1
|
Kim JW, Yong AJH, Aisenberg EE, Lobel JH, Wang W, Dawson TM, Dawson VL, Gao R, Jan YN, Bateup HS, Ingolia NT. Molecular recording of calcium signals via calcium-dependent proximity labeling. Nat Chem Biol 2024; 20:894-905. [PMID: 38658655 DOI: 10.1038/s41589-024-01603-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 03/08/2024] [Indexed: 04/26/2024]
Abstract
Calcium ions serve as key intracellular signals. Local, transient increases in calcium concentrations can activate calcium sensor proteins that in turn trigger downstream effectors. In neurons, calcium transients play a central role in regulating neurotransmitter release and synaptic plasticity. However, it is challenging to capture the molecular events associated with these localized and ephemeral calcium signals. Here we present an engineered biotin ligase that generates permanent molecular traces in a calcium-dependent manner. The enzyme, calcium-dependent BioID (Cal-ID), biotinylates nearby proteins within minutes in response to elevated local calcium levels. The biotinylated proteins can be identified via mass spectrometry and visualized using microscopy. In neurons, Cal-ID labeling is triggered by neuronal activity, leading to prominent protein biotinylation that enables transcription-independent activity labeling in the brain. In summary, Cal-ID produces a biochemical record of calcium signals and neuronal activity with high spatial resolution and molecular specificity.
Collapse
Affiliation(s)
- J Wren Kim
- Department of Molecular and Cell Biology at the University of California, Berkeley, Berkeley, CA, USA
| | - Adeline J H Yong
- Department of Physiology at the University of California, San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute at the University of California, San Francisco, San Francisco, CA, USA
| | - Erin E Aisenberg
- Helen Wills Neuroscience Institute at the University of California, Berkeley, Berkeley, CA, USA
| | - Joseph H Lobel
- Department of Molecular and Cell Biology at the University of California, Berkeley, Berkeley, CA, USA
| | - Wei Wang
- Department of Chemistry at the University of Illinois, Chicago, Chicago, IL, USA
| | - Ted M Dawson
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Valina L Dawson
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ruixuan Gao
- Department of Chemistry at the University of Illinois, Chicago, Chicago, IL, USA
| | - Yuh Nung Jan
- Department of Physiology at the University of California, San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute at the University of California, San Francisco, San Francisco, CA, USA
| | - Helen S Bateup
- Department of Molecular and Cell Biology at the University of California, Berkeley, Berkeley, CA, USA
- Helen Wills Neuroscience Institute at the University of California, Berkeley, Berkeley, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Nicholas T Ingolia
- Department of Molecular and Cell Biology at the University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
2
|
Yu F, Courjaret R, Assaf L, Elmi A, Hammad A, Fisher M, Terasaki M, Machaca K. Mitochondria-ER contact sites expand during mitosis. iScience 2024; 27:109379. [PMID: 38510124 PMCID: PMC10951641 DOI: 10.1016/j.isci.2024.109379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/31/2024] [Accepted: 02/27/2024] [Indexed: 03/22/2024] Open
Abstract
Mitochondria-ER contact sites (MERCS) are involved in energy homeostasis, redox and Ca2+ signaling, and inflammation. MERCS are heavily studied; however, little is known about their regulation during mitosis. Here, we show that MERCS expand during mitosis in three cell types using various approaches, including transmission electron microscopy, serial EM coupled to 3D reconstruction, and a split GFP MERCS marker. We further show enhanced Ca2+ transfer between the ER and mitochondria using either direct Ca2+ measurements or by quantifying the activity of Ca2+-dependent mitochondrial dehydrogenases. Collectively, our results support a lengthening of MERCS in mitosis that is associated with improved Ca2+ coupling between the two organelles. This augmented Ca2+ coupling could be important to support the increased energy needs of the cell during mitosis.
Collapse
Affiliation(s)
- Fang Yu
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Raphael Courjaret
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Lama Assaf
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
- College of Health and Life Science, Hamad bin Khalifa University, Doha, Qatar
| | - Asha Elmi
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
- College of Health and Life Science, Hamad bin Khalifa University, Doha, Qatar
| | - Ayat Hammad
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
- College of Health and Life Science, Hamad bin Khalifa University, Doha, Qatar
| | - Melanie Fisher
- Department of Cell Biology, UConn Health, 263 Farmington Ave, Farmington, CT 06030, USA
| | - Mark Terasaki
- Department of Cell Biology, UConn Health, 263 Farmington Ave, Farmington, CT 06030, USA
| | - Khaled Machaca
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
3
|
Becchetti A. Interplay of Ca 2+ and K + signals in cell physiology and cancer. CURRENT TOPICS IN MEMBRANES 2023; 92:15-46. [PMID: 38007266 DOI: 10.1016/bs.ctm.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
The cytoplasmic Ca2+ concentration and the activity of K+ channels on the plasma membrane regulate cellular processes ranging from mitosis to oriented migration. The interplay between Ca2+ and K+ signals is intricate, and different cell types rely on peculiar cellular mechanisms. Derangement of these mechanisms accompanies the neoplastic progression. The calcium signals modulated by voltage-gated (KV) and calcium-dependent (KCa) K+ channel activity regulate progression of the cell division cycle, the release of growth factors, apoptosis, cell motility and migration. Moreover, KV channels regulate the cell response to the local microenvironment by assembling with cell adhesion and growth factor receptors. This chapter summarizes the pathophysiological roles of Ca2+ and K+ fluxes in normal and cancer cells, by concentrating on several biological systems in which these functions have been studied in depth, such as early embryos, mammalian cell lines, T lymphocytes, gliomas and colorectal cancer cells. A full understanding of the underlying mechanisms will offer a comprehensive view of the ion channel implication in cancer biology and suggest potential pharmacological targets for novel therapeutic approaches in oncology.
Collapse
Affiliation(s)
- Andrea Becchetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy.
| |
Collapse
|
4
|
Chandra S. The restriction of calcium influx in metaphase and post-metaphase stages of cell division revealed by imaging secondary ion mass spectrometry (SIMS). J Microsc 2023; 290:125-133. [PMID: 36864642 PMCID: PMC10133040 DOI: 10.1111/jmi.13182] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 02/09/2023] [Accepted: 02/27/2023] [Indexed: 03/04/2023]
Abstract
A secondary ion mass spectrometry (SIMS)-based isotopic imaging technique of ion microscopy was used for observing calcium influx in single renal epithelial LLC-PK1 cells. The CAMECA IMS-3f SIMS instrument, used in the study, is capable of producing isotopic images of single cells at 500 nm spatial resolution. Due to the high-vacuum requirements of the instrument the cells were prepared cryogenically with a freeze-fracture method and frozen freeze-dried cells were used for SIMS analysis. The influx of calcium was imaged directly by exposure of cells to 44 Ca stable isotope in the extracellular buffer for 10 min. The 44 Ca influx was measured at mass 44 and the distribution of endogenous calcium at mass 40 (40 Ca) in the same cell. A direct comparison of interphase cells to cells undergoing division revealed that calcium influx is restricted in metaphase and post-metaphase stages of cell division. This restriction is lifted in late cytokinesis. The net influx of 44 Ca in 10 min was approximately half under calcium influx restriction in comparison to interphase cells. Under calcium influx restriction the 44 Ca concentration was the same between the mitotic chromosome and the cytoplasm. These observations indicate that the endoplasmic reticulum (ER) calcium uptake is compromised under calcium influx restriction in cells undergoing division.
Collapse
Affiliation(s)
- Subhash Chandra
- Department of Biomedical Engineering, Cornell SIMS Laboratory, Cornell University, Ithaca, New York
| |
Collapse
|
5
|
Li R, Ren Y, Mo G, Swider Z, Mikoshiba K, Bement WM, Liu XJ. Inositol 1, 4, 5-trisphosphate receptor is required for spindle assembly in Xenopus oocytes. Mol Biol Cell 2022; 33:br27. [PMID: 36129775 PMCID: PMC9727787 DOI: 10.1091/mbc.e22-06-0218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The extent to which calcium signaling participates in specific events of animal cell meiosis or mitosis is a subject of enduring controversy. We have previously demonstrated that buffering intracellular calcium with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA, a fast calcium chelator), but not ethylenebis(oxyethylenenitrilo)tetraacetic acid (EGTA, a slow calcium chelator), rapidly depolymerizes spindle microtubules in Xenopus oocytes, suggesting that spindle assembly and/or stability requires calcium nanodomains-calcium transients at extremely restricted spatial-temporal scales. In this study, we have investigated the function of inositol-1,4,5-trisphosphate receptor (IP3R), an endoplasmic reticulum (ER) calcium channel, in spindle assembly using Trim21-mediated depletion of IP3R. Oocytes depleted of IP3R underwent germinal vesicle breakdown but failed to emit the first polar body and failed to assemble proper meiotic spindles. Further, we developed a cell-free spindle assembly assay in which cytoplasm was aspirated from single oocytes. Spindles assembled in this cell-free system were encased in ER membranes, with IP3R enriched at the poles, while disruption of either ER organization or calcium signaling resulted in rapid spindle disassembly. As in intact oocytes, formation of spindles in cell-free oocyte extracts also required IP3R. We conclude that intracellular calcium signaling involving IP3R-mediated calcium release is required for meiotic spindle assembly in Xenopus oocytes.
