spatial distribution of gold particles across the section and within the context of biological ultrastructure. The observed distribution across structural compartments (whether volume- or surface-occupying) represents both specific and non-specific labelling; an assessment by eye alone as to whether the distribution is random or non-random is not always possible. This review presents a coherent set of quantitative methods for testing whether target molecules exhibit preferential and specific labelling of compartments and for mapping the same targets in two or more groups of cells as their TEM immunogold-labelling patterns alter after experimental manipulation. The set also includes methods for quantifying colocalisation in multiple-labelling experiments and mapping absolute numbers of colloidal gold particles across compartments at specific positions within cells having a point-like inclusion (e.g., centrosome, nucleolus) and a definable vertical axis. Although developed for quantifying colloidal gold particles, the same methods can in principle be used to quantify other electron-dense punctate nanoparticles, including quantum dots.
Collapse
Affiliation(s)
- Terry M Mayhew
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, E Floor, Nottingham, NG7 2UH, UK,
| |
Collapse
|
14
|
Abstract
Correlative fluorescence and electron microscopy (CFEM) is a multimodal technique that combines dynamic and localization information from fluorescence methods with ultrastructural data from electron microscopy, to give new information about how cellular components change relative to the spatiotemporal dynamics within their environment. In this review, we will discuss some of the basic techniques and tools of the trade for utilizing this attractive research method, which is becoming a very powerful tool for biology labs. The information obtained from correlative methods has proven to be invaluable in creating consensus between the two types of microscopy, extending the capability of each, and cutting the time and expense associated with using each method separately for comparative analysis. The realization of the advantages of these methods in cell biology has led to rapid improvement in the protocols and has ushered in a new generation of instruments to reach the next level of correlation--integration.
Collapse
Affiliation(s)
- Randall T Schirra
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | |
Collapse
|
15
|
Peckys DB, de Jonge N. Liquid scanning transmission electron microscopy: imaging protein complexes in their native environment in whole eukaryotic cells. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2014; 20:346-65. [PMID: 24548636 DOI: 10.1017/s1431927614000099] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Scanning transmission electron microscopy (STEM) of specimens in liquid, so-called Liquid STEM, is capable of imaging the individual subunits of macromolecular complexes in whole eukaryotic cells in liquid. This paper discusses this new microscopy modality within the context of state-of-the-art microscopy of cells. The principle of operation and equations for the resolution are described. The obtained images are different from those acquired with standard transmission electron microscopy showing the cellular ultrastructure. Instead, contrast is obtained on specific labels. Images can be recorded in two ways, either via STEM at 200 keV electron beam energy using a microfluidic chamber enclosing the cells, or via environmental scanning electron microscopy at 30 keV of cells in a wet environment. The first series of experiments involved the epidermal growth factor receptor labeled with gold nanoparticles. The labels were imaged in whole fixed cells with nanometer resolution. Since the cells can be kept alive in the microfluidic chamber, it is also feasible to detect the labels in unfixed, live cells. The rapid sample preparation and imaging allows studies of multiple whole cells.
