1
|
Furukawa S, Yamamoto S, Ohashi A, Morishita Y, Satoh A. Allometry in limb regeneration and scale-invariant patterning as the basis of normal morphogenesis from different sizes of blastemas. Development 2024; 151:dev202697. [PMID: 39344771 PMCID: PMC11574362 DOI: 10.1242/dev.202697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
Axolotl (Ambystoma mexicanum) limb regeneration begins with blastemas of various sizes, in contrast to the limb developmental process. Despite this size variation, normal limb morphology, consistent with a limb stump size, is regenerated. This outcome suggests the existence of underlying scale-invariant mechanisms. To identify such mechanisms, we examined the allometric relationships between blastema size, and Sonic Hedgehog (Shh) and Fibroblast Growth Factor 8 (Fgf8) expression patterns against limb stump size. We found that all factors showed allometric rather than isometric scaling; specifically, their relative sizes decrease with an increase in limb stump size. However, the ratio of Shh/Fgf8 signaling dominant region was nearly constant, independent of blastema/body size. Furthermore, the relative spatial patterns of cell density and proliferation activity, and the relative position of first digit formation were scale invariant in the summed Shh/Fgf8 crosstalk region. This scale-invariant nature may underlie the morphogenesis of normal limbs from different sizes of blastemas.
Collapse
Affiliation(s)
- Saya Furukawa
- Graduate School of Environmental, Life, Nature Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Sakiya Yamamoto
- Graduate School of Environmental, Life, Nature Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Ayaka Ohashi
- Graduate School of Environmental, Life, Nature Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Yoshihiro Morishita
- Laboratory for Developmental Morphogeometry, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Akira Satoh
- Graduate School of Environmental, Life, Nature Science and Technology, Okayama University, Okayama 700-8530, Japan
- Research Core for Interdisciplinary Sciences (RCIS), Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
2
|
Pérez-Maldonado MA, González-González XA, Chimal-Monroy J, Marín-Llera JC. Influence of DNA-methylation at multiple stages of limb chondrogenesis. Dev Biol 2024; 512:1-10. [PMID: 38657748 DOI: 10.1016/j.ydbio.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/05/2024] [Accepted: 04/18/2024] [Indexed: 04/26/2024]
Abstract
Precise regulation of gene expression is of utmost importance during cell fate specification. DNA methylation is a key epigenetic mechanism that plays a significant role in the regulation of cell fate by recruiting repression proteins or inhibiting the binding of transcription factors to DNA to regulate gene expression. Limb development is a well-established model for understanding cell fate decisions, and the formation of skeletal elements is coordinated through a sequence of events that control chondrogenesis spatiotemporally. It has been established that epigenetic control participates in cartilage maturation. However, further investigation is required to determine its role in the earliest stages of chondrocyte differentiation. This study investigates how the DNA methylation environment affects cell fate divergence during the early chondrogenic events. Our research has shown for the first time that inhibiting DNA methylation in interdigital tissue with 5-azacytidine results in the formation of an ectopic digit. This discovery suggested that DNA methylation dynamics could regulate the fate of cells between chondrogenesis and cell death during autopod development. Our in vitro findings indicate that DNA methylation at the early stages of chondrogenesis is integral in regulating condensation by controlling cell adhesion and proapoptotic genes. As a result, the dynamics of methylation and demethylation are crucial in governing chondrogenesis and cell death during different stages of limb chondrogenesis.
Collapse
Affiliation(s)
- Mario Alberto Pérez-Maldonado
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apartado Postal 70228, Ciudad de México, 04510, México
| | - Ximena Alexandra González-González
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apartado Postal 70228, Ciudad de México, 04510, México
| | - Jesús Chimal-Monroy
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apartado Postal 70228, Ciudad de México, 04510, México.
| | - Jessica Cristina Marín-Llera
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apartado Postal 70228, Ciudad de México, 04510, México.
| |
Collapse
|
3
|
Uyanga VA, Bello SF, Qian X, Chao N, Li H, Zhao J, Wang X, Jiao H, Onagbesan OM, Lin H. Transcriptomics analysis unveils key potential genes associated with brain development and feeding behavior in the hypothalamus of L-citrulline-fed broiler chickens. Poult Sci 2023; 102:103136. [PMID: 37844531 PMCID: PMC10585647 DOI: 10.1016/j.psj.2023.103136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 10/18/2023] Open
Abstract
High ambient temperature is a major environmental stressor affecting poultry production, especially in the tropical and subtropical regions of the world. Nutritional interventions have been adopted to combat thermal stress in poultry, including the use of amino acids. L-citrulline is a nonessential amino acid that is involved in nitric oxide generation and thermoregulation, however, the molecular mechanisms behind L-citrulline's regulation of body temperature are still unascertained. This study investigated the global gene expression in the hypothalamus of chickens fed either basal diet or L-citrulline-supplemented diets under different housing temperatures. Ross 308 broilers were fed with basal diet (CON) or 1% L-citrulline diet (LCT) from day-old, and later subjected to 2 environmental temperatures in a 2 by 2 factorial arrangement as follows; basal diet-fed chickens housed at 24°C (CON-TN); L-citrulline diet-fed chickens housed at 24°C (LCT-TN); basal diet-fed chickens housed at 35°C (CON-HS), and L-citrulline diet-fed chickens housed at 35°C (LCT-HS) from 22 to 42 d of age. At 42-days old, hypothalamic tissues were collected for mRNA analyses and RNA sequencing. A total of 1,019 million raw reads were generated and about 82.59 to 82.96% were uniquely mapped to genes. The gene ontology (GO) term between the CON-TN and LCT-TN groups revealed significant enrichments of pathways such as central nervous system development, and Wnt signaling pathway. On the other hand, GO terms between the CON-HS and LCT-HS groups revealed enrichments in the regulation of corticosteroid release, regulation of feeding behavior, and regulation of inflammatory response. Several potential candidate genes were identified to be responsible for central nervous system development (EMX2, WFIKKN2, SLC6A4 Wnt10a, and PHOX2B), and regulation of feed intake (NPY, AgRP, GAL, POMC, and NMU) in chickens. Therefore, this study unveils that L-citrulline can influence transcripts associated with brain development, feeding behavior, energy metabolism, and thermoregulation in chickens raised under different ambient temperatures.
Collapse
Affiliation(s)
- Victoria Anthony Uyanga
- Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, Shandong Agricultural University, Tai'an City, Shandong Province 271018, China; Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Semiu Folaniyi Bello
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Xin Qian
- Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, Shandong Agricultural University, Tai'an City, Shandong Province 271018, China
| | - Ning Chao
- Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, Shandong Agricultural University, Tai'an City, Shandong Province 271018, China
| | - Haifang Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Jingpeng Zhao
- Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, Shandong Agricultural University, Tai'an City, Shandong Province 271018, China
| | - Xiaojuan Wang
- Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, Shandong Agricultural University, Tai'an City, Shandong Province 271018, China
| | - Hongchao Jiao
- Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, Shandong Agricultural University, Tai'an City, Shandong Province 271018, China
| | - Okanlawon M Onagbesan
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - Hai Lin
- Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, Shandong Agricultural University, Tai'an City, Shandong Province 271018, China.
| |
Collapse
|
4
|
Lowenstein ED, Cui K, Hernandez-Miranda LR. Regulation of early cerebellar development. FEBS J 2023; 290:2786-2804. [PMID: 35262281 DOI: 10.1111/febs.16426] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/13/2022] [Accepted: 03/07/2022] [Indexed: 12/27/2022]
Abstract
The study of cerebellar development has been at the forefront of neuroscience since the pioneering work of Wilhelm His Sr., Santiago Ramón y Cajal and many others since the 19th century. They laid the foundation to identify the circuitry of the cerebellum, already revealing its stereotypic three-layered cortex and discerning several of its neuronal components. Their work was fundamental in the acceptance of the neuron doctrine, which acknowledges the key role of individual neurons in forming the basic units of the nervous system. Increasing evidence shows that the cerebellum performs a variety of homeostatic and higher order neuronal functions beyond the mere control of motor behaviour. Over the last three decades, many studies have revealed the molecular machinery that regulates distinct aspects of cerebellar development, from the establishment of a cerebellar anlage in the posterior brain to the identification of cerebellar neuron diversity at the single cell level. In this review, we focus on summarizing our current knowledge on early cerebellar development with a particular emphasis on the molecular determinants that secure neuron specification and contribute to the diversity of cerebellar neurons.
Collapse
Affiliation(s)
| | - Ke Cui
- Institut für Zell- and Neurobiologie, Charité Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
| | - Luis Rodrigo Hernandez-Miranda
- Institut für Zell- and Neurobiologie, Charité Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
| |
Collapse
|
5
|
Hargittay B, Mineev KS, Richter C, Sreeramulu S, Jonker HRA, Saxena K, Schwalbe H. NMR resonance assignment of a fibroblast growth factor 8 splicing isoform b. BIOMOLECULAR NMR ASSIGNMENTS 2023; 17:10.1007/s12104-023-10132-8. [PMID: 37118562 DOI: 10.1007/s12104-023-10132-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/24/2023] [Indexed: 06/02/2023]
Abstract
The splicing isoform b of human fibroblast growth factor 8 (FGF8b) is an important regulator of brain embryonic development. Here, we report the almost complete NMR chemical shift assignment of the backbone and aliphatic side chains of FGF8b. Obtained chemical shifts are in good agreement with the previously reported X-ray data, excluding the N-terminal gN helix, which apparently forms only in complex with the receptor. The reported data provide an NMR starting point for the investigation of FGF8b interaction with its receptors and with potential drugs or inhibitors.