Collapse
Affiliation(s)
- Ruizhen Li
- Ottawa Hospital Research Institute, The Ottawa Hospital—General Campus, Ottawa, ON K1H 8L6, Canada
| | - Yanping Ren
- Ottawa Hospital Research Institute, The Ottawa Hospital—General Campus, Ottawa, ON K1H 8L6, Canada,Department of Histology and Embryology, Zunyi Medical University, Zunyi, Guizhou 563003, China
| | - Guolong Mo
- Ottawa Hospital Research Institute, The Ottawa Hospital—General Campus, Ottawa, ON K1H 8L6, Canada,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Zackary Swider
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin—Madison, Madison, WI 53706,Center for Quantitative Cell Imaging, University of Wisconsin—Madison, Madison, WI 53706
| | - Katsuhiko Mikoshiba
- SIAIS ShanghaiTech University, Middle Huaxia Road, Shanghai 201210, China,Faculty of Science, Toho University Miyama, Funabashi, Chiba, 247-8510 Japan
| | - William M. Bement
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin—Madison, Madison, WI 53706,Center for Quantitative Cell Imaging, University of Wisconsin—Madison, Madison, WI 53706
| | - X. Johné Liu
- Ottawa Hospital Research Institute, The Ottawa Hospital—General Campus, Ottawa, ON K1H 8L6, Canada,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada,Department of Obstetrics and Gynaecology, University of Ottawa, Ottawa, ON K1H 8M5, Canada,*Address correspondence to: Johné Liu ()
| |
Collapse
|
6
|
Nugues C, Helassa N, Haynes LP. Mitosis, Focus on Calcium. Front Physiol 2022; 13:951979. [PMID: 35784871 PMCID: PMC9247304 DOI: 10.3389/fphys.2022.951979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 05/30/2022] [Indexed: 12/04/2022] Open
Abstract
The transformation of a single fertilised egg into an adult human consisting of tens of trillions of highly diverse cell types is a marvel of biology. The expansion is largely achieved by cell duplication through the process of mitosis. Mitosis is essential for normal growth, development, and tissue repair and is one of the most tightly regulated biological processes studied. This regulation is designed to ensure accurate segregation of chromosomes into each new daughter cell since errors in this process can lead to genetic imbalances, aneuploidy, that can lead to diseases including cancer. Understanding how mitosis operates and the molecular mechanisms that ensure its fidelity are therefore not only of significant intellectual value but provide unique insights into disease pathology. The purpose of this review is to revisit historical evidence that mitosis can be influenced by the ubiquitous second messenger calcium and to discuss this in the context of new findings revealing exciting new information about its role in cell division.
Collapse
Affiliation(s)
- Charlotte Nugues
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Nordine Helassa
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Lee P. Haynes
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
7
|
Rosendo-Pineda MJ, Moreno CM, Vaca L. Role of ion channels during cell division. Cell Calcium 2020; 91:102258. [PMID: 32736154 DOI: 10.1016/j.ceca.2020.102258] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023]
Abstract
Ion channels are transmembrane proteins whose canonical function is the transport of ions across the plasma membrane to regulate cell membrane potential and play an essential role in neural communication, nerve conduction, and muscle contraction. However, over the last few years, non-canonical functions have been identified for many channels, having active roles in phagocytosis, invasiveness, proliferation, among others. The participation of some channels in cell proliferation has raised the question of whether they may play an active role in mitosis. There are several reports showing the participation of channels during interphase, however, the direct participation of ion channels in mitosis has received less attention. In this article, we summarize the current evidence on the participation of ion channels in mitosis. We also summarize some tools that would allow the study of ion channels and cell cycle regulatory molecules in individual cells during mitosis.
Collapse
Affiliation(s)
| | - Claudia M Moreno
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Luis Vaca
- Instituto de Fisiología Celular. Universidad Nacional Autónoma de México. Ciudad Universitaria, Coyoacán, DF, 04510, Mexico; Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, 98195, USA.
| |
Collapse
|
8
|
Helassa N, Nugues C, Rajamanoharan D, Burgoyne RD, Haynes LP. A centrosome-localized calcium signal is essential for mammalian cell mitosis. FASEB J 2019; 33:14602-14610. [PMID: 31682764 PMCID: PMC6910830 DOI: 10.1096/fj.201901662r] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/23/2019] [Indexed: 02/02/2023]
Abstract
Mitosis defects can lead to premature ageing and cancer. Understanding mitosis regulation therefore has important implications for human disease. Early data suggested that calcium (Ca2+) signals could influence mitosis, but these have hitherto not been observed in mammalian cells. Here, we reveal a prolonged yet spatially restricted Ca2+ signal at the centrosomes of actively dividing cells. Local buffering of the centrosomal Ca2+ signals, by flash photolysis of the caged Ca2+ chelator diazo-2-acetoxymethyl ester, arrests mitosis. We also provide evidence that this Ca2+ signal emanates from the endoplasmic reticulum. In summary, we characterize a unique centrosomal Ca2+ signal as a functionally essential input into mitosis.-Helassa, N., Nugues, C., Rajamanoharan, D., Burgoyne, R. D., Haynes, L. P. A centrosome-localized calcium signal is essential for mammalian cell mitosis.
Collapse
Affiliation(s)
- Nordine Helassa
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Charlotte Nugues
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Dayani Rajamanoharan
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Robert D. Burgoyne
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Lee P. Haynes
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
9
|
Modica TME, Dituri F, Mancarella S, Pisano C, Fabregat I, Giannelli G. Calcium Regulates HCC Proliferation as well as EGFR Recycling/Degradation and Could Be a New Therapeutic Target in HCC. Cancers (Basel) 2019; 11:cancers11101588. [PMID: 31635301 PMCID: PMC6826902 DOI: 10.3390/cancers11101588] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 10/13/2019] [Indexed: 01/08/2023] Open
Abstract
Calcium is the most abundant element in the human body. Its role is essential in physiological and biochemical processes such as signal transduction from outside to inside the cell between the cells of an organ, as well as the release of neurotransmitters from neurons, muscle contraction, fertilization, bone building, and blood clotting. As a result, intra- and extracellular calcium levels are tightly regulated by the body. The liver is the most specialized organ of the body, as its functions, carried out by hepatocytes, are strongly governed by calcium ions. In this work, we analyze the role of calcium in human hepatoma (HCC) cell lines harboring a wild type form of the Epidermal Growth Factor Receptor (EGFR), particularly its role in proliferation and in EGFR downmodulation. Our results highlight that calcium is involved in the proliferative capability of HCC cells, as its subtraction is responsible for EGFR degradation by proteasome machinery and, as a consequence, for EGFR intracellular signaling downregulation. However, calcium-regulated EGFR signaling is cell line-dependent. In cells responding weakly to the epidermal growth factor (EGF), calcium seems to have an opposite effect on EGFR internalization/degradation mechanisms. These results suggest that besides EGFR, calcium could be a new therapeutic target in HCC.
Collapse
Affiliation(s)
- Teresa Maria Elisa Modica
- Department of Biomedical Science and Human Oncology, Università degli Studi di Bari Aldo Moro, 70121 Bari, Italy.
- Biogem S.C.A.R.L., 83031 Ariano Irpino (AV), Italy.
| | | | | | | | - Isabel Fabregat
- Bellvitge Biomedical Research Institute (IDIBELL) L'Hospitalet, 08907 Barcelona, Spain.
- Faculty of Medicine and Health Sciences, University of Barcelona, 08907 Barcelona, Spain.
- Oncology Program, CIBEREHD, Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | | |
Collapse
|
10
|
Remodeling of ER-plasma membrane contact sites but not STIM1 phosphorylation inhibits Ca 2+ influx in mitosis. Proc Natl Acad Sci U S A 2019; 116:10392-10401. [PMID: 31064875 PMCID: PMC6535005 DOI: 10.1073/pnas.1821399116] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The mechanisms blocking Ca2+ influx in mitosis are complex and involve a decrease in stable endoplasmic reticulum (ER)–plasma membrane (PM) contact sites and degradation of the ER Ca2+ sensor stromal interaction molecule 1 (STIM1) but not its phosphorylation. This challenges the current view that STIM1 phosphorylation is essential for mitotic store-operated Ca2+ entry inhibition and sheds light on the dynamics of ER–PM contact sites and of Ca2+ influx in mitosis. Store-operated Ca2+ entry (SOCE), mediated by the endoplasmic reticulum (ER) Ca2+ sensor stromal interaction molecule 1 (STIM1) and the plasma membrane (PM) channel Orai1, is inhibited during mitosis. STIM1 phosphorylation has been suggested to mediate this inhibition, but it is unclear whether additional pathways are involved. Here, we demonstrate using various approaches, including a nonphosphorylatable STIM1 knock-in mouse, that STIM1 phosphorylation is not required for SOCE inhibition in mitosis. Rather, multiple pathways converge to inhibit Ca2+ influx in mitosis. STIM1 interacts with the cochaperone BAG3 and localizes to autophagosomes in mitosis, and STIM1 protein levels are reduced. The density of ER–PM contact sites (CSs) is also dramatically reduced in mitosis, thus physically preventing STIM1 and Orai1 from interacting to activate SOCE. Our findings provide insights into ER–PM CS remodeling during mitosis and a mechanistic explanation of the inhibition of Ca2+ influx that is required for cell cycle progression.
Collapse
|
11
|
Vajanthri KY, Yadav P, Poddar S, Mahto SK. Development of optically sensitive liver cells. Tissue Cell 2018; 52:129-134. [DOI: 10.1016/j.tice.2018.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 05/03/2018] [Accepted: 05/07/2018] [Indexed: 12/16/2022]
|
12
|
Chen J, Xia L, Bruchas MR, Solnica-Krezel L. Imaging early embryonic calcium activity with GCaMP6s transgenic zebrafish. Dev Biol 2017; 430:385-396. [PMID: 28322738 PMCID: PMC5835148 DOI: 10.1016/j.ydbio.2017.03.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 01/12/2017] [Accepted: 03/11/2017] [Indexed: 12/02/2022]
Abstract
Intracellular Ca2+ signaling regulates cellular activities during embryogenesis and in adult organisms. We generated stable Tg[βactin2:GCaMP6s]stl351 and Tg[ubi:GCaMP6s]stl352 transgenic lines that combine the ubiquitously-expressed Ca2+ indicator GCaMP6s with the transparent characteristics of zebrafish embryos to achieve superior in vivo Ca2+ imaging. Using the Tg[βactin2:GCaMP6s]stl351 line featuring strong GCaMP6s expression from cleavage through gastrula stages, we detected higher frequency of Ca2+ transients in the superficial blastomeres during the blastula stages preceding the midblastula transition. Additionally, GCaMP6s also revealed that dorsal-biased Ca2+ signaling that follows the midblastula transition persisted longer during gastrulation, compared with earlier studies. We observed that dorsal-biased Ca2+ signaling is diminished in ventralized ichabod/β-catenin2 mutant embryos and ectopically induced in embryos dorsalized by excess β-catenin. During gastrulation, we directly visualized Ca2+ signaling in the dorsal forerunner cells, which form in a Nodal signaling dependent manner and later give rise to the laterality organ. We found that excess Nodal increases the number and the duration of Ca2+ transients specifically in the dorsal forerunner cells. The GCaMP6s transgenic lines described here enable unprecedented visualization of dynamic Ca2+ events from embryogenesis through adulthood, augmenting the zebrafish toolbox.
