1
|
Lv P, Liu J, Liu X. The role of ubiquitin-conjugating enzyme in the process of spermatogenesis. Reprod Biol Endocrinol 2024; 22:110. [PMID: 39198846 PMCID: PMC11351103 DOI: 10.1186/s12958-024-01282-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/15/2024] [Indexed: 09/01/2024] Open
Abstract
The ubiquitination is crucial for controlling cellular homeostasis and protein modification, in which ubiquitin-conjugating enzyme (E2) acts as the central player in the ubiquitination system. Ubiquitin-conjugating enzymes, which have special domains that catalyse substrates, have sequence discrepancies and modulate various pathophysiological processes in different cells of multiple organisms. E2s take part in the mitosis of primordial germ cells, meiosis of spermatocytes and the formation of mature haploid spermatids to maintain normal male fertility. In this review, we summarize the various types of E2s and their functions during distinct stages of spermatogenesis.
Collapse
Affiliation(s)
- Peng Lv
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Andrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Institute of Andrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Xiaming Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Institute of Andrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
2
|
Sutovsky P, Hamilton LE, Zigo M, Ortiz D’Avila Assumpção ME, Jones A, Tirpak F, Agca Y, Kerns K, Sutovsky M. Biomarker-based human and animal sperm phenotyping: the good, the bad and the ugly†. Biol Reprod 2024; 110:1135-1156. [PMID: 38640912 PMCID: PMC11180624 DOI: 10.1093/biolre/ioae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/28/2024] [Accepted: 04/17/2024] [Indexed: 04/21/2024] Open
Abstract
Conventional, brightfield-microscopic semen analysis provides important baseline information about sperm quality of an individual; however, it falls short of identifying subtle subcellular and molecular defects in cohorts of "bad," defective human and animal spermatozoa with seemingly normal phenotypes. To bridge this gap, it is desirable to increase the precision of andrological evaluation in humans and livestock animals by pursuing advanced biomarker-based imaging methods. This review, spiced up with occasional classic movie references but seriously scholastic at the same time, focuses mainly on the biomarkers of altered male germ cell proteostasis resulting in post-testicular carryovers of proteins associated with ubiquitin-proteasome system. Also addressed are sperm redox homeostasis, epididymal sperm maturation, sperm-seminal plasma interactions, and sperm surface glycosylation. Zinc ion homeostasis-associated biomarkers and sperm-borne components, including the elements of neurodegenerative pathways such as Huntington and Alzheimer disease, are discussed. Such spectrum of biomarkers, imaged by highly specific vital fluorescent molecular probes, lectins, and antibodies, reveals both obvious and subtle defects of sperm chromatin, deoxyribonucleic acid, and accessory structures of the sperm head and tail. Introduction of next-generation image-based flow cytometry into research and clinical andrology will soon enable the incorporation of machine and deep learning algorithms with the end point of developing simple, label-free methods for clinical diagnostics and high-throughput phenotyping of spermatozoa in humans and economically important livestock animals.
Collapse
Affiliation(s)
- Peter Sutovsky
- Division of Animal Sciences, University of Missouri, Columbia MO, USA
- Department of Obstetrics, Gynecology and Women’s Health, University of Missouri, Columbia MO, USA
| | - Lauren E Hamilton
- Division of Animal Sciences, University of Missouri, Columbia MO, USA
| | - Michal Zigo
- Division of Animal Sciences, University of Missouri, Columbia MO, USA
| | - Mayra E Ortiz D’Avila Assumpção
- Division of Animal Sciences, University of Missouri, Columbia MO, USA
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | - Alexis Jones
- Division of Animal Sciences, University of Missouri, Columbia MO, USA
| | - Filip Tirpak
- Division of Animal Sciences, University of Missouri, Columbia MO, USA
| | - Yuksel Agca
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Karl Kerns
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Miriam Sutovsky
- Division of Animal Sciences, University of Missouri, Columbia MO, USA
| |
Collapse
|
3
|
Feng M, Wang J, Li K, Nakamura F. UBE2A/B is the trans-acting factor mediating mechanotransduction and contact inhibition. Biochem J 2023; 480:1659-1674. [PMID: 37818922 DOI: 10.1042/bcj20230208] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 10/13/2023]
Abstract
Mechanotransduction and contact inhibition (CI) control gene expression to regulate proliferation, differentiation, and even tumorigenesis of cells. However, their downstream trans-acting factors (TAFs) are not well known due to a lack of a high-throughput method to quantitatively detect them. Here, we developed a method to identify TAFs on the cis-acting sequences that reside in open chromatin or DNaseI-hypersensitive sites (DHSs) and to detect nucleocytoplasmic shuttling TAFs using computational and experimental screening. The DHS-proteomics revealed over 1000 potential mechanosensing TAFs and UBE2A/B (Ubiquitin-conjugating enzyme E2 A) was experimentally identified as a force- and CI-dependent nucleocytoplasmic shuttling TAF. We found that translocation of YAP/TAZ and UBE2A/B are distinctively regulated by inhibition of myosin contraction, actin-polymerization, and CI depending on cell types. Next-generation sequence analysis revealed many downstream genes including YAP are transcriptionally regulated by ubiquitination of histone by UBE2A/B. Our results suggested a YAP-independent mechanotransduction and CI pathway mediated by UBE2A/B.
Collapse
Affiliation(s)
- Mingwei Feng
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Jiale Wang
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Kangjing Li
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Fumihiko Nakamura
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| |
Collapse
|
4
|
Wang J, Zhou Q, Ding J, Yin T, Ye P, Zhang Y. The Conceivable Functions of Protein Ubiquitination and Deubiquitination in Reproduction. Front Physiol 2022; 13:886261. [PMID: 35910557 PMCID: PMC9326170 DOI: 10.3389/fphys.2022.886261] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/29/2022] [Indexed: 12/02/2022] Open
Abstract
Protein ubiquitination with general existence in virtually all eukaryotic cells serves as a significant post-translational modification of cellular proteins, which leads to the degradation of proteins via the ubiquitin-proteasome system. Deubiquitinating enzymes (DUBs) can reverse the ubiquitination effect by removing the ubiquitin chain from the target protein. Together, these two processes participate in regulating protein stability, function, and localization, thus modulating cell cycle, DNA repair, autophagy, and transcription regulation. Accumulating evidence indicates that the ubiquitination/deubiquitination system regulates reproductive processes, including the cell cycle, oocyte maturation, oocyte-sperm binding, and early embryonic development, primarily by regulating protein stability. This review summarizes the extensive research concerning the role of ubiquitin and DUBs in gametogenesis and early embryonic development, which helps us to understand human pregnancy further.
Collapse
Affiliation(s)
- Jiayu Wang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Qi Zhou
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Jinli Ding
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Tailang Yin
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Peng Ye
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yan Zhang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
5
|
Haimbaugh A, Akemann C, Meyer D, Gurdziel K, Baker TR. Insight into 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced disruption of zebrafish spermatogenesis via single cell RNA-seq. PNAS NEXUS 2022; 1:pgac060. [PMID: 35799832 PMCID: PMC9252172 DOI: 10.1093/pnasnexus/pgac060] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 06/17/2022] [Indexed: 02/05/2023]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a potent and environmentally persistent endocrine disrupting chemical. Our previous work demonstrated the latent reproductive maladies of early-life TCDD exposure in zebrafish. Zebrafish acutely exposed to low, environmentally relevant levels of TCDD (50 pg/mL) during two windows of sexual differentiation in development (1 hour of exposure at 3 and 7 weeks postfertilization) were later infertile, showed a reduction in sperm, and exhibited gene expression consistent with an altered microenvironment, even months after exposure. Due to the highly heterogeneous cell- type and -stage landscape of the testes, we hypothesized various cell types contribute markedly different profiles toward the pathology of TCDD exposure. To investigate the contributions of the diverse cell types in the adult zebrafish testes to TCDD-induced pathology, we utilized single-cell RNA-seq and the 10x Genomics platform. The method successfully captured every stage of testicular germ cell development. Testes of adult fish exposed during sexual differentiation to TCDD contained sharply decreased populations of late spermatocytes, spermatids, and spermatozoa. Spermatogonia and early spermatocyte populations were, in contrast, enriched following exposure. Pathway analysis of differentially expressed genes supported previous findings that TCDD exposure resulted in male infertility, and suggested this outcome is due to apoptosis of spermatids and spermatozoa, even years after exposure cessation. Increased germ cell apoptosis was confirmed histologically. These results provide support for an environmental exposure explanation of idiopathic male infertility.
Collapse
Affiliation(s)
- Alex Haimbaugh
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI 48207, USA
| | - Camille Akemann
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI 48207, USA
| | - Danielle Meyer
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI 48207, USA
| | - Katherine Gurdziel
- Applied Genome Technology Center, School of Medicine, Wayne State University, Detroit, MI 48207, USA
| | | |
Collapse
|
6
|
Woodman MF, Ozcan MCH, Gura MA, De La Cruz P, Gadson AK, Grive KJ. The Requirement of Ubiquitin C-Terminal Hydrolase L1 (UCHL1) in Mouse Ovarian Development and Fertility †. Biol Reprod 2022; 107:500-513. [PMID: 35512140 PMCID: PMC9382372 DOI: 10.1093/biolre/ioac086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/07/2022] [Accepted: 04/27/2022] [Indexed: 11/14/2022] Open
Abstract
Ubiquitin C-Terminal Hydrolase L1 (UCHL1) is a de-ubiquitinating enzyme enriched in neuronal and gonadal tissues known to regulate the cellular stores of mono-ubiquitin and protein turnover. While its function in maintaining proper motor neuron function is well-established, investigation into its role in the health and function of reproductive processes is only just beginning to be studied. Single-cell-sequencing analysis of all ovarian cells from the murine perinatal period revealed that Uchl1 is very highly expressed in the developing oocyte population, an observation which was corroborated by high levels of oocyte-enriched UCHL1 protein expression in oocytes of all stages throughout the mouse reproductive lifespan. To better understand the role UCHL1 may be playing in oocytes, we utilized a UCHL1-deficient mouse line, finding reduced number of litters, reduced litter sizes, altered folliculogenesis, morphologically abnormal oocytes, disrupted estrous cyclicity and apparent endocrine dysfunction in these animals compared to their wild-type and heterozygous littermates. These data reveal a novel role of UCHL1 in female fertility as well as overall ovarian function, and suggest a potentially essential role for the ubiquitin proteasome pathway in mediating reproductive health. Summary sentence: Ubiquitin C-Terminal Hydrolase L1 (UCHL1) is required for proper ovarian folliculogenesis, estrous cyclicity, and fertility in the female mouse.