Collapse
Affiliation(s)
- Bruno Hargittay
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe University, Max-von-Laue-Str. 7, 60438, Frankfurt/Main, Germany
| | - Konstantin S Mineev
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe University, Max-von-Laue-Str. 7, 60438, Frankfurt/Main, Germany
| | - Christian Richter
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe University, Max-von-Laue-Str. 7, 60438, Frankfurt/Main, Germany
| | - Sridhar Sreeramulu
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe University, Max-von-Laue-Str. 7, 60438, Frankfurt/Main, Germany
| | - Hendrik R A Jonker
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe University, Max-von-Laue-Str. 7, 60438, Frankfurt/Main, Germany
| | - Krishna Saxena
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe University, Max-von-Laue-Str. 7, 60438, Frankfurt/Main, Germany
- Structural Genomics Consortium, Johann Wolfgang Goethe University, Max-von-Laue-Str. 15, 60438, Frankfurt/Main, Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe University, Max-von-Laue-Str. 7, 60438, Frankfurt/Main, Germany.
| |
Collapse
|
6
|
Truong BT, Shull LC, Lencer E, Bend EG, Field M, Blue EE, Bamshad MJ, Skinner C, Everman D, Schwartz CE, Flanagan-Steet H, Artinger KB. PRDM1 DNA-binding zinc finger domain is required for normal limb development and is disrupted in split hand/foot malformation. Dis Model Mech 2023; 16:dmm049977. [PMID: 37083955 PMCID: PMC10151829 DOI: 10.1242/dmm.049977] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/09/2023] [Indexed: 04/22/2023] Open
Abstract
Split hand/foot malformation (SHFM) is a rare limb abnormality with clefting of the fingers and/or toes. For many individuals, the genetic etiology is unknown. Through whole-exome and targeted sequencing, we detected three novel variants in a gene encoding a transcription factor, PRDM1, that arose de novo in families with SHFM or segregated with the phenotype. PRDM1 is required for limb development; however, its role is not well understood and it is unclear how the PRDM1 variants affect protein function. Using transient and stable overexpression rescue experiments in zebrafish, we show that the variants disrupt the proline/serine-rich and DNA-binding zinc finger domains, resulting in a dominant-negative effect. Through gene expression assays, RNA sequencing, and CUT&RUN in isolated pectoral fin cells, we demonstrate that Prdm1a directly binds to and regulates genes required for fin induction, outgrowth and anterior/posterior patterning, such as fgfr1a, dlx5a, dlx6a and smo. Taken together, these results improve our understanding of the role of PRDM1 in the limb gene regulatory network and identified novel PRDM1 variants that link to SHFM in humans.
Collapse
Affiliation(s)
- Brittany T. Truong
- Human Medical Genetics & Genomics Graduate Program, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Craniofacial Biology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Lomeli C. Shull
- Department of Craniofacial Biology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ezra Lencer
- Biology Department, Lafayette College, Easton, PA 18042, USA
| | - Eric G. Bend
- Greenwood Genetics Center, Greenwood, SC 29646, USA
| | - Michael Field
- Genetics of Learning Disability Service, Hunter Genetics, Waratah, NSW 2298, AUS
| | - Elizabeth E. Blue
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA
- Brotman-Baty Institute for Precision Medicine, Seattle, WA 98195, USA
| | - Michael J. Bamshad
- Brotman-Baty Institute for Precision Medicine, Seattle, WA 98195, USA
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | - Kristin B. Artinger
- Department of Craniofacial Biology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
7
|
Zhu D, Trinh P, Liu E, Yang F. Cell-Cell Interactions Enhance Cartilage Zonal Development in 3D Gradient Hydrogels. ACS Biomater Sci Eng 2023; 9:831-843. [PMID: 36629329 DOI: 10.1021/acsbiomaterials.2c00469] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Cartilage tissue is characterized by zonal organization with gradual transitions of biochemical and mechanical cues from superficial to deep zones. We previously reported that 3D gradient hydrogels made of polyethylene glycol and chondroitin sulfate can induce zonal-specific responses of chondrocytes, resulting in zonal cartilage formation that mimics native tissues. While the role of cell-matrix interactions has been studied extensively, how cell-cell interactions across different zones influence cartilage zonal development remains unknown. The goal of this study is to harness gradient hydrogels as a tool to elucidate the role of cell-cell interactions in driving cartilage zonal development. When encapsulated in intact gradient hydrogels, chondrocytes exhibited strong zonal-specific responses that mimic native cartilage zonal organization. However, the separate culture of each zone of gradient hydrogels resulted in a significant decrease in cell proliferation and cartilage matrix deposition across all zones, while the trend of zonal dependence remains. Unexpectedly, mixing the coculture of all five zones of hydrogels in the same culture well largely abolished the zonal differences, with all zones behaving similarly to the softest zone. These results suggest that paracrine signal exchange among cells in different zones is essential in driving cartilage zonal development, and a spatial organization of zones is required for proper tissue zonal development. Intact, separate, or coculture groups resulted in distinct gene expression patterns in mechanosensing and cartilage-specific markers, suggesting that cell-cell interactions can also modulate mechanosensing. We further showed that 7 days of priming in intact gradient culture was sufficient to instruct the cells to complete the zonal development, and the separate or mixed coculture after 7 days of intact culture had minimal effects on cartilage formation. This study highlights the important role of cell-cell interactions in driving cartilage zonal development and validates gradient hydrogels as a useful tool to elucidate the role of cell-matrix and cell-cell interactions in driving zonal development during tissue morphogenesis and regeneration.
Collapse
Affiliation(s)
- Danqing Zhu
- Department of Bioengineering, Stanford University, Palo Alto, California 94305, United States
| | - Pavin Trinh
- Department of Bioengineering, Stanford University, Palo Alto, California 94305, United States
| | - Elisa Liu
- Department of Bioengineering, Stanford University, Palo Alto, California 94305, United States
| | - Fan Yang
- Department of Bioengineering, Stanford University, Palo Alto, California 94305, United States.,Department of Orthopaedic Surgery, Stanford University, Palo Alto, California 94305, United States
| |
Collapse
|
8
|
Tanaka K, Matsumaru D, Suzuki K, Yamada G, Miyagawa S. The role of p63 in embryonic external genitalia outgrowth in mice. Dev Growth Differ 2023; 65:132-140. [PMID: 36680528 PMCID: PMC11520970 DOI: 10.1111/dgd.12840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 01/12/2023] [Accepted: 01/15/2023] [Indexed: 01/22/2023]
Abstract
Embryonic external genitalia (genital tubercle [GT]) protrude from the cloaca and outgrow as cloacal development progresses. Individual gene functions and knockout phenotypes in GT development have been extensively analyzed; however, the interactions between these genes are not fully understood. In this study, we investigated the role of p63, focusing on its interaction with the Shh-Wnt/Ctnnb1-Fgf8 pathway, a signaling network that is known to play a role in GT outgrowth. p63 was expressed in the epithelial tissues of the GT at E11.5, and the distal tip of the GT predominantly expressed the ΔNp63α isoform. The GTs in p63 knockout embryos had normal Shh expression, but CTNNB1 protein and Fgf8 gene expression in the distal urethral epithelium was decreased or lost. Constitutive expression of CTNNB1 in p63-null embryos restored Fgf8 expression, accompanied by small bud structure development; however, such bud structures could not be maintained by E13.5, at which point mutant GTs exhibited severe abnormalities showing a split shape with a hemorrhagic cloaca. Therefore, p63 is a key component of the signaling pathway that triggers Fgf8 expression in the distal urethral epithelium and contributes to GT outgrowth by ensuring the structural integrity of the cloacal epithelia. Altogether, we propose that p63 plays an essential role in the signaling network for the development of external genitalia.