Collapse
Affiliation(s)
- Jiakun Chen
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Li Xia
- Department of Anesthesiology, Division of Basic Research, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in St. Louis, St Louis, MO, 63105, USA
| | - Michael R Bruchas
- Department of Anesthesiology, Division of Basic Research, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in St. Louis, St Louis, MO, 63105, USA; Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | - Lilianna Solnica-Krezel
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
13
|
Hayashi D, Tanabe K, Katsube H, Inoue YH. B-type nuclear lamin and the nuclear pore complex Nup107-160 influences maintenance of the spindle envelope required for cytokinesis in Drosophila male meiosis. Biol Open 2016; 5:1011-21. [PMID: 27402967 PMCID: PMC5004606 DOI: 10.1242/bio.017566] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In higher eukaryotes, nuclear envelope (NE) disassembly allows chromatin to condense and spindle microtubules to access kinetochores. The nuclear lamina, which strengthens the NE, is composed of a polymer meshwork made of A- and B-type lamins. We found that the B-type lamin (Lam) is not fully disassembled and continues to localize along the spindle envelope structure during Drosophila male meiosis I, while the A-type lamin (LamC) is completely dispersed throughout the cytoplasm. Among the nuclear pore complex proteins, Nup107 co-localized with Lam during this meiotic division. Surprisingly, Lam depletion resulted in a higher frequency of cytokinesis failure in male meiosis. We also observed the similar meiotic phenotype in Nup107-depleted cells. Abnormal localization of Lam was found in the Nup-depleted cells at premeiotic and meiotic stages. The central spindle microtubules became abnormal and recruitment of a contractile ring component to the cleavage sites was disrupted in Lam-depleted cells and Nup107-depleted cells. Therefore, we speculate that both proteins are required for a reinforcement of the spindle envelope, which supports the formation of central spindle microtubules essential for cytokinesis in Drosophila male meiosis.
Collapse
Affiliation(s)
- Daisuke Hayashi
- Insect Biomedical Research Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-0962, Japan
| | - Karin Tanabe
- Insect Biomedical Research Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-0962, Japan
| | - Hiroka Katsube
- Insect Biomedical Research Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-0962, Japan
| | - Yoshihiro H Inoue
- Insect Biomedical Research Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-0962, Japan
| |
Collapse
|
14
|
Bury L, Coelho PA, Glover DM. From Meiosis to Mitosis: The Astonishing Flexibility of Cell Division Mechanisms in Early Mammalian Development. Curr Top Dev Biol 2016; 120:125-71. [PMID: 27475851 DOI: 10.1016/bs.ctdb.2016.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The execution of female meiosis and the establishment of the zygote is arguably the most critical stage of mammalian development. The egg can be arrested in the prophase of meiosis I for decades, and when it is activated, the spindle is assembled de novo. This spindle must function with the highest of fidelity and yet its assembly is unusually achieved in the absence of conventional centrosomes and with minimal influence of chromatin. Moreover, its dramatic asymmetric positioning is achieved through remarkable properties of the actin cytoskeleton to ensure elimination of the polar bodies. The second meiotic arrest marks a uniquely prolonged metaphase eventually interrupted by egg activation at fertilization to complete meiosis and mark a period of preparation of the male and female pronuclear genomes not only for their entry into the mitotic cleavage divisions but also for the imminent prospect of their zygotic expression.
Collapse
Affiliation(s)
- L Bury
- University of Cambridge, Cambridge, United Kingdom.
| | - P A Coelho
- University of Cambridge, Cambridge, United Kingdom
| | - D M Glover
- University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
15
|
Wessel GM, Brayboy L, Fresques T, Gustafson EA, Oulhen N, Ramos I, Reich A, Swartz SZ, Yajima M, Zazueta V. The biology of the germ line in echinoderms. Mol Reprod Dev 2014; 81:679-711. [PMID: 23900765 PMCID: PMC4102677 DOI: 10.1002/mrd.22223] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Accepted: 07/23/2013] [Indexed: 12/16/2022]
Abstract
The formation of the germ line in an embryo marks a fresh round of reproductive potential. The developmental stage and location within the embryo where the primordial germ cells (PGCs) form, however, differs markedly among species. In many animals, the germ line is formed by an inherited mechanism, in which molecules made and selectively partitioned within the oocyte drive the early development of cells that acquire this material to a germ-line fate. In contrast, the germ line of other animals is fated by an inductive mechanism that involves signaling between cells that directs this specialized fate. In this review, we explore the mechanisms of germ-line determination in echinoderms, an early-branching sister group to the chordates. One member of the phylum, sea urchins, appears to use an inherited mechanism of germ-line formation, whereas their relatives, the sea stars, appear to use an inductive mechanism. We first integrate the experimental results currently available for germ-line determination in the sea urchin, for which considerable new information is available, and then broaden the investigation to the lesser-known mechanisms in sea stars and other echinoderms. Even with this limited insight, it appears that sea stars, and perhaps the majority of the echinoderm taxon, rely on inductive mechanisms for germ-line fate determination. This enables a strongly contrasted picture for germ-line determination in this phylum, but one for which transitions between different modes of germ-line determination might now be experimentally addressed.
Collapse
Affiliation(s)
- Gary M. Wessel
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Lynae Brayboy
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Tara Fresques
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Eric A. Gustafson
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Nathalie Oulhen
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Isabela Ramos
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Adrian Reich
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - S. Zachary Swartz
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Mamiko Yajima
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Vanessa Zazueta
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| |
Collapse
|
16
|
Abstract
Intracellular free Ca(2+) ([Ca(2+)]i) is a highly versatile second messenger that regulates a wide range of functions in every type of cell and tissue. To achieve this versatility, the Ca(2+) signaling system operates in a variety of ways to regulate cellular processes that function over a wide dynamic range. This is particularly well exemplified for Ca(2+) signals in the liver, which modulate diverse and specialized functions such as bile secretion, glucose metabolism, cell proliferation, and apoptosis. These Ca(2+) signals are organized to control distinct cellular processes through tight spatial and temporal coordination of [Ca(2+)]i signals, both within and between cells. This article will review the machinery responsible for the formation of Ca(2+) signals in the liver, the types of subcellular, cellular, and intercellular signals that occur, the physiological role of Ca(2+) signaling in the liver, and the role of Ca(2+) signaling in liver disease.
Collapse
Affiliation(s)
- Maria Jimena Amaya
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
17
|
Nalepa G, Barnholtz-Sloan J, Enzor R, Dey D, He Y, Gehlhausen JR, Lehmann AS, Park SJ, Yang Y, Yang X, Chen S, Guan X, Chen Y, Renbarger J, Yang FC, Parada LF, Clapp W. The tumor suppressor CDKN3 controls mitosis. ACTA ACUST UNITED AC 2013; 201:997-1012. [PMID: 23775190 PMCID: PMC3691455 DOI: 10.1083/jcb.201205125] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mitosis is controlled by a network of kinases and phosphatases. We screened a library of small interfering RNAs against a genome-wide set of phosphatases to comprehensively evaluate the role of human phosphatases in mitosis. We found four candidate spindle checkpoint phosphatases, including the tumor suppressor CDKN3. We show that CDKN3 is essential for normal mitosis and G1/S transition. We demonstrate that subcellular localization of CDKN3 changes throughout the cell cycle. We show that CDKN3 dephosphorylates threonine-161 of CDC2 during mitotic exit and we visualize CDC2(pThr-161) at kinetochores and centrosomes in early mitosis. We performed a phosphokinome-wide mass spectrometry screen to find effectors of the CDKN3-CDC2 signaling axis. We found that one of the identified downstream phosphotargets, CKβ phosphorylated at serine 209, localizes to mitotic centrosomes and controls the spindle checkpoint. Finally, we show that CDKN3 protein is down-regulated in brain tumors. Our findings indicate that CDKN3 controls mitosis through the CDC2 signaling axis. These results have implications for targeted anticancer therapeutics.
Collapse
Affiliation(s)
- Grzegorz Nalepa
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Resende RR, Andrade LM, Oliveira AG, Guimarães ES, Guatimosim S, Leite MF. Nucleoplasmic calcium signaling and cell proliferation: calcium signaling in the nucleus. Cell Commun Signal 2013; 11:14. [PMID: 23433362 PMCID: PMC3599436 DOI: 10.1186/1478-811x-11-14] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 02/12/2013] [Indexed: 01/19/2023] Open
Abstract
Calcium (Ca2+) is an essential signal transduction element involved in the regulation of several cellular activities and it is required at various key stages of the cell cycle. Intracellular Ca2+ is crucial for the orderly cell cycle progression and plays a vital role in the regulation of cell proliferation. Recently, it was demonstrated by in vitro and in vivo studies that nucleoplasmic Ca2+ regulates cell growth. Even though the mechanism by which nuclear Ca2+ regulates cell proliferation is not completely understood, there are reports demonstrating that activation of tyrosine kinase receptors (RTKs) leads to translocation of RTKs to the nucleus to generate localized nuclear Ca2+ signaling which are believed to modulate cell proliferation. Moreover, nuclear Ca2+ regulates the expression of genes involved in cell growth. This review will describe the nuclear Ca2+ signaling machinery and its role in cell proliferation. Additionally, the potential role of nuclear Ca2+ as a target in cancer therapy will be discussed.
Collapse
Affiliation(s)
- Rodrigo R Resende
- Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
Tight regulation of cell cycle is of critical importance for eukaryotic biology and is achieved through a combined action of a large number of highly specialized proteins. Separases are evolutionarily conserved caspase-like proteases playing a crucial role in cell cycle regulation, as they execute sister chromatid separation at metaphase to anaphase transition. In contrast to extensively studied yeast and metazoan separases, very little is known about the role of separases in plant biology. Here we describe the molecular mechanisms of separase-mediated chromatid segregation in yeast and metazoan models, discuss new emerging but less-understood functions of separases and highlight major gaps in our knowledge about plant separases.