Collapse
Affiliation(s)
- Diana B Peckys
- 1 Leibniz Institute for New Materials (INM), 66123 Saarbrücken, Germany
| | - Niels de Jonge
- 1 Leibniz Institute for New Materials (INM), 66123 Saarbrücken, Germany
| |
Collapse
|
16
|
Michaux C, Saavedra LFR, Reffuveille F, Bernay B, Goux D, Hartke A, Verneuil N, Giard JC. Cold-shock RNA-binding protein CspR is also exposed to the surface of
Enterococcus faecalis. Microbiology (Reading) 2013; 159:2153-2161. [DOI: 10.1099/mic.0.071076-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Charlotte Michaux
- Unité de Recherche Risques Microbiens (U2RM), Equipe Stress Virulence Université de Caen Basse-Normandie, Caen, France
| | - Luis Felipe Romero Saavedra
- Unité de Recherche Risques Microbiens (U2RM), Equipe Stress Virulence Université de Caen Basse-Normandie, Caen, France
| | - Fany Reffuveille
- Plateforme Proteogen SFR ICORE 4206, Université de Caen Basse-Normandie, Caen, France
| | - Benoît Bernay
- Centre de Microscopie Appliquée à la Biologie, Université de Caen Basse-Normandie IFR ICORE, Caen, France
| | - Didier Goux
- Equipe Antibio-résistance, Université de Caen Basse-Normandie, Caen, France
| | - Axel Hartke
- Unité de Recherche Risques Microbiens (U2RM), Equipe Stress Virulence Université de Caen Basse-Normandie, Caen, France
| | - Nicolas Verneuil
- Unité de Recherche Risques Microbiens (U2RM), Equipe Stress Virulence Université de Caen Basse-Normandie, Caen, France
| | - Jean-Christophe Giard
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
17
|
Li CC, Wu TS, Huang CF, Jang LT, Liu YT, You ST, Liou GG, Lee FJS. GTP-binding-defective ARL4D alters mitochondrial morphology and membrane potential. PLoS One 2012; 7:e43552. [PMID: 22927989 PMCID: PMC3424131 DOI: 10.1371/journal.pone.0043552] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 07/23/2012] [Indexed: 12/01/2022] Open
Abstract
ARL4D, ARL4A, and ARL4C are closely related members of the ADP-ribosylation factor/ARF-like protein (ARF/ARL) family of GTPases. All three ARL4 proteins contain nuclear localization signals (NLSs) at their C-termini and are primarily found at the plasma membrane, but they are also present in the nucleus and cytoplasm. ARF function and localization depends on their controlled binding and hydrolysis of GTP. Here we show that GTP-binding-defective ARL4D is targeted to the mitochondria, where it affects mitochondrial morphology and function. We found that a portion of endogenous ARL4D and the GTP-binding-defective ARL4D mutant ARL4D(T35N) reside in the mitochondria. The N-terminal myristoylation of ARL4D(T35N) was required for its localization to mitochondria. The localization of ARL4D(T35N) to the mitochondria reduced the mitochondrial membrane potential (ΔΨm) and caused mitochondrial fragmentation. Furthermore, the C-terminal NLS region of ARL4D(T35N) was required for its effect on the mitochondria. This study is the first to demonstrate that the dysfunctional GTP-binding-defective ARL4D is targeted to mitochondria, where it subsequently alters mitochondrial morphology and membrane potential.
Collapse
Affiliation(s)
- Chun-Chun Li
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tsung-Sheng Wu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chun-Fang Huang
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Li-Ting Jang
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Tsan Liu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shu-Ting You
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Gunn-Guang Liou
- Division of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Fang-Jen S. Lee
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
18
|
3D multicolor super-resolution imaging offers improved accuracy in neuron tracing. PLoS One 2012; 7:e30826. [PMID: 22292051 PMCID: PMC3265519 DOI: 10.1371/journal.pone.0030826] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 12/29/2011] [Indexed: 11/19/2022] Open
Abstract
The connectivity among neurons holds the key to understanding brain function. Mapping neural connectivity in brain circuits requires imaging techniques with high spatial resolution to facilitate neuron tracing and high molecular specificity to mark different cellular and molecular populations. Here, we tested a three-dimensional (3D), multicolor super-resolution imaging method, stochastic optical reconstruction microscopy (STORM), for tracing neural connectivity using cultured hippocampal neurons obtained from wild-type neonatal rat embryos as a model system. Using a membrane specific labeling approach that improves labeling density compared to cytoplasmic labeling, we imaged neural processes at 44 nm 2D and 116 nm 3D resolution as determined by considering both the localization precision of the fluorescent probes and the Nyquist criterion based on label density. Comparison with confocal images showed that, with the currently achieved resolution, we could distinguish and trace substantially more neuronal processes in the super-resolution images. The accuracy of tracing was further improved by using multicolor super-resolution imaging. The resolution obtained here was largely limited by the label density and not by the localization precision of the fluorescent probes. Therefore, higher image resolution, and thus higher tracing accuracy, can in principle be achieved by further improving the label density.