Collapse
Affiliation(s)
- Kosei Tanaka
- Department of Biological Science and Technology, Faculty of Advances EngineeringTokyo University of ScienceKatsushikaJapan
| | - Daisuke Matsumaru
- Laboratory of Hygienic Chemistry and Molecular ToxicologyGifu Pharmaceutical UniversityGifuJapan
| | - Kentaro Suzuki
- Faculty of Life and Environmental SciencesUniversity of YamanashiYamanashiJapan
| | - Gen Yamada
- Institute of Advanced MedicineWakayama Medical UniversityWakayamaJapan
| | - Shinichi Miyagawa
- Department of Biological Science and Technology, Faculty of Advances EngineeringTokyo University of ScienceKatsushikaJapan
- Division of Biological Environment Innovation, Research Institute for Science and TechnologyTokyo University of ScienceKatsushikaJapan
| |
Collapse
|
9
|
Huang H, Xie J, Wei J, Xu S, Zhang D, Zhou X. Fibroblast growth factor 8 (FGF8) up-regulates gelatinase expression in chondrocytes through nuclear factor-κB p65. J Bone Miner Metab 2023; 41:17-28. [PMID: 36512085 DOI: 10.1007/s00774-022-01388-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 11/02/2022] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Gelatinases, namely MMP2 and MMP9, are involved in the natural turnover of articular cartilage, as well as the loss of the cartilage matrix in osteoarthritis (OA). Studies have reported that fibroblast growth factor 8 (FGF8) promoted the degradation of cartilage in OA. In the present study, we predicted that FGF8 promoted chondrocyte expression and secretion of gelatinases by activating NF-κB p65 signaling. MATERIALS AND METHODS Primary chondrocytes from C57 mice were cultured with recombinant FGF8. RNA sequencing was employed to explore the gene expression changes of gelatinases. Gelatin zymography was used to determine the activation of gelatinases. Western blot was used to investigate the expression of the gelatinases and NF-κB p65 signaling pathways, and immunofluorescence staining and NF-κB inhibitor assays were performed to confirm the activation of NF-κB p65 signaling. RESULTS FGF8 could increase the expression and activity of gelatinases in primary chondrocytes. And FGF8-induced expression of gelatinases was regulated through activation of NF-κB signaling with acetylated p65 accumulating in the cell nucleus. We further found that the NF-κB inhibitor, BAY 11-7082, could suppress up-regulation of gelatinase induced by FGF8. CONCLUSION FGF8 enhanced the expression and activity of MMP2 and MMP9 in chondrocytes via NF-κB p65 signaling.
Collapse
Affiliation(s)
- Hongcan Huang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Jieya Wei
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610064, Sichuan, China
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Siqun Xu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610064, Sichuan, China
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Demao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610064, Sichuan, China.
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China.
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610064, Sichuan, China.
| |
Collapse
|
10
|
Bastide S, Chomsky E, Saudemont B, Loe-Mie Y, Schmutz S, Novault S, Marlow H, Tanay A, Spitz F. TATTOO-seq delineates spatial and cell type-specific regulatory programs in the developing limb. SCIENCE ADVANCES 2022; 8:eadd0695. [PMID: 36516250 PMCID: PMC9750149 DOI: 10.1126/sciadv.add0695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
The coordinated differentiation of progenitor cells into specialized cell types and their spatial organization into distinct domains is central to embryogenesis. Here, we developed and applied an unbiased spatially resolved single-cell transcriptomics method to identify the genetic programs underlying the emergence of specialized cell types during mouse limb development and their spatial integration. We identify multiple transcription factors whose expression patterns are predominantly associated with cell type specification or spatial position, suggesting two parallel yet highly interconnected regulatory systems. We demonstrate that the embryonic limb undergoes a complex multiscale reorganization upon perturbation of one of its spatial organizing centers, including the loss of specific cell populations, alterations of preexisting cell states' molecular identities, and changes in their relative spatial distribution. Our study shows how multidimensional single-cell, spatially resolved molecular atlases can allow the deconvolution of spatial identity and cell fate and reveal the interconnected genetic networks that regulate organogenesis and its reorganization upon genetic alterations.
Collapse
Affiliation(s)
- Sébastien Bastide
- (Epi)genomics of Animal Development, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France
- École Doctorale “Complexité du Vivant”, Sorbonne Université, 75005 Paris, France
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA
| | - Elad Chomsky
- Department of Computer Science and Applied Mathematics, Weizmann Institute, Rehovot, Israel
- Department of Biological Regulation, Weizmann Institute, Rehovot, Israel
| | - Baptiste Saudemont
- (Epi)genomics of Animal Development, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France
| | - Yann Loe-Mie
- (Epi)genomics of Animal Development, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France
- Hub de Bioinformatique et Biostatistique, Département Biologie Computationnelle, Institut Pasteur, Paris, France
| | - Sandrine Schmutz
- Cytometry and Biomarkers, Center for Technological Resources and Research, Institut Pasteur, Paris, France
| | - Sophie Novault
- Cytometry and Biomarkers, Center for Technological Resources and Research, Institut Pasteur, Paris, France
| | - Heather Marlow
- (Epi)genomics of Animal Development, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL, USA
| | - Amos Tanay
- Department of Computer Science and Applied Mathematics, Weizmann Institute, Rehovot, Israel
| | - François Spitz
- (Epi)genomics of Animal Development, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
11
|
Xia Y, Cui K, Alonso A, Lowenstein ED, Hernandez-Miranda LR. Transcription factors regulating the specification of brainstem respiratory neurons. Front Mol Neurosci 2022; 15:1072475. [PMID: 36523603 PMCID: PMC9745097 DOI: 10.3389/fnmol.2022.1072475] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/14/2022] [Indexed: 11/12/2023] Open
Abstract
Breathing (or respiration) is an unconscious and complex motor behavior which neuronal drive emerges from the brainstem. In simplistic terms, respiratory motor activity comprises two phases, inspiration (uptake of oxygen, O2) and expiration (release of carbon dioxide, CO2). Breathing is not rigid, but instead highly adaptable to external and internal physiological demands of the organism. The neurons that generate, monitor, and adjust breathing patterns locate to two major brainstem structures, the pons and medulla oblongata. Extensive research over the last three decades has begun to identify the developmental origins of most brainstem neurons that control different aspects of breathing. This research has also elucidated the transcriptional control that secures the specification of brainstem respiratory neurons. In this review, we aim to summarize our current knowledge on the transcriptional regulation that operates during the specification of respiratory neurons, and we will highlight the cell lineages that contribute to the central respiratory circuit. Lastly, we will discuss on genetic disturbances altering transcription factor regulation and their impact in hypoventilation disorders in humans.
Collapse
Affiliation(s)
- Yiling Xia
- The Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ke Cui
- The Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Antonia Alonso
- Functional Genoarchitecture and Neurobiology Groups, Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
| | - Elijah D. Lowenstein
- Developmental Biology/Signal Transduction, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Luis R. Hernandez-Miranda
- The Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
12
|
Wang S, Tanaka Y, Xu Y, Takeda S, Hirokawa N. KIF3B promotes a PI3K signaling gradient causing changes in a Shh protein gradient and suppressing polydactyly in mice. Dev Cell 2022; 57:2273-2289.e11. [DOI: 10.1016/j.devcel.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 07/27/2022] [Accepted: 09/13/2022] [Indexed: 11/03/2022]
|
13
|
Purushothaman S, Lopez Aviña BB, Seifert AW. Sonic hedgehog is Essential for Proximal-Distal Outgrowth of the Limb Bud in Salamanders. Front Cell Dev Biol 2022; 10:797352. [PMID: 35433673 PMCID: PMC9010949 DOI: 10.3389/fcell.2022.797352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/24/2022] [Indexed: 11/20/2022] Open
Abstract
The developing forelimb has been a foundational model to understand how specified progenitor cells integrate genetic information to produce the tetrapod limb bauplan. Although the reigning hypothesis is that all tetrapods develop limbs in a similar manner, recent work suggests that urodeles have evolved a derived mode of limb dvelopment. Here, we demonstrate through pharmacological and genetic inactivation of Sonic hedgehog (Shh) signaling in axolotls that Shh directs expansion and survival of limb progenitor cells in addition to patterning the limb across the proximodistal and antero-posterior axis. In contrast to inactivation of Shh in mouse or chick embryos where a humerus, radius, and single digit develop, Shh crispant axolotls completely lack forelimbs. In rescuing limb development by implanting SHH-N protein beads into the nascent limb field of Shh crispants, we show that the limb field is specified in the absence of Shh and that hedgehog pathway activation is required to initiate proximodistal outgrowth. When our results are examined alongside other derived aspects of salamander limb development and placed in a phylogenetic context, a new hypothesis emerges whereby the ability for cells at an amputation plane to activate morphogenesis and regenerate a limb may have evolved uniquely in urodeles.
Collapse
|
14
|
Paulissen SM, Castranova DM, Krispin SM, Burns MC, Menéndez J, Torres-Vázquez J, Weinstein BM. Anatomy and development of the pectoral fin vascular network in the zebrafish. Development 2022; 149:dev199676. [PMID: 35132436 PMCID: PMC8959142 DOI: 10.1242/dev.199676] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 01/24/2022] [Indexed: 12/15/2022]
Abstract
The pectoral fins of teleost fish are analogous structures to human forelimbs, and the developmental mechanisms directing their initial growth and patterning are conserved between fish and tetrapods. The forelimb vasculature is crucial for limb function, and it appears to play important roles during development by promoting development of other limb structures, but the steps leading to its formation are poorly understood. In this study, we use high-resolution imaging to document the stepwise assembly of the zebrafish pectoral fin vasculature. We show that fin vascular network formation is a stereotyped, choreographed process that begins with the growth of an initial vascular loop around the pectoral fin. This loop connects to the dorsal aorta to initiate pectoral vascular circulation. Pectoral fin vascular development continues with concurrent formation of three elaborate vascular plexuses, one in the distal fin that develops into the fin-ray vasculature and two near the base of the fin in association with the developing fin musculature. Our findings detail a complex, yet highly choreographed, series of steps involved in the development of a complete, functional, organ-specific vascular network.