Collapse
Affiliation(s)
- Panagiotis N Moschou
- Department of Plant Biology and Forest Genetics, Uppsala BioCenter, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden.
| | | |
Collapse
|
20
|
de Araújo Leite JC, Marques-Santos LF. Extracellular Ca2+influx is crucial for the early embryonic development of the sea urchinEchinometra lucunter. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2012; 318:123-33. [DOI: 10.1002/jezb.21450] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
21
|
Panigrahi AK, Zhang N, Mao Q, Pati D. Calpain-1 cleaves Rad21 to promote sister chromatid separation. Mol Cell Biol 2011; 31:4335-47. [PMID: 21876002 PMCID: PMC3209327 DOI: 10.1128/mcb.06075-11] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 08/18/2011] [Indexed: 01/24/2023] Open
Abstract
Defining the mechanisms of chromosomal cohesion and dissolution of the cohesin complex from chromatids is important for understanding the chromosomal missegregation seen in many tumor cells. Here we report the identification of a novel cohesin-resolving protease and describe its role in chromosomal segregation. Sister chromatids are held together by cohesin, a multiprotein ring-like complex comprised of Rad21, Smc1, Smc3, and SA2 (or SA1). Cohesin is known to be removed from vertebrate chromosomes by two distinct mechanisms, namely, the prophase and anaphase pathways. First, PLK1-mediated phosphorylation of SA2 in prophase leads to release of cohesin from chromosome arms, leaving behind centromeric cohesins that continue to hold the sisters together. Then, at the onset of anaphase, activated separase cleaves the centromeric cohesin Rad21, thereby opening the cohesin ring and allowing the sister chromatids to separate. We report here that the calcium-dependent cysteine endopeptidase calpain-1 is a Rad21 peptidase and normally localizes to the interphase nuclei and chromatin. Calpain-1 cleaves Rad21 at L192, in a calcium-dependent manner. We further show that Rad21 cleavage by calpain-1 promotes separation of chromosome arms, which coincides with a calcium-induced partial loss of cohesin at several chromosomal loci. Engineered cleavage of Rad21 at the calpain-cleavable site without activation of calpain-1 can lead to a loss of sister chromatid cohesion. Collectively, our work reveals a novel function of calpain-1 and describes an additional pathway for sister chromatid separation in humans.
Collapse
Affiliation(s)
- Anil K Panigrahi
- Department of Pediatric Hematology/Oncology, Baylor College of Medicine, 1102 Bates Avenue, Suite 1220, Houston, TX 77030.
| | | | | | | |
Collapse
|
22
|
Chircop M, Sarcevic B, Larsen MR, Malladi CS, Chau N, Zavortink M, Smith CM, Quan A, Anggono V, Hains PG, Graham ME, Robinson PJ. Phosphorylation of dynamin II at serine-764 is associated with cytokinesis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:1689-99. [DOI: 10.1016/j.bbamcr.2010.12.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 11/30/2010] [Accepted: 12/21/2010] [Indexed: 10/18/2022]
|
23
|
Becchetti A. Ion channels and transporters in cancer. 1. Ion channels and cell proliferation in cancer. Am J Physiol Cell Physiol 2011; 301:C255-65. [DOI: 10.1152/ajpcell.00047.2011] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Progress through the cell mitotic cycle requires precise timing of the intrinsic molecular steps and tight coordination with the environmental signals that maintain a cell into the proper physiological context. Because of their great functional flexibility, ion channels coordinate the upstream and downstream signals that converge on the cell cycle machinery. Both voltage- and ligand-gated channels have been implicated in the control of different cell cycle checkpoints in normal as well as neoplastic cells. Ion channels mediate the calcium signals that punctuate the mitotic process, the cell volume oscillations typical of cycling cells, and the exocytosis of autocrine or angiogenetic factors. Other functions of ion channels in proliferation are still matter of debate. These may or may not depend on ion transport, as the channel proteins can form macromolecular complexes with growth factor and cell adhesion receptors. Direct conformational coupling with the cytoplasmic regulatory proteins is also possible. Derangement or relaxed control of the above processes can promote neoplasia. Specific types of ion channels have turned out to participate in the different stages of the tumor progression, in which cell heterogeneity is increased by the selection of malignant cell clones expressing the ion channel types that better support unrestrained growth. However, a comprehensive mechanistic picture of the functional relations between ion channels and cell proliferation is yet not available, partly because of the considerable experimental challenges offered by studying these processes in living mammalian cells. No doubt, such studies will constitute one of the most fruitful research fields for the next generation of cell physiologists.
Collapse
Affiliation(s)
- Andrea Becchetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| |
Collapse
|
24
|
Chircop M, Malladi CS, Lian AT, Page SL, Zavortink M, Gordon CP, McCluskey A, Robinson PJ. Calcineurin activity is required for the completion of cytokinesis. Cell Mol Life Sci 2010; 67:3725-37. [PMID: 20496096 PMCID: PMC11115608 DOI: 10.1007/s00018-010-0401-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2009] [Revised: 04/08/2010] [Accepted: 05/04/2010] [Indexed: 11/27/2022]
Abstract
Successful completion of cytokinesis requires the spatio-temporal regulation of protein phosphorylation and the coordinated activity of protein kinases and phosphatases. Many mitotic protein kinases are well characterized while mitotic phosphatases are largely unknown. Here, we show that the Ca(2+)- and calmodulin-dependent phosphatase, calcineurin (CaN), is required for cytokinesis in mammalian cells, functioning specifically at the abscission stage. CaN inhibitors induce multinucleation in HeLa cells and prolong the time cells spend connected via an extended intracellular bridge. Upon Ca(2+) influx during cytokinesis, CaN is activated, targeting a set of proteins for dephosphorylation, including dynamin II (dynII). At the intracellular bridge, phospho-dynII and CaN are co-localized to dual flanking midbody rings (FMRs) that reside on either side of the central midbody ring. CaN activity and disassembly of the FMRs coincide with abscission. Thus, CaN activity at the midbody plays a key role in regulating the completion of cytokinesis in mammalian cells.
Collapse
Affiliation(s)
- Megan Chircop
- Children's Medical Research Institute, The University of Sydney, 214 Hawkesbury Road, Westmead, NSW, 2145, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Arredouani A, Yu F, Sun L, Machaca K. Regulation of store-operated Ca2+ entry during the cell cycle. J Cell Sci 2010; 123:2155-62. [PMID: 20554894 DOI: 10.1242/jcs.069690] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cytoplasmic Ca(2+) signals are central to numerous cell physiological processes, including cellular proliferation. Historically, much of the research effort in this area has focused on the role of Ca(2+) signals in cell-cycle progression. It is becoming clear, however, that the relationship between Ca(2+) signaling and the cell cycle is a 'two-way street'. Specifically, Ca(2+)-signaling pathways are remodeled during M phase, leading to altered Ca(2+) dynamics. Such remodeling probably better serves the large variety of functions that cells must perform during cell division compared with during interphase. This is clearly the case during oocyte meiosis, because remodeling of Ca(2+) signals partially defines the competence of the egg to activate at fertilization. Store-operated Ca(2+) entry (SOCE) is a ubiquitous Ca(2+)-signaling pathway that is regulated during M phase. In this Commentary, we discuss the latest advances in our understanding of how SOCE is regulated during cell division.
Collapse
Affiliation(s)
- Abdelilah Arredouani
- Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar (WCMC-Q), Education City, Qatar Foundation, Doha, Qatar
| | | | | | | |
Collapse
|
26
|
Cell Cycle-Dependent Localization of Voltage-Dependent Calcium Channels and the Mitotic Apparatus in a Neuroendocrine Cell Line(AtT-20). Int J Cell Biol 2010; 2009:487959. [PMID: 20130814 PMCID: PMC2814229 DOI: 10.1155/2009/487959] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 07/13/2009] [Accepted: 10/10/2009] [Indexed: 12/15/2022] Open
Abstract
Changes in intracellular calcium are necessary for the successful progression of mitosis in many cells. Both elevation and reduction in intracellular calcium can disrupt mitosis by mechanisms that remain ill defined. In this study we explore the role of transmembrane voltage-gated calcium channels (CaV channels) as regulators of mitosis in the mouse corticotroph cell line (AtT-20). We report that the nifedipine-sensitive isoform CaV1.2 is localized to the "poleward side" of kinetechores during metaphase and at the midbody during cytokinesis. A second nifedipine-sensitive isoform, CaV1.3, is present at the mid-spindle zone in telophase, but is also seen at the midbody. Nifedipine reduces the rate of cell proliferation, and, utilizing time-lapse microscopy, we show that this is due to a block at the prometaphase stage of the cell cycle. Using Fluo-4 we detect calcium fluxes at sites corresponding to the mid-spindle zone and the midbody region. Another calcium dye, Fura PE3/AM, causes an inhibition of mitosis prior to anaphase that we attribute to a chelation of intracellular calcium. Our results demonstrate a novel, isoform-specific localization of CaV1 channels during cell division and suggest a possible role for these channels in the calcium-dependent events underlying mitotic progression in pituitary corticotrophs.
Collapse
|
27
|
|
28
|
Resende RR, Adhikari A, da Costa JL, Lorençon E, Ladeira MS, Guatimosim S, Kihara AH, Ladeira LO. Influence of spontaneous calcium events on cell-cycle progression in embryonal carcinoma and adult stem cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1803:246-60. [PMID: 19958796 DOI: 10.1016/j.bbamcr.2009.11.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 10/28/2009] [Accepted: 11/18/2009] [Indexed: 01/11/2023]
Abstract
Spontaneous Ca(2+) events have been observed in diverse stem cell lines, including carcinoma and mesenchymal stem cells. Interestingly, during cell cycle progression, cells exhibit Ca(2+) transients during the G(1) to S transition, suggesting that these oscillations may play a role in cell cycle progression. We aimed to study the influence of promoting and blocking calcium oscillations in cell proliferation and cell cycle progression, both in neural progenitor and undifferentiated cells. We also identified which calcium stores are required for maintaining these oscillations. Both in neural progenitor and undifferentiated cells calcium oscillations were restricted to the G1/S transition, suggesting a role for these events in progression of the cell cycle. Maintenance of the oscillations required calcium influx only through inositol 1,4,5-triphosphate receptors (IP(3)Rs) and L-type channels in undifferentiated cells, while neural progenitor cells also utilized ryanodine-sensitive stores. Interestingly, promoting calcium oscillations through IP(3)R agonists increased both proliferation and levels of cell cycle regulators such as cyclins A and E. Conversely, blocking calcium events with IP(3)R antagonists had the opposite effect in both undifferentiated and neural progenitor cells. This suggests that calcium events created by IP(3)Rs may be involved in cell cycle progression and proliferation, possibly due to regulation of cyclin levels, both in undifferentiated cells and in neural progenitor cells.