Collapse
|
19
|
Wang R, Pokhariya H, McKenna SJ, Lucocq J. Recognition of immunogold markers in electron micrographs. J Struct Biol 2011; 176:151-8. [DOI: 10.1016/j.jsb.2011.07.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 06/03/2011] [Accepted: 07/12/2011] [Indexed: 11/17/2022]
|
20
|
Peckys DB, Mazur P, Gould KL, de Jonge N. Fully hydrated yeast cells imaged with electron microscopy. Biophys J 2011; 100:2522-9. [PMID: 21575587 DOI: 10.1016/j.bpj.2011.03.045] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 03/29/2011] [Accepted: 03/30/2011] [Indexed: 11/15/2022] Open
Abstract
We demonstrate electron microscopy of fully hydrated eukaryotic cells with nanometer resolution. Living Schizosaccharomyces pombe cells were loaded in a microfluidic chamber and imaged in liquid with scanning transmission electron microscopy (STEM). The native intracellular (ultra)structures of wild-type cells and three different mutants were studied without prior labeling, fixation, or staining. The STEM images revealed various intracellular components that were identified on the basis of their shape, size, location, and mass density. The maximal achieved spatial resolution in this initial study was 32 ± 8 nm, an order of magnitude better than achievable with light microscopy on pristine cells. Light-microscopy images of the same samples were correlated with the corresponding electron-microscopy images. Achieving synergy between the capabilities of light and electron microscopy, we anticipate that liquid STEM will be broadly applied to explore the ultrastructure of live cells.
Collapse
Affiliation(s)
- Diana B Peckys
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | | | | | |
Collapse
|
21
|
Reichelt M, Wang L, Sommer M, Perrino J, Nour AM, Sen N, Baiker A, Zerboni L, Arvin AM. Entrapment of viral capsids in nuclear PML cages is an intrinsic antiviral host defense against varicella-zoster virus. PLoS Pathog 2011; 7:e1001266. [PMID: 21304940 PMCID: PMC3033373 DOI: 10.1371/journal.ppat.1001266] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 12/30/2010] [Indexed: 12/24/2022] Open
Abstract
The herpesviruses, like most other DNA viruses, replicate in the host cell nucleus. Subnuclear domains known as promyelocytic leukemia protein nuclear bodies (PML-NBs), or ND10 bodies, have been implicated in restricting early herpesviral gene expression. These viruses have evolved countermeasures to disperse PML-NBs, as shown in cells infected in vitro, but information about the fate of PML-NBs and their functions in herpesvirus infected cells in vivo is limited. Varicella-zoster virus (VZV) is an alphaherpesvirus with tropism for skin, lymphocytes and sensory ganglia, where it establishes latency. Here, we identify large PML-NBs that sequester newly assembled nucleocapsids (NC) in neurons and satellite cells of human dorsal root ganglia (DRG) and skin cells infected with VZV in vivo. Quantitative immuno-electron microscopy revealed that these distinctive nuclear bodies consisted of PML fibers forming spherical cages that enclosed mature and immature VZV NCs. Of six PML isoforms, only PML IV promoted the sequestration of NCs. PML IV significantly inhibited viral infection and interacted with the ORF23 capsid surface protein, which was identified as a target for PML-mediated NC sequestration. The unique PML IV C-terminal domain was required for both capsid entrapment and antiviral activity. Similar large PML-NBs, termed clastosomes, sequester aberrant polyglutamine (polyQ) proteins, such as Huntingtin (Htt), in several neurodegenerative disorders. We found that PML IV cages co-sequester HttQ72 and ORF23 protein in VZV infected cells. Our data show that PML cages contribute to the intrinsic antiviral defense by sensing and entrapping VZV nucleocapsids, thereby preventing their nuclear egress and inhibiting formation of infectious virus particles. The efficient sequestration of virion capsids in PML cages appears to be the outcome of a basic cytoprotective function of this distinctive category of PML-NBs in sensing and safely containing nuclear aggregates of aberrant proteins.
Collapse
Affiliation(s)
- Mike Reichelt
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Lucocq JM, Gawden-Bone C. Quantitative assessment of specificity in immunoelectron microscopy. J Histochem Cytochem 2010; 58:917-27. [PMID: 20458060 DOI: 10.1369/jhc.2010.956243] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In immunoelectron microscopy (immuno-EM) on ultrathin sections, gold particles are used for localization of molecular components of cells. These particles are countable, and quantitative methods have been established to estimate and evaluate the density and distribution of "raw" gold particle counts from a single uncontrolled labeling experiment. However, these raw counts are composed of two distinct elements: particles that are specific (specific labeling) and particles that are not (nonspecific labeling) for the target component. So far, approaches for assessment of specific labeling and for correction of raw gold particle counts to reveal specific labeling densities and distributions have not attracted much attention. Here, we discuss experimental strategies for determining specificity in immuno-EM, and we present methods for quantitative assessment of (1) the probability that an observed gold particle is specific for the target, (2) the density of specific labeling, and (3) the distribution of specific labeling over a series of compartments. These methods should be of general utility for researchers investigating the distribution of cellular components using on-section immunogold labeling.