Collapse
Affiliation(s)
- Scott M. Paulissen
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Daniel M. Castranova
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Shlomo M. Krispin
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Margaret C. Burns
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Javier Menéndez
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University Langone Medical Center, NY 10016, USA
| | - Jesús Torres-Vázquez
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University Langone Medical Center, NY 10016, USA
| | - Brant M. Weinstein
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
15
|
Royle SR, Tabin CJ, Young JJ. Limb positioning and initiation: An evolutionary context of pattern and formation. Dev Dyn 2021; 250:1264-1279. [PMID: 33522040 PMCID: PMC10623539 DOI: 10.1002/dvdy.308] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/23/2021] [Accepted: 01/25/2021] [Indexed: 12/22/2022] Open
Abstract
Before limbs or fins, can be patterned and grow they must be initiated. Initiation of the limb first involves designating a portion of lateral plate mesoderm along the flank as the site of the future limb. Following specification, a myriad of cellular and molecular events interact to generate a bud that will grow and form the limb. The past three decades has provided a wealth of understanding on how those events generate the limb bud and how variations in them result in different limb forms. Comparatively, much less attention has been given to the earliest steps of limb formation and what impacts altering the position and initiation of the limb have had on evolution. Here, we first review the processes and pathways involved in these two phases of limb initiation, as determined from amniote model systems. We then broaden our scope to examine how variation in the limb initiation module has contributed to biological diversity in amniotes. Finally, we review what is known about limb initiation in fish and amphibians, and consider what mechanisms are conserved across vertebrates.
Collapse
Affiliation(s)
- Samantha R Royle
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Clifford J Tabin
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - John J Young
- Department of Biology, Simmons University, Boston, Massachusetts, USA
| |
Collapse
|
16
|
Fonteles CSR, Finnell RH, George TM, Harshbarger RJ. Craniosynostosis: current conceptions and misconceptions. AIMS GENETICS 2021. [DOI: 10.3934/genet.2016.1.99] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AbstractCranial bones articulate in areas called sutures that must remain patent until skull growth is complete. Craniosynostosis is the condition that results from premature closure of one or more of the cranial vault sutures, generating facial deformities and more importantly, skull growth restrictions with the ability to severely affect brain growth. Typically, craniosynostosis can be expressed as an isolated event, or as part of syndromic phenotypes. Multiple signaling mechanisms interact during developmental stages to ensure proper and timely suture fusion. Clinical outcome is often a product of craniosynostosis subtypes, number of affected sutures and timing of premature suture fusion. The present work aimed to review the different aspects involved in the establishment of craniosynostosis, providing a close view of the cellular, molecular and genetic background of these malformations.
Collapse
Affiliation(s)
- Cristiane Sá Roriz Fonteles
- Finnell Birth Defects Research Laboratory, Dell Pediatric Research Institute, The University of Texas at Austin, USA
| | - Richard H. Finnell
- Finnell Birth Defects Research Laboratory, Dell Pediatric Research Institute, The University of Texas at Austin, USA
- Department of Nutritional Sciences, Dell Pediatric Research Institute, The University of Texas at Austin, USA
| | - Timothy M. George
- Pediatric Neurosurgery, Dell Children's Medical Center, Professor, Department of Surgery, Dell Medical School, Austin, TX, USA
| | - Raymond J. Harshbarger
- Plastic Surgery, Craniofacial Team at the Dell Children's Medical Center of Central Texas, Austin, USA
| |
Collapse
|
17
|
Tomizawa RR, Tabin CJ, Atsuta Y. In ovo electroporation of chicken limb bud ectoderm: Electroporation to chick limb ectoderm. Dev Dyn 2021; 251:1628-1638. [PMID: 33899315 DOI: 10.1002/dvdy.352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Deciphering how ectodermal tissues form, and how they maintain their integrity, is crucial for understanding epidermal development and pathogenesis. However, lack of simple and rapid gene manipulation techniques limits genetic studies to elucidate mechanisms underlying these events. RESULTS Here we describe an easy method for electroporation of chick limb bud ectoderm enabling gene manipulation during ectoderm development and wound healing. Taking advantage of a small parafilm well that constrains DNA plasmids locally and the fact that the limb ectoderm arises from a defined site, we target the limb ectoderm forming region by in ovo electroporation. This approach results in focal and efficient transgenesis of the limb ectodermal cells. Further, using a previously described Msx2 promoter, gene manipulation can be specifically targeted to the apical ectodermal ridge (AER), a signaling center regulating limb development. Using the electroporation technique to deliver a fluorescent marker into the embryonic limb ectoderm, we show its utility in performing time-lapse imaging during wound healing. This analysis revealed previously unrecognized dynamic remodeling of the actin cytoskeleton and lamellipodia formation at the edges of the wound. We find that the lamellipodia formation requires activity of Rac1 GTPase, suggesting its necessity for wound closure. CONCLUSION Our method is simple and easy. Thus, it would permit high throughput tests for gene function during limb ectodermal development and wound healing.
Collapse
Affiliation(s)
| | | | - Yuji Atsuta
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA.,Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
18
|
Otsuka T, Mengsteab PY, Laurencin CT. Control of mesenchymal cell fate via application of FGF-8b in vitro. Stem Cell Res 2021; 51:102155. [PMID: 33445073 PMCID: PMC8027992 DOI: 10.1016/j.scr.2021.102155] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/30/2020] [Accepted: 01/01/2021] [Indexed: 12/29/2022] Open
Abstract
In order to develop strategies to regenerate complex tissues in mammals, understanding the role of signaling in regeneration competent species and mammalian development is of critical importance. Fibroblast growth factor 8 (FGF-8) signaling has an essential role in limb morphogenesis and blastema outgrowth. Therefore, we aimed to study the effect of FGF-8b on the proliferation and differentiation of mesenchymal stem cells (MSCs), which have tremendous potential for therapeutic use of cell-based therapy. Rat adipose derived stem cells (ADSCs) and muscle progenitor cells (MPCs) were isolated and cultured in growth medium and various types of differentiation medium (osteogenic, chondrogenic, adipogenic, tenogenic, and myogenic medium) with or without FGF-8b supplementation. We found that FGF-8b induced robust proliferation regardless of culture medium. Genes related to limb development were upregulated in ADSCs by FGF-8b supplementation. Moreover, FGF-8b enhanced chondrogenic differentiation and suppressed adipogenic and tenogenic differentiation in ADSCs. Osteogenic differentiation was not affected by FGF-8b supplementation. FGF-8b was found to enhance myofiber formation in rat MPCs. Overall, this study provides foundational knowledge on the effect of FGF-8b in the proliferation and fate determination of MSCs and provides insight in its potential efficacy for musculoskeletal therapies.
Collapse
Affiliation(s)
- Takayoshi Otsuka
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health, Farmington, CT 06030, USA; Raymond and Beverly Sackler Center for Biological, Physical and Engineering Sciences, University of Connecticut Health, CT 06030, USA; Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT 06030, USA
| | - Paulos Y Mengsteab
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health, Farmington, CT 06030, USA; Raymond and Beverly Sackler Center for Biological, Physical and Engineering Sciences, University of Connecticut Health, CT 06030, USA; Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT 06030, USA; Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Cato T Laurencin
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health, Farmington, CT 06030, USA; Raymond and Beverly Sackler Center for Biological, Physical and Engineering Sciences, University of Connecticut Health, CT 06030, USA; Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT 06030, USA; Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA; Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA; Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
19
|
Berenguer M, Duester G. Role of Retinoic Acid Signaling, FGF Signaling and Meis Genes in Control of Limb Development. Biomolecules 2021; 11:80. [PMID: 33435477 PMCID: PMC7827967 DOI: 10.3390/biom11010080] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/31/2020] [Accepted: 01/06/2021] [Indexed: 12/22/2022] Open
Abstract
The function of retinoic acid (RA) during limb development is still debated, as loss and gain of function studies led to opposite conclusions. With regard to limb initiation, genetic studies demonstrated that activation of FGF10 signaling is required for the emergence of limb buds from the trunk, with Tbx5 and RA signaling acting upstream in the forelimb field, whereas Tbx4 and Pitx1 act upstream in the hindlimb field. Early studies in chick embryos suggested that RA as well as Meis1 and Meis2 (Meis1/2) are required for subsequent proximodistal patterning of both forelimbs and hindlimbs, with RA diffusing from the trunk, functioning to activate Meis1/2 specifically in the proximal limb bud mesoderm. However, genetic loss of RA signaling does not result in loss of limb Meis1/2 expression and limb patterning is normal, although Meis1/2 expression is reduced in trunk somitic mesoderm. More recent studies demonstrated that global genetic loss of Meis1/2 results in a somite defect and failure of limb bud initiation. Other new studies reported that conditional genetic loss of Meis1/2 in the limb results in proximodistal patterning defects, and distal FGF8 signaling represses Meis1/2 to constrain its expression to the proximal limb. In this review, we hypothesize that RA and Meis1/2 both function in the trunk to initiate forelimb bud initiation, but that limb Meis1/2 expression is activated proximally by a factor other than RA and repressed distally by FGF8 to generate proximodistal patterning.
