1
|
Hasannejad F, Montazeri L, Mano JF, Bonakdar S, Fazilat A. Regulation of cell fate by cell imprinting approach in vitro. BIOIMPACTS : BI 2023; 14:29945. [PMID: 38938752 PMCID: PMC11199935 DOI: 10.34172/bi.2023.29945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 09/13/2023] [Accepted: 09/19/2023] [Indexed: 06/29/2024]
Abstract
Cell culture-based technologies are widely utilized in various domains such as drug evaluation, toxicity assessment, vaccine and biopharmaceutical development, reproductive technology, and regenerative medicine. It has been demonstrated that pre-adsorption of extracellular matrix (ECM) proteins including collagen, laminin and fibronectin provide more degrees of support for cell adhesion. The purpose of cell imprinting is to imitate the natural topography of cell membranes by gels or polymers to create a reliable environment for the regulation of cell function. The results of recent studies show that cell imprinting is a tool to guide the behavior of cultured cells by controlling their adhesive interactions with surfaces. Therefore, in this review we aim to compare different cell cultures with the imprinting method and discuss different cell imprinting applications in regenerative medicine, personalized medicine, disease modeling, and cell therapy.
Collapse
Affiliation(s)
- Farkhonde Hasannejad
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Science, Semnan, Iran
- Genetic Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Leila Montazeri
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Portugal
| | - Shahin Bonakdar
- National Cell Bank Department, Pasteur Institute of Iran, Tehran, Iran
| | - Ahmad Fazilat
- Genetic Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| |
Collapse
|
2
|
Sadaghiani L, Alshumrani AM, Gleeson HB, Ayre WN, Sloan AJ. Growth Factor release and dental pulp stem cell attachment following dentine conditioning- an in vitro study. Int Endod J 2022; 55:858-869. [PMID: 35638345 PMCID: PMC9541952 DOI: 10.1111/iej.13781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 05/13/2022] [Accepted: 05/13/2022] [Indexed: 12/02/2022]
Abstract
Aim The aim of the study was to investigate the effect of dentine conditioning agents on growth factor liberation and settlement of dental pulp progenitor cells (DPSCs) on dentine surfaces. Methodology The agents used included ethylenediaminetetraacetic acid (EDTA; 10%, pH 7.2), phosphoric acid (37%, pH < 1), citric acid (10%, pH 1.5) and polyacrylic acid (25%, pH 3.9). Human dentine slices were conditioned for exaggerated conditioning times of 5 and 10 min, so that the growth factor liberation reached quantifiable levels above the limit of detection of the laboratory methods employed. Transforming growth factor beta‐1 (TGF‐β1) release and surface exposure were quantified by enzyme‐linked immunosorbent assay (ELISA) and immunogold labelling. Scanning electron microscopy (SEM) was used to assess the morphology of cells and coverage by DPSCs cultured on dentine surfaces for 8 days. Results After 5‐min conditioning of dentine slices, citric acid was the most effective agent for growth factor release into the aqueous environment as measured by ELISA (Mann–Whitney U with Bonferroni correction, p < .01 compared with phosphoric and polyacrylic acid). As well as this, dentine slices treated with phosphoric acid for the same period, displayed significantly less TGF‐β1 on the surface compared with the other agents used, as measured by immunogold labelling (MWU with Bonferroni correction, p < .05). After 8 days, widespread coverage by DPSCs on dentine surfaces conditioned with citric acid and EDTA were evident under SEM. On dentine surfaces conditioned with phosphoric and polyacrylic acid, respectively, less spread cells and inconsistent cell coverage were observed. Conclusions Based on the findings of this in vitro study, a desirable biological growth factor‐mediated effect may be gained when conditioning dentine by milder acidic or chelating agents such as citric acid and EDTA. The results must be interpreted in the context that the potential of the applied materials inducing a desirable biological response in DPSCs is only one consideration amongst other important ones in a clinical setting. However, it is crucial to look beyond the mere physical effects of materials and move towards biologically based treatment approaches as far as the restorative management of teeth with viable dental pulps are concerned.
Collapse
Affiliation(s)
- L Sadaghiani
- School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, UK
| | | | - H B Gleeson
- Department of General Dentistry and Orthodontics, Addenbrookes Hospital, Cambridge University Hospitals NHS foundation trust, UK
| | - W Nishio Ayre
- School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, UK
| | - A J Sloan
- Melbourne Dental School, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Australia
| |
Collapse
|
3
|
Hu X, Zhang Y. Developing biomaterials to mediate the spatial distribution of integrins. BIOPHYSICS REVIEWS 2021; 2:041302. [PMID: 38504718 PMCID: PMC10903404 DOI: 10.1063/5.0055746] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 10/21/2021] [Indexed: 03/21/2024]
Abstract
Innovation in material design to regulate cell behavior and function is one of the primary tasks in materials science. Integrins, a family of cell surface-adhesion receptors that mechanically connect the extracellular matrix (ECM) to the intracellular cytoskeleton, have long served as primary targets for the design of biomaterials because their activity is not only critical to a wide range of cell and tissue functions but also subject to very tight and complex regulations from the outside environment. To review the recent progress of material innovations targeting the spatial distribution of integrins, we first introduce the interaction mechanisms between cells and the ECM by highlighting integrin-based cell adhesions, describing how integrins respond to environmental stimuli, including variations in ligand presentation, mechanical cues, and topographical variations. Then, we overview the current development of soft materials in guiding cell behaviors and functions via spatial regulation of integrins. Finally, we discuss the current limitations of these technologies and the advances that may be achieved in the future. Undoubtedly, synthetic soft materials that mediate the spatial distribution of integrins play an important role in biomaterial innovations for advancing biomedical applications and addressing fundamental biological questions.
Collapse
Affiliation(s)
- Xunwu Hu
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Ye Zhang
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| |
Collapse
|
4
|
Marinval N, Chew SY. Mechanotransduction assays for neural regeneration strategies: A focus on glial cells. APL Bioeng 2021; 5:021505. [PMID: 33948526 PMCID: PMC8088332 DOI: 10.1063/5.0037814] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/19/2021] [Indexed: 01/22/2023] Open
Abstract
Glial cells are mechanosensitive, and thus, engineered systems have taken a step forward to design mechanotransduction platforms in order to impart diverse mechanical stresses to cells. Mechanical strain encountered in the central nervous system can arise from diverse mechanisms, such as tissue reorganization, fluid flow, and axon growth, as well as pathological events including axon swelling or mechanical trauma. Biomechanical relevance of the in vitro mechanical testing requires to be placed in line with the physiological and mechanical changes in central nervous tissues that occur during the progression of neurodegenerative diseases. Mechanotransduction signaling utilized by glial cells and the recent approaches intended to model altered microenvironment adapted to pathological context are discussed in this review. New insights in systems merging substrate's stiffness and topography should be considered for further glial mechanotransduction studies, while testing platforms for drug discoveries promise great advancements in pharmacotherapy. Potential leads and strategies for clinical outcomes are expected to be developed following the exploration of these glial mechanosensitive signaling pathways.
Collapse
Affiliation(s)
- Nicolas Marinval
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459
| | - Sing Yian Chew
- Author to whom correspondence should be addressed: . Tel.: +65 6316 8812. Fax: +65 6794 7553
| |
Collapse
|
5
|
Physical understanding of axonal growth patterns on grooved substrates: groove ridge crossing versus longitudinal alignment. Biodes Manuf 2020. [DOI: 10.1007/s42242-020-00089-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
6
|
Jain D, Mattiassi S, Goh EL, Yim EKF. Extracellular matrix and biomimetic engineering microenvironment for neuronal differentiation. Neural Regen Res 2020; 15:573-585. [PMID: 31638079 PMCID: PMC6975142 DOI: 10.4103/1673-5374.266907] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Extracellular matrix (ECM) influences cell differentiation through its structural and biochemical properties. In nervous system, neuronal behavior is influenced by these ECMs structures which are present in a meshwork, fibrous, or tubular forms encompassing specific molecular compositions. In addition to contact guidance, ECM composition and structures also exert its effect on neuronal differentiation. This short report reviewed the native ECM structure and composition in central nervous system and peripheral nervous system, and their impact on neural regeneration and neuronal differentiation. Using topographies, stem cells have been differentiated to neurons. Further, focussing on engineered biomimicking topographies, we highlighted the role of anisotropic topographies in stem cell differentiation to neurons and its recent temporal application for efficient neuronal differentiation.
Collapse
Affiliation(s)
- Deepak Jain
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Sabrina Mattiassi
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Eyleen L Goh
- Neuroscience Academic Clinical Programme, Duke-NUS Medical School, Singapore
| | - Evelyn K F Yim
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
7
|
Ke D, Yi H, Est-Witte S, George S, Kengla C, Lee SJ, Atala A, Murphy SV. Bioprinted trachea constructs with patient-matched design, mechanical and biological properties. Biofabrication 2019; 12:015022. [DOI: 10.1088/1758-5090/ab5354] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
8
|
Ser-Od T, Al-Wahabi A, Inoue K, Nakajima K, Matsuzaka K, Inoue T. Effect of EDTA-treated dentin on the differentiation of mouse iPS cells into osteogenic/odontogenic lineages in vitro and in vivo. Dent Mater J 2019; 38:830-838. [PMID: 31341145 DOI: 10.4012/dmj.2018-161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
To investigate the effect of EDTA-treated dentin on the differentiation of mouse induced pluripotent stem (iPS) cells. Dentin discs were prepared from bovine incisors and treated with 17% EDTA. Embryoid bodies (EBs) formed from mouse iPS cells were seeded on the dentin discs for the experiment. The roughness of the EDTA-treated dentin surface, Sa and Sdr, was higher and collagen fibrillike structures were observed by the scanning electron microscopy (SEM) in vitro. In RT-PCR, the mRNA levels of the osteoblast markers Bsp and Ocn were significantly higher in the experimental group. Expression of the DMP1, DSP, and BSP proteins were more notable in the experimental group by immunofluorescence (ICF) study. In vivo study, cartilage and bone-like tissue were observed adjacent to the EDTA-treated dentin. The study demonstrates that the dentin treated with 17% EDTA induces mouse iPS cells to differentiate into the osteo/odontogenesis.
Collapse
Affiliation(s)
- Tungalag Ser-Od
- Department of Clinical Pathophysiology, Tokyo Dental College
| | - Akram Al-Wahabi
- Department of Clinical Pathophysiology, Tokyo Dental College
| | - Kenji Inoue
- Oral Health Science Center, Tokyo Dental College
| | - Kei Nakajima
- Department of Clinical Pathophysiology, Tokyo Dental College.,Oral Health Science Center, Tokyo Dental College
| | - Kenichi Matsuzaka
- Department of Clinical Pathophysiology, Tokyo Dental College.,Oral Health Science Center, Tokyo Dental College
| | - Takashi Inoue
- Department of Clinical Pathophysiology, Tokyo Dental College.,Oral Health Science Center, Tokyo Dental College
| |
Collapse
|
9
|
Hansel C, Crowder SW, Cooper S, Gopal S, João Pardelha da Cruz M, de Oliveira Martins L, Keller D, Rothery S, Becce M, Cass AEG, Bakal C, Chiappini C, Stevens MM. Nanoneedle-Mediated Stimulation of Cell Mechanotransduction Machinery. ACS NANO 2019; 13:2913-2926. [PMID: 30829469 PMCID: PMC6439438 DOI: 10.1021/acsnano.8b06998] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 02/21/2019] [Indexed: 05/21/2023]
Abstract
Biomaterial substrates can be engineered to present topographical signals to cells which, through interactions between the material and active components of the cell membrane, regulate key cellular processes and guide cell fate decisions. However, targeting mechanoresponsive elements that reside within the intracellular domain is a concept that has only recently emerged. Here, we show that mesoporous silicon nanoneedle arrays interact simultaneously with the cell membrane, cytoskeleton, and nucleus of primary human cells, generating distinct responses at each of these cellular compartments. Specifically, nanoneedles inhibit focal adhesion maturation at the membrane, reduce tension in the cytoskeleton, and lead to remodeling of the nuclear envelope at sites of impingement. The combined changes in actin cytoskeleton assembly, expression and segregation of the nuclear lamina, and localization of Yes-associated protein (YAP) correlate differently from what is canonically observed upon stimulation at the cell membrane, revealing that biophysical cues directed to the intracellular space can generate heretofore unobserved mechanosensory responses. These findings highlight the ability of nanoneedles to study and direct the phenotype of large cell populations simultaneously, through biophysical interactions with multiple mechanoresponsive components.