Collapse
Affiliation(s)
- Morgan F Woodman
- Women and Infants Hospital of Rhode Island, Department of Obstetrics and Gynecology, Program in Women's Oncology, Providence, RI 02905
| | - Meghan C H Ozcan
- Women and Infants Hospital of Rhode Island, Department of Obstetrics and Gynecology, Reproductive Endocrinology and Infertility Fellowship Program, Providence, RI 02905.,Warren Alpert Medical School of Brown University, Department of Obstetrics and Gynecology, Providence, RI 02905
| | - Megan A Gura
- Brown University, MCB Graduate Program and Department of Molecular Biology, Cell Biology, and Biochemistry, Providence, RI, 02906
| | - Payton De La Cruz
- Women and Infants Hospital of Rhode Island, Department of Obstetrics and Gynecology, Program in Women's Oncology, Providence, RI 02905.,Brown University, Pathobiology Graduate Program, Providence, RI, 02906
| | - Alexis K Gadson
- Women and Infants Hospital of Rhode Island, Department of Obstetrics and Gynecology, Reproductive Endocrinology and Infertility Fellowship Program, Providence, RI 02905.,Warren Alpert Medical School of Brown University, Department of Obstetrics and Gynecology, Providence, RI 02905
| | - Kathryn J Grive
- Women and Infants Hospital of Rhode Island, Department of Obstetrics and Gynecology, Program in Women's Oncology, Providence, RI 02905.,Women and Infants Hospital of Rhode Island, Department of Obstetrics and Gynecology, Reproductive Endocrinology and Infertility Fellowship Program, Providence, RI 02905
| |
Collapse
|
7
|
Finelli R, Moreira BP, Alves MG, Agarwal A. Unraveling the Molecular Impact of Sperm DNA Damage on Human Reproduction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1358:77-113. [DOI: 10.1007/978-3-030-89340-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Teves ME, Roldan ERS. Sperm bauplan and function and underlying processes of sperm formation and selection. Physiol Rev 2022; 102:7-60. [PMID: 33880962 PMCID: PMC8812575 DOI: 10.1152/physrev.00009.2020] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 01/03/2023] Open
Abstract
The spermatozoon is a highly differentiated and polarized cell, with two main structures: the head, containing a haploid nucleus and the acrosomal exocytotic granule, and the flagellum, which generates energy and propels the cell; both structures are connected by the neck. The sperm's main aim is to participate in fertilization, thus activating development. Despite this common bauplan and function, there is an enormous diversity in structure and performance of sperm cells. For example, mammalian spermatozoa may exhibit several head patterns and overall sperm lengths ranging from ∼30 to 350 µm. Mechanisms of transport in the female tract, preparation for fertilization, and recognition of and interaction with the oocyte also show considerable variation. There has been much interest in understanding the origin of this diversity, both in evolutionary terms and in relation to mechanisms underlying sperm differentiation in the testis. Here, relationships between sperm bauplan and function are examined at two levels: first, by analyzing the selective forces that drive changes in sperm structure and physiology to understand the adaptive values of this variation and impact on male reproductive success and second, by examining cellular and molecular mechanisms of sperm formation in the testis that may explain how differentiation can give rise to such a wide array of sperm forms and functions.
Collapse
Affiliation(s)
- Maria Eugenia Teves
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia
| | - Eduardo R S Roldan
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain
| |
Collapse
|
9
|
Reduce, Retain, Recycle: Mechanisms for Promoting Histone Protein Degradation versus Stability and Retention. Mol Cell Biol 2021; 41:e0000721. [PMID: 33753462 DOI: 10.1128/mcb.00007-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The eukaryotic genome is packaged into chromatin. The nucleosome, the basic unit of chromatin, is composed of DNA coiled around a histone octamer. Histones are among the longest-lived protein species in mammalian cells due to their thermodynamic stability and their associations with DNA and histone chaperones. Histone metabolism plays an integral role in homeostasis. While histones are largely stable, the degradation of histone proteins is necessary under specific conditions. Here, we review the physiological and cellular contexts that promote histone degradation. We describe specific known mechanisms that drive histone proteolysis. Finally, we discuss the importance of histone degradation and regulation of histone supply for organismal and cellular fitness.
Collapse
|
10
|
Shmueli MD, Sheban D, Eisenberg-Lerner A, Merbl Y. Histone degradation by the proteasome regulates chromatin and cellular plasticity. FEBS J 2021; 289:3304-3316. [PMID: 33914417 PMCID: PMC9292675 DOI: 10.1111/febs.15903] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/07/2021] [Accepted: 04/26/2021] [Indexed: 11/27/2022]
Abstract
Histones constitute the primary protein building blocks of the chromatin and play key roles in the dynamic control of chromatin compaction and epigenetic regulation. Histones are regulated by intricate mechanisms that alter their functionality and stability, thereby expanding the regulation of chromatin‐transacting processes. As such, histone degradation is tightly regulated to provide spatiotemporal control of cellular histone abundance. While several mechanisms have been implicated in controlling histone stability, here, we discuss proteasome‐dependent degradation of histones and the protein modifications that are associated with it. We then highlight specific cellular and physiological states that are associated with altered histone degradation by cellular proteasomes.
Collapse
Affiliation(s)
- Merav D Shmueli
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Daoud Sheban
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Yifat Merbl
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
11
|
DNA-damage tolerance through PCNA ubiquitination and sumoylation. Biochem J 2021; 477:2655-2677. [PMID: 32726436 DOI: 10.1042/bcj20190579] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 12/12/2022]
Abstract
DNA-damage tolerance (DDT) is employed by eukaryotic cells to bypass replication-blocking lesions induced by DNA-damaging agents. In budding yeast Saccharomyces cerevisiae, DDT is mediated by RAD6 epistatic group genes and the central event for DDT is sequential ubiquitination of proliferating cell nuclear antigen (PCNA), a DNA clamp required for replication and DNA repair. DDT consists of two parallel pathways: error-prone DDT is mediated by PCNA monoubiquitination, which recruits translesion synthesis DNA polymerases to bypass lesions with decreased fidelity; and error-free DDT is mediated by K63-linked polyubiquitination of PCNA at the same residue of monoubiquitination, which facilitates homologous recombination-mediated template switch. Interestingly, the same PCNA residue is also subjected to sumoylation, which leads to inhibition of unwanted recombination at replication forks. All three types of PCNA posttranslational modifications require dedicated conjugating and ligation enzymes, and these enzymes are highly conserved in eukaryotes, from yeast to human.
Collapse
|
12
|
Li Y, Mi P, Chen X, Wu J, Qin W, Shen Y, Zhang P, Tang Y, Cheng CY, Sun F. Dynamic Profiles and Transcriptional Preferences of Histone Modifications During Spermiogenesis. Endocrinology 2021; 162:5974117. [PMID: 33175103 DOI: 10.1210/endocr/bqaa210] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Indexed: 02/07/2023]
Abstract
During spermiogenesis, extensive histone modifications take place in developing haploid spermatids besides morphological alterations of the genetic material to form compact nuclei. Better understanding on the overall transcriptional dynamics and preferences of histones and enzymes involved in histone modifications may provide valuable information to dissect the epigenetic characteristics and unique chromatin status during spermiogenesis. Using single-cell RNA-Sequencing, the expression dynamics of histone variants, writers, erasers, and readers of histone acetylation and methylation, as well as histone phosphorylation, ubiquitination, and chaperones were assessed through transcriptome profiling during spermiogenesis. This approach provided an unprecedented panoramic perspective of the involving genes in epigenetic modifier/histone variant expression during spermiogenesis. Results reported here revealed the transcriptional ranks of histones, histone modifications, and their readers during spermiogenesis, emphasizing the unique preferences of epigenetic regulation in spermatids. These findings also highlighted the impact of spermatid metabolic preferences on epigenetic modifications. Despite the observed rising trend on transcription levels of all encoding genes and histone variants, the transcriptome profile of genes in histone modifications and their readers displayed a downward expression trend, suggesting that spermatid nuclei condensation is a progressive process that occurred in tandem with a gradual decrease in overall epigenetic activity during spermiogenesis.
Collapse
Affiliation(s)
- Yinchuan Li
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Panpan Mi
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Xue Chen
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Jiabao Wu
- NHC Key Laboratory of Male Reproduction and Genetics, Family Planning Research Institute of Guangdong Province, Guangzhou, China
| | - Weibing Qin
- NHC Key Laboratory of Male Reproduction and Genetics, Family Planning Research Institute of Guangdong Province, Guangzhou, China
| | - Yiqi Shen
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Pingbao Zhang
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Yunge Tang
- NHC Key Laboratory of Male Reproduction and Genetics, Family Planning Research Institute of Guangdong Province, Guangzhou, China
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - Fei Sun
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
13
|
Serrano-Quílez J, Roig-Soucase S, Rodríguez-Navarro S. Sharing Marks: H3K4 Methylation and H2B Ubiquitination as Features of Meiotic Recombination and Transcription. Int J Mol Sci 2020; 21:ijms21124510. [PMID: 32630409 PMCID: PMC7350030 DOI: 10.3390/ijms21124510] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/13/2022] Open
Abstract
Meiosis is a specialized cell division that gives raise to four haploid gametes from a single diploid cell. During meiosis, homologous recombination is crucial to ensure genetic diversity and guarantee accurate chromosome segregation. Both the formation of programmed meiotic DNA double-strand breaks (DSBs) and their repair using homologous chromosomes are essential and highly regulated pathways. Similar to other processes that take place in the context of chromatin, histone posttranslational modifications (PTMs) constitute one of the major mechanisms to regulate meiotic recombination. In this review, we focus on specific PTMs occurring in histone tails as driving forces of different molecular events, including meiotic recombination and transcription. In particular, we concentrate on the influence of H3K4me3, H2BK123ub, and their corresponding molecular machineries that write, read, and erase these histone marks. The Spp1 subunit within the Complex of Proteins Associated with Set1 (COMPASS) is a critical regulator of H3K4me3-dependent meiotic DSB formation. On the other hand, the PAF1c (RNA polymerase II associated factor 1 complex) drives the ubiquitination of H2BK123 by Rad6-Bre1. We also discuss emerging evidence obtained by cryo-electron microscopy (EM) structure determination that has provided new insights into how the "cross-talk" between these two marks is accomplished.