Collapse
Affiliation(s)
| | - Gregg Duester
- Development, Aging, and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA;
| |
Collapse
|
20
|
Luria V, Laufer E. The Geometry of Limb Motor Innervation is Controlled by the Dorsal-Ventral Compartment Boundary in the Chick Limbless Mutant. Neuroscience 2020; 450:29-47. [PMID: 33038447 PMCID: PMC9922539 DOI: 10.1016/j.neuroscience.2020.09.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 11/29/2022]
Abstract
Precise control of limb muscles, and ultimately of limb movement, requires accurate motor innervation. Motor innervation of the vertebrate limb is established by sequential selection of trajectories at successive decision points. Motor axons of the lateral motor column (LMC) segregate at the base of the limb into two groups that execute a choice between dorsal and ventral tissue: medial LMC axons innervate the ventral limb, whereas lateral LMC axons innervate the dorsal limb. We investigated how LMC axons are targeted to the limb using the chick mutant limbless (ll), which has a dorsal transformation of the ventral limb mesenchyme. In ll the spatial pattern of motor projections to the limb is abnormal while their targeting is normal. While extensive, the dorsal transformation of the ll ventral limb mesenchyme is incomplete whereas the generation, specification and targeting of spinal motor neurons are apparently unaffected. Thus, the dorsal-ventral motor axon segregation is an active choice that is independent of the ratio between dorsal and ventral tissue but dependent on the presence of both tissues. Therefore, the fidelity of the motor projections to the limb depends on the presence of both dorsal and ventral compartments, while the geometry of motor projections is controlled by the position of limb dorsal-ventral compartment boundary.
Collapse
Affiliation(s)
- Victor Luria
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA; Center for Motor Neuron Biology and Disease, Columbia University Medical Center, New York, NY 10032, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
| | - Ed Laufer
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA; Center for Motor Neuron Biology and Disease, Columbia University Medical Center, New York, NY 10032, USA; Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
21
|
Boylan M, Anderson MJ, Ornitz DM, Lewandoski M. The Fgf8 subfamily (Fgf8, Fgf17 and Fgf18) is required for closure of the embryonic ventral body wall. Development 2020; 147:dev189506. [PMID: 32907848 PMCID: PMC7595690 DOI: 10.1242/dev.189506] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 08/28/2020] [Indexed: 12/26/2022]
Abstract
The closure of the embryonic ventral body wall in amniotes is an important morphogenetic event and is essential for life. Defects in human ventral wall closure are a major class of birth defect and a significant health burden. Despite this, very little is understood about how the ventral body wall is formed. Here, we show that fibroblast growth factor (FGF) ligands FGF8, FGF17 and FGF18 are essential for this process. Conditional mouse mutants for these genes display subtle migratory defects in the abdominal muscles of the ventral body wall and an enlarged umbilical ring, through which the internal organs are extruded. By refining where and when these genes are required using different Cre lines, we show that Fgf8 and Fgf17 are required in the presomitic mesoderm, whereas Fgf18 is required in the somites. This study identifies complex and multifactorial origins of ventral wall defects and has important implications for understanding their origins during embryonic development.
Collapse
Affiliation(s)
- Michael Boylan
- Cancer and Developmental Biology Lab, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Matthew J Anderson
- Cancer and Developmental Biology Lab, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Mark Lewandoski
- Cancer and Developmental Biology Lab, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| |
Collapse
|
22
|
Salhotra A, Shah HN, Levi B, Longaker MT. Mechanisms of bone development and repair. Nat Rev Mol Cell Biol 2020; 21:696-711. [PMID: 32901139 DOI: 10.1038/s41580-020-00279-w] [Citation(s) in RCA: 540] [Impact Index Per Article: 108.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2020] [Indexed: 12/19/2022]
Abstract
Bone development occurs through a series of synchronous events that result in the formation of the body scaffold. The repair potential of bone and its surrounding microenvironment - including inflammatory, endothelial and Schwann cells - persists throughout adulthood, enabling restoration of tissue to its homeostatic functional state. The isolation of a single skeletal stem cell population through cell surface markers and the development of single-cell technologies are enabling precise elucidation of cellular activity and fate during bone repair by providing key insights into the mechanisms that maintain and regenerate bone during homeostasis and repair. Increased understanding of bone development, as well as normal and aberrant bone repair, has important therapeutic implications for the treatment of bone disease and ageing-related degeneration.
Collapse
Affiliation(s)
- Ankit Salhotra
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Harsh N Shah
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Benjamin Levi
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA.
| | - Michael T Longaker
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA. .,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
23
|
Yen ST, Trimmer KA, Aboul-Fettouh N, Mullen RD, Culver JC, Dickinson ME, Behringer RR, Eisenhoffer GT. CreLite: An optogenetically controlled Cre/loxP system using red light. Dev Dyn 2020; 249:1394-1403. [PMID: 32745301 DOI: 10.1002/dvdy.232] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 07/21/2020] [Accepted: 07/27/2020] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Precise manipulation of gene expression with temporal and spatial control is essential for functional analysis and determining cell lineage relationships in complex biological systems. The cyclic recombinase (Cre)-loxP system is commonly used for gene manipulation at desired times and places. However, specificity is dependent on the availability of tissue- or cell-specific regulatory elements used in combination with Cre. Here, we present CreLite, an optogenetically controlled Cre system using red light in developing zebrafish embryos. RESULTS Cre activity is disabled by splitting Cre and fusing with the Arabidopsis thaliana red light-inducible binding partners, PhyB and PIF6. Upon red light illumination, the PhyB-CreC and PIF6-CreN fusion proteins come together in the presence of the cofactor phycocyanobilin (PCB) to restore Cre activity. Red light exposure of zebrafish embryos harboring a Cre-dependent multicolor fluorescent protein reporter injected with CreLite mRNAs and PCB resulted in Cre activity as measured by the generation of multispectral cell labeling in several different tissues. CONCLUSIONS Our data show that CreLite can be used for gene manipulations in whole embryos or small groups of cells at different developmental stages, and suggests CreLite may also be useful for temporal and spatial control of gene expression in cell culture, ex vivo organ culture, and other animal models.
Collapse
Affiliation(s)
- Shuo-Ting Yen
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kenneth A Trimmer
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Genetics and Epigenetics Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Nader Aboul-Fettouh
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Rachel D Mullen
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - James C Culver
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA
| | - Mary E Dickinson
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA
| | - Richard R Behringer
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Genetics and Epigenetics Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - George T Eisenhoffer
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Genetics and Epigenetics Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| |
Collapse
|
24
|
Vincent E, Villiard E, Sader F, Dhakal S, Kwok BH, Roy S. BMP signaling is essential for sustaining proximo-distal progression in regenerating axolotl limbs. Development 2020; 147:dev.170829. [PMID: 32665245 DOI: 10.1242/dev.170829] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 06/30/2020] [Indexed: 02/04/2023]
Abstract
Amputation of a salamander limb triggers a regeneration process that is perfect. A limited number of genes have been studied in this context and even fewer have been analyzed functionally. In this work, we use the BMP signaling inhibitor LDN193189 on Ambystoma mexicanum to explore the role of BMPs in regeneration. We find that BMP signaling is required for proper expression of various patterning genes and that its inhibition causes major defects in the regenerated limbs. Fgf8 is downregulated when BMP signaling is blocked, but ectopic injection of either human or axolotl protein did not rescue the defects. By administering LDN193189 treatments at different time points during regeneration, we show clearly that limb regeneration progresses in a proximal to distal fashion. This demonstrates that BMPs play a major role in patterning of regenerated limbs and that regeneration is a progressive process like development.
Collapse
Affiliation(s)
- Etienne Vincent
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, Québec, H3T 1J4, Canada
| | - Eric Villiard
- Department of Stomatology, Faculty of Dentistry, Université de Montréal, Montréal, Québec, H3T 1J4, Canada
| | - Fadi Sader
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, Québec, H3T 1J4, Canada
| | - Sabin Dhakal
- Institute for Research in Immunology and Cancer (IRIC), Département de médecine, Université de Montréal, Montréal, H3T 1J4, Canada
| | - Benjamin H Kwok
- Institute for Research in Immunology and Cancer (IRIC), Département de médecine, Université de Montréal, Montréal, H3T 1J4, Canada
| | - Stéphane Roy
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, Québec, H3T 1J4, Canada .,Department of Stomatology, Faculty of Dentistry, Université de Montréal, Montréal, Québec, H3T 1J4, Canada
| |
Collapse
|
25
|
Dunkel H, Chaverra M, Bradley R, Lefcort F. FGF
signaling is required for chemokinesis and ventral migration of trunk neural crest cells. Dev Dyn 2020; 249:1077-1097. [DOI: 10.1002/dvdy.190] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 04/24/2020] [Accepted: 05/04/2020] [Indexed: 11/08/2022] Open
Affiliation(s)
- Haley Dunkel
- Department of Cell Biology and NeuroscienceMontana State University Bozeman Montana USA
| | - Martha Chaverra
- Department of Cell Biology and NeuroscienceMontana State University Bozeman Montana USA
| | - Roger Bradley
- Department of Cell Biology and NeuroscienceMontana State University Bozeman Montana USA
| | - Frances Lefcort
- Department of Cell Biology and NeuroscienceMontana State University Bozeman Montana USA
| |
Collapse
|
26
|
Mathematical modeling of chondrogenic pattern formation during limb development: Recent advances in continuous models. Math Biosci 2020; 322:108319. [PMID: 32001201 DOI: 10.1016/j.mbs.2020.108319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 01/17/2020] [Accepted: 01/17/2020] [Indexed: 11/20/2022]
Abstract
The phenomenon of chondrogenic pattern formation in the vertebrate limb is one of the best studied examples of organogenesis. Many different models, mathematical as well as conceptual, have been proposed for it in the last fifty years or so. In this review, we give a brief overview of the fundamental biological background, then describe in detail several models which aim to describe qualitatively and quantitatively the corresponding biological phenomena. We concentrate on several new models that have been proposed in recent years, taking into account recent experimental progress. The major mathematical tools in these approaches are ordinary and partial differential equations. Moreover, we discuss models with non-local flux terms used to account for cell-cell adhesion forces and a structured population model with diffusion. We also include a detailed list of gene products and potential morphogens which have been identified to play a role in the process of limb formation and its growth.