Collapse
Affiliation(s)
- Catherine
S. Hansel
- Department
of Materials, Department of Chemistry, Department of Bioengineering, Institute for Biomedical
Engineering, Department of Surgery and Cancer, Department of Medicine, and Facility for Imaging by Light Microscopy, Imperial College London, London SW7 2AZ, United Kingdom
| | - Spencer W. Crowder
- Department
of Materials, Department of Chemistry, Department of Bioengineering, Institute for Biomedical
Engineering, Department of Surgery and Cancer, Department of Medicine, and Facility for Imaging by Light Microscopy, Imperial College London, London SW7 2AZ, United Kingdom
| | - Samuel Cooper
- Department
of Materials, Department of Chemistry, Department of Bioengineering, Institute for Biomedical
Engineering, Department of Surgery and Cancer, Department of Medicine, and Facility for Imaging by Light Microscopy, Imperial College London, London SW7 2AZ, United Kingdom
- Chester Beatty
Laboratories, Institute for Cancer Research, London SW3 6JB, U.K.
| | - Sahana Gopal
- Department
of Materials, Department of Chemistry, Department of Bioengineering, Institute for Biomedical
Engineering, Department of Surgery and Cancer, Department of Medicine, and Facility for Imaging by Light Microscopy, Imperial College London, London SW7 2AZ, United Kingdom
| | - Maria João Pardelha da Cruz
- Department
of Materials, Department of Chemistry, Department of Bioengineering, Institute for Biomedical
Engineering, Department of Surgery and Cancer, Department of Medicine, and Facility for Imaging by Light Microscopy, Imperial College London, London SW7 2AZ, United Kingdom
- Department
of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de
Lisboa, 1649-004 Lisbon, Portugal
| | - Leonardo de Oliveira Martins
- Department
of Materials, Department of Chemistry, Department of Bioengineering, Institute for Biomedical
Engineering, Department of Surgery and Cancer, Department of Medicine, and Facility for Imaging by Light Microscopy, Imperial College London, London SW7 2AZ, United Kingdom
| | - Debora Keller
- Department
of Materials, Department of Chemistry, Department of Bioengineering, Institute for Biomedical
Engineering, Department of Surgery and Cancer, Department of Medicine, and Facility for Imaging by Light Microscopy, Imperial College London, London SW7 2AZ, United Kingdom
| | - Stephen Rothery
- Department
of Materials, Department of Chemistry, Department of Bioengineering, Institute for Biomedical
Engineering, Department of Surgery and Cancer, Department of Medicine, and Facility for Imaging by Light Microscopy, Imperial College London, London SW7 2AZ, United Kingdom
| | - Michele Becce
- Department
of Materials, Department of Chemistry, Department of Bioengineering, Institute for Biomedical
Engineering, Department of Surgery and Cancer, Department of Medicine, and Facility for Imaging by Light Microscopy, Imperial College London, London SW7 2AZ, United Kingdom
| | - Anthony E. G. Cass
- Department
of Materials, Department of Chemistry, Department of Bioengineering, Institute for Biomedical
Engineering, Department of Surgery and Cancer, Department of Medicine, and Facility for Imaging by Light Microscopy, Imperial College London, London SW7 2AZ, United Kingdom
| | - Chris Bakal
- Chester Beatty
Laboratories, Institute for Cancer Research, London SW3 6JB, U.K.
| | - Ciro Chiappini
- Department
of Materials, Department of Chemistry, Department of Bioengineering, Institute for Biomedical
Engineering, Department of Surgery and Cancer, Department of Medicine, and Facility for Imaging by Light Microscopy, Imperial College London, London SW7 2AZ, United Kingdom
| | - Molly M. Stevens
- Department
of Materials, Department of Chemistry, Department of Bioengineering, Institute for Biomedical
Engineering, Department of Surgery and Cancer, Department of Medicine, and Facility for Imaging by Light Microscopy, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
10
|
Huang X, Das R, Patel A, Nguyen TD. Physical Stimulations for Bone and Cartilage Regeneration. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2018; 4:216-237. [PMID: 30740512 PMCID: PMC6366645 DOI: 10.1007/s40883-018-0064-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 06/07/2018] [Indexed: 12/26/2022]
Abstract
A wide range of techniques and methods are actively invented by clinicians and scientists who are dedicated to the field of musculoskeletal tissue regeneration. Biological, chemical, and physiological factors, which play key roles in musculoskeletal tissue development, have been extensively explored. However, physical stimulation is increasingly showing extreme importance in the processes of osteogenic and chondrogenic differentiation, proliferation and maturation through defined dose parameters including mode, frequency, magnitude, and duration of stimuli. Studies have shown manipulation of physical microenvironment is an indispensable strategy for the repair and regeneration of bone and cartilage, and biophysical cues could profoundly promote their regeneration. In this article, we review recent literature on utilization of physical stimulation, such as mechanical forces (cyclic strain, fluid shear stress, etc.), electrical and magnetic fields, ultrasound, shock waves, substrate stimuli, etc., to promote the repair and regeneration of bone and cartilage tissue. Emphasis is placed on the mechanism of cellular response and the potential clinical usage of these stimulations for bone and cartilage regeneration.
Collapse
|
11
|
Mofazzal Jahromi MA, Sahandi Zangabad P, Moosavi Basri SM, Sahandi Zangabad K, Ghamarypour A, Aref AR, Karimi M, Hamblin MR. Nanomedicine and advanced technologies for burns: Preventing infection and facilitating wound healing. Adv Drug Deliv Rev 2018; 123:33-64. [PMID: 28782570 PMCID: PMC5742034 DOI: 10.1016/j.addr.2017.08.001] [Citation(s) in RCA: 279] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 07/20/2017] [Accepted: 08/01/2017] [Indexed: 12/11/2022]
Abstract
According to the latest report from the World Health Organization, an estimated 265,000 deaths still occur every year as a direct result of burn injuries. A widespread range of these deaths induced by burn wound happens in low- and middle-income countries, where survivors face a lifetime of morbidity. Most of the deaths occur due to infections when a high percentage of the external regions of the body area is affected. Microbial nutrient availability, skin barrier disruption, and vascular supply destruction in burn injuries as well as systemic immunosuppression are important parameters that cause burns to be susceptible to infections. Topical antimicrobials and dressings are generally employed to inhibit burn infections followed by a burn wound therapy, because systemic antibiotics have problems in reaching the infected site, coupled with increasing microbial drug resistance. Nanotechnology has provided a range of molecular designed nanostructures (NS) that can be used in both therapeutic and diagnostic applications in burns. These NSs can be divided into organic and non-organic (such as polymeric nanoparticles (NPs) and silver NPs, respectively), and many have been designed to display multifunctional activity. The present review covers the physiology of skin, burn classification, burn wound pathogenesis, animal models of burn wound infection, and various topical therapeutic approaches designed to combat infection and stimulate healing. These include biological based approaches (e.g. immune-based antimicrobial molecules, therapeutic microorganisms, antimicrobial agents, etc.), antimicrobial photo- and ultrasound-therapy, as well as nanotechnology-based wound healing approaches as a revolutionizing area. Thus, we focus on organic and non-organic NSs designed to deliver growth factors to burned skin, and scaffolds, dressings, etc. for exogenous stem cells to aid skin regeneration. Eventually, recent breakthroughs and technologies with substantial potentials in tissue regeneration and skin wound therapy (that are as the basis of burn wound therapies) are briefly taken into consideration including 3D-printing, cell-imprinted substrates, nano-architectured surfaces, and novel gene-editing tools such as CRISPR-Cas.
Collapse
Affiliation(s)
- Mirza Ali Mofazzal Jahromi
- Department of Advanced Medical Sciences & Technologies, School of Medicine, Jahrom University of Medical Sciences (JUMS), Jahrom, Iran; Research Center for Noncommunicable Diseases, School of Medicine, Jahrom University of Medical Sciences (JUMS), Jahrom, Iran
| | - Parham Sahandi Zangabad
- Research Center for Pharmaceutical Nanotechnology (RCPN), Tabriz University of Medical Science (TUOMS), Tabriz, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Bio-Nano-Interfaces: Convergence of Sciences (BNICS), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Masoud Moosavi Basri
- Bio-Nano-Interfaces: Convergence of Sciences (BNICS), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Bioenvironmental Research Center, Sharif University of Technology, Tehran, Iran; Civil & Environmental Engineering Department, Shahid Beheshti University, Tehran, Iran
| | - Keyvan Sahandi Zangabad
- Bio-Nano-Interfaces: Convergence of Sciences (BNICS), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Department of Polymer Engineering, Sahand University of Technology, PO Box 51335-1996, Tabriz, Iran; Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Ameneh Ghamarypour
- Bio-Nano-Interfaces: Convergence of Sciences (BNICS), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Department of Biology, Science and Research Branch, Islamic Azad university, Tehran, Iran
| | - Amir R Aref
- Department of Medical Oncology, Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Mahdi Karimi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, USA.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, USA; Department of Dermatology, Harvard Medical School, Boston, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, USA.
| |
Collapse
|
12
|
Grespan E, Giobbe GG, Badique F, Anselme K, Rühe J, Elvassore N. Effect of geometrical constraints on human pluripotent stem cell nuclei in pluripotency and differentiation. Integr Biol (Camb) 2018; 10:278-289. [DOI: 10.1039/c7ib00194k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Pluripotent stem cells are differentiated on microstructured substrates to investigate the nuclear deformability during differentiation and the role of mechanoregulating proteins.