Collapse
|
14
|
Zhu Z, Yue Q, Xie J, Zhang S, He W, Bai S, Tian S, Zhang Y, Xiong M, Sun Z, Huang C, Li Y, Zheng K, Ye L. Rapamycin-mediated mTOR inhibition impairs silencing of sex chromosomes and the pachytene piRNA pathway in the mouse testis. Aging (Albany NY) 2020; 11:185-208. [PMID: 30636722 PMCID: PMC6339782 DOI: 10.18632/aging.101740] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/19/2018] [Indexed: 01/10/2023]
Abstract
Mechanistic target of rapamycin (mTOR) controls cell growth and metabolism in response to environmental and metabolic signals. Rapamycin robustly extends the lifespan in mammals and has clinical relevance in organ transplantation and cancer therapy but side effects include male infertility. Here, we report that chronic rapamycin treatment causes spermatogenic arrest in adult male mice due to defects in sex body formation and meiotic sex chromosome inactivation (MSCI). Many sex chromosome-linked genes were up-regulated in isolated pachytene spermatocytes from rapamycin-treated mice. RNA-Seq analysis also identified mRNAs encoding the core piRNA pathway components were decreased. Furthermore, rapamycin treatment was associated with a drastic reduction in pachytene piRNA populations. The inhibitory effects of rapamycin on spermatogenesis were partially reversible, with restoration of testis mass and sperm motility within 2 months of treatment cessation. Collectively, we have defined an essential role of mTOR in MSCI and identified a novel function as a regulator of small RNA homeostasis in male germ cells.
Collapse
Affiliation(s)
- Zhiping Zhu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,The People's Hospital of Gaochun, Nanjing, China
| | - Qiuling Yue
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Jie Xie
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Shuya Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Wenxiu He
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Shun Bai
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Suwen Tian
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Yingwen Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Mengneng Xiong
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Zheng Sun
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chaoyang Huang
- Heart and Vascular Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzho, Zhejiang 310003, China
| | - Yuebei Li
- The First Medical School of Nanjing Medical University, Nanjing, China
| | - Ke Zheng
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Lan Ye
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
15
|
Pilzecker B, Buoninfante OA, Jacobs H. DNA damage tolerance in stem cells, ageing, mutagenesis, disease and cancer therapy. Nucleic Acids Res 2019; 47:7163-7181. [PMID: 31251805 PMCID: PMC6698745 DOI: 10.1093/nar/gkz531] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 05/22/2019] [Accepted: 06/26/2019] [Indexed: 12/12/2022] Open
Abstract
The DNA damage response network guards the stability of the genome from a plethora of exogenous and endogenous insults. An essential feature of the DNA damage response network is its capacity to tolerate DNA damage and structural impediments during DNA synthesis. This capacity, referred to as DNA damage tolerance (DDT), contributes to replication fork progression and stability in the presence of blocking structures or DNA lesions. Defective DDT can lead to a prolonged fork arrest and eventually cumulate in a fork collapse that involves the formation of DNA double strand breaks. Four principal modes of DDT have been distinguished: translesion synthesis, fork reversal, template switching and repriming. All DDT modes warrant continuation of replication through bypassing the fork stalling impediment or repriming downstream of the impediment in combination with filling of the single-stranded DNA gaps. In this way, DDT prevents secondary DNA damage and critically contributes to genome stability and cellular fitness. DDT plays a key role in mutagenesis, stem cell maintenance, ageing and the prevention of cancer. This review provides an overview of the role of DDT in these aspects.
Collapse
Affiliation(s)
- Bas Pilzecker
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Olimpia Alessandra Buoninfante
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Heinz Jacobs
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
16
|
Gajan A, Martin CE, Kim S, Joshi M, Michelhaugh SK, Sloma I, Mittal S, Firestine S, Shekhar MPV. Alternative Splicing of RAD6B and Not RAD6A is Selectively Increased in Melanoma: Identification and Functional Characterization. Cells 2019; 8:E1375. [PMID: 31683936 PMCID: PMC6912459 DOI: 10.3390/cells8111375] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/28/2019] [Accepted: 10/31/2019] [Indexed: 12/31/2022] Open
Abstract
Rad6B, a principal component of the translesion synthesis pathway, and activator of canonical Wnt signaling, plays an essential role in cutaneous melanoma development and progression. As Rad6 is encoded by two genes, namely, UBE2A (RAD6A) and UBE2B (RAD6B), in humans, we compared their expressions in melanomas and normal melanocytes. While both genes are weakly expressed in normal melanocytes, Rad6B is more robustly expressed in melanoma lines and patient-derived metastatic melanomas than RAD6A. The characterization of RAD6B transcripts revealed coexpression of various splice variants representing truncated or modified functional versions of wild-type RAD6B in melanomas, but not in normal melanocytes. Notably, two RAD6B isoforms with intact catalytic domains, RAD6BΔexon4 and RAD6Bintron5ins, were identified. We confirmed that RAD6BΔexon4 and RAD6Bintron5ins variants are expressed as 14 and 15 kDa proteins, respectively, with functional in vivo ubiquitin conjugating activity. Whole exome sequence analysis of 30 patient-derived melanomas showed RAD6B variants coexpressed with wild-type RAD6B in all samples analyzed, and RAD6Bintron5ins variants were found in half the cases. These variants constitute the majority of the RAD6B transcriptome in contrast to RAD6A, which was predominantly wild-type. The expression of functional RAD6B variants only in melanomas reveals RAD6B's molecular heterogeneity and its association with melanoma pathogenesis.
Collapse
Affiliation(s)
- Ambikai Gajan
- Karmanos Cancer Institute, Detroit, MI 48201, USA.
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Carly E Martin
- Karmanos Cancer Institute, Detroit, MI 48201, USA.
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Seongho Kim
- Karmanos Cancer Institute, Detroit, MI 48201, USA.
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Milap Joshi
- Karmanos Cancer Institute, Detroit, MI 48201, USA.
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Sharon K Michelhaugh
- Karmanos Cancer Institute, Detroit, MI 48201, USA.
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Ido Sloma
- Champions Oncology, Rockville, MD 20850, USA.
| | - Sandeep Mittal
- Karmanos Cancer Institute, Detroit, MI 48201, USA.
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Steven Firestine
- Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201, USA.
| | - Malathy P V Shekhar
- Karmanos Cancer Institute, Detroit, MI 48201, USA.
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
17
|
Genetic Factors Affecting Sperm Chromatin Structure. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1166:1-28. [PMID: 31301043 DOI: 10.1007/978-3-030-21664-1_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Spermatozoa genome has unique features that make it a fascinating field of investigation: first, because, with oocyte genome, it can be transmitted generation after generation; second, because of genetic shuffling during meiosis, each spermatozoon is virtually unique in terms of genetic content, with consequences for species evolution; and finally, because its chromatin organization is very different from that of somatic cells or oocytes, as it is not based on nucleosomes but on nucleoprotamines which confer a higher order of packaging. Histone-to-protamine transition involves many actors, such as regulators of spermatid gene expression, components of the nuclear envelop, histone-modifying enzymes and readers, chaperones, histone variants, transition proteins, protamines, and certainly many more to be discovered.In this book chapter, we will present what is currently known about sperm chromatin structure and how it is established during spermiogenesis, with the aim to list the genetic factors that regulate its organization.
Collapse
|
18
|
Hormaechea-Agulla D, Kim Y, Song MS, Song SJ. New Insights into the Role of E2s in the Pathogenesis of Diseases: Lessons Learned from UBE2O. Mol Cells 2018; 41:168-178. [PMID: 29562734 PMCID: PMC5881090 DOI: 10.14348/molcells.2018.0008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 03/08/2018] [Accepted: 03/13/2018] [Indexed: 12/23/2022] Open
Abstract
Intracellular communication via ubiquitin (Ub) signaling impacts all aspects of cell biology and regulates pathways critical to human development and viability; therefore aberrations or defects in Ub signaling can contribute to the pathogenesis of human diseases. Ubiquitination consists of the addition of Ub to a substrate protein via coordinated action of E1-activating, E2-conjugating and E3-ligating enzymes. Approximately 40 E2s have been identified in humans, and most are thought to be involved in Ub transfer; although little information is available regarding the majority of them, emerging evidence has highlighted their importance to human health and disease. In this review, we focus on recent insights into the pathogenetic roles of E2s (particularly the ubiquitin-conjugating enzyme E2O [UBE2O]) in debilitating diseases and cancer, and discuss the tantalizing prospect that E2s may someday serve as potential therapeutic targets for human diseases.
Collapse
Affiliation(s)
- Daniel Hormaechea-Agulla
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030,
USA
| | - Youngjo Kim
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan 31151,
Korea
| | - Min Sup Song
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030,
USA
- Cancer Biology Program, The University of Texas Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030,
USA
| | - Su Jung Song
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan 31151,
Korea
| |
Collapse
|
19
|
Enguita-Marruedo A, Van Cappellen WA, Hoogerbrugge JW, Carofiglio F, Wassenaar E, Slotman JA, Houtsmuller A, Baarends WM. Live cell analyses of synaptonemal complex dynamics and chromosome movements in cultured mouse testis tubules and embryonic ovaries. Chromosoma 2018; 127:341-359. [PMID: 29582139 PMCID: PMC6096571 DOI: 10.1007/s00412-018-0668-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 03/12/2018] [Accepted: 03/12/2018] [Indexed: 01/27/2023]
Abstract
During mammalian meiotic prophase, homologous chromosomes connect through the formation of the synaptonemal complex (SC). SYCP3 is a component of the lateral elements of the SC. We have generated transgenic mice expressing N- or C-terminal fluorescent-tagged SYCP3 (mCherry-SYCP3 (CSYCP) and SYCP3-mCherry (SYCPC)) to study SC dynamics and chromosome movements in vivo. Neither transgene rescued meiotic aberrations in Sycp3 knockouts, but CSYCP could form short axial element-like structures in the absence of endogenous SYCP3. On the wild-type background, both fusion proteins localized to the axes of the SC together with endogenous SYCP3, albeit with delayed initiation (from pachytene) in spermatocytes. Around 40% of CSYCP and SYCPC that accumulated on the SC was rapidly exchanging with other tagged proteins, as analyzed by fluorescent recovery after photobleaching (FRAP) assay. We used the CSYCP transgenic mice for further live cell analyses and observed synchronized bouquet configurations in living cysts of two or three zygotene oocyte nuclei expressing CSYCP, which presented cycles of telomere clustering and dissolution. Rapid chromosome movements were observed in both zygotene oocytes and pachytene spermatocytes, but rotational movements of the nucleus were more clear in oocytes. In diplotene spermatocytes, desynapsis was found to proceed in a discontinuous manner, whereby even brief chromosome re-association events were observed. Thus, this live imaging approach can be used to follow changes in the dynamic behavior of the nucleus and chromatin, in normal mice and different infertile mouse models.