Collapse
|
27
|
Kajioka D, Suzuki K, Nakada S, Matsushita S, Miyagawa S, Takeo T, Nakagata N, Yamada G. Bmp4 is an essential growth factor for the initiation of genital tubercle (GT) outgrowth. Congenit Anom (Kyoto) 2020; 60:15-21. [PMID: 30714224 DOI: 10.1111/cga.12326] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/22/2019] [Accepted: 01/28/2019] [Indexed: 12/31/2022]
Abstract
The external genitalia are appendage organs outgrowing from the posterior body trunk. Murine genital tubercle (GT), anlage of external genitalia, initiates its outgrowth from embryonic day (E) 10.5 as a bud structure. Several growth factors such as fibroblast growth factor (FGF), Wnt and Sonic hedgehog (Shh) are essential for the GT outgrowth. However, the mechanisms of initiation of GT outgrowth are poorly understood. We previously identified bone morphogenetic protein (Bmp) signaling as a negative regulator for GT outgrowth. We show here novel aspects of Bmp4 functions for GT outgrowth. We identified the Bmp4 was already expressed in cloaca region at E9.5, before GT outgrowth. To analyze the function of Bmp4 at early stage for the initiation of GT outgrowth, we utilized the Hoxa3-Cre driver and Bmp4 flox/flox mouse lines. Hoxa3 Cre/+ ; Bmp4 flox/flox mutant mice showed the hypoplasia of GT with reduced expression of outgrowth promoting genes such as Wnt5a, Hoxd13 and p63, whereas Shh expression was not affected. Formation of distal urethral epithelium (DUE) marked by the Fgf8 expression is essential for controlling mesenchymal genes expression in GT and subsequent its outgrowth. Furthermore, Fgf8 expression was dramatically reduced in such mutant mice indicating the defective DUE formation. Hence, current results indicate that Bmp4 is an essential growth factor for the initiation of GT outgrowth independent of Shh signaling. Thus, Bmp4 positively regulates for the formation of DUE. The current study provides new insights into the function of Bmp signaling at early stage for the initiation of GT outgrowth.
Collapse
Affiliation(s)
- Daiki Kajioka
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Kentaro Suzuki
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Shoko Nakada
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Shoko Matsushita
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Shinichi Miyagawa
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Toru Takeo
- Division of Reproductive Engineering, Center for Animal Resources and Development, Kumamoto University, Kumamoto, Japan
| | - Naomi Nakagata
- Division of Reproductive Engineering, Center for Animal Resources and Development, Kumamoto University, Kumamoto, Japan
| | - Gen Yamada
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
28
|
Okumura A, Hayashi T, Ebisawa M, Yoshimura M, Sasagawa Y, Nikaido I, Umesono Y, Mochii M. Cell type-specific transcriptome analysis unveils secreted signaling molecule genes expressed in apical epithelial cap during appendage regeneration. Dev Growth Differ 2019; 61:447-456. [PMID: 31713234 DOI: 10.1111/dgd.12635] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/09/2019] [Accepted: 10/14/2019] [Indexed: 12/17/2022]
Abstract
Wound epidermis (WE) and the apical epithelial cap (AEC) are believed to trigger regeneration of amputated appendages such as limb and tail in amphibians by producing certain secreted signaling molecules. To date, however, only limited information about the molecular signatures of these epidermal structures is available. Here we used a transgenic Xenopus laevis line harboring the enhanced green fluorescent protein (egfp) gene under control of an es1 gene regulatory sequence to isolate WE/AEC cells by performing fluorescence-activated cell sorting during the time course of tail regeneration (day 1, day 2, day 3 and day 4 after amputation). Time-course transcriptome analysis of these isolated WE/AEC cells revealed that more than 8,000 genes, including genes involved in signaling pathways such as those of reactive oxygen species, fibroblast growth factor (FGF), canonical and non-canonical Wnt, transforming growth factor β (TGF β) and Notch, displayed dynamic changes of their expression during tail regeneration. Notably, this approach enabled us to newly identify seven secreted signaling molecule genes (mdk, fstl, slit1, tgfβ1, bmp7.1, angptl2 and egfl6) that are highly expressed in tail AEC cells. Among these genes, five (mdk, fstl, slit1, tgfβ1 and bmp7.1) were also highly expressed in limb AEC cells but the other two (angptl2 and egfl6) are specifically expressed in tail AEC cells. Interestingly, there was no expression of fgf8 in tail WE/AEC cells, whose expression and pivotal role in limb AEC cells have been reported previously. Thus, we identified common and different properties between tail and limb AEC cells.
Collapse
Affiliation(s)
- Akinori Okumura
- Graduate School of Life Science, University of Hyogo, Akou-gun, Hyogo, Japan
| | - Tetsutaro Hayashi
- Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research, RIKEN, Saitama, Japan
| | - Masashi Ebisawa
- Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research, RIKEN, Saitama, Japan
| | - Mika Yoshimura
- Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research, RIKEN, Saitama, Japan
| | - Yohei Sasagawa
- Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research, RIKEN, Saitama, Japan
| | - Itoshi Nikaido
- Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research, RIKEN, Saitama, Japan.,School of Integrative and Global Majors (SIGMA), University of Tsukuba, Ibaraki, Japan
| | - Yoshihiko Umesono
- Graduate School of Life Science, University of Hyogo, Akou-gun, Hyogo, Japan
| | - Makoto Mochii
- Graduate School of Life Science, University of Hyogo, Akou-gun, Hyogo, Japan
| |
Collapse
|
29
|
Purushothaman S, Elewa A, Seifert AW. Fgf-signaling is compartmentalized within the mesenchyme and controls proliferation during salamander limb development. eLife 2019; 8:48507. [PMID: 31538936 PMCID: PMC6754229 DOI: 10.7554/elife.48507] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/19/2019] [Indexed: 12/27/2022] Open
Abstract
Although decades of studies have produced a generalized model for tetrapod limb development, urodeles deviate from anurans and amniotes in at least two key respects: their limbs exhibit preaxial skeletal differentiation and do not develop an apical ectodermal ridge (AER). Here, we investigated how Sonic hedgehog (Shh) and Fibroblast growth factor (Fgf) signaling regulate limb development in the axolotl. We found that Shh-expressing cells contributed to the most posterior digit, and that inhibiting Shh-signaling inhibited Fgf8 expression, anteroposterior patterning, and distal cell proliferation. In addition to lack of a morphological AER, we found that salamander limbs also lack a molecular AER. We found that amniote and anuran AER-specific Fgfs and their cognate receptors were expressed entirely in the mesenchyme. Broad inhibition of Fgf-signaling demonstrated that this pathway regulates cell proliferation across all three limb axes, in contrast to anurans and amniotes where Fgf-signaling regulates cell survival and proximodistal patterning. Salamanders are a group of amphibians that are well-known for their ability to regenerate lost limbs and other body parts. At the turn of the twentieth century, researchers used salamander embryos as models to understand the basic concepts of how limbs develop in other four-limbed animals, including amphibians, mammals and birds, which are collectively known as “tetrapods”. However, the salamander’s amazing powers of regeneration made it difficult to carry out certain experiments, so researchers switched to using the embryos of other tetrapods – namely chickens and mice – instead. Studies in chickens, later confirmed in mice and frogs, established that there are two major signaling centers that control how the limbs of tetrapod embryos form and grow: a small group of cells known as the “zone of polarizing activity” within a structure called the “limb bud mesenchyme”; and an overlying, thin ridge of cells called the “apical ectodermal ridge”. Both of these centers release potent signaling molecules that act on cells in the limbs. The cells in the zone of polarizing activity produce a molecule often called Sonic hedgehog, or Shh for short. The apical ectodermal ridge produces another group of signals commonly known as fibroblast growth factors, or simply Fgfs. Several older studies reported that salamander embryos do not have an apical ectodermal ridge suggesting that these amphibian’s limbs may form differently to other tetrapods. Yet, contemporary models in developmental biology treated salamander limbs like those of chicks and mice. To address this apparent discrepancy, Purushothaman et al. studied how the forelimbs develop in a salamander known as the axolotl. The experiments showed that, along with lacking an apical ectodermal ridge, axolotls did not produce fibroblast growth factors normally found in this tissue. Instead, these factors were only found in the limb bud mesenchyme. Purushothaman et al. also found that fibroblast growth factors played a different role in axolotls than previously reported in chick, frog and mouse embryos. On the other hand, the pattern and function of Shh activity in the axolotl limb bud was similar to that previously observed in chicks and mice. These findings show that not all limbs develop in the same way and open up questions for evolutionary biologists regarding the evolution of limbs. Future studies that examine limb development in other animals that regenerate tissues, such as other amphibians and lungfish, will help answer these questions.