Collapse
Affiliation(s)
- Eleonora Grespan
- Department of Industrial Engineering
- University of Padova
- Padova
- Italy
- Department for Microsystems Engineering
| | - Giovanni G. Giobbe
- Department of Industrial Engineering
- University of Padova
- Padova
- Italy
- Venetian Institute of Molecular Medicine
| | - Florent Badique
- University of Haute–Alsace
- CNRS
- IS2M UMR 7361
- F-68100 Mulhouse
- France
| | - Karine Anselme
- University of Haute–Alsace
- CNRS
- IS2M UMR 7361
- F-68100 Mulhouse
- France
| | - Jürgen Rühe
- Department for Microsystems Engineering
- University of Freiburg
- Freiburg
- Germany
| | - Nicola Elvassore
- Department of Industrial Engineering
- University of Padova
- Padova
- Italy
- Venetian Institute of Molecular Medicine
| |
Collapse
|
13
|
Yang K, Yu SJ, Lee JS, Lee HR, Chang GE, Seo J, Lee T, Cheong E, Im SG, Cho SW. Electroconductive nanoscale topography for enhanced neuronal differentiation and electrophysiological maturation of human neural stem cells. NANOSCALE 2017; 9:18737-18752. [PMID: 29168523 DOI: 10.1039/c7nr05446g] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Biophysical cues, such as topography, and electrical cues can provide external stimulation for the promotion of stem cell neurogenesis. Here, we demonstrate an electroconductive surface nanotopography for enhancing neuronal differentiation and the functional maturation of human neural stem cells (hNSCs). The electroconductive nanopatterned substrates were prepared by depositing a thin layer of titanium (Ti) with nanograting topographies (150 to 300 nm groove/ridge, the thickness of the groove - 150 μm) onto polymer surfaces. The Ti-coated nanopatterned substrate (TNS) induced cellular alignment along the groove pattern via contact guidance and promoted focal adhesion and cytoskeletal reorganization, which ultimately led to enhanced neuronal differentiation and maturation of hNSCs as indicated by significantly elevated neurite extension and the upregulated expression of the neuronal markers Tuj1 and NeuN compared with the Ti-coated flat substrate (TFS) and the nanopatterned substrate (NS) without Ti coating. Mechanosensitive cellular events, such as β1-integrin binding/clustering and myosin-actin interaction, and the Rho-associated protein kinase (ROCK) and mitogen-activated protein kinase/extracellular signal regulated kinase (MEK-ERK) pathways, were found to be associated with enhanced focal adhesion and neuronal differentiation of hNSCs by the TNS. Among the neuronal subtypes, differentiation into dopaminergic and glutamatergic neurons was promoted on the TNS. Importantly, the TNS increased the induction rate of neuron-like cells exhibiting electrophysiological properties from hNSCs. Finally, the application of pulsed electrical stimulation to the TNS further enhanced neuronal differentiation of hNSCs due probably to calcium channel activation, indicating a combined effect of topographical and electrical cues on stem cell neurogenesis, which postulates the novelty of our current study. The present work suggests that an electroconductive nanopatterned substrate can serve as an effective culture platform for deriving highly mature, functional neuronal lineage cells from stem cells.
Collapse
Affiliation(s)
- Kisuk Yang
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Sathe S, Chan XQ, Jin J, Bernitt E, Döbereiner HG, Yim EKF. Correlation and Comparison of Cortical and Hippocampal Neural Progenitor Morphology and Differentiation through the Use of Micro- and Nano-Topographies. J Funct Biomater 2017; 8:jfb8030035. [PMID: 28805664 PMCID: PMC5618286 DOI: 10.3390/jfb8030035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 08/03/2017] [Accepted: 08/07/2017] [Indexed: 01/09/2023] Open
Abstract
Neuronal morphology and differentiation have been extensively studied on topography. The differentiation potential of neural progenitors has been shown to be influenced by brain region, developmental stage, and time in culture. However, the neurogenecity and morphology of different neural progenitors in response to topography have not been quantitatively compared. In this study, the correlation between the morphology and differentiation of hippocampal and cortical neural progenitor cells was explored. The morphology of differentiated neural progenitors was quantified on an array of topographies. In spite of topographical contact guidance, cell morphology was observed to be under the influence of regional priming, even after differentiation. This influence of regional priming was further reflected in the correlations between the morphological properties and the differentiation efficiency of the cells. For example, neuronal differentiation efficiency of cortical neural progenitors showed a negative correlation with the number of neurites per neuron, but hippocampal neural progenitors showed a positive correlation. Correlations of morphological parameters and differentiation were further enhanced on gratings, which are known to promote neuronal differentiation. Thus, the neurogenecity and morphology of neural progenitors is highly responsive to certain topographies and is committed early on in development.
Collapse
Affiliation(s)
- Sharvari Sathe
- Mechanobiology Institute, National University of Singapore, T-Lab, #05-01, 5A Engineering Drive 1, Singapore 117411.
| | - Xiang Quan Chan
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Engineering Block 4, #04-08, Singapore 117583.
| | - Jing Jin
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Engineering Block 4, #04-08, Singapore 117583.
| | - Erik Bernitt
- Institut für Biophysik, Universität Bremen, Otto-Hahn-Allee 1, Bremen 28359, Germany.
| | - Hans-Günther Döbereiner
- Mechanobiology Institute, National University of Singapore, T-Lab, #05-01, 5A Engineering Drive 1, Singapore 117411.
- Institut für Biophysik, Universität Bremen, Otto-Hahn-Allee 1, Bremen 28359, Germany.
| | - Evelyn K F Yim
- Mechanobiology Institute, National University of Singapore, T-Lab, #05-01, 5A Engineering Drive 1, Singapore 117411.
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Engineering Block 4, #04-08, Singapore 117583.
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, NUHS Tower Block, Level 8, 1E Kent Ridge Road, Singapore 119228.
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada.
| |
Collapse
|
15
|
Darnell M, Young S, Gu L, Shah N, Lippens E, Weaver J, Duda G, Mooney D. Substrate Stress-Relaxation Regulates Scaffold Remodeling and Bone Formation In Vivo. Adv Healthc Mater 2017; 6. [PMID: 27995768 DOI: 10.1002/adhm.201601185] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Indexed: 12/28/2022]
Abstract
The rate of stress relaxation of adhesion substrates potently regulates cell fate and function in vitro, and in this study the authors test whether it can regulate bone formation in vivo by implanting alginate gels with differing rates of stress-relaxation carrying human mesenchymal stem cells into rat calvarial defects. After three months, the rats that received fast-relaxing hydrogels (t1/2 ≈ 50 s) show significantly more new bone growth than those that received slow-relaxing, stiffness-matched hydrogels. Strikingly, substantial bone regeneration results from rapidly relaxing hydrogels even in the absence of transplanted cells. Histological analysis reveals that the new bone formed with rapidly relaxing hydrogels is mature and accompanied by extensive matrix remodeling and hydrogel disappearance. This tissue invasion is found to be prominent after just two weeks and the ability of stress relaxation to modulate cell invasion is confirmed with in vitro analysis. These results suggest that substrate stress relaxation can mediate scaffold remodeling and thus tissue formation, giving tissue engineers a new parameter for optimizing bone regeneration.
Collapse
Affiliation(s)
- Max Darnell
- School of Engineering and Applied Sciences; Harvard University; Cambridge MA 02138 USA
- Wyss Institute for Biologically Inspired Engineering; Cambridge MA 02138 USA
| | - Simon Young
- School of Engineering and Applied Sciences; Harvard University; Cambridge MA 02138 USA
- Wyss Institute for Biologically Inspired Engineering; Cambridge MA 02138 USA
| | - Luo Gu
- School of Engineering and Applied Sciences; Harvard University; Cambridge MA 02138 USA
- Wyss Institute for Biologically Inspired Engineering; Cambridge MA 02138 USA
| | - Nisarg Shah
- School of Engineering and Applied Sciences; Harvard University; Cambridge MA 02138 USA
- Wyss Institute for Biologically Inspired Engineering; Cambridge MA 02138 USA
| | - Evi Lippens
- Julius Wolff Institute; Charité-Universitätsmedizin Berlin; 13353 Berlin Germany
- Berlin-Brandenburg Center for Regenerative Therapies; 13353 Berlin Germany
| | - James Weaver
- Wyss Institute for Biologically Inspired Engineering; Cambridge MA 02138 USA
| | - Georg Duda
- Wyss Institute for Biologically Inspired Engineering; Cambridge MA 02138 USA
- Julius Wolff Institute; Charité-Universitätsmedizin Berlin; 13353 Berlin Germany
- Berlin-Brandenburg Center for Regenerative Therapies; 13353 Berlin Germany
| | - David Mooney
- School of Engineering and Applied Sciences; Harvard University; Cambridge MA 02138 USA
- Wyss Institute for Biologically Inspired Engineering; Cambridge MA 02138 USA
| |
Collapse
|
16
|
Almeida B, Shukla A. Degradation of alkanethiol self-assembled monolayers in mesenchymal stem cell culture. J Biomed Mater Res A 2016; 105:464-474. [DOI: 10.1002/jbm.a.35922] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 09/16/2016] [Accepted: 09/29/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Bethany Almeida
- School of Engineering, Center for Biomedical Engineering; Institute for Molecular and Nanoscale Innovation, Brown University; Providence Rhode Island
| | - Anita Shukla
- School of Engineering, Center for Biomedical Engineering; Institute for Molecular and Nanoscale Innovation, Brown University; Providence Rhode Island
| |
Collapse
|
17
|
Wang Y, Lee JH, Shirahama H, Seo J, Glenn JS, Cho NJ. Extracellular Matrix Functionalization and Huh-7.5 Cell Coculture Promote the Hepatic Differentiation of Human Adipose-Derived Mesenchymal Stem Cells in a 3D ICC Hydrogel Scaffold. ACS Biomater Sci Eng 2016; 2:2255-2265. [PMID: 33465898 DOI: 10.1021/acsbiomaterials.6b00487] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In this study, we constructed a microporous hydrogel scaffold with hexagonally packed interconnected cavities and extracellular matrix (ECM)-functionalized interior surface, and systematically investigated the hepatic differentiation of human adipose-derived mesenchymal stem cells (hAD-MSCs) under the influence of three key factors: three-dimensional (3D) geometry, ECM presence, and coculture with hepatocyte-derived cell line. Results confirmed that (i) hepatic differentiation of hAD-MSC is more efficient in a 3D microporous scaffold than in 2D monolayer culture; (ii) the presence of both ECM components (fibronectin and collagen-I) in the scaffold is superior to collagen-I only, highlighting the importance of fibronectin; and (iii) coculture with Huh-7.5 hepatocyte-derived cells promoted liver-specific functions of the hAD-MSC-derived hepatocytes. The optimized differentiation process only took 21 days to complete, a time length that is shorter or at least comparable to previous reports, and more importantly, yielded an albumin production more than 10-fold higher than conventional 2D culture. Our approach of optimizing hAD-MSC hepatic differentiation could provide a potential solution to the challenges such as hepatocyte transplantation or the establishment of human physiologically relevant liver models in vitro.