Collapse
Affiliation(s)
- Andrea Enguita-Marruedo
- Department of Developmental Biology, Erasmus MC University Medical Centre, Rotterdam, The Netherlands
| | - Wiggert A Van Cappellen
- Department of Pathology, Erasmus Optical Imaging Centre, Erasmus MC University Medical Centre, Rotterdam, The Netherlands
| | - Jos W Hoogerbrugge
- Department of Developmental Biology, Erasmus MC University Medical Centre, Rotterdam, The Netherlands
| | - Fabrizia Carofiglio
- Department of Developmental Biology, Erasmus MC University Medical Centre, Rotterdam, The Netherlands
| | - Evelyne Wassenaar
- Department of Developmental Biology, Erasmus MC University Medical Centre, Rotterdam, The Netherlands
| | - Johan A Slotman
- Department of Pathology, Erasmus Optical Imaging Centre, Erasmus MC University Medical Centre, Rotterdam, The Netherlands
| | - Adriaan Houtsmuller
- Department of Pathology, Erasmus Optical Imaging Centre, Erasmus MC University Medical Centre, Rotterdam, The Netherlands
| | - Willy M Baarends
- Department of Developmental Biology, Erasmus MC University Medical Centre, Rotterdam, The Netherlands.
| |
Collapse
|
20
|
Guo Y, Song Y, Guo Z, Hu M, Liu B, Duan H, Wang L, Yuan T, Wang D. Function of RAD6B and RNF8 in spermatogenesis. Cell Cycle 2018; 17:162-173. [PMID: 28825854 DOI: 10.1080/15384101.2017.1361066] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Histone ubiquitination regulates sperm formation and is important for nucleosome removal during spermatogenesis. RNF8 is an E3 ubiquitin ligase, and RAD6B is an E2 ubiquitin-conjugating enzyme. Both proteins participate in DNA damage repair processes via histone ubiquitination. Loss of RNF8 or RAD6B can lead to sterility in male mice. However, the specific mechanisms regulating these ubiquitin-mediated processes are unclear. In this study, we found that RNF8 knockout mice were either subfertile or sterile based on the numbers of offspring they produced. We explored the mechanism by which RAD6B and RNF8 knockouts cause infertility in male mice and compared the effects of their loss on spermatogenesis. Our results demonstrate that RAD6B can polyubiquitinate histones H2 A and H2B. In addition, RNF8 was shown to monoubiquitinate histones H2 A and H2B. Furthermore, we observed that absence of histone ubiquitination was not the only reason for infertility. Senescence played a role in intensifying male sterility by affecting the number of germ cells during spermatogenesis. In summary, both histone ubiquitination and senescence play important roles in spermatogenesis.
Collapse
Affiliation(s)
- Yingli Guo
- a Department of Anatomy and Histology , Lanzhou University , School of Basic Medical Sciences , Lanzhou , China
| | - Yanfeng Song
- a Department of Anatomy and Histology , Lanzhou University , School of Basic Medical Sciences , Lanzhou , China
| | - Zhao Guo
- a Department of Anatomy and Histology , Lanzhou University , School of Basic Medical Sciences , Lanzhou , China
| | - Mengjin Hu
- a Department of Anatomy and Histology , Lanzhou University , School of Basic Medical Sciences , Lanzhou , China
| | - Bing Liu
- a Department of Anatomy and Histology , Lanzhou University , School of Basic Medical Sciences , Lanzhou , China
| | - Hongyu Duan
- a Department of Anatomy and Histology , Lanzhou University , School of Basic Medical Sciences , Lanzhou , China
| | - Le Wang
- a Department of Anatomy and Histology , Lanzhou University , School of Basic Medical Sciences , Lanzhou , China
| | - Tianxia Yuan
- a Department of Anatomy and Histology , Lanzhou University , School of Basic Medical Sciences , Lanzhou , China
| | - Degui Wang
- a Department of Anatomy and Histology , Lanzhou University , School of Basic Medical Sciences , Lanzhou , China
| |
Collapse
|
21
|
Hosseini A, Minucci S. Alterations of Histone Modifications in Cancer. EPIGENETICS IN HUMAN DISEASE 2018:141-217. [DOI: 10.1016/b978-0-12-812215-0.00006-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
22
|
Liu M, Ru Y, Gu Y, Tang J, Zhang T, Wu J, Yu F, Yuan Y, Xu C, Wang J, Shi H. Disruption of Ssp411 causes impaired sperm head formation and male sterility in mice. Biochim Biophys Acta Gen Subj 2017; 1862:660-668. [PMID: 29247744 DOI: 10.1016/j.bbagen.2017.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/10/2017] [Accepted: 12/12/2017] [Indexed: 11/16/2022]
Abstract
BACKGROUND We previously cloned the Ssp411 gene. We found that the Ssp411 protein is predominantly expressed in elongated spermatids in the rat testis in a stage-dependent manner. Although our findings strongly suggested that Ssp411 might play an important role in mammalian spermatogenesis, this hypothesis has not been studied. METHODS We first used real-time PCR, Western blotting and immunohistochemistry to confirm that the expression pattern of Ssp411 in several murine tissues is similar to its expression pattern in corresponding rat tissues. To better understand the roles of Ssp411 in male reproduction in vivo, we identified and characterized an Ssp411 expression-disrupted murine strain (Ssp411PB/PB) that was generated by piggyBac (PB) transposon insertion. We studied Ssp411-interacting proteins using proteome microarray, co-IP and GST pull-down assay. RESULTS Both Ssp411 mRNA and protein were detected exclusively in spermatids after step 9 during spermiogenesis in testis. Phenotypic analysis suggested that only Ssp411PB/PB males are sterile. These males have smaller testes, reduced sperm counts, decreased sperm motility and deformed spermatozoa. Microscopy analysis indicated that the manchette, a structurally reshaped sperm head, is aberrant in Ssp411PB/PB spermatids. The results of proteome microarray analysis and GST pull-down assays suggested that Ssp411 participates the ubiquitin-proteasome system by interacting with PSMC3. This has been reported to be manchette-associated and important for the head shaping of spermatids. CONCLUSIONS Our study suggested that Ssp411 is required for spermiogenesis. It seems to play a role in sperm head shaping. The lack of Ssp411 causes sperm deformation and results in male infertility. GENERAL SIGNIFICANCE Ssp411PB/PB mouse strain is an animal model of idiopathic oligoasthenoteratozoospermia (iOAT), and the gene may represent a therapeutic target for iOAT patients.
Collapse
Affiliation(s)
- Miao Liu
- NHFPC Key Lab of Reproduction Regulation, SIPPR, Pharmacy School, Fudan University, China
| | - Yanfei Ru
- NHFPC Key Lab of Reproduction Regulation, SIPPR, Pharmacy School, Fudan University, China
| | - Yihua Gu
- NHFPC Key Lab of Reproduction Regulation, SIPPR, Pharmacy School, Fudan University, China
| | - Jianan Tang
- NHFPC Key Lab of Reproduction Regulation, SIPPR, Pharmacy School, Fudan University, China
| | - Tiancheng Zhang
- NHFPC Key Lab of Reproduction Regulation, SIPPR, Pharmacy School, Fudan University, China
| | - Jun Wu
- NHFPC Key Lab of Reproduction Regulation, SIPPR, Pharmacy School, Fudan University, China
| | - Fudong Yu
- NHFPC Key Lab of Reproduction Regulation, SIPPR, Pharmacy School, Fudan University, China
| | - Yao Yuan
- NHFPC Key Lab of Reproduction Regulation, SIPPR, Pharmacy School, Fudan University, China
| | - Chen Xu
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, China
| | - Jian Wang
- NHFPC Key Lab of Reproduction Regulation, SIPPR, Pharmacy School, Fudan University, China.
| | - Huijuan Shi
- NHFPC Key Lab of Reproduction Regulation, SIPPR, Pharmacy School, Fudan University, China.
| |
Collapse
|
23
|
Wang L, Cao C, Wang F, Zhao J, Li W. H2B ubiquitination: Conserved molecular mechanism, diverse physiologic functions of the E3 ligase during meiosis. Nucleus 2017; 8:461-468. [PMID: 28628358 PMCID: PMC5703235 DOI: 10.1080/19491034.2017.1330237] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 04/27/2017] [Accepted: 05/10/2017] [Indexed: 10/19/2022] Open
Abstract
RNF20/Bre1 mediated H2B ubiquitination (H2Bub) has various physiologic functions. Recently, we found that H2Bub participates in meiotic recombination by promoting chromatin relaxation during meiosis. We then analyzed the phylogenetic relationships among the E3 ligase for H2Bub, its E2 Rad6 and their partner WW domain-containing adaptor with a coiled-coil (WAC) or Lge1, and found that the molecular mechanism underlying H2Bub is evolutionarily conserved from yeast to mammals. However, RNF20 has diverse physiologic functions in different organisms, which might be caused by the evolutionary divergency of their domain/motif architectures. In the current extra view, we not only elucidate the evolutionarily conserved molecular mechanism underlying H2Bub, but also discuss the diverse physiologic functions of RNF20 during meiosis.
Collapse
Affiliation(s)
- Liying Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Chunwei Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Fang Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Jianguo Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, P.R. China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, P.R. China
| |
Collapse
|
24
|
Lehti MS, Sironen A. Formation and function of sperm tail structures in association with sperm motility defects†. Biol Reprod 2017; 97:522-536. [DOI: 10.1093/biolre/iox096] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 08/28/2017] [Indexed: 12/26/2022] Open
|
25
|
Buneeva OA, Medvedev AE. The role of atypical ubiquitination in cell regulation. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2017. [DOI: 10.1134/s1990750817010024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Buneeva OA, Medvedev AE. [Atypical ubiquitination of proteins]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2017; 62:496-509. [PMID: 27797324 DOI: 10.18097/pbmc20166205496] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Ubiquitination is a type of posttranslational modification of intracellular proteins characterized by covalent attachment of one (monoubiquitination) or several (polyubiquitination) of ubiquitin molecules to target proteins. In the case of polyubiquitination, linear or branched polyubiquitin chains are formed. Their formation involves various lysine residues of monomeric ubiquitin. The best studied is Lys48-polyubiquitination, which targets proteins for proteasomal degradation. In this review we have considered examples of so-called atypical polyubiquitination, which mainly involves other lysine residues (Lys6, Lys11, Lys27, Lys29, Lys33, Lys63) and also N-terminal methionine. The considered examples convincingly demonstrate that polyubiquitination of proteins not necessarily targets proteins for their proteolytic degradation in proteasomes. Atypically polyubiquitinated proteins are involved in regulation of various processes and altered polyubiquitination of certain proteins is crucial for development of serious diseases.