Collapse
Affiliation(s)
- R R Resende
- Department of Physics, Institute of Exact Sciences, Federal University of Minas Gerais, Belo Horizonte, MG 31270-901, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Caldwell GS. The influence of bioactive oxylipins from marine diatoms on invertebrate reproduction and development. Mar Drugs 2009; 7:367-400. [PMID: 19841721 PMCID: PMC2763107 DOI: 10.3390/md7030367] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 08/06/2009] [Accepted: 08/19/2009] [Indexed: 12/22/2022] Open
Abstract
Diatoms are one of the main primary producers in aquatic ecosystems and occupy a vital link in the transfer of photosynthetically-fixed carbon through aquatic food webs. Diatoms produce an array of biologically-active metabolites, many of which have been attributed as a form of chemical defence and may offer potential as candidate marine drugs. Of considerable interest are molecules belonging to the oxylipin family which are broadly disruptive to reproductive and developmental processes. The range of reproductive impacts includes; oocyte maturation; sperm motility; fertilization; embryogenesis and larval competence. Much of the observed bioactivity may be ascribed to disruption of intracellular calcium signalling, induction of cytoskeletal instability and promotion of apoptotic pathways. From an ecological perspective, the primary interest in diatom-oxylipins is in relation to the potential impact on energy flow in planktonic systems whereby the reproductive success of copepods (the main grazers of diatoms) is compromised. Much data exists providing evidence for and against diatom reproductive effects; however detailed knowledge of the physiological and molecular processes involved remains poor. This paper provides a review of the current state of knowledge of the mechanistic impacts of diatom-oxylipins on marine invertebrate reproduction and development.
Collapse
Affiliation(s)
- Gary S Caldwell
- School of Marine Science and Technology, Newcastle University, Ridley Building, Claremont Road, Newcastle upon Tyne, NE1 7RU, England, UK.
| |
Collapse
|
30
|
Hanyu Y, Imai KK, Kawasaki Y, Nakamura T, Nakaseko Y, Nagao K, Kokubu A, Ebe M, Fujisawa A, Hayashi T, Obuse C, Yanagida M. Schizosaccharomyces pombe cell division cycle under limited glucose requires Ssp1 kinase, the putative CaMKK, and Sds23, a PP2A-related phosphatase inhibitor. Genes Cells 2009; 14:539-54. [PMID: 19371376 DOI: 10.1111/j.1365-2443.2009.01290.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Calcium/calmodulin-dependent protein kinase (CaMK) is required for diverse cellular functions, and similar kinases exist in fungi. Although mammalian CaMK kinase (CaMKK) activates CaMK and also evolutionarily-conserved AMP-activated protein kinase (AMPK), CaMKK is yet to be established in yeast. We here report that the fission yeast Schizosaccharomyces pombe Ssp1 kinase, which controls G2/M transition and response to stress, is the putative CaMKK. Ssp1 has a CaM binding domain (CBD) and associates with 14-3-3 proteins as mammalian CaMKK does. Temperature-sensitive ssp1 mutants isolated are defective in the tolerance to limited glucose, and this tolerance requires the conserved stretch present between the kinase domain and CBD. Sds23, multi-copy suppressor for mutants defective in type 1 phosphatase and APC/cyclosome, also suppresses the ssp1 phenotype, and is required for the tolerance to limited glucose. We demonstrate that Sds23 binds to type 2A protein phosphatases (PP2A) and PP2A-related phosphatase Ppe1, and that Sds23 inhibits Ppe1 phosphatase activity. Ssp1 and Ppe1 thus seem to antagonize in utilizing limited glucose. We also show that Ppk9 and Ssp2 are the catalytic subunits of AMPK and AMPK-related kinases, respectively, which bind to common beta-(Amk2) and gamma-(Cbs2) subunits.
Collapse
Affiliation(s)
- Yuichiro Hanyu
- CREST Research Project, Japan Science Technology Corporation, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Whitaker M, Smith J. Introduction. Calcium signals and developmental patterning. Philos Trans R Soc Lond B Biol Sci 2008; 363:1307-10. [PMID: 18192176 DOI: 10.1098/rstb.2007.2248] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Calcium ions generate ubiquitous cellular signals. Calcium signals play an important role in development. The most obvious example is fertilization, where calcium signals and calcium waves are triggered by the sperm and are responsible for activating the egg from dormancy and cell cycle arrest. Calcium signals also appear to contribute to cell cycle progression during the rapid cell cycles of early embryos. There is increasing evidence that calcium signals are an essential component of the signalling systems that specify developmental patterning and cell fate. This issue arises from a Discussion Meeting that brought together developmental biologists studying calcium signals with those looking at other patterning signals and events. This short introduction provides some background to the papers in this issue, setting out the emerging view that calcium signals are central to dorsoventral axis formation, gastrulation movements, neural specification and neuronal cell fate.
Collapse
Affiliation(s)
- Michael Whitaker
- Institute of Cell and Molecular Bioscience, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| | | |
Collapse
|
32
|
Abstract
The onset of development in most species studied is triggered by one of the largest and longest calcium transients known to us. It is the most studied and best understood aspect of the calcium signals that accompany and control development. Its properties and mechanisms demonstrate what embryos are capable of and thus how the less-understood calcium signals later in development may be generated. The downstream targets of the fertilization calcium signal have also been identified, providing some pointers to the probable targets of calcium signals further on in the process of development. In one species or another, the fertilization calcium signal involves all the known calcium-releasing second messengers and many of the known calcium-signalling mechanisms. These calcium signals also usually take the form of a propagating calcium wave or waves. Fertilization causes the cell cycle to resume, and therefore fertilization signals are cell-cycle signals. In some early embryonic cell cycles, calcium signals also control the progress through each cell cycle, controlling mitosis. Studies of these early embryonic calcium-signalling mechanisms provide a background to the calcium-signalling events discussed in the articles in this issue.
Collapse
Affiliation(s)
- Michael Whitaker
- Institute of Cell and Molecular Biology, Newcastle University Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
33
|
Li WM, Webb SE, Chan CM, Miller AL. Multiple roles of the furrow deepening Ca2+ transient during cytokinesis in zebrafish embryos. Dev Biol 2008; 316:228-48. [PMID: 18313658 DOI: 10.1016/j.ydbio.2008.01.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2007] [Revised: 01/11/2008] [Accepted: 01/11/2008] [Indexed: 01/16/2023]
Abstract
The generation of a required series of localized Ca(2+) transients during cytokinesis in zebrafish embryos suggests that Ca(2+) plays a necessary role in regulating this process. Here, we report that cortical actin remodeling, characterized by the reorganization of the contractile band and the formation during furrow deepening of pericleavage F-actin enrichments (PAEs), requires a localized increase in intracellular Ca(2+), which is released from IP(3)-sensitive stores. We demonstrate that VAMP-2 vesicle fusion at the deepening furrow also requires Ca(2+) released via IP(3) receptors, as well as the presence of PAEs and the action of calpains. Finally, by expressing a dominant-negative form of the kinesin-like protein, kif23, we demonstrate that its recruitment to the furrow region is required for VAMP-2 vesicle transport; and via FRAP analysis, that kif23 localization is also Ca(2+)-dependent. Collectively, our data demonstrate that a localized increase in intracellular Ca(2+) is involved in regulating several key events during furrow deepening and subsequent apposition.
Collapse
Affiliation(s)
- Wai Ming Li
- Department of Biology, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | | | | | | |
Collapse
|
34
|
Ducibella T, Fissore R. The roles of Ca2+, downstream protein kinases, and oscillatory signaling in regulating fertilization and the activation of development. Dev Biol 2008; 315:257-79. [PMID: 18255053 DOI: 10.1016/j.ydbio.2007.12.012] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Revised: 12/12/2007] [Accepted: 12/13/2007] [Indexed: 12/12/2022]
Abstract
Reviews in Developmental Biology have covered the pathways that generate the all-important intracellular calcium (Ca(2+)) signal at fertilization [Miyazaki, S., Shirakawa, H., Nakada, K., Honda, Y., 1993a. Essential role of the inositol 1,4,5-trisphosphate receptor/Ca(2+) release channel in Ca(2+) waves and Ca(2+) oscillations at fertilization of mammalian eggs. Dev. Biol. 158, 62-78; Runft, L., Jaffe, L., Mehlmann, L., 2002. Egg activation at fertilization: where it all begins. Dev. Biol. 245, 237-254] and the different temporal responses of Ca(2+) in many organisms [Stricker, S., 1999. Comparative biology of calcium signaling during fertilization and egg activation in animals. Dev. Biol. 211, 157-176]. Those reviews raise the importance of identifying how Ca(2+) causes the events of egg activation (EEA) and to what extent these temporal Ca(2+) responses encode developmental information. This review covers recent studies that have analyzed how these Ca(2+) signals are interpreted by specific proteins, and how these proteins regulate various EEA responsible for the onset of development. Many of these proteins are protein kinases (CaMKII, PKC, MPF, MAPK, MLCK) whose activity is directly or indirectly regulated by Ca(2+), and whose amount increases during late oocyte maturation. We cover biochemical progress in defining the signaling pathways between Ca(2+) and the EEA, as well as discuss how oscillatory or multiple Ca(2+) signals are likely to have specific advantages biochemically and/or developmentally. These emerging concepts are put into historical context, emphasizing that key contributions have come from many organisms. The intricate interdependence of Ca(2+), Ca(2+)-dependent proteins, and the EEA raise many new questions for future investigations that will provide insight into the extent to which fertilization-associated signaling has long-range implications for development. In addition, answers to these questions should be beneficial to establishing parameters of egg quality for human and animal IVF, as well as improving egg activation protocols for somatic cell nuclear transfer to generate stem cells and save endangered species.