Collapse
Affiliation(s)
| | - Ahmed Elewa
- Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
| | - Ashley W Seifert
- Department of Biology, University of Kentucky, Lexington, United States
| |
Collapse
|
30
|
Leerberg DM, Hopton RE, Draper BW. Fibroblast Growth Factor Receptors Function Redundantly During Zebrafish Embryonic Development. Genetics 2019; 212:1301-1319. [PMID: 31175226 PMCID: PMC6707458 DOI: 10.1534/genetics.119.302345] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 05/29/2019] [Indexed: 01/08/2023] Open
Abstract
Fibroblast growth factor (Fgf) signaling regulates many processes during development. In most cases, one tissue layer secretes an Fgf ligand that binds and activates an Fgf receptor (Fgfr) expressed by a neighboring tissue. Although studies have identified the roles of specific Fgf ligands during development, less is known about the requirements for the receptors. We have generated null mutations in each of the five fgfr genes in zebrafish. Considering the diverse requirements for Fgf signaling throughout development, and that null mutations in the mouse Fgfr1 and Fgfr2 genes are embryonic lethal, it was surprising that all zebrafish homozygous mutants are viable and fertile, with no discernable embryonic defect. Instead, we find that multiple receptors are involved in coordinating most Fgf-dependent developmental processes. For example, mutations in the ligand fgf8a cause loss of the midbrain-hindbrain boundary, whereas, in the fgfr mutants, this phenotype is seen only in embryos that are triple mutant for fgfr1a;fgfr1b;fgfr2, but not in any single or double mutant combinations. We show that this apparent fgfr redundancy is also seen during the development of several other tissues, including posterior mesoderm, pectoral fins, viscerocranium, and neurocranium. These data are an essential step toward defining the specific Fgfrs that function with particular Fgf ligands to regulate important developmental processes in zebrafish.
Collapse
Affiliation(s)
- Dena M Leerberg
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616
| | - Rachel E Hopton
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616
| | - Bruce W Draper
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616
| |
Collapse
|
31
|
Ueda S, Cordeiro IR, Moriyama Y, Nishimori C, Kai KI, Yu R, Nakato R, Shirahige K, Tanaka M. Cux2 refines the forelimb field by controlling expression of Raldh2 and Hox genes. Biol Open 2019; 8:bio.040584. [PMID: 30651234 PMCID: PMC6398465 DOI: 10.1242/bio.040584] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In vertebrates, two pairs of buds that give rise to the fore- and hindlimbs form at discrete positions along the rostral-caudal axis of the body. The mechanism responsible for the positioning of the limb buds is still largely unknown. Here we show a novel function for Cut homeobox transcription factor 2 (Cux2), the ortholog of Drosophila cut, in refining the forelimb field during chick development. Cux2 is expressed in the forelimb field before the emergence of the limb buds. Knocking down the expression of Cux2 using small interfering RNA (siRNA) resulted in a caudal shift of the forelimb bud, whereas misexpression of Cux2 or the constitutively active Cux2-VP16 caused a rostral shift of the forelimb bud or reduction of the forelimb field along the anterior-posterior axis. Further functional analyses revealed that expression of Hoxb genes and retinaldehyde dehydrogenase 2 (Raldh2), which are involved in limb positioning, are directly activated by Cux2 in the lateral plate mesoderm. Our data suggest that Cux2 in the lateral plate mesoderm refines the forelimb field via regulation of Raldh2 and Hoxb genes in chicken embryos. Summary: Cux2 in the lateral plate mesoderm refines the forelimb field via regulation of Raldh2 and Hoxb genes in chicken embryos.
Collapse
Affiliation(s)
- Shogo Ueda
- Department of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama, 226-8501, Japan
| | - Ingrid Rosenburg Cordeiro
- Department of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama, 226-8501, Japan
| | - Yuuta Moriyama
- Department of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama, 226-8501, Japan
| | - Chika Nishimori
- Department of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama, 226-8501, Japan
| | - Kei-Ichi Kai
- Department of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama, 226-8501, Japan
| | - Reiko Yu
- Department of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama, 226-8501, Japan
| | - Ryoichiro Nakato
- Research Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, University of Tokyo, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Katsuhiko Shirahige
- Research Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, University of Tokyo, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Mikiko Tanaka
- Department of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama, 226-8501, Japan
| |
Collapse
|
32
|
Salva JE, Roberts RR, Stucky TS, Merrill AE. Nuclear FGFR2 regulates musculoskeletal integration within the developing limb. Dev Dyn 2019; 248:233-246. [PMID: 30620790 DOI: 10.1002/dvdy.9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/29/2018] [Accepted: 12/18/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Bent bone dysplasia syndrome (BBDS), a congenital skeletal disorder caused by dominant mutations in fibroblast growth factor receptor 2 (FGFR2), is characterized by bowed long bones within the limbs. We previously showed that the FGFR2 mutations in BBDS enhance nuclear and nucleolar localization of the receptor; however, exactly how shifts in subcellular distribution of FGFR2 affect limb development remained unknown. RESULTS Targeted expression of the BBDS mutations in the lateral plate mesoderm of the developing chick induced angulated hindlimbs, a hallmark feature of the disease. Whole-mount analysis of the underlying skeleton revealed bent long bones with shortened bone collars and, in severe cases, dysmorphic epiphyses. Epiphyseal changes were also correlated with joint dislocations and contractures. Histological analysis revealed that bent long bones and joint defects were closely associated with irregularities in skeletal muscle patterning and tendon-to-bone attachment. The spectrum of limb phenotypes induced by the BBDS mutations were recapitulated by targeted expression of wild-type FGFR2 appended with nuclear and nucleolar localization signals. CONCLUSIONS Our results indicate that the bent long bones in BBDS arise from disruptions in musculoskeletal integration and that increased nuclear and nucleolar localization of FGFR2 plays a mechanistic role in the disease phenotype. 248:233-246, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Joanna E Salva
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Ryan R Roberts
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Taylor S Stucky
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Amy E Merrill
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
33
|
Jin L, Wu J, Bellusci S, Zhang JS. Fibroblast Growth Factor 10 and Vertebrate Limb Development. Front Genet 2019; 9:705. [PMID: 30687387 PMCID: PMC6338048 DOI: 10.3389/fgene.2018.00705] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 12/14/2018] [Indexed: 12/11/2022] Open
Abstract
Early limb development requires fibroblast growth factor (Fgf)-mediated coordination between growth and patterning to ensure the proper formation of a functional organ. The apical ectodermal ridge (AER) is a domain of thickened epithelium located at the distal edge of the limb bud that coordinates outgrowth along the proximodistal axis. Considerable amount of work has been done to elucidate the cellular and molecular mechanisms underlying induction, maintenance and regression of the AER. Fgf10, a paracrine Fgf that elicits its biological responses by activating the fibroblast growth factor receptor 2b (Fgfr2b), is crucial for governing proximal distal outgrowth as well as patterning and acts upstream of the known AER marker Fgf8. A transgenic mouse line allowing doxycycline-based inducible and ubiquitous expression of a soluble form of Fgfr2b has been extensively used to identify the role of Fgfr2b ligands at different time points during development. Overexpression of soluble Fgfr2b (sFgfr2b) post-AER induction leads to irreversible loss of cellular β-catenin organization and decreased Fgf8 expression in the AER. A similar approach has been carried out pre-AER induction. The observed limb phenotype is similar to the severe proximal truncations observed in human babies exposed to thalidomide, which has been proposed to block the Fgf10-AER-Fgf8 feedback loop. Novel insights on the role of Fgf10 signaling in limb formation pre- and post-AER induction are summarized in this review and will be integrated with possible future investigations on the role of Fgf10 throughout limb development.
Collapse
Affiliation(s)
- Libo Jin
- Institute of Life Sciences, Wenzhou University-Wenzhou Medical University Collaborative Innovation Center for Biomedicine, Wenzhou, China
| | - Jin Wu
- Institute of Life Sciences, Wenzhou University-Wenzhou Medical University Collaborative Innovation Center for Biomedicine, Wenzhou, China
| | - Saverio Bellusci
- Institute of Life Sciences, Wenzhou University-Wenzhou Medical University Collaborative Innovation Center for Biomedicine, Wenzhou, China.,Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Justus-Liebig-University Giessen, Giessen, Germany
| | - Jin-San Zhang
- Institute of Life Sciences, Wenzhou University-Wenzhou Medical University Collaborative Innovation Center for Biomedicine, Wenzhou, China.,Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
34
|
Oberg KC. Classification of congenital upper limb anomalies: towards improved communication, diagnosis, and discovery. J Hand Surg Eur Vol 2019; 44:4-14. [PMID: 30269619 DOI: 10.1177/1753193418801280] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Recently the International Federation of Societies for Surgery of the Hand replaced the Swanson scheme for classifying congenital upper limb anomalies with the Oberg, Manske, Tonkin (OMT) classification. This review explores the reasons for this change after nearly 50 years of using the Swanson classification. In particular, it documents the state of our understanding regarding genetics and limb development at the time Swanson generated his classification. It also describes the continued progress in clinical genetics and developmental biology. Such progress drives the need to embrace and incorporate these changes within a new classification scheme; one that will improve communication, diagnosis, and support further discovery of the pathogenesis of congenital hand anomalies.