Collapse
Affiliation(s)
- O A Buneeva
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A E Medvedev
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
27
|
Carmell MA, Dokshin GA, Skaletsky H, Hu YC, van Wolfswinkel JC, Igarashi KJ, Bellott DW, Nefedov M, Reddien PW, Enders GC, Uversky VN, Mello CC, Page DC. A widely employed germ cell marker is an ancient disordered protein with reproductive functions in diverse eukaryotes. eLife 2016; 5. [PMID: 27718356 PMCID: PMC5098910 DOI: 10.7554/elife.19993] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/05/2016] [Indexed: 12/17/2022] Open
Abstract
The advent of sexual reproduction and the evolution of a dedicated germline in multicellular organisms are critical landmarks in eukaryotic evolution. We report an ancient family of GCNA (germ cell nuclear antigen) proteins that arose in the earliest eukaryotes, and feature a rapidly evolving intrinsically disordered region (IDR). Phylogenetic analysis reveals that GCNA proteins emerged before the major eukaryotic lineages diverged; GCNA predates the origin of a dedicated germline by a billion years. Gcna gene expression is enriched in reproductive cells across eukarya - either just prior to or during meiosis in single-celled eukaryotes, and in stem cells and germ cells of diverse multicellular animals. Studies of Gcna-mutant C. elegans and mice indicate that GCNA has functioned in reproduction for at least 600 million years. Homology to IDR-containing proteins implicated in DNA damage repair suggests that GCNA proteins may protect the genomic integrity of cells carrying a heritable genome.
Collapse
Affiliation(s)
| | - Gregoriy A Dokshin
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, United States
| | - Helen Skaletsky
- Whitehead Institute, Cambridge, United States.,Howard Hughes Medical Institute, Chevy Chase, United States
| | | | | | | | | | - Michael Nefedov
- BACPAC Resources, Children's Hospital Oakland, Oakland, United States
| | - Peter W Reddien
- Whitehead Institute, Cambridge, United States.,Howard Hughes Medical Institute, Chevy Chase, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - George C Enders
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, United States
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, United States
| | - Craig C Mello
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, United States.,Howard Hughes Medical Institute, Chevy Chase, United States
| | - David C Page
- Whitehead Institute, Cambridge, United States.,Howard Hughes Medical Institute, Chevy Chase, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
28
|
Physiological functions and clinical implications of the N-end rule pathway. Front Med 2016; 10:258-70. [PMID: 27492620 DOI: 10.1007/s11684-016-0458-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/06/2016] [Indexed: 01/19/2023]
Abstract
The N-end rule pathway is a unique branch of the ubiquitin-proteasome system in which the determination of a protein's half-life is dependent on its N-terminal residue. The N-terminal residue serves as the degradation signal of a protein and thus called N-degron. N-degron can be recognized and modifed by several steps of post-translational modifications, such as oxidation, deamination, arginylation or acetylation, it then polyubiquitinated by the N-recognin for degradation. The molecular basis of the N-end rule pathway has been elucidated and its physiological functions have been revealed in the past 30 years. This pathway is involved in several biological aspects, including transcription, differentiation, chromosomal segregation, genome stability, apoptosis, mitochondrial quality control, cardiovascular development, neurogenesis, carcinogenesis, and spermatogenesis. Disturbance of this pathway often causes the failure of these processes, resulting in some human diseases. This review summarized the physiological functions of the N-end rule pathway, introduced the related biological processes and diseases, with an emphasis on the inner link between this pathway and certain symptoms.
Collapse
|
29
|
Abstract
DNA damage response is required for male fertility. DNA damage repair mediates recombination between homologous chromosomes in meiotic prophase, which is essential for proper chromosome segregation during meiotic division. Interestingly, some DNA damage response proteins are also required for the survival of premeiotic germ cells, but their roles in these cells are still unclear. CHFR was recently shown to participate in DNA damage response, but it remains to be established if CHFR is required for male fertility. In this study, we characterized Chfr knockout male mice and found that around 30% of them were infertile. The onset of spermatogenesis was delayed and there was significant increase in apoptosis in premeiotic germ cells. This resulted in complete loss of germ cells in testes in 3 months and azoospermia in these mice. We further demonstrated that ATM activation was compromised in the testes of these mice. Therefore, CHFR is important for the survival of male premeiotic germ cells, which is likely through maintaining genomic stability in spermatogonial stem cells.
Collapse
Affiliation(s)
- Lin-Yu Lu
- a Key Laboratory of Reproductive Genetics; Ministry of Education and Women's Reproductive Health Laboratory of Zhejiang Province; Women's Hospital; School of Medicine; Zhejiang University ; Hangzhou , Zhejiang , China.,b Institute of Translational Medicine; Zhejiang University ; Hangzhou , Zhejiang , China
| | - Xiaochun Yu
- c Department of Cancer Genetics and Epigenetics ; Beckman Research Institute; City of Hope ; Duarte , CA USA
| |
Collapse
|
30
|
Characterisation and expression analysis of UBC9 and UBS27 genes in developing gonads of cicindelids (Coleoptera: Cicindelidae). Comp Biochem Physiol B Biochem Mol Biol 2016; 202:75-82. [PMID: 27524263 DOI: 10.1016/j.cbpb.2016.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 08/03/2016] [Accepted: 08/09/2016] [Indexed: 11/22/2022]
Abstract
Ubiquitin and small ubiquitin-like modifiers (SUMO) are post-translational modifiers essential in a variety of cellular processes, including gametogenesis. SUMO-conjugating enzyme (UBC9) and the ubiquitin ribosomal fusion protein UBS27 have been characterised in several model species. However, their expression in coleopteran remains unstudied. In this study, UBC9 and UBS27 genes have been characterised in the tiger beetle Cicindela campestris for the first time. Bioinformatic analysis showed that the Cc-UBC9 gene encoded a 159 amino acid protein with a predicted molecular weight of 18.18kDa, and the Cc-UBS27 gene encoded a 156 amino acid protein with a predicted molecular weight of 17.71kDa. Selection analyses carried out in several cicindelid species revealed that both genes were affected by purifying selection. Real time quantitative PCR analysis demonstrated that Cc-UBC9 and Cc-UBS27 were expressed in different tissues. The highest expression on both genes was found in the ovary and testis, and there were differential expression levels between immature and mature stages of testis development. The expression patterns of Cc-UBC9 and Cc-UBS27 suggest that these genes play important roles in gametogenesis in C. campestris. This information is relevant to better understand the reproductive process in cicindelids and the function of ubiquitin and small ubiquitin-related modifier genes in the Coleoptera.
Collapse
|
31
|
Lehti MS, Sironen A. Formation and function of the manchette and flagellum during spermatogenesis. Reproduction 2016; 151:R43-54. [DOI: 10.1530/rep-15-0310] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 01/20/2016] [Indexed: 12/19/2022]
Abstract
The last phase of spermatogenesis involves spermatid elongation (spermiogenesis), where the nucleus is remodeled by chromatin condensation, the excess cytoplasm is removed and the acrosome and sperm tail are formed. Protein transport during spermatid elongation is required for correct formation of the sperm tail and acrosome and shaping of the head. Two microtubular-based protein delivery platforms transport proteins to the developing head and tail: the manchette and the sperm tail axoneme. The manchette is a transient skirt-like structure surrounding the elongating spermatid head and is only present during spermatid elongation. In this review, we consider current understanding of the assembly, disassembly and function of the manchette and the roles of these processes in spermatid head shaping and sperm tail formation. Recent studies have shown that at least some of the structural proteins of the sperm tail are transported through the intra-manchette transport to the basal body at the base of the developing sperm tail and through the intra-flagellar transport to the construction site in the flagellum. This review focuses on the microtubule-based mechanisms involved and the consequences of their disruption in spermatid elongation.
Collapse
|
32
|
Scofield SLC, Amin P, Singh M, Singh K. Extracellular Ubiquitin: Role in Myocyte Apoptosis and Myocardial Remodeling. Compr Physiol 2015; 6:527-60. [PMID: 26756642 DOI: 10.1002/cphy.c150025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ubiquitin (UB) is a highly conserved low molecular weight (8.5 kDa) protein. It consists of 76 amino acid residues and is found in all eukaryotic cells. The covalent linkage of UB to a variety of cellular proteins (ubiquitination) is one of the most common posttranslational modifications in eukaryotic cells. This modification generally regulates protein turnover and protects the cells from damaged or misfolded proteins. The polyubiquitination of proteins serves as a signal for degradation via the 26S proteasome pathway. UB is present in trace amounts in body fluids. Elevated levels of UB are described in the serum or plasma of patients under a variety of conditions. Extracellular UB is proposed to have pleiotropic roles including regulation of immune response, anti-inflammatory, and neuroprotective activities. CXCR4 is identified as receptor for extracellular UB in hematopoietic cells. Heart failure represents a major cause of morbidity and mortality in western society. Cardiac remodeling is a determinant of the clinical course of heart failure. The components involved in myocardial remodeling include-myocytes, fibroblasts, interstitium, and coronary vasculature. Increased sympathetic nerve activity in the form of norepinephrine is a common feature during heart failure. Acting via β-adrenergic receptor (β-AR), norepinephrine is shown to induce myocyte apoptosis and myocardial fibrosis. β-AR stimulation increases extracellular levels of UB in myocytes, and UB inhibits β-AR-stimulated increases in myocyte apoptosis and myocardial fibrosis. This review summarizes intracellular and extracellular functions of UB with particular emphasis on the role of extracellular UB in cardiac myocyte apoptosis and myocardial remodeling.