Collapse
Affiliation(s)
- Tom Ducibella
- Department of OB/GYN, Tufts-New England Medical Center, Boston, MA 02111, USA.
| | | |
Collapse
|
35
|
Abstract
1. Mammalian eggs are arrested at metaphase of their second meiotic division when ovulated and remain arrested until fertilized. The sperm delivers into the egg phospholipase C (PLC) zeta, which triggers a series of Ca(2+) spikes lasting several hours. The Ca(2+) spikes provide the necessary and sufficient trigger for all the events of fertilization, including exit from metaphase II arrest and extrusion of cortical granules that block the entry of other sperm. 2. The oscillatory Ca(2+) signal switches on calmodulin-dependent protein kinase II (CaMKII), which phosphorylates the egg-specific protein Emi2, earmarking it for degradation. To remain metaphase II arrested, eggs must maintain high levels of maturation-promoting factor (MPF) activity, a heterodimer of CDK1 and cyclin B1. Emi2 prevents loss of MPF by blocking cyclin B1 degradation, a process that is achieved by inhibiting the activity of the anaphase-promoting complex/cyclosome. However, CaMKII is not the primary initiator in the extrusion of cortical granules. 3. Ca(2+) spiking is also observed in mitosis of one-cell embryos, probably because PLCzeta contains a nuclear localization signal and so is released into the cytoplasm following nuclear envelope breakdown. The function of these mitotic Ca(2+) spikes remains obscure, although they are not absolutely required for passage through mitosis. 4. Intriguingly, the pattern of Ca(2+) spikes observed at fertilization has an effect on both pre- and postimplantation development in a manner that is independent of their ability to activate eggs. This suggests that the Ca(2+) spikes set in train at fertilization are having effects on processes initiated in the newly fertilized egg but whose influences are only observed several cell divisions later. The nature of the signals remains little explored, but their importance is clear and so warrants further investigation.
Collapse
Affiliation(s)
- Keith T Jones
- Institute for Cell and Molecular Biosciences, The Medical School, Framlington Place, University of Newcastle, Newcastle, UK.
| |
Collapse
|
36
|
Tosuji H, Seki Y, Kyozuka K. Two phases of calcium requirement during starfish meiotic maturation. Comp Biochem Physiol A Mol Integr Physiol 2007; 147:432-7. [PMID: 17317251 DOI: 10.1016/j.cbpa.2007.01.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Revised: 01/18/2007] [Accepted: 01/21/2007] [Indexed: 11/15/2022]
Abstract
During meiosis in oocytes of the starfish, Asterina pectinifera, a Ca(2+) transient has been observed. To clarify the role of Ca(2+) during oocyte maturation in starfish, an intracellular Ca(2+) blocker, TMB-8, was applied. The oocyte maturation induced by 1-methyladenine (1-MA) was blocked by 100 microM TMB-8. Reinitiation of meiosis with germinal vesicle breakdown (GVBD) and the following chromosome condensation did not take place. Maturation-promoting factor (MPF) activity did not increase and GVBD and chromosome condensation did not occur. Ca(2+) transient observed immediately after 1-MA application in control oocytes was also blocked by TMB-8. When calyculin A, which activate the MPF directly, was applied to the oocytes instead of 1-MA in seawater containing 100 microM TMB-8, GVBD and chromosome condensation were blocked. Cytoplasmic transplantation studies confirmed that MPF was activated, although TMB-8 blocked GVBD. These results show that TMB-8 blocked the increase of MPF activity induced by 1-MA and the process of active MPF inducing GVBD and subsequent chromosome condensation. Together with the above phenomena, it is conceivable that there are two phases of Ca(2+) requirement during starfish oocyte maturation. These are the activation of MPF, moreover, GVBD, and the subsequent chromosome condensation.
Collapse
Affiliation(s)
- Hiroaki Tosuji
- Department of Chemistry and Bioscience, Faculty of Science, Kagoshima University, Korimoto, Kagoshima 890-0065, Japan.
| | | | | |
Collapse
|
37
|
Levasseur M, Carroll M, Jones KT, McDougall A. A novel mechanism controls the Ca2+ oscillations triggered by activation of ascidian eggs and has an absolute requirement for Cdk1 activity. J Cell Sci 2007; 120:1763-71. [PMID: 17502483 DOI: 10.1242/jcs.003012] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fertilisation in ascidians triggers a series of periodic rises in cytosolic Ca2+ that are essential for release from metaphase I arrest and progression through meiosis II. These sperm-triggered Ca2+ oscillations are switched off at exit from meiosis II. Ascidian zygotes provided the first demonstration of the positive feedback loop whereby elevated Cdk1 activity maintained these Ca2+ oscillations. Since then it has been reported that Cdk1 sensitises the type I inositol trisphosphate [Ins(1,4,5)P3] receptor in somatic cells, and that sperm-triggered Ca2+ oscillations in mouse zygotes stop because the forming pronuclei sequester phospholipase C zeta that was delivered to the egg by the fertilising sperm.Here, using enucleation, we demonstrate in ascidian eggs that Ca2+ spiking stops at the correct time in the absence of pronuclei. Sequestration of sperm factor is therefore not involved in terminating Ca2+ spiking for these eggs. Instead we found that microinjection of the Cdk1 inhibitor p21 blocked Ca2+ spiking induced by ascidian sperm extract (ASE). However, such eggs were still capable of releasing Ca2+ in response to Ins(1,4,5)P3 receptor agonists, indicating that ASE-triggered Ca2+ oscillations can stop even though the response to Ins(1,4,5)P3 remained elevated. These data suggest that Cdk1 activity promotes Ins(1,4,5)P3 production in the presence of the sperm factor, rather than sensitising the Ca2+ releasing machinery to Ins(1,4,5)P3. These findings suggest a new link between this cell cycle kinase and the Ins(1,4,5)P3 pathway.
Collapse
Affiliation(s)
- Mark Levasseur
- Institute for Cell and Molecular Biosciences, The Medical School, University of Newcastle, Newcastle upon Tyne, UK.
| | | | | | | |
Collapse
|
38
|
Rodrigues MA, Gomes DA, Leite MF, Grant W, Zhang L, Lam W, Cheng YC, Bennett AM, Nathanson MH. Nucleoplasmic calcium is required for cell proliferation. J Biol Chem 2007; 282:17061-8. [PMID: 17420246 PMCID: PMC2825877 DOI: 10.1074/jbc.m700490200] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Ca(2+) signals regulate cell proliferation, but the spatial and temporal specificity of these signals is unknown. Here we use selective buffers of nucleoplasmic or cytoplasmic Ca(2+) to determine that cell proliferation depends upon Ca(2+) signals within the nucleus rather than in the cytoplasm. Nuclear Ca(2+) signals stimulate cell growth rather than inhibit apoptosis and specifically permit cells to advance through early prophase. Selective buffering of nuclear but not cytoplasmic Ca(2+) signals also impairs growth of tumors in vivo. These findings reveal a major physiological and potential pathophysiological role for nucleoplasmic Ca(2+) signals and suggest that this information can be used to design novel therapeutic strategies to regulate conditions of abnormal cell growth.
Collapse
Affiliation(s)
- Michele A. Rodrigues
- Department of Medicine, Yale University School of Medicine, New Haven, Connecticut 06520-8019
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil 31270-901
| | - Dawidson A. Gomes
- Department of Medicine, Yale University School of Medicine, New Haven, Connecticut 06520-8019
| | - M. Fatima Leite
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil 31270-901
| | - Wayne Grant
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520-8019
| | - Lei Zhang
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520-8019
| | - Wing Lam
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520-8019
| | - Yung-Chi Cheng
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520-8019
| | - Anton M. Bennett
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520-8019
| | - Michael H. Nathanson
- Department of Medicine, Yale University School of Medicine, New Haven, Connecticut 06520-8019
- To whom correspondence should be addressed: Digestive Diseases, Rm. TAC S241D, Yale University School of Medicine, New Haven, CT 06520-8019. Tel.: 203-785-7312; Fax: 203-785-4306;
| |
Collapse
|
39
|
Ravera S, Falugi C, Calzia D, Pepe IM, Panfoli I, Morelli A. First Cell Cycles of Sea Urchin Paracentrotus lividus Are Dramatically Impaired by Exposure to Extremely Low-Frequency Electromagnetic Field. Biol Reprod 2006; 75:948-53. [PMID: 16957026 DOI: 10.1095/biolreprod.106.051227] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Exposure of fertilized eggs of the sea urchin Paracentrotus lividus to an electromagnetic field of 75-Hz frequency and low amplitudes (from 0.75 to 2.20 mT of magnetic component) leads to a dramatic loss of synchronization of the first cell cycle, with formation of anomalous embryos linked to irregular separation of chromatids during the mitotic events. Because acetylcholinesterase (ACHE) is thought to regulate the embryonic first developmental events of the sea urchin, its enzymatic activity was assayed in embryo homogenates and decreased by 48% when the homogenates were exposed to the same pulsed field. This enzymatic inactivation had a threshold of about 0.75 +/- 0.01 mT. The same field threshold was found for the effect on the formation of anomalous embryos of P. lividus. Moreover, ACHE inhibitors seem to induce the same teratological effects as those caused by the field, while blockers of acetylcholine (ACh) receptors are able to antagonize those effects. We conclude that one of the main causes of these dramatic effects on the early development of the sea urchin by field exposure could be the accumulation of ACh due to ACHE inactivation. The crucial role of the membrane in determining the conditions for enzyme inactivation is discussed.
Collapse
Affiliation(s)
- Silvia Ravera
- Department of Biology, University of Genoa, 16132 Genova, Italy
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
The cell division cycle comprises successive rounds of genome replication and segregation that are never error-free. A complex signalling network chaperones cell cycle events to ensure that cell cycle progression does not occur until any errors detected are put right. The signalling network consists of cell cycle control proteins that are phosphorylated and dephosphorylated, synthesized and degraded interactively to generate a set of sensors and molecular switches that are thrown at appropriate times to permit or trigger cell cycle progression. In early embryos, discrete calcium signals have been shown to be a key component of the molecular switch mechanism. In somatic cells in contrast, the participation of calcium signals in cell cycle control is far from clear. Recent experiments in syncytial Drosophila embryos have shown that localised calcium signals in the nucleus and mitotic spindle can be detected. It appears that the nucleus comprises a calcium signalling microdomain bounded by endoplasmic reticulum that isolates the nucleus and spindle. These findings offer a possible explanation for the apparent absence of calcium signals in somatic cells during mitosis.