Collapse
Affiliation(s)
- John Milton Lucocq
- Division of Cell Biology and Immunology, School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee, Scotland, UK.
| | | |
Collapse
|
23
|
Stierhof YD, El Kasmi F. Strategies to improve the antigenicity, ultrastructure preservation and visibility of trafficking compartments in Arabidopsis tissue. Eur J Cell Biol 2010; 89:285-97. [PMID: 20106548 DOI: 10.1016/j.ejcb.2009.12.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Immunolabelling of (ultra)thin thawed cryosections according to Tokuyasu is one of the most reliable and efficient immunolocalisation techniques for cells and tissues. However, chemical fixation at ambient temperature, a prerequisite of this technique, can cause problems for samples, like plant tissue, because cell walls, hydrophobic surfaces and intercellular air slow down diffusion of fixative molecules into the sample. We show that a hybrid technique, based on a combination of cryofixation/freeze-substitution and Tokuyasu cryosection immunolabelling, circumvents the disadvantages associated with chemical fixation and results in an improved ultrastructure and antigenicity preservation of Tokuyasu cryosections used for light and electron microscopic immunolabelling (as shown for Myc- or mRFP-tagged proteins, KNOLLE and carbohydrate epitopes). In combination with the most sensitive particulate marker systems, like 1-nm gold or quantum dot markers, we were able to obtain a differentiated labelling pattern which allows a more detailed evaluation of plant Golgi, trans-Golgi network and multivesicular body/prevacuolar compartment markers (COPI-specific gammaCOP, the ADP-ribosylation factor GTPase ARF1, ARA7/RabF2b and the vacuolar sorting receptor VSR). We also discuss possibilities to improve membrane contrast, e.g., of transport vesicles like COPI, COPII and clathrin-coated vesicles, and of compartments of endosomal trafficking like the trans-Golgi network.
Collapse
Affiliation(s)
- York-Dieter Stierhof
- Center for Plant Molecular Biology (ZMBP), Microscopy, University of Tübingen, Auf der Morgenstelle 5, 72076 Tübingen, Germany.
| | | |
Collapse
|
24
|
Holstein TW, Hess MW, Salvenmoser W. Preparation techniques for transmission electron microscopy of Hydra. Methods Cell Biol 2010; 96:285-306. [PMID: 20869528 DOI: 10.1016/s0091-679x(10)96013-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Hydra is a classical model organism in developmental and cell biology with a simple body plan reminiscent of a gastrula with one body axis and a limited number of cell types. This rather simple organism exhibits a regeneration capacity that is unique among all eumetazoans and is largely dependent on the stem cell properties of its epithelial stem cell population. Molecular work in the past few years has revealed an unexpected genetic complexity of these simple animals, making them an interesting model for studying the generation of animal form and regeneration. In addition, Hydra has an interstitial stem cell system with a unique population of nematocytes, neuronal cells that are characterized by an explosive exocytotic discharge. Here, we compare classical and modern transmission electron microscopy (TEM) fixation protocols including protocols for TEM immunocytochemistry (post-embedding immunogold labeling). We presume that TEM studies will become an important tool to analyze cell-cell interactions as well as cell matrix interrelationships in Hydra in the future.
Collapse
Affiliation(s)
- Thomas W Holstein
- Institute of Zoology, Heidelberg University, D-69120 Heidelberg, Germany
| | | | | |
Collapse
|
25
|
Henrich P, Kilian N, Lanzer M, Cyrklaff M. 3-D analysis of thePlasmodium falciparumMaurer's clefts using different electron tomographic approaches. Biotechnol J 2009; 4:888-94. [DOI: 10.1002/biot.200900058] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|