Collapse
Affiliation(s)
- Yan Wang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue 639798, Singapore
| | - Jae-Ho Lee
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue 639798, Singapore
| | - Hitomi Shirahama
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue 639798, Singapore
| | - Jeongeun Seo
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue 639798, Singapore
| | - Jeffrey S Glenn
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Alway Building, Room M211, 300 Pasteur Drive, Stanford, California 94305, United States.,Department of Microbiology and Immunology, Stanford University School of Medicine, Fairchild Building, D300, 299 Campus Drive, Stanford, California 94305, United States
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue 639798, Singapore.,School of Chemical and Biomolecular Engineering, Nanyang Technological University, 62 Nanyang Avenue 637459, Singapore
| |
Collapse
|
18
|
Ding S, Kingshott P, Thissen H, Pera M, Wang PY. Modulation of human mesenchymal and pluripotent stem cell behavior using biophysical and biochemical cues: A review. Biotechnol Bioeng 2016; 114:260-280. [DOI: 10.1002/bit.26075] [Citation(s) in RCA: 298] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/27/2016] [Accepted: 08/07/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Sheryl Ding
- Department of Chemistry and Biotechnology; Swinburne University of Technology; Hawthorn 3122 Victoria Australia
| | - Peter Kingshott
- Department of Chemistry and Biotechnology; Swinburne University of Technology; Hawthorn 3122 Victoria Australia
| | | | - Martin Pera
- Department of Anatomy and Neuroscience, Walter and Eliza Hall Institute of Medical Research, Florey Neuroscience and Mental Health Institute; The University of Melbourne; Victoria Australia
| | - Peng-Yuan Wang
- Department of Chemistry and Biotechnology; Swinburne University of Technology; Hawthorn 3122 Victoria Australia
- CSIRO Manufacturing; Clayton Victoria Australia
- Department of Anatomy and Neuroscience, Walter and Eliza Hall Institute of Medical Research, Florey Neuroscience and Mental Health Institute; The University of Melbourne; Victoria Australia
- Graduate Institute of Nanomedicine and Medical Engineering; College of Biomedical Engineering; Taipei Medical University; Taipei Taiwan
| |
Collapse
|
19
|
Jung AR, Kim RY, Kim HW, Shrestha KR, Jeon SH, Cha KJ, Park YH, Kim DS, Lee JY. Nanoengineered Polystyrene Surfaces with Nanopore Array Pattern Alters Cytoskeleton Organization and Enhances Induction of Neural Differentiation of Human Adipose-Derived Stem Cells. Tissue Eng Part A 2016; 21:2115-24. [PMID: 25919423 DOI: 10.1089/ten.tea.2014.0346] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Human adipose-derived stem cells (hADSCs) can differentiate into various cell types depending on chemical and topographical cues. One topographical cue recently noted to be successful in inducing differentiation is the nanoengineered polystyrene surface containing nanopore array-patterned substrate (NP substrate), which is designed to mimic the nanoscale topographical features of the extracellular matrix. In this study, efficacies of NP and flat substrates in inducing neural differentiation of hADSCs were examined by comparing their substrate-cell adhesion rates, filopodia growth, nuclei elongation, and expression of neural-specific markers. The polystyrene nano Petri dishes containing NP substrates were fabricated by a nano injection molding process using a nickel electroformed nano-mold insert (Diameter: 200 nm. Depth of pore: 500 nm. Center-to-center distance: 500 nm). Cytoskeleton and filopodia structures were observed by scanning electron microscopy and F-actin staining, while cell adhesion was tested by vinculin staining after 24 and 48 h of seeding. Expression of neural specific markers was examined by real-time quantitative polymerase chain reaction and immunocytochemistry. Results showed that NP substrates lead to greater substrate-cell adhesion, filopodia growth, nuclei elongation, and expression of neural specific markers compared to flat substrates. These results not only show the advantages of NP substrates, but they also suggest that further study into cell-substrate interactions may yield great benefits for biomaterial engineering.
Collapse
Affiliation(s)
- Ae Ryang Jung
- 1 Department of Urology, Seoul St. Mary's Hospital, The Catholic University of Korea , Seoul, Korea
| | - Richard Y Kim
- 1 Department of Urology, Seoul St. Mary's Hospital, The Catholic University of Korea , Seoul, Korea
| | - Hyung Woo Kim
- 2 Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH) , Pohang, Korea
| | - Kshitiz Raj Shrestha
- 1 Department of Urology, Seoul St. Mary's Hospital, The Catholic University of Korea , Seoul, Korea
| | - Seung Hwan Jeon
- 1 Department of Urology, Seoul St. Mary's Hospital, The Catholic University of Korea , Seoul, Korea
| | - Kyoung Je Cha
- 2 Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH) , Pohang, Korea
| | - Yong Hyun Park
- 1 Department of Urology, Seoul St. Mary's Hospital, The Catholic University of Korea , Seoul, Korea
| | - Dong Sung Kim
- 2 Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH) , Pohang, Korea
| | - Ji Youl Lee
- 1 Department of Urology, Seoul St. Mary's Hospital, The Catholic University of Korea , Seoul, Korea
| |
Collapse
|
20
|
Ita K. Perspectives on Transdermal Electroporation. Pharmaceutics 2016; 8:E9. [PMID: 26999191 PMCID: PMC4810085 DOI: 10.3390/pharmaceutics8010009] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/01/2016] [Accepted: 03/10/2016] [Indexed: 01/17/2023] Open
Abstract
Transdermal drug delivery offers several advantages, including avoidance of erratic absorption, absence of gastric irritation, painlessness, noninvasiveness, as well as improvement in patient compliance. With this mode of drug administration, there is no pre-systemic metabolism and it is possible to increase drug bioavailability and half-life. However, only a few molecules can be delivered across the skin in therapeutic quantities. This is because of the hindrance provided by the stratum corneum. Several techniques have been developed and used over the last few decades for transdermal drug delivery enhancement. These include sonophoresis, iontophoresis, microneedles, and electroporation. Electroporation, which refers to the temporary perturbation of the skin following the application of high voltage electric pulses, has been used to increase transcutaneous flux values by several research groups. In this review, transdermal electroporation is discussed and the use of the technique for percutaneous transport of low and high molecular weight compounds described. This review also examines our current knowledge regarding the mechanisms of electroporation and safety concerns arising from the use of this transdermal drug delivery technique. Safety considerations are especially important because electroporation utilizes high voltage pulses which may have deleterious effects in some cases.
Collapse
Affiliation(s)
- Kevin Ita
- College of Pharmacy, Touro University, Mare Island-Vallejo, CA 94592, USA.
| |
Collapse
|
21
|
Kwak M, Han L, Chen JJ, Fan R. Interfacing Inorganic Nanowire Arrays and Living Cells for Cellular Function Analysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:5600-10. [PMID: 26349637 PMCID: PMC4676807 DOI: 10.1002/smll.201501236] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Revised: 06/26/2015] [Indexed: 04/14/2023]
Abstract
Inorganic nanowires are among the most attractive functional materials, which have emerged in the past two decades. They have demonstrated applications in information technology and energy conversion, but their utility in biological or biomedical research remains relatively under-explored. Although nanowire-based sensors have been frequently reported for biomolecular detection, interfacing nanowire arrays and living mammalian cells for the direct analysis of cellular functions is a very recent endeavor. Cell-penetrating nanowires enabled effective delivery of biomolecules, electrical and optical stimulation and recording of intracellular signals over a long period of time. Non-penetrating, high-density nanowire arrays display rich interactions between the nanostructured substrate and the micro/nanoscale features of cell surfaces. Such interactions enable efficient capture of rare cells including circulating tumor cells and trafficking leukocytes from complex biospecimens. It also serves as a platform for probing cell traction force and neuronal guidance. The most recent advances in the field that exploits nanowire arrays (both penetrating and non-penetrating) to perform rapid analysis of cellular functions potentially for disease diagnosis and monitoring are reviewed.
Collapse
Affiliation(s)
- Minsuk Kwak
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Lin Han
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Jonathan J. Chen
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Rong Fan
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA. Yale Cancer Center, New Haven, CT 06520, USA
| |
Collapse
|
22
|
Scott LE, Mair DB, Narang JD, Feleke K, Lemmon CA. Fibronectin fibrillogenesis facilitates mechano-dependent cell spreading, force generation, and nuclear size in human embryonic fibroblasts. Integr Biol (Camb) 2015; 7:1454-65. [PMID: 26412391 PMCID: PMC4630078 DOI: 10.1039/c5ib00217f] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Cells respond to mechanical cues from the substrate to which they are attached. These mechanical cues drive cell migration, proliferation, differentiation, and survival. Previous studies have highlighted three specific mechanisms through which substrate stiffness directly alters cell function: increasing stiffness drives (1) larger contractile forces; (2) increased cell spreading and size; and (3) altered nuclear deformation. While studies have shown that substrate mechanics are an important cue, the role of the extracellular matrix (ECM) has largely been ignored. The ECM is a crucial component of the mechanosensing system for two reasons: (1) many ECM fibrils are assembled by application of cell-generated forces, and (2) ECM proteins have unique mechanical properties that will undoubtedly alter the local stiffness sensed by a cell. We specifically focused on the role of the ECM protein fibronectin (FN), which plays a critical role in de novo tissue production. In this study, we first measured the effects of substrate stiffness on human embryonic fibroblasts by plating cells onto microfabricated pillar arrays (MPAs) of varying stiffness. Cells responded to increasing substrate stiffness by generating larger forces, spreading to larger sizes, and altering nuclear geometry. These cells also assembled FN fibrils across all stiffnesses, with optimal assembly occurring at approximately 6 kPa. We then inhibited FN assembly, which resulted in dramatic reductions in contractile force generation, cell spreading, and nuclear geometry across all stiffnesses. These findings suggest that FN fibrils play a critical role in facilitating cellular responses to substrate stiffness.
Collapse
Affiliation(s)
- Lewis E Scott
- Department of Biomedical Engineering, Virginia Commonwealth University, 401 West Main Street, Richmond, VA 23284-3067, USA.
| | - Devin B Mair
- Department of Biomedical Engineering, Virginia Commonwealth University, 401 West Main Street, Richmond, VA 23284-3067, USA.
| | - Jiten D Narang
- Department of Biomedical Engineering, Virginia Commonwealth University, 401 West Main Street, Richmond, VA 23284-3067, USA.
| | - Kirubel Feleke
- Department of Biomedical Engineering, Virginia Commonwealth University, 401 West Main Street, Richmond, VA 23284-3067, USA.
| | - Christopher A Lemmon
- Department of Biomedical Engineering, Virginia Commonwealth University, 401 West Main Street, Richmond, VA 23284-3067, USA.
| |
Collapse
|
23
|
Kim H, Kim I, Choi HJ, Kim SY, Yang EG. Neuron-like differentiation of mesenchymal stem cells on silicon nanowires. NANOSCALE 2015; 7:17131-17138. [PMID: 26422757 DOI: 10.1039/c5nr05787f] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The behavior of mammalian cells on vertical nanowire (NW) arrays, including cell spreading and the dynamic distribution of focal adhesions and cytoskeletal proteins, has been intensively studied to extend the implications for cellular manipulations in vitro. Prompted by the result that cells on silicon (Si) NWs showed morphological changes and reduced migration rates, we have explored the transition of mesenchymal stem cells into a neuronal lineage by using SiNWs with varying lengths. When human mesenchymal stem cells (hMSCs) were cultured on the longest SiNWs for 3 days, most of the cells exhibited elongated shapes with neurite-like extensions and dot-like focal adhesions that were prominently observed along with actin filaments. Under these circumstances, the cell motility analyzed by live cell imaging was found to decrease due to the presence of SiNWs. In addition, the slowed growth rate, as well as the reduced population of S phase cells, suggested that the cell cycle was likely arrested in response to the differentiation process. Furthermore, we measured the mRNA levels of several lineage-specific markers to confirm that the SiNWs actually induced neuron-like differentiation of the hMSCs while hampering their osteogenic differentiation. Taken together, our results implied that SiNWs were capable of inducing active reorganization of cellular behaviors, collectively guiding the fate of hMSCs into the neural lineage even in the absence of any inducing reagent.