Collapse
Affiliation(s)
- Stephanie L C Scofield
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee, USA
| | - Parthiv Amin
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee, USA
| | - Mahipal Singh
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee, USA
| | - Krishna Singh
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee, USA; Center for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA; James H. Quillen VA Medical Center, East Tennessee State University, Johnson City, Tennessee, USA.,Department of Medicine, Albany Medical College, Albany, New York, USA.,Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, New York, USA
| |
Collapse
|
33
|
Cao H, Li X, Wang Z, Ding M, Sun Y, Dong F, Chen F, Liu L, Doughty J, Li Y, Liu YX. Histone H2B Monoubiquitination Mediated by HISTONE MONOUBIQUITINATION1 and HISTONE MONOUBIQUITINATION2 Is Involved in Anther Development by Regulating Tapetum Degradation-Related Genes in Rice. PLANT PHYSIOLOGY 2015; 168:1389-405. [PMID: 26143250 PMCID: PMC4528728 DOI: 10.1104/pp.114.256578] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 07/02/2015] [Indexed: 05/06/2023]
Abstract
Histone H2B monoubiquitination (H2Bub1) is an important regulatory mechanism in eukaryotic gene transcription and is essential for normal plant development. However, the function of H2Bub1 in reproductive development remains elusive. Here, we report rice (Oryza sativa) HISTONE MONOUBIQUITINATION1 (OsHUB1) and OsHUB2, the homologs of Arabidopsis (Arabidopsis thaliana) HUB1 and HUB2 proteins, which function as E3 ligases in H2Bub1, are involved in late anther development in rice. oshub mutants exhibit abnormal tapetum development and aborted pollen in postmeiotic anthers. Knockout of OsHUB1 or OsHUB2 results in the loss of H2Bub1 and a reduction in the levels of dimethylated lysine-4 on histone 3 (H3K4me2). Anther transcriptome analysis revealed that several key tapetum degradation-related genes including OsC4, rice Cysteine Protease1 (OsCP1), and Undeveloped Tapetum1 (UDT1) were down-regulated in the mutants. Further, chromatin immunoprecipitation assays demonstrate that H2Bub1 directly targets OsC4, OsCP1, and UDT1 genes, and enrichment of H2Bub1 and H3K4me2 in the targets is consistent to some degree. Our studies suggest that histone H2B monoubiquitination, mediated by OsHUB1 and OsHUB2, is an important epigenetic modification that in concert with H3K4me2, modulates transcriptional regulation of anther development in rice.
Collapse
Affiliation(s)
- Hong Cao
- Key Laboratory of Plant Molecular Physiology (H.C., X.L., Z.W., M.D., Y.S., F.D., F.C., Y.-X.L.) and Beijing Botanical Garden (L.L.), Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;University of Chinese Academy of Sciences, Beijing 100049, China (X.L., M.D.);Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom (J.D.); andDepartment of Internal Medicine IV, University of Hospital Freiburg, 79106 Freiburg, Germany (Y.L.)
| | - Xiaoying Li
- Key Laboratory of Plant Molecular Physiology (H.C., X.L., Z.W., M.D., Y.S., F.D., F.C., Y.-X.L.) and Beijing Botanical Garden (L.L.), Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;University of Chinese Academy of Sciences, Beijing 100049, China (X.L., M.D.);Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom (J.D.); andDepartment of Internal Medicine IV, University of Hospital Freiburg, 79106 Freiburg, Germany (Y.L.)
| | - Zhi Wang
- Key Laboratory of Plant Molecular Physiology (H.C., X.L., Z.W., M.D., Y.S., F.D., F.C., Y.-X.L.) and Beijing Botanical Garden (L.L.), Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;University of Chinese Academy of Sciences, Beijing 100049, China (X.L., M.D.);Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom (J.D.); andDepartment of Internal Medicine IV, University of Hospital Freiburg, 79106 Freiburg, Germany (Y.L.)
| | - Meng Ding
- Key Laboratory of Plant Molecular Physiology (H.C., X.L., Z.W., M.D., Y.S., F.D., F.C., Y.-X.L.) and Beijing Botanical Garden (L.L.), Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;University of Chinese Academy of Sciences, Beijing 100049, China (X.L., M.D.);Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom (J.D.); andDepartment of Internal Medicine IV, University of Hospital Freiburg, 79106 Freiburg, Germany (Y.L.)
| | - Yongzhen Sun
- Key Laboratory of Plant Molecular Physiology (H.C., X.L., Z.W., M.D., Y.S., F.D., F.C., Y.-X.L.) and Beijing Botanical Garden (L.L.), Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;University of Chinese Academy of Sciences, Beijing 100049, China (X.L., M.D.);Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom (J.D.); andDepartment of Internal Medicine IV, University of Hospital Freiburg, 79106 Freiburg, Germany (Y.L.)
| | - Fengqin Dong
- Key Laboratory of Plant Molecular Physiology (H.C., X.L., Z.W., M.D., Y.S., F.D., F.C., Y.-X.L.) and Beijing Botanical Garden (L.L.), Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;University of Chinese Academy of Sciences, Beijing 100049, China (X.L., M.D.);Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom (J.D.); andDepartment of Internal Medicine IV, University of Hospital Freiburg, 79106 Freiburg, Germany (Y.L.)
| | - Fengying Chen
- Key Laboratory of Plant Molecular Physiology (H.C., X.L., Z.W., M.D., Y.S., F.D., F.C., Y.-X.L.) and Beijing Botanical Garden (L.L.), Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;University of Chinese Academy of Sciences, Beijing 100049, China (X.L., M.D.);Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom (J.D.); andDepartment of Internal Medicine IV, University of Hospital Freiburg, 79106 Freiburg, Germany (Y.L.)
| | - Li'an Liu
- Key Laboratory of Plant Molecular Physiology (H.C., X.L., Z.W., M.D., Y.S., F.D., F.C., Y.-X.L.) and Beijing Botanical Garden (L.L.), Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;University of Chinese Academy of Sciences, Beijing 100049, China (X.L., M.D.);Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom (J.D.); andDepartment of Internal Medicine IV, University of Hospital Freiburg, 79106 Freiburg, Germany (Y.L.)
| | - James Doughty
- Key Laboratory of Plant Molecular Physiology (H.C., X.L., Z.W., M.D., Y.S., F.D., F.C., Y.-X.L.) and Beijing Botanical Garden (L.L.), Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;University of Chinese Academy of Sciences, Beijing 100049, China (X.L., M.D.);Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom (J.D.); andDepartment of Internal Medicine IV, University of Hospital Freiburg, 79106 Freiburg, Germany (Y.L.)
| | - Yong Li
- Key Laboratory of Plant Molecular Physiology (H.C., X.L., Z.W., M.D., Y.S., F.D., F.C., Y.-X.L.) and Beijing Botanical Garden (L.L.), Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;University of Chinese Academy of Sciences, Beijing 100049, China (X.L., M.D.);Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom (J.D.); andDepartment of Internal Medicine IV, University of Hospital Freiburg, 79106 Freiburg, Germany (Y.L.)
| | - Yong-Xiu Liu
- Key Laboratory of Plant Molecular Physiology (H.C., X.L., Z.W., M.D., Y.S., F.D., F.C., Y.-X.L.) and Beijing Botanical Garden (L.L.), Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;University of Chinese Academy of Sciences, Beijing 100049, China (X.L., M.D.);Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom (J.D.); andDepartment of Internal Medicine IV, University of Hospital Freiburg, 79106 Freiburg, Germany (Y.L.)
| |
Collapse
|
34
|
Mou L, Zhang Q, Diao R, Cai Z, Gui Y. A functional variant in the UBE2B gene promoter is associated with idiopathic azoospermia. Reprod Biol Endocrinol 2015; 13:79. [PMID: 26223869 PMCID: PMC4520152 DOI: 10.1186/s12958-015-0074-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND A variety of genetic variants lead to abnormal human spermatogenesis. The ubiquitin-conjugating enzyme E2B (UBE2B) plays a significant role in spermatogenesis as Ube2b-knockout male mice are infertile. METHODS In this study, we sequenced the exon and promoter region of UBE2B in 776 patients diagnosed with idiopathic azoospermia (IA) and 709 proven fertile men to examine whether UBE2B is involved in the pathogenesis of IA. RESULTS In the exon region, two novel synonymous variants were detected in the patient group. In the promoter region, four known variants and four novel variants were identified in the patient group. Of the novel variants in the promoter region, three were located at the binding site of specificity protein 1 (SP1) transcription factor analyzed by TRANSFAC software. Luciferase assays demonstrated that one heterozygous variant (Chr5.133706925 A > G) inhibited the transcriptional regulation activity of SP1. CONCLUSIONS A novel variant (Chr5.133706925 A > G) residing in the UBE2B gene promoter region confers a high risk for IA in a Chinese population. These results support a role for UBE2B in the pathogenesis of IA.
Collapse
Affiliation(s)
- Lisha Mou
- Shenzhen Domesticated Organ Medical Engineering Research and Development Center, First Affiliated Hospital of Shenzhen University, Shenzhen, China.
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Biomedical Research Institute, Shenzhen PKU-HKUST Medical Center, Shenzhen, China.
| | - Qiang Zhang
- Shenzhen Domesticated Organ Medical Engineering Research and Development Center, First Affiliated Hospital of Shenzhen University, Shenzhen, China.
- The people's hospital of Ankang, Shanxin, China.
| | - Ruiying Diao
- Shenzhen Domesticated Organ Medical Engineering Research and Development Center, First Affiliated Hospital of Shenzhen University, Shenzhen, China.
| | - Zhiming Cai
- Shenzhen Domesticated Organ Medical Engineering Research and Development Center, First Affiliated Hospital of Shenzhen University, Shenzhen, China.
| | - Yaoting Gui
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Biomedical Research Institute, Shenzhen PKU-HKUST Medical Center, Shenzhen, China.
| |
Collapse
|
35
|
Polge C, Attaix D, Taillandier D. Role of E2-Ub-conjugating enzymes during skeletal muscle atrophy. Front Physiol 2015; 6:59. [PMID: 25805999 PMCID: PMC4354305 DOI: 10.3389/fphys.2015.00059] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 02/14/2015] [Indexed: 01/05/2023] Open
Abstract
The Ubiquitin Proteasome System (UPS) is a major actor of muscle wasting during various physio-pathological situations. In the past 15 years, increasing amounts of data have depicted a picture, although incomplete, of the mechanisms implicated in myofibrillar protein degradation, from the discovery of muscle-specific E3 ligases to the identification of the signaling pathways involved. The targeting specificity of the UPS relies on the capacity of the system to first recognize and then label the proteins to be degraded with a poly-ubiquitin (Ub) chain. It is fairly assumed that the recognition of the substrate is accomplished by the numerous E3 ligases present in mammalian cells. However, most E3s do not possess any catalytic activity and E2 enzymes may be more than simple Ub-providers for E3s since they are probably important actors in the ubiquitination machinery. Surprisingly, most authors have tried to characterize E3 substrates, but the exact role of E2s in muscle protein degradation is largely unknown. A very limited number of the 35 E2s described in humans have been studied in muscle protein breakdown experiments and the vast majority of studies were only descriptive. We review here the role of E2 enzymes in skeletal muscle and the difficulties linked to their study and provide future directions for the identification of muscle E2s responsible for the ubiquitination of contractile proteins.