Collapse
Affiliation(s)
- Michael Whitaker
- Institute of Cell and Molecular Biosciences, Medical School, Framlington Place, Newcastle upon Tyne, UK.
| |
Collapse
|
41
|
Lucero A, Stack C, Bresnick AR, Shuster CB. A global, myosin light chain kinase-dependent increase in myosin II contractility accompanies the metaphase-anaphase transition in sea urchin eggs. Mol Biol Cell 2006; 17:4093-104. [PMID: 16837551 PMCID: PMC1593176 DOI: 10.1091/mbc.e06-02-0119] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2006] [Revised: 06/15/2006] [Accepted: 07/05/2006] [Indexed: 11/11/2022] Open
Abstract
Myosin II is the force-generating motor for cytokinesis, and although it is accepted that myosin contractility is greatest at the cell equator, the temporal and spatial cues that direct equatorial contractility are not known. Dividing sea urchin eggs were placed under compression to study myosin II-based contractile dynamics, and cells manipulated in this manner underwent an abrupt, global increase in cortical contractility concomitant with the metaphase-anaphase transition, followed by a brief relaxation and the onset of furrowing. Prefurrow cortical contractility both preceded and was independent of astral microtubule elongation, suggesting that the initial activation of myosin II preceded cleavage plane specification. The initial rise in contractility required myosin light chain kinase but not Rho-kinase, but both signaling pathways were required for successful cytokinesis. Last, mobilization of intracellular calcium during metaphase induced a contractile response, suggesting that calcium transients may be partially responsible for the timing of this initial contractile event. Together, these findings suggest that myosin II-based contractility is initiated at the metaphase-anaphase transition by Ca2+-dependent myosin light chain kinase (MLCK) activity and is maintained through cytokinesis by both MLCK- and Rho-dependent signaling. Moreover, the signals that initiate myosin II contractility respond to specific cell cycle transitions independently of the microtubule-dependent cleavage stimulus.
Collapse
Affiliation(s)
- Amy Lucero
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA
| | | | | | | |
Collapse
|
42
|
Parry H, McDougall A, Whitaker M. Endoplasmic reticulum generates calcium signalling microdomains around the nucleus and spindle in syncytial Drosophila embryos. Biochem Soc Trans 2006; 34:385-8. [PMID: 16709168 DOI: 10.1042/bst0340385] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cell cycle calcium signals are generated by inositol trisphosphate-mediated release of calcium from internal stores [Ciapa, Pesando, Wilding and Whitaker (1994) Nature (London) 368, 875–878; Groigno and Whitaker (1998) Cell 92, 193–204]. The major internal calcium store is the ER (endoplasmic reticulum): the spatial organization of the ER during mitosis is important in defining a microdomain around the nucleus and mitotic spindle in early Drosophila embryos [Parry, McDougall and Whitaker (2005) J. Cell Biol. 171, 47–59]. Nuclear divisions in syncytial Drosophila embryos are accompanied by both cortical and nuclear localized calcium transients. Mitosis is prevented by the InsP3 antagonists Xestospongin C and heparin. Nuclear-localized transients and cortical transients rely on extraembryonic calcium, suggesting that ER calcium levels are maintained by calcium influx.
Collapse
Affiliation(s)
- H Parry
- Institute for Cell and Molecular Biosciences, Medical School, University of Newcastle upon Tyne, UK
| | | | | |
Collapse
|
43
|
Abstract
Fertilization calcium waves are introduced, and the evidence from which we can infer general mechanisms of these waves is presented. The two main classes of hypotheses put forward to explain the generation of the fertilization calcium wave are set out, and it is concluded that initiation of the fertilization calcium wave can be most generally explained in invertebrates by a mechanism in which an activating substance enters the egg from the sperm on sperm-egg fusion, activating the egg by stimulating phospholipase C activation through a src family kinase pathway and in mammals by the diffusion of a sperm-specific phospholipase C from sperm to egg on sperm-egg fusion. The fertilization calcium wave is then set into the context of cell cycle control, and the mechanism of repetitive calcium spiking in mammalian eggs is investigated. Evidence that calcium signals control cell division in early embryos is reviewed, and it is concluded that calcium signals are essential at all three stages of cell division in early embryos. Evidence that phosphoinositide signaling pathways control the resumption of meiosis during oocyte maturation is considered. It is concluded on balance that the evidence points to a need for phosphoinositide/calcium signaling during resumption of meiosis. Changes to the calcium signaling machinery occur during meiosis to enable the production of a calcium wave in the mature oocyte when it is fertilized; evidence that the shape and structure of the endoplasmic reticulum alters dynamically during maturation and after fertilization is reviewed, and the link between ER dynamics and the cytoskeleton is discussed. There is evidence that calcium signaling plays a key part in the development of patterning in early embryos. Morphogenesis in ascidian, frog, and zebrafish embryos is briefly described to provide the developmental context in which calcium signals act. Intracellular calcium waves that may play a role in axis formation in ascidian are discussed. Evidence that the Wingless/calcium signaling pathway is a strong ventralizing signal in Xenopus, mediated by phosphoinositide signaling, is adumbrated. The central role that calcium channels play in morphogenetic movements during gastrulation and in ectodermal and mesodermal gene expression during late gastrulation is demonstrated. Experiments in zebrafish provide a strong indication that calcium signals are essential for pattern formation and organogenesis.
Collapse
Affiliation(s)
- Michael Whitaker
- Institute of Cell & Molecular Biosciences, Faculty of Medical Sciences, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
44
|
Parry H, McDougall A, Whitaker M. Microdomains bounded by endoplasmic reticulum segregate cell cycle calcium transients in syncytial Drosophila embryos. ACTA ACUST UNITED AC 2005; 171:47-59. [PMID: 16216922 PMCID: PMC2171230 DOI: 10.1083/jcb.200503139] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cell cycle calcium signals are generated by the inositol trisphosphate (InsP3)–mediated release of calcium from internal stores (Ciapa, B., D. Pesando, M. Wilding, and M. Whitaker. 1994. Nature. 368:875–878; Groigno, L., and M. Whitaker. 1998. Cell. 92:193–204). The major internal calcium store is the endoplasmic reticulum (ER); thus, the spatial organization of the ER during mitosis may be important in shaping and defining calcium signals. In early Drosophila melanogaster embryos, ER surrounds the nucleus and mitotic spindle during mitosis, offering an opportunity to determine whether perinuclear localization of ER conditions calcium signaling during mitosis. We establish that the nuclear divisions in syncytial Drosophila embryos are accompanied by both cortical and nuclear localized calcium transients. Constructs that chelate InsP3 also prevent nuclear division. An analysis of nuclear calcium concentrations demonstrates that they are differentially regulated. These observations demonstrate that mitotic calcium signals in Drosophila embryos are confined to mitotic microdomains and offer an explanation for the apparent absence of detectable global calcium signals during mitosis in some cell types.
Collapse
Affiliation(s)
- Huw Parry
- Institute for Cell and Molecular Biosciences, University of Newcastle upon Tyne Medical School, Newcastle upon Tyne NE2 4HH, England, UK
| | | | | |
Collapse
|
45
|
FitzHarris G, Larman M, Richards C, Carroll J. An increase in [Ca2+]i is sufficient but not necessary for driving mitosis in early mouse embryos. J Cell Sci 2005; 118:4563-75. [PMID: 16179613 DOI: 10.1242/jcs.02586] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An increase in intracellular Ca2+ concentration ([Ca2+]i) has been shown to drive sea-urchin embryos and some fibroblasts through nuclear-envelope breakdown (NEBD) and the metaphase-to-anaphase transition. Mitotic Ca2+ transients can be pan-cellular global events or localized to the perinuclear region. It is not known whether Ca2+ is a universal regulator of mitosis or whether its role is confined to specific cell types. To test the hypothesis that Ca2+ is a universal regulator of mitosis, we have investigated the role of Ca2+ in mitosis in one-cell mouse embryos. Fertilized embryos generate Ca2+ transients during the first mitotic division. Imposing a Ca2+ transient by photorelease of inositol (1,4,5)-trisphosphate [Ins(1,4,5)P3] resulted in acceleration of mitosis entry, suggesting that a [Ca2+]i increase is capable of triggering mitosis. Mitotic Ca2+ transients were inhibited using three independent approaches: injection of intracellular Ca2+ buffers; downregulation of Ins(1,4,5)P3 receptors; and removal of extracellular Ca2+. None of the interventions had any effects on the timing of NEBD or cytokinesis. The possibility that NEBD is driven by localized perinuclear Ca2+ transients was examined using two-photon microscopy but no Ca2+-dependent increases in fluorescence were found to precede NEBD. Finally, the second mitotic division took place in the absence of any detectable [Ca2+]i increase. Thus, although an induced [Ca2+]i increase can accelerate mitosis entry, neither cytosolic nor perinuclear [Ca2+] increases appear to be necessary for progression through mitosis in mouse embryos.