Collapse
Affiliation(s)
- Hyunju Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791, South Korea.
| | | | | | | | | |
Collapse
|
24
|
Controlled electromechanical cell stimulation on-a-chip. Sci Rep 2015; 5:11800. [PMID: 26135970 PMCID: PMC4488866 DOI: 10.1038/srep11800] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 05/28/2015] [Indexed: 12/15/2022] Open
Abstract
Stem cell research has yielded promising advances in regenerative medicine, but standard assays generally lack the ability to combine different cell stimulations with rapid sample processing and precise fluid control. In this work, we describe the design and fabrication of a micro-scale cell stimulator capable of simultaneously providing mechanical, electrical, and biochemical stimulation, and subsequently extracting detailed morphological and gene-expression analysis on the cellular response. This micro-device offers the opportunity to overcome previous limitations and recreate critical elements of the in vivo microenvironment in order to investigate cellular responses to three different stimulations. The platform was validated in experiments using human bone marrow mesenchymal stem cells. These experiments demonstrated the ability for inducing changes in cell morphology, cytoskeletal fiber orientation and changes in gene expression under physiological stimuli. This novel bioengineering approach can be readily applied to various studies, especially in the fields of stem cell biology and regenerative medicine.
Collapse
|
25
|
Tijore A, Cai P, Nai MH, Zhuyun L, Yu W, Tay CY, Lim CT, Chen X, Tan LP. Role of Cytoskeletal Tension in the Induction of Cardiomyogenic Differentiation in Micropatterned Human Mesenchymal Stem Cell. Adv Healthc Mater 2015; 4:1399-407. [PMID: 25946615 DOI: 10.1002/adhm.201500196] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 04/13/2015] [Indexed: 01/08/2023]
Abstract
The role of biophysical induction methods such as cell micropatterning in stem cell differentiation has been well documented previously. However, the underlying mechanistic linkage of the engineered cell shape to directed lineage commitment remains poorly understood. Here, it is reported that micropatterning plays an important role in regulating the optimal cytoskeletal tension development in human mesenchymal stem cell (hMSC) via cell mechanotransduction pathways to induce cardiomyogenic differentiation. Cells are grown on fibronectin strip patterns to control cell polarization and morphology. These patterned cells eventually show directed commitment toward the myocardial lineage. The cell's mechanical properties (cell stiffness and cell traction forces) are observed to be very different for cells that have committed to the myocardial lineage when compared with that of control. These committed cells have mechanical properties that are significantly lower indicating a correlation between the micropatterning-induced differentiation and actomyosin-generated cytoskeletal tension within patterned cells. To study this correlation, patterned cells are treated with RhoA pathway inhibitor. Severely down-regulated cardiomyogenic marker expression is observed in those treated patterned cells, thus emphasizing the direct dependence of hMSCs differentiation fate on the cytoskeletal tension.
Collapse
Affiliation(s)
- Ajay Tijore
- Division of Materials Technology; School of Materials Science and Engineering; Nanyang Technological University; 50 Nanyang Avenue Singapore 639798 Singapore
| | - Pingqiang Cai
- Division of Materials Technology; School of Materials Science and Engineering; Nanyang Technological University; 50 Nanyang Avenue Singapore 639798 Singapore
| | - Mui Hoon Nai
- Mechanobiology Institute; National University of Singapore; 5A Engineering Drive 1 Singapore 117411 Singapore
| | - Li Zhuyun
- Division of Materials Technology; School of Materials Science and Engineering; Nanyang Technological University; 50 Nanyang Avenue Singapore 639798 Singapore
| | - Wang Yu
- Division of Materials Technology; School of Materials Science and Engineering; Nanyang Technological University; 50 Nanyang Avenue Singapore 639798 Singapore
| | - Chor Yong Tay
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Chwee Teck Lim
- Mechanobiology Institute; National University of Singapore; 5A Engineering Drive 1 Singapore 117411 Singapore
- Department of Biomedical Engineering; National University of Singapore; 9 Engineering Drive 1 Singapore 117585 Singapore
| | - Xiaodong Chen
- Division of Materials Technology; School of Materials Science and Engineering; Nanyang Technological University; 50 Nanyang Avenue Singapore 639798 Singapore
| | - Lay Poh Tan
- Division of Materials Technology; School of Materials Science and Engineering; Nanyang Technological University; 50 Nanyang Avenue Singapore 639798 Singapore
| |
Collapse
|
26
|
Yang K, Park E, Lee JS, Kim IS, Hong K, Park KI, Cho SW, Yang HS. Biodegradable Nanotopography Combined with Neurotrophic Signals Enhances Contact Guidance and Neuronal Differentiation of Human Neural Stem Cells. Macromol Biosci 2015; 15:1348-56. [DOI: 10.1002/mabi.201500080] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 05/08/2015] [Indexed: 11/07/2022]
Affiliation(s)
- Kisuk Yang
- Department of Biotechnology; Yonsei University; Seoul 120-749 Republic of Korea
- Department of Biomaterials Science and Engineering; Yonsei University; Seoul 120-749 Republic of Korea
| | - Esther Park
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine; Dankook University; Cheonan 330-714 Republic of Korea
| | - Jong Seung Lee
- Department of Biotechnology; Yonsei University; Seoul 120-749 Republic of Korea
| | - Il-Sun Kim
- Severance Children's Hospital, Department of Pediatrics and BK21 Plus Project for Medical Sciences; Yonsei University College of Medicine; Seoul 120-752 Republic of Korea
| | - Kwonho Hong
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine; Dankook University; Cheonan 330-714 Republic of Korea
| | - Kook In Park
- Severance Children's Hospital, Department of Pediatrics and BK21 Plus Project for Medical Sciences; Yonsei University College of Medicine; Seoul 120-752 Republic of Korea
| | - Seung-Woo Cho
- Department of Biotechnology; Yonsei University; Seoul 120-749 Republic of Korea
- Department of Neurosurgery; Yonsei University College of Medicine; Seoul 120-750 Republic of Korea
| | - Hee Seok Yang
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine; Dankook University; Cheonan 330-714 Republic of Korea
| |
Collapse
|
27
|
Tan KKB, Giam CSY, Leow MY, Chan CW, Yim EKF. Differential cell adhesion of breast cancer stem cells on biomaterial substrate with nanotopographical cues. J Funct Biomater 2015; 6:241-58. [PMID: 25905435 PMCID: PMC4493510 DOI: 10.3390/jfb6020241] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/10/2015] [Accepted: 04/15/2015] [Indexed: 01/05/2023] Open
Abstract
Cancer stem cells are speculated to have the capability of self-renewal and re-establishment of tumor heterogeneity, possibly involved in the potential relapse of cancer. CD44+CD24-/lowESA+ cells have been reported to possess tumorigenic properties, and these biomarkers are thought to be highly expressed in breast cancer stem cells. Cell behavior can be influenced by biomolecular and topographical cues in the natural microenvironment. We hypothesized that different cell populations in breast cancer tissue exhibit different adhesion characteristics on substrates with nanotopography. Adhesion characterizations were performed using human mammary epithelial cells (HMEC), breast cancer cell line MCF7 and primary invasive ductal carcinoma (IDC) cells obtained from patients' samples, on micro- and nano-patterned poly-L-lactic acid (PLLA) films. Topography demonstrated a significant effect on cell adhesion, and the effect was cell type dependent. Cells showed elongation morphology on gratings. The CD44+CD24-/lowESA+ subpopulation in MCF7 and IDC cells showed preferential adhesion on 350-nm gratings. Flow cytometry analysis showed that 350-nm gratings captured a significantly higher percentage of CD44+CD24- in MCF7. A slightly higher percentage of CD44+CD24-/lowESA+ was captured on the 350-nm gratings, although no significant difference was observed in the CD44+CD24-ESA+ in IDC cells across patterns. Taken together, the study demonstrated that the cancer stem cell subpopulation could be enriched using different nanopatterns. The enriched population could subsequently aid in the isolation and characterization of cancer stem cells.
Collapse
Affiliation(s)
- Kenneth K B Tan
- Mechanobiology Institute, National University of Singapore, T-Lab, #05-01, 5A Engineering Drive 1, Singapore 117411.
| | - Christine S Y Giam
- Department of Biomedical Engineering, National University of Singapore, EA-03-12, 9 Engineering Drive 1, Singapore 117575.
| | - Ming Yi Leow
- Department of Biomedical Engineering, National University of Singapore, EA-03-12, 9 Engineering Drive 1, Singapore 117575.
| | - Ching Wan Chan
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, NUHS Tower Block, Level 8, 1E Kent Ridge Road, Singapore 119228.
| | - Evelyn K F Yim
- Mechanobiology Institute, National University of Singapore, T-Lab, #05-01, 5A Engineering Drive 1, Singapore 117411.
- Department of Biomedical Engineering, National University of Singapore, EA-03-12, 9 Engineering Drive 1, Singapore 117575.
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, NUHS Tower Block, Level 8, 1E Kent Ridge Road, Singapore 119228.
| |
Collapse
|
28
|
Pan H, Xie Y, Li K, Hu D, Zhao J, Zheng X, Tang T. ROCK-regulated synergistic effect of macropore/nanowire topography on cytoskeletal distribution and cell differentiation. RSC Adv 2015. [DOI: 10.1039/c5ra19691d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Synergistic effect of cytoskeleton distribution on macro/nano surfaces led to higher intracellular tension and better differentiation performance.
Collapse
Affiliation(s)
- Houhua Pan
- Key Laboratory of Inorganic Coating Materials
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- People's Republic of China
| | - Youtao Xie
- Key Laboratory of Inorganic Coating Materials
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- People's Republic of China
| | - Kai Li
- Key Laboratory of Inorganic Coating Materials
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- People's Republic of China
| | - Dandan Hu
- Key Laboratory of Inorganic Coating Materials
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- People's Republic of China
| | - Jun Zhao
- Key Laboratory of Inorganic Coating Materials
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- People's Republic of China
| | - Xuebin Zheng
- Key Laboratory of Inorganic Coating Materials
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- People's Republic of China
| | - Tingting Tang
- Shanghai Key Laboratory of Orthopaedic Implants
- Department of Orthopaedics
- Shanghai Ninth People's Hospital
- Shanghai JiaoTong University School of Medicine
- Shanghai 200011
| |
Collapse
|
29
|
Tijore A, Wen F, Lam CRI, Tay CY, Tan LP. Modulating human mesenchymal stem cell plasticity using micropatterning technique. PLoS One 2014; 9:e113043. [PMID: 25401734 PMCID: PMC4234627 DOI: 10.1371/journal.pone.0113043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 10/18/2014] [Indexed: 12/21/2022] Open
Abstract
In our previous work, we have reported that enforced elongation of human mesenchymal stem cells (hMSCs) through micropatterning promoted their myocardial lineage commitment. However, whether this approach is robust enough to retain the commitment when subsequently subjected to different conditions remains unsolved. This de-differentiation, if any, would have significant implication on the application of these myocardial-like hMSCs either as tissue engineered product or in stem cell therapy. Herein, we investigated the robustness of micropatterning induced differentiation by evaluating the retention of myocardial differentiation in patterned hMSCs when challenged with non-myocardial differentiation cues. Altogether, we designed four groups of experiments; 1) Patterned hMSCs cultured in normal growth medium serving as a positive control; 2) Patterned hMSCs cultured in normal growth medium for 14 days followed by osteogenic and adipogenic media for next 7 days (to study the robustness of the effect of micropatterning); 3) Patterned hMSCs (initially grown in normal growth medium for 14 days) trypsinized and recultured in different induction media for next 7 days (to study the robustness of the effect of micropatterning without any shape constrain) and 4) Patterned hMSCs cultured in osteogenic and adipogenic media for 14 days (to study the effects of biochemical cues versus biophysical cues). It was found that hMSCs that were primed to commit to myocardial lineage (Groups 2 and 3) were able to maintain myocardial lineage commitment despite subsequent culturing in osteogenic and adipogenic media. However, for hMSCs that were not primed (Group 4), the biochemical cues seem to dominate over the biophysical cue in modulating hMSCs differentiation. It demonstrates that cell shape modulation is not only capable of inducing stem cell differentiation but also ensuring the permanent lineage commitment.