Collapse
Affiliation(s)
- Cecile Polge
- UMR 1019 Nutrition Humaine, Institut National de la Recherche Agronomique Saint Genès Champanelle, France
| | - Didier Attaix
- UMR 1019 Nutrition Humaine, Institut National de la Recherche Agronomique Saint Genès Champanelle, France
| | - Daniel Taillandier
- UMR 1019 Nutrition Humaine, Institut National de la Recherche Agronomique Saint Genès Champanelle, France
| |
Collapse
|
36
|
Medarde N, Merico V, López-Fuster MJ, Zuccotti M, Garagna S, Ventura J. Impact of the number of Robertsonian chromosomes on germ cell death in wild male house mice. Chromosome Res 2015; 23:159-69. [PMID: 25589476 DOI: 10.1007/s10577-014-9442-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 10/06/2014] [Accepted: 10/14/2014] [Indexed: 10/24/2022]
Abstract
Previous studies in the house mouse have shown that the presence of Robertsonian (Rb) metacentric chromosomes in heterozygous condition affects the process of spermatogenesis. This detrimental effect mainly depends on the number of metacentrics involved and the complexity of the resulting meiotic figures. In this study, we aimed at elucidating the relationship between the chromosomal composition and spermatogenesis impairment in mice present in an area of chromosomal polymorphism (the so-called Barcelona system BRbS) in which Rb mice are surrounded by all acrocentric animals, no established metacentric races are present and the level of structural heterozygosity is relatively low. Using the terminal deoxinucleotidyl transferase-mediated dUTP nick end labelling (TUNEL) assay, we report higher frequency of apoptotic spermatogenetic cells in mice carrying six pairs of metacentrics at the homozygous state than in those carrying two or three fusions at the heterozygous state. Specifically, we detected a higher frequency of TUNEL-positive (T+) tubules and of T+ cells per tubule cross section and also a lower spermatid/spermatocyte ratio. These results indicate that the number of metacentrics at the homozygous state is more influential in determining apoptotic germ cell death than that of moderate chromosome heterozygosity. The percentage of germ cell death lower than 50 % found in our samples and the geographic distribution of the set of metacentrics within the BRbS indicate that although the spermatogenic alterations detected in this area could act as a partial barrier to gene flow, they are not sufficient to prevent Rb chromosomes from spreading in nature.
Collapse
Affiliation(s)
- Nuria Medarde
- Departament de Biologia Animal, de Biologia Vegetal i d'Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain,
| | | | | | | | | | | |
Collapse
|
37
|
de Boer P, de Vries M, Ramos L. A mutation study of sperm head shape and motility in the mouse: lessons for the clinic. Andrology 2014; 3:174-202. [PMID: 25511638 DOI: 10.1111/andr.300] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 09/19/2014] [Accepted: 09/24/2014] [Indexed: 12/11/2022]
Abstract
Mouse mutants that show effects on sperm head shape, the sperm tail (flagellum), and motility were analysed in a systematic way. This was achieved by grouping mutations in the following classes: manchette, acrosome, Sertoli cell contact, chromatin remodelling, and mutations involved in complex regulations such as protein (de)phosphorylation and RNA stability, and flagellum/motility mutations. For all mutant phenotypes, flagellum function (motility) was affected. Head shape, including the nucleus, was also affected in spermatozoa of most mouse models, though with considerable variation. For the mutants that were categorized in the flagellum/motility group, generally normal head shapes were found, even when the flagellum did not develop or only poorly so. Most mutants are sterile, an occasional one semi-sterile. For completeness, the influence of the sex chromosomes on sperm phenotype is included. Functionally, the genes involved can be categorized as regulators of spermiogenesis. When extrapolating these data to human sperm samples, in vivo selection for motility would be the tool for weeding out the products of suboptimal spermiogenesis and epididymal sperm maturation. The striking dependency of motility on proper sperm head development is not easy to understand, but likely is of evolutionary benefit. Also, sperm competition after mating can never act against the long-term multi-generation interest of genetic integrity. Hence, it is plausible to suggest that short-term haplophase fitness i.e., motility, is developmentally integrated with proper nucleus maturation, including genetic integrity to protect multi-generation fitness. We hypothesize that, when the prime defect is in flagellum formation, apparently a feedback loop was not necessary as head morphogenesis in these mutants is mostly normal. Extrapolating to human-assisted reproductive techniques practice, this analysis would supply the arguments for the development of tools to select for motility as a continuous (non-discrete) parameter.
Collapse
Affiliation(s)
- P de Boer
- Department of Obstetrics and Gynaecology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | | | | |
Collapse
|
38
|
Dhar P, Singla N. Histomorphological and biochemical changes induced by triptolide treatment in male lesser bandicoot rat, Bandicota bengalensis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2014; 116:49-55. [PMID: 25454520 DOI: 10.1016/j.pestbp.2014.09.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 09/12/2014] [Accepted: 09/26/2014] [Indexed: 06/04/2023]
Abstract
Mature and healthy male lesser bandicoot rats, Bandicota bengalensis (n = 40) were fed on bait (mixture of cracked wheat and powdered sugar in 98:2) containing different concentrations of triptolide (0, 0.15, 0.20 and 0.25% w/w) for 15 days in two-choice trials. Results revealed no significant effect of triptolide treatment on weights of vital organs after 30 and 60 days of treatment withdrawal. A significant (P ≤ 0.05) increase in plasma levels of TP, ALP, ACP, ALT and AST in response to stress induced in groups of rats treated with 0.20 and 0.25% triptolide was observed after 30 days of treatment withdrawal. No significant effect of treatment was observed on histomorphology of liver. A significant (P ≤ 0.05) effect of triptolide treatment was, however, observed on testicular function in the form of reduced diameter of seminiferous tubules and number of various spermatogenic cells indicating effect on spermatogenesis and spermiogenesis. The cell stages affected did not recover fully within 60 days period following treatment withdrawal. The present study suggests the potential of triptolide in the reproductive management of B. bengalensis by way of affecting testicular function.
Collapse
Affiliation(s)
- Parul Dhar
- Department of Zoology, Punjab Agricultural University, Ludhiana 141004, India
| | - Neena Singla
- Department of Zoology, Punjab Agricultural University, Ludhiana 141004, India.
| |
Collapse
|
39
|
Wang J, Xia Y, Wang G, Zhou T, Guo Y, Zhang C, An X, Sun Y, Guo X, Zhou Z, Sha J. In-depth proteomic analysis of whole testis tissue from the adult rhesus macaque. Proteomics 2014; 14:1393-1402. [PMID: 24610633 DOI: 10.1002/pmic.201300149] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 01/22/2014] [Accepted: 03/03/2014] [Indexed: 02/06/2023]
Abstract
The rhesus macaque is similar to humans both anatomically and physiologically as a primate, and has therefore been used extensively in medical and biological research, including reproductive physiology. Despite sequencing of the macaque genome, limited postgenomic studies have been performed to date. In studies aimed at characterizing spermatogenesis, we successfully identified 9078 macaque testis proteins corresponding to 8662 genes, using advanced MS and an optimized proteomics platform, indicative of complex protein compositions during macaque spermatogenesis. Immunohistochemistry analysis further revealed the presence of proteins from different types of testicular cells, including Sertoli cells, Leydig cells, and various stages of germ cells. Our data provide expression evidence at protein level of 3010 protein-coding genes in 8662 identified testis genes for the first time. We further identified 421 homologous genes from the proteome already known to be essential for male infertility in mouse. Comparative analysis of the proteome showed high similarity with the published human testis proteome, implying that macaque and human may use similar proteins to regulate spermatogenesis. Our in-depth analysis of macaque spermatogenesis provides a rich resource for further studies, and supports the utility of macaque as a suitable model for the study of human reproduction.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, P. R. China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
The role of histone ubiquitination during spermatogenesis. BIOMED RESEARCH INTERNATIONAL 2014; 2014:870695. [PMID: 24963488 PMCID: PMC4052122 DOI: 10.1155/2014/870695] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 04/29/2014] [Indexed: 11/17/2022]
Abstract
Protein ubiquitin-proteasome (ubiquitin-proteasome) system is the major mechanism responsible for protein degradation in eukaryotic cell. During spermatogenesis, the replacement of histone by protamine is vital for normal sperm formation, which is involved in ubiquitination enzymes expressed in testis. Recently, histone ubiquitin ligases have been shown to play critical roles in several aspects of spermatogenesis, such as meiotic sex chromosome inactivation (MSCI), DNA damage response, and spermiogenesis. In this review, we highlight recent progress in the discovery of several histone ubiquitin ligases and elaborate mechanisms of how these enzymes are involved in these processes through knockout mouse model. Using Huwe1, UBR2, and RNF8 as examples, we emphasized the diverse functions for each enzyme and the broad involvement of these enzymes in every stage, from spermatogonia differentiation and meiotic division to spermiogenesis; thus histone ubiquitin ligases represent a class of enzymes, which play important roles in spermatogenesis through targeting histone for ubiquitination and therefore are involved in transcription regulation, epigenetic modification, and other processes essential for normal gametes formation.
Collapse
|
41
|
Singla N, Kaur G, Babbar BK, Sandhu BS. Potential of triptolide in reproductive management of the house rat, Rattus rattus. Integr Zool 2014; 8:260-76. [PMID: 24020465 DOI: 10.1111/1749-4877.12013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Mature and healthy male house rats, Rattus rattus (n= 160) were fed on bait (cracked wheat: powdered sugar, 98:2) containing different concentrations of triptolide (0.1, 0.05, 0.025 and 0%) for 7 and 14 days in no-choice and bi-choice feeding tests in the laboratory. The objective of the study was to record the antifertility affects of triptolide after 30 and 60 days of termination of treatment. Results revealed no significant effect of triptolide treatment on weights of testis, epididymis, seminal vesicles and prostate gland of rats. Overall, sperm motility, live sperm count, sperm density and sperm morphology in the cauda epididymal fluid were found to differ significantly (P≤ 0.05) between untreated and treated groups of rats. The major effect of triptolide on sperm morphology was in the form of sperm head tail separation, which was up to 56.0% in rats treated for 14 days in no-choice and autopsied after 30 days. A significant effect (P≤ 0.05) of triptolide treatment was observed on the histomorphology of the testis, which included a dose-dependent decrease in diameter of seminiferous tubules, thickness of germinal epithelium and numbers of various spermatogenic cells. Cell associations in the seminiferous epithelial cycle were poorly developed in rats ingesting medium (4.7-5.1 mg/100 g bw) and high doses (6.9-7.2 mg/100 g bw) of triptolide than rats ingesting low doses (1.8-2.3 mg/100 g bw) and untreated rats. The cell stages affected had not recovered fully within the 60 day period following triptolide withdrawal. The present study suggests the potential of triptolide in reproductive management of Rattus rattus.