Collapse
MESH Headings
- Animals
- Calcium/metabolism
- Calcium Channels/metabolism
- Calcium Signaling/physiology
- Chelating Agents/chemistry
- Chelating Agents/metabolism
- Embryo, Mammalian/cytology
- Embryo, Mammalian/physiology
- Female
- Fertilization/physiology
- Fluorescent Dyes/chemistry
- Fluorescent Dyes/metabolism
- Fura-2/chemistry
- Fura-2/metabolism
- Inositol 1,4,5-Trisphosphate/chemistry
- Inositol 1,4,5-Trisphosphate/metabolism
- Inositol 1,4,5-Trisphosphate Receptors
- Mice
- Microinjections
- Microscopy, Fluorescence
- Mitosis/physiology
- Receptors, Cytoplasmic and Nuclear/metabolism
Collapse
Affiliation(s)
- Greg FitzHarris
- Department of Physiology, University College London, Gower Street, London WC1E 6BT, UK
| | | | | | | |
Collapse
|
46
|
Chandra S. Quantitative imaging of subcellular calcium stores in mammalian LLC-PK1 epithelial cells undergoing mitosis by SIMS ion microscopy. Eur J Cell Biol 2005; 84:783-97. [PMID: 16218191 DOI: 10.1016/j.ejcb.2005.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Quantitative 3-D total calcium gradients, representing subcellular stored calcium, were imaged with a CAMECA IMS-3f SIMS ion microscope in cryogenically prepared frozen freeze-dried LLC-PK1 cells captured in interphase and various stages of mitosis. 39K and 23Na concentrations were also measured in the same cells. Correlative optical (or SEM) and SIMS analysis of cells revealed a redistribution of the interphase Golgi calcium store in prophase and prometaphase cells. In metaphase cells, simultaneous SIMS imaging of total calcium in both the spindle and the non-spindle cytoplasm of individual cells revealed a gradual and dynamic alignment of calcium stores in both half-spindles prior to the onset of anaphase. The anaphase cells revealed the highest local total calcium concentrations in the spindle regions behind the daughter chromosomes and the lowest in the central spindle region. The pericentriolar material in telophase cells contained calcium stores. Quantitatively, a typical metaphase cell with well-aligned calcium stores in the spindle region contained 1.1 mM total calcium in each half-spindle, 0.8 mM total calcium in the non-spindle cytoplasm, and 0.5mM total calcium in the chromosomes. At the submicron scale, the distribution of total calcium was heterogeneous in the chromosomes, metaphase spindle, and non-spindle cytoplasm. An increased binding of calcium to chromosomes is not a physiological requirement for chromosomal condensation in mitosis, since interphase nuclei and mitotic chromosomes contained comparable total calcium concentrations measured per unit volume. A significant reduction of total calcium in the non-spindle cytoplasm was observed in the metaphase, anaphase, and telophase cells, which is indicative of the limited storage of the releasable calcium pool in these specific stages of mitosis. Direct total calcium measurements in subcellular regions confirmed that both the spindle and the non-spindle cytoplasm of metaphase cells contained inositol 1,4,5-trisphosphate (IP3)-sensitive calcium stores sensitive to arginine vasopressin, thapsigargin, and calcium ionophore A23187. The dynamic alignment of calcium stores in both half-spindles may be an integral part of the time-dependent process of a cell's overall preparation for exiting the metaphase stage in mammalian LLC-PK1 cells.
Collapse
Affiliation(s)
- Subhash Chandra
- Cornell SIMS Ion Microscopy Laboratory, Department of Earth and Atmospheric Sciences, Snee Hall, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
47
|
Wong R, Hadjiyanni I, Wei HC, Polevoy G, McBride R, Sem KP, Brill JA. PIP2 Hydrolysis and Calcium Release Are Required for Cytokinesis in Drosophila Spermatocytes. Curr Biol 2005; 15:1401-6. [PMID: 16085493 DOI: 10.1016/j.cub.2005.06.060] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Revised: 06/15/2005] [Accepted: 06/16/2005] [Indexed: 11/16/2022]
Abstract
The role of calcium (Ca(2+)) in cytokinesis is controversial, and the precise pathways that lead to its release during cleavage are not well understood. Ca(2+) is released from intracellular stores by binding of inositol trisphosphate (IP3) to the IP3 receptor (IP3R), yet no clear role in cytokinesis has been established for the precursor of IP3, phosphatidylinositol 4,5-bisphosphate (PIP2). Here, using transgenic flies expressing PLCdelta-PH-GFP, which specifically binds PIP2, we identify PIP2 in the plasma membrane and cleavage furrows of dividing Drosophila melanogaster spermatocytes, and we establish that this phospholipid is required for continued ingression but not for initiation of cytokinesis. In addition, by inhibiting phospholipase C, we show that PIP2 must be hydrolyzed to maintain cleavage furrow stability. Using an IP3R antagonist and a Ca(2+) chelator to examine the roles of IP3R and Ca(2+) in cytokinesis, we demonstrate that both of these factors are required for cleavage furrow stability, although Ca(2+) is dispensable for cleavage plane specification and initiation of furrowing. Strikingly, providing cells with Ca(2+) obviates the need to hydrolyze PIP2. Thus, PIP2, PIP2 hydrolysis, and Ca(2+) are required for the normal progression of cytokinesis in these cells.
Collapse
Affiliation(s)
- Raymond Wong
- Program in Developmental Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | | | | | | | | | | | | |
Collapse
|
48
|
Zhang D, Pan L, Yang LH, He XK, Huang XY, Sun FZ. Strontium promotes calcium oscillations in mouse meiotic oocytes and early embryos through InsP3 receptors, and requires activation of phospholipase and the synergistic action of InsP3. Hum Reprod 2005; 20:3053-61. [PMID: 16055456 DOI: 10.1093/humrep/dei215] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Sr2+ is the most efficient agent for mouse oocyte activation and functions by inducing Ca2+ oscillations. However, its specific mechanism of action remains unknown. Here we investigated the specificity and possible mechanism of Sr2+-induced Ca2+ oscillations in mouse oocytes and early embryos. METHODS Ca2+ oscillations in oocytes and embryos were measured by ratiometric fluorescence imaging using fura-2AM. The role of phospholipase C (PLC) and inositol trisphosphate (InsP3) receptors in Sr2+-induced Ca2+ oscillations was examined by selective inhibitors. RESULTS Sr2+ can induce Ca2+ oscillations in both immature and mature oocytes, and in early embryos. A cell cycle stage-dependent phenomenon to Sr2+ stimulation was observed in 1-cell embryos. By using a low molecular weight heparin to antagonize the function of InsP3 receptors, we were able to show that InsP3 receptors are essential for Sr2+-induced Ca2+ oscillations. Treating metaphase II (MII) oocytes with the PLC inhibitor, U73122, abolished Sr2+-induced increases in Ca2+. This inhibitory effect of U73122 could be rescued by microinjection of InsP3, indicating that Sr2+-induced Ca2+ oscillations require the synergistic action of InsP3. CONCLUSIONS Sr2+-induced calcium oscillations in mouse oocytes and early embryos are mediated through InsP3 receptors, and require PLC activation and the synergistic action of InsP3.
Collapse
Affiliation(s)
- Di Zhang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100080, China
| | | | | | | | | | | |
Collapse
|
49
|
Philipova R, Larman MG, Leckie CP, Harrison PK, Groigno L, Whitaker M. Inhibiting MAP kinase activity prevents calcium transients and mitosis entry in early sea urchin embryos. J Biol Chem 2005; 280:24957-67. [PMID: 15843380 PMCID: PMC3292879 DOI: 10.1074/jbc.m414437200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A transient calcium increase triggers nuclear envelope breakdown (mitosis entry) in sea urchin embryos. Cdk1/cyclin B kinase activation is also known to be required for mitosis entry. More recently, MAP kinase activity has also been shown to increase during mitosis. In sea urchin embryos, both kinases show a similar activation profile, peaking at the time of mitosis entry. We tested whether the activity of both kinases is required for mitosis entry and whether either kinase controls mitotic calcium signals. We found that reducing the activity of either mitotic kinase prevents nuclear envelope breakdown, despite the presence of a calcium transient, when cdk1/cyclin B kinase activity is alone inhibited. When MAP kinase activity alone was inhibited, the calcium signal was absent, suggesting that MAP kinase activity is required to generate the calcium transient that triggers nuclear envelope breakdown. However, increasing intracellular free calcium by microinjection of calcium buffers or InsP(3) while MAP kinase was inhibited did not itself induce nuclear envelope breakdown, indicating that additional MAP kinase-regulated events are necessary. After MAP kinase inhibition early in the cell cycle, the early events of the cell cycle (pronuclear migration/fusion and DNA synthesis) were unaffected, but chromosome condensation and spindle assembly are prevented. These data indicate that in sea urchin embryos, MAP kinase activity is part of a signaling complex alongside two components previously shown to be essential for entry into mitosis: the calcium transient and the increase in cdk1/cyclinB kinase activity.
Collapse
Affiliation(s)
- Rada Philipova
- Institute of Cell and Molecular Biosciences, Faculty of Medical Sciences, University of Newcastle upon Tyne, NE2 4HH, UK
| | - Mark G. Larman
- Institute of Cell and Molecular Biosciences, Faculty of Medical Sciences, University of Newcastle upon Tyne, NE2 4HH, UK
| | - Calum P. Leckie
- Institute of Cell and Molecular Biosciences, Faculty of Medical Sciences, University of Newcastle upon Tyne, NE2 4HH, UK
| | - Patrick K. Harrison
- Institute of Cell and Molecular Biosciences, Faculty of Medical Sciences, University of Newcastle upon Tyne, NE2 4HH, UK
| | - Laurence Groigno
- Institute of Cell and Molecular Biosciences, Faculty of Medical Sciences, University of Newcastle upon Tyne, NE2 4HH, UK
| | - Michael Whitaker
- Institute of Cell and Molecular Biosciences, Faculty of Medical Sciences, University of Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
50
|
Kisielewska J, Lu P, Whitaker M. GFP-PCNA as an S-phase marker in embryos during the first and subsequent cell cycles. Biol Cell 2005; 97:221-9. [PMID: 15584900 DOI: 10.1042/bc20040093] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND INFORMATION Proliferating cell nuclear antigen (PCNA) is a key component of the DNA replication machinery involved in the process of DNA elongation, recombination, methylation and repair. We have used PCNA fused with green fluorescent protein (GFP-PCNA) as a convenient tool to show the progress of S-phase in single embryos in vivo. Here we make a comparison between Hoechst 33342 and GFP-PCNA as in vivo event markers for DNA synthesis. Hoechst 33342 and DAPI (4,6-diamidino-2-phenylindole) have been used as a simple and rapid method for assessing membrane permeability and staining DNA in mammalian cells. However, it is difficult to use these dyes in living embryos during cell cycle progression studies over long periods of time as they are phototoxic. Moreover, though Hoechst staining reveals nuclear morphology, it gives no information about the progress of S-phase. RESULTS We have microinjected or expressed a GFP-PCNA chimera to develop a method which enables visualization of S-phase in sea urchin and Caenorhabditis elegans embryos during the first and subsequent embryonic cell cycles and in Drosophila stage 4 embryos during syncytial nuclear divisions. We find that nuclear accumulation of GFP-PCNA correlates with S-phase onset. Loss of the chimera from the nucleus occurs when the nuclear envelope breaks down at mitosis. CONCLUSIONS GFP-PCNA is a accurate and non-toxic marker of S-phase in embryos during early development.
Collapse
Affiliation(s)
- Jolanta Kisielewska
- University of Newcastle upon Tyne, Institute of Cell and Molecular Biosciences, Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | | | | |
Collapse
|