Collapse
Affiliation(s)
- Ajay Tijore
- Division of Materials Technology, School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Feng Wen
- Division of Materials Technology, School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Chee Ren Ivan Lam
- Division of Materials Technology, School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Chor Yong Tay
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Lay Poh Tan
- Division of Materials Technology, School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
- * E-mail:
| |
Collapse
|
30
|
Chen C, Dubin R, Kim MC. Emerging trends and new developments in regenerative medicine: a scientometric update (2000 - 2014). Expert Opin Biol Ther 2014; 14:1295-317. [PMID: 25077605 DOI: 10.1517/14712598.2014.920813] [Citation(s) in RCA: 382] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Our previous scientometric review of regenerative medicine provides a snapshot of the fast-growing field up to the end of 2011. The new review identifies emerging trends and new developments appearing in the literature of regenerative medicine based on relevant articles and reviews published between 2000 and the first month of 2014. AREAS COVERED Multiple datasets of publications relevant to regenerative medicine are constructed through topic search and citation expansion to ensure adequate coverage of the field. Networks of co-cited references representing the literature of regenerative medicine are constructed and visualized based on a combined dataset of 71,393 articles published between 2000 and 2014. Structural and temporal dynamics are identified in terms of most active topical areas and cited references. New developments are identified in terms of newly emerged clusters and research areas. Disciplinary-level patterns are visualized in dual-map overlays. EXPERT OPINION While research in induced pluripotent stem cells remains the most prominent area in the field of regenerative medicine, research related to clinical and therapeutic applications in regenerative medicine has experienced a considerable growth. In addition, clinical and therapeutic developments in regenerative medicine have demonstrated profound connections with the induced pluripotent stem cell research and stem cell research in general. A rapid adaptation of graphene-based nanomaterials in regenerative medicine is evident. Both basic research represented by stem cell research and application-oriented research typically found in tissue engineering are now increasingly integrated in the scientometric landscape of regenerative medicine. Tissue engineering is an interdisciplinary field in its own right. Advances in multiple disciplines such as stem cell research and graphene research have strengthened the connections between tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Chaomei Chen
- Drexel University, College of Computing and Informatics , 3141 Chestnut Street, Philadelphia, PA 19104-2875 , USA
| | | | | |
Collapse
|
31
|
Yang K, Jung H, Lee HR, Lee JS, Kim SR, Song KY, Cheong E, Bang J, Im SG, Cho SW. Multiscale, hierarchically patterned topography for directing human neural stem cells into functional neurons. ACS NANO 2014; 8:7809-7822. [PMID: 25050736 DOI: 10.1021/nn501182f] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Various biophysical and biochemical factors are important for determining the fate of neural stem cells (NSCs). Among biophysical signals, topographical stimulation by micro/nanopatterns has been applied to control NSC differentiation. In this study, we developed a hierarchically patterned substrate (HPS) platform that can synergistically enhance the differentiation of human NSCs (hNSCs) by simultaneously providing microscale and nanoscale spatial controls to facilitate the alignment of the cytoskeleton and the formation of focal adhesions. The multiscale HPS was fabricated by combining microgroove patterns (groove size: 1.5 μm), prepared by a conventional photolithographic process, and nanopore patterns (pore diameter: 10 nm), prepared from cylinder-forming block copolymer thin films. The hNSCs grown on the HPS exhibited not only a highly aligned, elongated morphology, but also a greatly enhanced differentiation into neuronal and astrocyte lineages, compared to hNSCs on a flat substrate (FS) or single-type patterned substrates [microgroove patterned substrate (MPS) and nanopore patterned substrate (NPS)]. Interestingly, the application of the HPS directed hNSC differentiation toward neurons rather than astrocytes. The expression of focal adhesion proteins in hNSCs was also significantly increased on the HPS compared to the FS, MPS, and NPS, likely a result of the presence of more focal contact points provided by nanopore structures. Inhibition of both β1 integrin-mediated binding and the intracellular Rho-associated protein kinase pathway of hNSCs eliminated the beneficial effects of the HPS on focal adhesion formation and actin filament alignment, which subsequently reduced hNSC differentiation. More importantly, hNSCs on the HPS differentiated into functional neurons exhibiting sodium currents and action potentials. The multiscale, hierarchically patterned topography would be useful for the design of functional biomaterial scaffolds to potentiate NSC therapeutic efficacy.
Collapse
|
32
|
Lee HJ, Koh WG. Hydrogel micropattern-incorporated fibrous scaffolds capable of sequential growth factor delivery for enhanced osteogenesis of hMSCs. ACS APPLIED MATERIALS & INTERFACES 2014; 6:9338-9348. [PMID: 24915062 DOI: 10.1021/am501714k] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In this study, we developed multi-functional biomimetic tissue engineered scaffolds that are capable of controlling the spatial locations of stem cells and releasing multiple growth factors with a controlled dose and rate of delivery. This novel scaffold was fabricated by combining electrospinning and photolithography and consisted of polycaprolactone (PCL)/gelatin fibers and poly(ethylene glycol) (PEG) hydrogel micropatterns. The utility of this system was investigated in the context of the osteogenesis of human mesenchymal stem cells (hMSCs). When hMSCs were seeded onto hydrogel-incorporated fibrous scaffolds, they selectively adhered and grew only in the fiber region due to the non-adhesiveness of the PEG hydrogel, enabling spatial positioning of hMSCs on a micrometer scale. For osteogenic differentiation of hMSCs, basic fibroblast growth factor (bFGF) and bone morphogenetic protein-2 (BMP-2) were loaded on the fibers and within the hydrogel matrix, respectively, to enable sequential delivery of low doses of bFGF during the early stages and sustained release of BMP-2 for long periods. According to in vitro studies, hMSCs cultured on the scaffolds capable of sequential delivery of bFGF and BMP-2 showed stronger osteogenic commitment in culture than those on scaffolds without any growth factors or scaffolds with single administration of either bFGF or BMP-2 under the same conditions. The results demonstrate that hydrogel-incorporated fibrous scaffolds can provide not only biomimetic structures with micropatterned nanostructures but also a suitable biochemical environment with controlled release of multiple growth factors, which may eventually facilitate the control of stem cell fates for various regenerative therapies.
Collapse
Affiliation(s)
- Hyun Jong Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, South Korea
| | | |
Collapse
|
33
|
Ko E, Cho SW. Biomimetic polymer scaffolds to promote stem cell-mediated osteogenesis. Int J Stem Cells 2014; 6:87-91. [PMID: 24386552 DOI: 10.15283/ijsc.2013.6.2.87] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2013] [Indexed: 01/12/2023] Open
Abstract
Bone tissue engineering using stem cells with osteogenic potential is a promising avenue of research for bone defect reconstruction. Organic, inorganic, and composite scaffolds have all been engineered to provide biomimetic microenvironments for stem cells. These scaffolds are designed to promote stem cell osteogenesis. Here, we review current technologies for developing biomimetic, osteoinductive scaffolds for stem cell applications. We summarize the reported in vitro and in vivo osteogenic effects of these scaffolds on stem cells.
Collapse
Affiliation(s)
- Eunkyung Ko
- Department of Biotechnology, Yonsei University, Seoul, Korea
| | - Seung-Woo Cho
- Department of Biotechnology, Yonsei University, Seoul, Korea
| |
Collapse
|
34
|
Teo BKK, Tan GDS, Yim EKF. The synergistic effect of nanotopography and sustained dual release of hydrophobic and hydrophilic neurotrophic factors on human mesenchymal stem cell neuronal lineage commitment. Tissue Eng Part A 2014; 20:2151-61. [PMID: 24932660 DOI: 10.1089/ten.tea.2013.0382] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A combination of nanotopography and controlled release is a potential platform for neuronal tissue engineering applications. Previous studies showed that combining both physical and chemical guidance was more effective than individual cues in the directional promotion of neurite outgrowth. Nanotopography can direct human mesenchymal stem cells (hMSCs) into neuronal lineage, while controlled release of neurotrophic factors can deliver temporally controlled biochemical signals. Hypothesizing that the synergistic effect will enhance neuronal lineage commitment of hMSCs, a fabrication method for multiple neurotrophic factors delivery from a single nanopatterned (350 nm gratings), poly-ɛ-caprolactone (PCL) film was developed and evaluated. Our results showed a synergistic effect on hMSC differentiation cultured on substrates with both nanotopographical and biochemical cues. The protein/drug encapsulation into PCL nanopatterned films was first optimized using a hydrophilic model protein, bovine serum albumin. The hydrophobic retinoic acid (RA) molecule was directly incorporated into PCL films. To achieve sustained release, hydrophilic nerve growth factor (NGF) was first encapsulated within polyelectrolyte complexation fibers before they were embedded within the nanopatterned PCL film. Our results showed that nanotopography on the fabricated polymer films remained intact, while release of bioactive RA and NGF was sustained over a period of 3 weeks. Under the combinatorial effect of physical and biochemical cues, we observed an enhanced upregulation of neuronal genes such as microtubule-associated protein 2 (MAP2) and neurofilament light (NFL) as compared with sustained delivery of individual cues and bolus delivery. Quantitative polymerase chain reaction analysis showed that MAP2 and NFL gene upregulation in hMSCs was most pronounced on the nanogratings with sustained release of both RA and NGF. The fabricated platforms supported the sustained delivery of multiple neurotrophins, including both hydrophobic and hydrophilic therapeutic agents, while providing surface patterning versatility for application in neural regeneration and tissue engineering.
Collapse
Affiliation(s)
- Benjamin Kim Kiat Teo
- 1 Department of Biomedical Engineering, National University of Singapore , Singapore
| | | | | |
Collapse
|
35
|
Yang K, Jung K, Ko E, Kim J, Park KI, Kim J, Cho SW. Nanotopographical manipulation of focal adhesion formation for enhanced differentiation of human neural stem cells. ACS APPLIED MATERIALS & INTERFACES 2013; 5:10529-40. [PMID: 23899585 DOI: 10.1021/am402156f] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Manipulating neural stem cell (NSC) fate is of great importance for improving the therapeutic efficacy of NSCs to treat neurodegenerative disorders. Biophysical cues, in addition to biochemical factors, regulate NSC phenotype and function. In this study, we assessed the extent to which surface nanotopography of culture substrates modulates human NSC (hNSC) differentiation. Fibronectin-coated polymer substrates with diverse nanoscale shapes (groove and pillar) and dimensions (ranging from 300 to 1500 nm groove width and pillar gap) were used to investigate the effects of topographical cues on hNSC morphology, alignment, focal adhesion, and differentiation. The majority of nanopatterned substrates induced substantial changes in cellular morphology and alignment along the patterned shapes, leading to alterations in focal adhesion and F-actin reorganization. Certain types of nanopatterned substrates, in particular the ones with small nanostructures (e.g., 300-300 nm groove ridges and 300-300 nm pillar diameter gaps), were found to effectively enhance focal adhesion complex development. Consequently, these substrates enhanced hNSC differentiation toward neurons and astrocytes. Nanotopographical-induced formation of focal adhesions in hNSCs activates integrin-mediated mechanotransduction and intracellular signaling pathways such as MEK-ERK, which may ultimately promote gene expression related to NSC differentiation. This strategy of manipulating matrix surface topography could be applied to develop culture substrates and tissue engineered scaffolds that improve the efficacy of NSC therapeutics.