Collapse
Affiliation(s)
- Neena Singla
- Department of Zoology, Punjab Agricultural University, Ludhiana, India Department of Veterinary Pathology, Guru Angad Dev Veterinary and Animal Science University, Ludhiana, India
| | | | | | | |
Collapse
|
42
|
Rathke C, Baarends WM, Awe S, Renkawitz-Pohl R. Chromatin dynamics during spermiogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:155-68. [DOI: 10.1016/j.bbagrm.2013.08.004] [Citation(s) in RCA: 339] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 08/06/2013] [Accepted: 08/09/2013] [Indexed: 01/25/2023]
|
43
|
Ubiquitin-proteasome system in spermatogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 759:181-213. [PMID: 25030765 DOI: 10.1007/978-1-4939-0817-2_9] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Spermatogenesis represents a complex succession of cell division and differentiation events resulting in the continuous formation of spermatozoa. Such a complex program requires precise expression of enzymes and structural proteins which is effected not only by regulation of gene transcription and translation, but also by targeted protein degradation. In this chapter, we review current knowledge about the role of the ubiquitin-proteasome system in spermatogenesis, describing both proteolytic and non-proteolytic functions of ubiquitination. Ubiquitination plays essential roles in the establishment of both spermatogonial stem cells and differentiating spermatogonia from gonocytes. It also plays critical roles in several key processes during meiosis such as genetic recombination and sex chromosome silencing. Finally, in spermiogenesis, we summarize current knowledge of the role of the ubiquitin-proteasome system in nucleosome removal and establishment of key structures in the mature spermatid. Many mechanisms remain to be precisely defined, but present knowledge indicates that research in this area has significant potential to translate into benefits that will address problems in both human and animal reproduction.
Collapse
|
44
|
Castillo J, Amaral A, Oliva R. Sperm nuclear proteome and its epigenetic potential. Andrology 2013; 2:326-38. [PMID: 24327354 DOI: 10.1111/j.2047-2927.2013.00170.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 11/08/2013] [Accepted: 11/11/2013] [Indexed: 11/29/2022]
Abstract
The main function of the sperm cell is to transmit the paternal genetic message and epigenetic information to the embryo. Importantly, the majority of the genes in the sperm chromatin are highly condensed by protamines, whereas genes potentially needed in the initial stages of development are associated with histones, representing a form of epigenetic marking. However, so far little attention has been devoted to other sperm chromatin-associated proteins that, in addition to histones and protamines, may also have an epigenetic role. Therefore, with the goal of contributing to cover this subject we have compiled, reviewed and report a list of 581 chromatin or nuclear proteins described in the human sperm cell. Furthermore, we have analysed their Gene Ontology Biological Process enriched terms and have grouped them into different functional categories. Remarkably, we show that 56% of the sperm nuclear proteins have a potential epigenetic activity, being involved in at least one of the following functions: chromosome organization, chromatin organization, protein-DNA complex assembly, DNA packaging, gene expression, transcription, chromatin modification and histone modification. In addition, we have also included and compared the sperm cell proteomes of different model species, demonstrating the existence of common trends in the chromatin composition in the mammalian mature male gamete. Taken together, our analyses suggest that the mammalian sperm cell delivers to the offspring a rich combination of histone variants, transcription factors, chromatin-associated and chromatin-modifying proteins which have the potential to encode and transmit an extremely complex epigenetic information.
Collapse
Affiliation(s)
- J Castillo
- Human Genetics Research Group, IDIBAPS, Faculty of Medicine, University of Barcelona, Barcelona, Spain; Biochemistry and Molecular Genetics Service, Hospital Clinic, Barcelona, Spain
| | | | | |
Collapse
|
45
|
Nakamura N. Ubiquitination regulates the morphogenesis and function of sperm organelles. Cells 2013; 2:732-50. [PMID: 24709878 PMCID: PMC3972651 DOI: 10.3390/cells2040732] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 11/12/2013] [Accepted: 11/29/2013] [Indexed: 11/29/2022] Open
Abstract
It is now understood that protein ubiquitination has diverse cellular functions in eukaryotes. The molecular mechanism and physiological significance of ubiquitin-mediated processes have been extensively studied in yeast, Drosophila and mammalian somatic cells. Moreover, an increasing number of studies have emphasized the importance of ubiquitination in spermatogenesis and fertilization. The dysfunction of various ubiquitin systems results in impaired sperm development with abnormal organelle morphology and function, which in turn is highly associated with male infertility. This review will focus on the emerging roles of ubiquitination in biogenesis, function and stability of sperm organelles in mammals.
Collapse
Affiliation(s)
- Nobuhiro Nakamura
- Department of Biological Sciences, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| |
Collapse
|
46
|
Zorrilla M, Yatsenko AN. The Genetics of Infertility: Current Status of the Field. CURRENT GENETIC MEDICINE REPORTS 2013; 1:10.1007/s40142-013-0027-1. [PMID: 24416713 PMCID: PMC3885174 DOI: 10.1007/s40142-013-0027-1] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Infertility is a relatively common health condition, affecting nearly 7% of all couples. Clinically, it is a highly heterogeneous pathology with a complex etiology that includes environmental and genetic factors. It has been estimated that nearly 50% of infertility cases are due to genetic defects. Hundreds of studies with animal knockout models convincingly showed infertility to be caused by gene defects, single or multiple. However, despite enormous efforts, progress in translating basic research findings into clinical studies has been challenging. The genetic causes remain unexplained for the vast majority of male or female infertility patients. A particular difficulty is the huge number of candidate genes to be studied; there are more than 2,300 genes expressed in the testis alone, and hundreds of those genes influence reproductive function in humans and could contribute to male infertility. At present, there are only a handful of genes or genetic defects that have been shown to cause, or to be strongly associated with, primary infertility. Yet, with completion of the human genome and progress in personalized medicine, the situation is rapidly changing. Indeed, there are 10-15 new gene tests, on average, being added to the clinical genetic testing list annually.
Collapse
Affiliation(s)
- Michelle Zorrilla
- Departments of Obstetrics, Gynecology and Reproductive Sciences, Pathology, School of Medicine, University of Pittsburgh
| | - Alexander N Yatsenko
- Departments of Obstetrics, Gynecology and Reproductive Sciences, Pathology, School of Medicine, University of Pittsburgh
| |
Collapse
|
47
|
Zhuang T, Hess RA, Kolla V, Higashi M, Raabe TD, Brodeur GM. CHD5 is required for spermiogenesis and chromatin condensation. Mech Dev 2013; 131:35-46. [PMID: 24252660 DOI: 10.1016/j.mod.2013.10.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 10/29/2013] [Accepted: 10/31/2013] [Indexed: 10/26/2022]
Abstract
Haploid spermatids undergo extensive cellular, molecular and morphological changes to form spermatozoa during spermiogenesis. Abnormalities in these steps can lead to serious male fertility problems, from oligospermia to complete azoospermia. CHD5 is a chromatin-remodeling nuclear protein expressed almost exclusively in the brain and testis. Male Chd5 knockout (KO) mice have deregulated spermatogenesis, characterized by immature sloughing of spermatids, spermiation failure, disorganization of the spermatogenic cycle and abnormal head morphology in elongating spermatids. This results in the inappropriate placement and juxtaposition of germ cell types within the epithelium. Sperm that did enter the epididymis displayed irregular shaped sperm heads, and retained cytoplasmic components. These sperm also stained positively for acidic aniline, indicating improper removal of histones and lack of proper chromatin condensation. Electron microscopy showed that spermatids in the seminiferous tubules of Chd5 KO mice have extensive nuclear deformation, with irregular shaped heads of elongated spermatids, and lack the progression of chromatin condensation in an anterior-to-posterior direction. However, the mRNA expression levels of other important genes controlling spermatogenesis were not affected. Chd5 KO mice also showed decreased H4 hyperacetylation beginning at stage IX, step 9, which is vital for the histone-transition protein replacement in spermiogenesis. Our data indicate that CHD5 is required for normal spermiogenesis, especially for spermatid chromatin condensation.
Collapse
Affiliation(s)
- Tiangang Zhuang
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Rex A Hess
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, United States
| | - Venkatadri Kolla
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Mayumi Higashi
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Tobias D Raabe
- Penn Gene Targeting Service, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Garrett M Brodeur
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States; The Department of Pediatrics, Perelman School of Medicine, Philadelphia, PA 19104, United States.
| |
Collapse
|
48
|
Abstract
Producing competent gametes is essential for transmitting genetic information throughout generations. Spermatogenesis is a unique example of rearrangements of genome packaging to ensure fertilization. After meiosis, spermatids undergo drastic morphological changes, perhaps the most dramatic ones occurring in their nuclei, including the transition into a protamine-packaged genome. In this issue of Genes & Development, Montellier and colleagues (pp. 1680-1692) shed new light on the molecular mechanisms regulating this transition by ascribing for the first time a function to a histone variant, TH2B, in the regulation of this process.
Collapse
Affiliation(s)
- Ana Boskovic
- U964, Institut National de la Santé et de la Recherche Médicale INSERM, Centre National de la Recherche Scientifique CNRS, Institut de Génétique et de Biologie Moléculaire et Cellulaire, F-67404 Illkirch, Cu de Strasbourg, France
| | | |
Collapse
|
49
|
Amaral A, Castillo J, Ramalho-Santos J, Oliva R. The combined human sperm proteome: cellular pathways and implications for basic and clinical science. Hum Reprod Update 2013; 20:40-62. [DOI: 10.1093/humupd/dmt046] [Citation(s) in RCA: 184] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
50
|
Mou L, Zhang Q, Wang Y, Zhang Q, Sun L, Li C, Huang W, Yuan Y, Duan Y, Diao R, Jiang Z, Ye J, Cai Z, Gui Y. Identification of Ube2b as a Novel Target of Androgen Receptor in Mouse Sertoli Cells1. Biol Reprod 2013; 89:32. [DOI: 10.1095/biolreprod.112.103648] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|