Collapse
Affiliation(s)
- Kisuk Yang
- Department of Biotechnology and ‡Department of Biomaterials Science and Engineering, Yonsei University , Seoul 120-749, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
36
|
Pang NS, Lee SJ, Kim E, Shin DM, Cho SW, Park W, Zhang X, Jung IY. Effect of EDTA on attachment and differentiation of dental pulp stem cells. J Endod 2013; 40:811-7. [PMID: 24862708 DOI: 10.1016/j.joen.2013.09.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 08/23/2013] [Accepted: 09/03/2013] [Indexed: 12/13/2022]
Abstract
INTRODUCTION In regenerative endodontics, it is believed that EDTA induces odontoblast differentiation by releasing growth factors from the dentin matrix. The aim of this study was to evaluate the effect of EDTA on the attachment and differentiation of dental pulp stem cells (DPSCs). We also investigated whether the behavioral changes of DPSCs could be caused by biochemical components released from EDTA-treated dentin. METHODS Cells were obtained from human third molars, and the stem-like nature of the cells was investigated by flow cytometric analysis. DPSCs were seeded on EDTA-treated and untreated dentin slices. After 3 days of culture, cell attachment was evaluated by cell density, fibronectin 1 gene expression level using quantitative real-time polymerase chain reaction, and scanning electron microscopy. After 21 days of culture, the expression of differentiation genes was investigated by quantitative real-time polymerase chain reaction, and calcification was observed using alizarin red S staining. To investigate the EDTA-induced growth factor release, DPSCs were cultured with or without direct contact with the EDTA-treated dentin surface. RESULTS After 3 days of culture, both the cell density and fibronectin expression level were significantly higher in the EDTA-treated dentin group. After 3 weeks, the DPSCs on the EDTA-treated dentin surfaces showed higher expression levels of dentin sialophosphoprotein and dentin matrix protein 1, whereas the DPSCs cultured without direct contact with the EDTA-treated dentin surfaces did not exhibit these findings. CONCLUSIONS Our results showed that EDTA induced cell attachment and odontoblastic/osteoblastic differentiation, which was observed only in the group in which the DPSCs were placed in direct contact with the EDTA-treated dentin surfaces. These findings suggest that EDTA is beneficial for achieving successful outcomes in regenerative endodontics.
Collapse
Affiliation(s)
- Nan-Sim Pang
- Department of Advanced General Dentistry, College of Dentistry, Yonsei University, Seoul, Korea
| | - Seung Jong Lee
- Department of Conservative Dentistry, College of Dentistry, Yonsei University, Seoul, Korea
| | - Euiseong Kim
- Department of Conservative Dentistry, College of Dentistry, Yonsei University, Seoul, Korea
| | - Dong Min Shin
- Department of Oral Biology, College of Dentistry, Yonsei University, Seoul, Korea
| | - Sung Won Cho
- Department of Oral Biology, College of Dentistry, Yonsei University, Seoul, Korea
| | - Wonse Park
- Department of Advanced General Dentistry, College of Dentistry, Yonsei University, Seoul, Korea
| | - Xianglan Zhang
- Department of Oral Cancer Research Institute, College of Dentistry, Yonsei University, Seoul, Korea; Department of Pathology, Yanbian University Hospital, Yanji City, Jilin Province, China
| | - Il-Young Jung
- Department of Conservative Dentistry, College of Dentistry, Yonsei University, Seoul, Korea.
| |
Collapse
|
37
|
Kim MJ, Lee B, Yang K, Park J, Jeon S, Um SH, Kim DI, Im SG, Cho SW. BMP-2 peptide-functionalized nanopatterned substrates for enhanced osteogenic differentiation of human mesenchymal stem cells. Biomaterials 2013; 34:7236-46. [DOI: 10.1016/j.biomaterials.2013.06.019] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 06/12/2013] [Indexed: 01/23/2023]
|
38
|
Bressan E, Carraro A, Ferroni L, Gardin C, Sbricoli L, Guazzo R, Stellini E, Roman M, Pinton P, Sivolella S, Zavan B. Nanotechnology to drive stem cell commitment. Nanomedicine (Lond) 2013; 8:469-86. [PMID: 23477337 DOI: 10.2217/nnm.13.12] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Stem cells (SCs) are undifferentiated cells responsible for the growth, homeostasis and repair of many tissues. The maintenance and survival of SCs is strongly influenced by several stimuli from the local microenvironment. The majority of signaling molecules interact with SCs at the nanoscale level. Therefore, scaffolds with surface nanostructures have potential applications for SCs and in the field of regenerative medicine. Although some strategies have already reached the field of cell biology, strategies based on modification at nanoscale level are new players in the fields of SCs and tissue regeneration. The introduction of the possibility to perform such modifications to these fields is probably due to increasing improvements in nanomaterials for biomedical applications, as well as new insights into SC biology. The aim of the present review is to exhibit the most recent applications of nanostructured materials that drive the commitment of adult SCs for potential clinical applications.
Collapse
Affiliation(s)
- Eriberto Bressan
- Department of Neurosciences, University of Padova, Via Venezia 90, 35100 Padova, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Ko E, Yang K, Shin J, Cho SW. Polydopamine-assisted osteoinductive peptide immobilization of polymer scaffolds for enhanced bone regeneration by human adipose-derived stem cells. Biomacromolecules 2013; 14:3202-13. [PMID: 23941596 DOI: 10.1021/bm4008343] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Immobilization of osteoinductive molecules, including growth factors or peptides, on polymer scaffolds is critical for improving stem cell-mediated bone tissue engineering. Such molecules provide osteogenesis-stimulating signals for stem cells. Typical methods used for polymeric scaffold modification (e.g., chemical conjugation or physical adsorption), however, have limitations (e.g., multistep, complicated procedures, material denaturation, batch-to-batch inconsistency, and inadequate conjugation) that diminish the overall efficiency of the process. Therefore, in this study, we report a biologically inspired strategy to prepare functional polymer scaffolds that efficiently regulate the osteogenic differentiation of human adipose-derived stem cells (hADSCs). Polymerization of dopamine (DA), a repeated motif observed in mussel adhesive protein, under alkaline pH conditions, allows for coating of a polydopamine (pDA) layer onto polymer scaffolds. Our study demonstrates that predeposition of a pDA layer facilitates highly efficient, simple immobilization of peptides derived from osteogenic growth factor (bone morphogenetic protein-2; BMP-2) on poly(lactic-co-glycolic acid) (PLGA) scaffolds via catechol chemistry. The BMP-2 peptide-immobilized PLGA scaffolds greatly enhanced in vitro osteogenic differentiation and calcium mineralization of hADSCs using either osteogenic medium or nonosteogenic medium. Furthermore, transplantation of hADSCs using pDA-BMP-2-PLGA scaffolds significantly promoted in vivo bone formation in critical-sized calvarial bone defects. Therefore, pDA-mediated catechol functionalization would be a simple and effective method for developing tissue engineering scaffolds exhibiting enhanced osteoinductivity. To the best of our knowledge, this is the first study demonstrating that pDA-mediated surface modification of polymer scaffolds potentiates the regenerative capacity of human stem cells for healing tissue defect in vivo.
Collapse
Affiliation(s)
- Eunkyung Ko
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea
| | | | | | | |
Collapse
|
40
|
MacQueen L, Sun Y, Simmons CA. Mesenchymal stem cell mechanobiology and emerging experimental platforms. J R Soc Interface 2013; 10:20130179. [PMID: 23635493 PMCID: PMC3673151 DOI: 10.1098/rsif.2013.0179] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 04/10/2013] [Indexed: 12/18/2022] Open
Abstract
Experimental control over progenitor cell lineage specification can be achieved by modulating properties of the cell's microenvironment. These include physical properties of the cell adhesion substrate, such as rigidity, topography and deformation owing to dynamic mechanical forces. Multipotent mesenchymal stem cells (MSCs) generate contractile forces to sense and remodel their extracellular microenvironments and thereby obtain information that directs broad aspects of MSC function, including lineage specification. Various physical factors are important regulators of MSC function, but improved understanding of MSC mechanobiology requires novel experimental platforms. Engineers are bridging this gap by developing tools to control mechanical factors with improved precision and throughput, thereby enabling biological investigation of mechanics-driven MSC function. In this review, we introduce MSC mechanobiology and review emerging cell culture platforms that enable new insights into mechanobiological control of MSCs. Our main goals are to provide engineers and microtechnology developers with an up-to-date description of MSC mechanobiology that is relevant to the design of experimental platforms and to introduce biologists to these emerging platforms.
Collapse
Affiliation(s)
- Luke MacQueen
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Yu Sun
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Craig A. Simmons
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
41
|
Ankam S, Teo BKK, Kukumberg M, Yim EKF. High throughput screening to investigate the interaction of stem cells with their extracellular microenvironment. Organogenesis 2013; 9:128-42. [PMID: 23899508 PMCID: PMC3896583 DOI: 10.4161/org.25425] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 05/19/2013] [Accepted: 06/15/2013] [Indexed: 02/06/2023] Open
Abstract
Stem cells in vivo are housed within a functional microenvironment termed the "stem cell niche." As the niche components can modulate stem cell behaviors like proliferation, migration and differentiation, evaluating these components would be important to determine the most optimal platform for their maintenance or differentiation. In this review, we have discussed methods and technologies that have aided in the development of high throughput screening assays for stem cell research, including enabling technologies such as the well-established multiwell/microwell plates and robotic spotting, and emerging technologies like microfluidics, micro-contact printing and lithography. We also discuss the studies that utilized high throughput screening platform to investigate stem cell response to extracellular matrix, topography, biomaterials and stiffness gradients in the stem cell niche. The combination of the aforementioned techniques could lay the foundation for new perspectives in further development of high throughput technology and stem cell research.
Collapse
Affiliation(s)
- Soneela Ankam
- Department of Bioengineering; National University of Singapore; Singapore
- Duke-NUS Graduate Medical School; Singapore
| | - Benjamin KK Teo
- Department of Bioengineering; National University of Singapore; Singapore
- Mechanobiology Institute Singapore; National University of Singapore; Singapore
| | - Marek Kukumberg
- Mechanobiology Institute Singapore; National University of Singapore; Singapore
| | - Evelyn KF Yim
- Department of Bioengineering; National University of Singapore; Singapore
- Mechanobiology Institute Singapore; National University of Singapore; Singapore
- Department of Surgery; National University of Singapore; Singapore
| |
Collapse
|
42
|
Teo BKK, Wong ST, Lim CK, Kung TYS, Yap CH, Ramagopal Y, Romer LH, Yim EKF. Nanotopography modulates mechanotransduction of stem cells and induces differentiation through focal adhesion kinase. ACS NANO 2013; 7:4785-98. [PMID: 23672596 DOI: 10.1021/nn304966z] [Citation(s) in RCA: 289] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Regulated biophysical cues, such as nanotopography, have been shown to be integral for tissue regeneration and embryogenesis in the stem cell niche. Tissue homeostasis involves the interaction of multipotent cells with nanoscaled topographical features in their ECM to regulate aspects of cell behavior. Synthetic nanostructures can drive specific cell differentiation, but the sensing mechanisms for nanocues remain poorly understood. Here, we report that nanotopography-induced human mesenchymal stem cell (hMSC) differentiation through cell mechanotransduction is modulated by the integrin-activated focal adhesion kinase (FAK). On nanogratings with 250 nm line width on polydimethylsiloxane, hMSCs developed aligned stress fibers and showed an upregulation of neurogenic and myogenic differentiation markers. The observed cellular focal adhesions within these cells were also significantly smaller and more elongated on the nanogratings compared to microgratings or unpatterned control. In addition, our mechanistic study confirmed that this regulation was dependent upon actomyosin contractility, suggesting a direct force-dependent mechanism. The topography-induced differentiation was observed on different ECM compositions but the response was not indicative of a direct ECM-induced hMSC differentiation pathway. FAK phosphorylation was required for topography-induced hMSC differentiation while FAK overexpression overruled the topographical cues in determining cell lineage bias. The results indicated that FAK activity had a direct impact on topography-induced gene expression, and that this effect of FAK was independent of cell shape. These findings suggest that hMSC sense and transduce nanotopographical signals through focal adhesions and actomyosin cytoskeleton contractility to induce differential gene expression.
Collapse
Affiliation(s)
- Benjamin Kim Kiat Teo
- Department of Bioengineering, National University of Singapore, 9 Engineering Drive 1, EA 03-12, Singapore 117576, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
43
|
The modulation of endothelial cell morphology, function, and survival using anisotropic nanofibrillar collagen scaffolds. Biomaterials 2013; 34:4038-4047. [PMID: 23480958 DOI: 10.1016/j.biomaterials.2013.02.036] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 02/12/2013] [Indexed: 01/06/2023]
Abstract
Endothelial cells (ECs) are aligned longitudinally under laminar flow, whereas they are polygonal and poorly aligned in regions of disturbed flow. The unaligned ECs in disturbed flow fields manifest altered function and reduced survival that promote lesion formation. We demonstrate that the alignment of the ECs may directly influence their biology, independent of fluid flow. We developed aligned nanofibrillar collagen scaffolds that mimic the structure of collagen bundles in blood vessels, and examined the effects of these materials on EC alignment, function, and in vivo survival. ECs cultured on 30-nm diameter aligned fibrils re-organized their F-actin along the nanofibril direction, and were 50% less adhesive for monocytes than the ECs grown on randomly oriented fibrils. After EC transplantation into both subcutaneous tissue and the ischemic hindlimb, EC viability was enhanced when ECs were cultured and implanted on aligned nanofibrillar scaffolds, in contrast to non-patterned scaffolds. ECs derived from human induced pluripotent stem cells and cultured on aligned scaffolds also persisted for over 28 days, as assessed by bioluminescence imaging, when implanted in ischemic tissue. By contrast, ECs implanted on scaffolds without nanopatterning generated no detectable bioluminescent signal by day 4 in either normal or ischemic tissues. We demonstrate that 30-nm aligned nanofibrillar collagen scaffolds guide cellular organization, modulate endothelial inflammatory response, and enhance cell survival after implantation in normal and ischemic tissues.
Collapse
|
44
|
Piret G, Perez MT, Prinz CN. Neurite outgrowth and synaptophysin expression of postnatal CNS neurons on GaP nanowire arrays in long-term retinal cell culture. Biomaterials 2012; 34:875-87. [PMID: 23131535 DOI: 10.1016/j.biomaterials.2012.10.042] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Accepted: 10/16/2012] [Indexed: 12/18/2022]
Abstract
We have established long-term cultures of postnatal retinal cells on arrays of gallium phosphide nanowires of different geometries. Rod and cone photoreceptors, ganglion cells and bipolar cells survived on the substrates for at least 18 days in vitro. Glial cells were also observed, but these did not overgrow the neuronal population. On nanowires, neurons extended numerous long and branched neurites that expressed the synaptic vesicle marker synaptophysin. The longest nanowires (4 μm long) allowed a greater attachment and neurite elongation and our analysis suggests that the length of the nanowire per se and/or the adsorption of biomolecules on the nanowires may have been important factors regulating the observed cell behavior. The study thus shows that CNS neurons are amenable to gallium phosphide nanowires, probably as they create conditions that more closely resemble those encountered in the in vivo environment. These findings suggest that gallium phosphide nanowires may be considered as a material of interest when improving existing or designing the next generation of implantable devices. The features of gallium phosphide nanowires can be precisely controlled, making them suitable for this purpose.
Collapse
Affiliation(s)
- Gaëlle Piret
- Division of Solid State Physics, The Nanometer Structure Consortium, Lund University, Sweden
| | | | | |
Collapse
|
45
|
Abstract
Stem cells interact with biochemical and biophysical signals in their extracellular environment. The biophysical signals are transduced to the stem cells either through the underlying extracellular matrix or externally applied forces. Increasing evidence has shown that these biophysical cues such as substrate stiffness and topography can direct stem cell differentiation and determine the cell fate. The mechanism of the biophysically induced differentiation is not understood; however, several key signaling components have been demonstrated to be involved in the force-mediated differentiation. This review will focus on focal adhesions, cytoskeletal contractility, Rho GTPase signaling and nuclear regulation in connection with biophysically induced differentiation. We will briefly introduce the important components of the mechanotransduction machinery, and the recent developments in the study of force-dependent stem cell differentiation.
Collapse
|
46
|
Łopacińska JM, Grădinaru C, Wierzbicki R, Købler C, Schmidt MS, Madsen MT, Skolimowski M, Dufva M, Flyvbjerg H, Mølhave K. Cell motility, morphology, viability and proliferation in response to nanotopography on silicon black. NANOSCALE 2012; 4:3739-3745. [PMID: 22614757 DOI: 10.1039/c2nr11455k] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Knowledge of cells' interactions with nanostructured materials is fundamental for bio-nanotechnology. We present results for how individual mouse fibroblasts from cell line NIH3T3 respond to highly spiked surfaces of silicon black that were fabricated by maskless reactive ion etching (RIE). We did standard measurements of cell viability, proliferation, and morphology on various surfaces. We also analyzed the motility of cells on the same surfaces, as recorded in time lapse movies of sparsely populated cell cultures. We find that motility and morphology vary strongly with nano-patterns, while viability and proliferation show little dependence on substrate type. We conclude that motility analysis can show a wide range of cell responses e.g. over a factor of two in cell speed to different nano-topographies, where standard assays, such as viability or proliferation, in the tested cases show much less variation of the order 10-20%.
Collapse
Affiliation(s)
- Joanna M Łopacińska
- Department of Micro- and Nanotechnology, Technical University of Denmark, Ørsteds Plads 345a, 2800 Kongens Lyngby, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Review of biophysical factors affecting osteogenic differentiation of human adult adipose-derived stem cells. Biophys Rev 2012; 5:11-28. [PMID: 28510177 DOI: 10.1007/s12551-012-0079-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Accepted: 03/15/2012] [Indexed: 12/11/2022] Open
Abstract
Developing bone is subject to the control of a broad variety of influences in vivo. For bone repair applications, in vitro osteogenic assays are routinely used to test the responses of bone-forming cells to drugs, hormones, and biomaterials. Results of these assays are used to predict the behavior of bone-forming cells in vivo. Stem cell research has shown promise for enhancing bone repair. In vitro osteogenic assays to test the bone-forming response of stem cells typically use chemical solutions. Stem cell in vitro osteogenic assays often neglect important biophysical cues, such as the forces associated with regular weight-bearing exercise, which promote bone formation. Incorporating more biophysical cues that promote bone formation would improve in vitro osteogenic assays for stem cells. Improved in vitro osteogenic stimulation opens opportunities for "pre-conditioning" cells to differentiate towards the desired lineage. In this review, we explore the role of select biophysical factors-growth surfaces, tensile strain, fluid flow and electromagnetic stimulation-in promoting osteogenic differentiation of stem cells from human adipose. Emphasis is placed on the potential for physical microenvironment manipulation to translate tissue engineering and stem cell research into widespread clinical usage.
Collapse
|
48
|
Jin S, Yao H, Krisanarungson P, Haukas A, Ye K. Porous membrane substrates offer better niches to enhance the Wnt signaling and promote human embryonic stem cell growth and differentiation. Tissue Eng Part A 2012; 18:1419-30. [PMID: 22429220 DOI: 10.1089/ten.tea.2011.0474] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Human embryonic stem cells (hESCs) require specific niches for adhesion, expansion, and lineage-specific differentiation. In this study, we showed that a membrane substrate offers better tissue niches for hESC attachment, spreading, proliferation, and differentiation. The cell doubling time was shortened from 46.3±5.7 h for hESCs grown on solid substrates to 25.6±2.6 h for those on polyester (PE) membrane substrates with pore size of 0.4 μm. In addition, we observed an increase of approximately five- to ninefold of definitive endoderm marker gene expression in hESCs differentiated on PE or polyethylene terephthalate membrane substrates. Global gene expression analysis revealed upregulated expressions of a number of extracellular matrix and cell adhesion molecules in hESCs grown on membrane substrates. Further, an enhanced nuclear translocation of β-catenin was detected in these cells. These observations suggested the augmentation of Wnt signaling in hESCs grown on membrane substrates. These results also demonstrated that a membrane substrate can offer better physicochemical cues for enhancing in vitro hESC attachment, proliferation, and differentiation.
Collapse
Affiliation(s)
- Sha Jin
- Biomedical Engineering Program, College of Engineering, University of Arkansas, 700 Research Center Blvd., Fayetteville, AR 72701, USA.
| | | | | | | | | |
Collapse
|
49
|
Nanostructured material surfaces--preparation, effect on cellular behavior, and potential biomedical applications: a review. Int J Artif Organs 2012; 34:963-85. [PMID: 22161281 DOI: 10.5301/ijao.5000012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2011] [Indexed: 12/14/2022]
Abstract
Nanostructures play important roles in vivo, where nanoscaled features of extracellular matrix (ECM) components influence cell behavior and resultant tissue formation. This review summarizes some of the recent developments in fostering new concepts and approaches to nanofabrication, such as top-down and bottom-up and combinations of the two. As in vitro investigations demonstrate that man-made nanotopography can be used to control cell reactions to a material surface, its potential application in implant design and tissue engineering becomes increasingly evident. Therefore, we present recent progress in directing cell fate in the field of cell mechanics, which has grown rapidly over the last few years, and in various tissue-engineering applications. The main focus is on the initial responses of cells to nanostructured surfaces and subsequent influences on cellular functions. Specific examples are also given to illustrate the potential nanostructures may have for biomedical applications and regenerative medicine.
Collapse
|
50
|
Brammer KS, Frandsen CJ, Jin S. TiO2 nanotubes for bone regeneration. Trends Biotechnol 2012; 30:315-22. [PMID: 22424819 DOI: 10.1016/j.tibtech.2012.02.005] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 02/14/2012] [Accepted: 02/15/2012] [Indexed: 01/09/2023]
Abstract
Nanostructured materials are believed to play a fundamental role in orthopedic research because bone itself has a structural hierarchy at the first level in the nanometer regime. Here, we report on titanium oxide (TiO(2)) surface nanostructures utilized for orthopedic implant considerations. Specifically, the effects of TiO(2) nanotube surfaces for bone regeneration will be discussed. This unique 3D tube shaped nanostructure created by electrochemical anodization has profound effects on osteogenic cells and is stimulating new avenues for orthopedic material surface designs. There is a growing body of data elucidating the benefits of using TiO(2) nanotubes for enhanced orthopedic implant surfaces. The current trends discussed within foreshadow the great potential of TiO(2) nanotubes for clinical use.
Collapse
Affiliation(s)
- Karla S Brammer
- Materials Science and Engineering, University of California, San Diego, La Jolla, CA 92093-0411, USA
| | | | | |
Collapse
|