Collapse
Affiliation(s)
- Kerby C Oberg
- Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, CA, USA
| |
Collapse
|
35
|
Kirchgeorg L, Felker A, van Oostrom M, Chiavacci E, Mosimann C. Cre/lox-controlled spatiotemporal perturbation of FGF signaling in zebrafish. Dev Dyn 2018; 247:1146-1159. [PMID: 30194800 DOI: 10.1002/dvdy.24668] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/13/2018] [Accepted: 08/30/2018] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Spatiotemporal perturbation of signaling pathways in vivo remains challenging and requires precise transgenic control of signaling effectors. Fibroblast growth factor (FGF) signaling guides multiple developmental processes, including body axis formation and cell fate patterning. In zebrafish, mutants and chemical perturbations affecting FGF signaling have uncovered key developmental processes; however, these approaches cause embryo-wide perturbations, rendering assessment of cell-autonomous vs. non-autonomous requirements for FGF signaling in individual processes difficult. RESULTS Here, we created the novel transgenic line fgfr1-dn-cargo, encoding dominant-negative Fgfr1a with fluorescent tag under combined Cre/lox and heatshock control to perturb FGF signaling spatiotemporally. Validating efficient perturbation of FGF signaling by fgfr1-dn-cargo primed with ubiquitous CreERT2, we established that primed, heatshock-induced fgfr1-dn-cargo behaves similarly to pulsed treatment with the FGFR inhibitor SU5402. Priming fgfr1-dn-cargo with CreERT2 in the lateral plate mesoderm triggered selective cardiac and pectoral fin phenotypes without drastic impact on overall embryo patterning. Harnessing lateral plate mesoderm-specific FGF inhibition, we recapitulated the cell-autonomous and temporal requirement for FGF signaling in pectoral fin outgrowth, as previously inferred from pan-embryonic FGF inhibition. CONCLUSIONS As a paradigm for rapid Cre/lox-mediated signaling perturbations, our results establish fgfr1-dn-cargo as a genetic tool to define the spatiotemporal requirements for FGF signaling in zebrafish. Developmental Dynamics 247:1146-1159, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lucia Kirchgeorg
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | - Anastasia Felker
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | - Marek van Oostrom
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | - Elena Chiavacci
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | - Christian Mosimann
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| |
Collapse
|
36
|
Kumar S, Franz-Odendaal TA. Analysis of the FGFR spatiotemporal expression pattern within the chicken scleral ossicle system. Gene Expr Patterns 2018; 30:7-13. [DOI: 10.1016/j.gep.2018.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/20/2018] [Accepted: 08/21/2018] [Indexed: 12/26/2022]
|
37
|
Kawakami H, Johnson A, Fujita Y, Swearer A, Wada N, Kawakami Y. Characterization of cis-regulatory elements for Fgf10 expression in the chick embryo. Dev Dyn 2018; 247:1253-1263. [PMID: 30325084 DOI: 10.1002/dvdy.24682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 09/28/2018] [Accepted: 10/11/2018] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Fgf10 is expressed in various tissues and organs, such as the limb bud, heart, inner ear, and head mesenchyme. Previous studies identified Fgf10 enhancers for the inner ear and heart. However, Fgf10 enhancers for other tissues have not been identified. RESULTS By using primary culture chick embryo lateral plate mesoderm cells, we compared activities of deletion constructs of the Fgf10 promoter region, cloned into a promoter-less luciferase reporter vector. We identified a 0.34-kb proximal promoter that can activate luciferase expression. Then, we cloned 11 evolutionarily conserved sequences located within or outside of the Fgf10 gene into the 0.34-kb promoter-luciferase vector, and tested their activities in vitro using primary cultured cells. Two sequences showed the highest activities. By using the Tol2 system and electroporation into chick embryos, activities of the 0.34-kb promoter with and without the two sequences were tested in vivo. No activities were detected in limb buds. However, the 0.34-kb promoter exhibited activities in the dorsal midline of the brain, while Fgf10 is detected in broader region in the brain. The two noncoding sequences negatively acted on the 0.34-kb promoter in the brain. CONCLUSIONS The proximal 0.34-kb promoter has activities to drive expression in restricted areas of the brain. Developmental Dynamics 247:1253-1263, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hiroko Kawakami
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota.,Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota.,Developmental Biology Center, University of Minnesota, Minneapolis, Minnesota
| | - Austin Johnson
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota
| | - Yu Fujita
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba, Japan
| | - Avery Swearer
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota
| | - Naoyuki Wada
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba, Japan
| | - Yasuhiko Kawakami
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota.,Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota.,Developmental Biology Center, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
38
|
Watson BA, Feenstra JM, Van Arsdale JM, Rai-Bhatti KS, Kim DJH, Coggins AS, Mattison GL, Yoo S, Steinman ED, Pira CU, Gongol BR, Oberg KC. LHX2 Mediates the FGF-to-SHH Regulatory Loop during Limb Development. J Dev Biol 2018; 6:E13. [PMID: 29914077 PMCID: PMC6027391 DOI: 10.3390/jdb6020013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 12/26/2022] Open
Abstract
During limb development, fibroblast growth factors (Fgfs) govern proximal⁻distal outgrowth and patterning. FGFs also synchronize developmental patterning between the proximal⁻distal and anterior⁻posterior axes by maintaining Sonic hedgehog (Shh) expression in cells of the zone of polarizing activity (ZPA) in the distal posterior mesoderm. Shh, in turn, maintains Fgfs in the apical ectodermal ridge (AER) that caps the distal tip of the limb bud. Crosstalk between Fgf and Shh signaling is critical for patterned limb development, but the mechanisms underlying this feedback loop are not well-characterized. Implantation of Fgf beads in the proximal posterior limb bud can maintain SHH expression in the former ZPA domain (evident 3 h after application), while prolonged exposure (24 h) can induce SHH outside of this domain. Although temporally and spatially disparate, comparative analysis of transcriptome data from these different populations accentuated genes involved in SHH regulation. Comparative analysis identified 25 candidates common to both treatments, with eight linked to SHH expression or function. Furthermore, we demonstrated that LHX2, a LIM Homeodomain transcription factor, is an intermediate in the FGF-mediated regulation of SHH. Our data suggest that LHX2 acts as a competency factor maintaining distal posterior SHH expression subjacent to the AER.
Collapse
Affiliation(s)
- Billy A Watson
- Department of Pathology and Human Anatomy, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA.
- Division of Microbiology and Molecular Genetics, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA.
| | - Jennifer M Feenstra
- Department of Pathology and Human Anatomy, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA.
| | - Jonathan M Van Arsdale
- Department of Pathology and Human Anatomy, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA.
| | - Karndeep S Rai-Bhatti
- Department of Pathology and Human Anatomy, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA.
| | - Diana J H Kim
- Department of Pathology and Human Anatomy, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA.
| | - Ashley S Coggins
- Department of Pathology and Human Anatomy, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA.
| | - Gennaya L Mattison
- Department of Pathology and Human Anatomy, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA.
| | - Stephen Yoo
- Department of Pathology and Human Anatomy, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA.
| | - Eric D Steinman
- Department of Pathology and Human Anatomy, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA.
| | - Charmaine U Pira
- Department of Pathology and Human Anatomy, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA.
| | - Brendan R Gongol
- Department of Cardiopulmonary Sciences, School of Allied Health Professions, Loma Linda University, Loma Linda, CA 92354, USA.
| | - Kerby C Oberg
- Department of Pathology and Human Anatomy, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA.
| |
Collapse
|
39
|
Liu H, Fang Q, Wang M, Wang W, Zhang M, Zhang D, He Y, Zhang Y, Wang H, Otero M, Ma T, Chen J. FGF8 and FGFR3 are up-regulated in hypertrophic chondrocytes: Association with chondrocyte death in deep zone of Kashin-Beck disease. Biochem Biophys Res Commun 2018; 500:184-190. [DOI: 10.1016/j.bbrc.2018.04.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 04/03/2018] [Indexed: 11/26/2022]
|
40
|
Webb AE, Youngworth IA, Kaya M, Gitter CL, O'Hare EA, May B, Cheng HH, Delany ME. Narrowing the wingless-2 mutation to a 227 kb candidate region on chicken chromosome 12. Poult Sci 2018; 97:1872-1880. [PMID: 29562287 PMCID: PMC5951118 DOI: 10.3382/ps/pey073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 02/27/2018] [Indexed: 01/01/2023] Open
Abstract
Wingless-2 (wg-2) is an autosomal recessive mutation in chicken that results in an embryonic lethal condition. Affected individuals exhibit a multisystem syndrome characterized by absent wings, truncated legs, and craniofacial, kidney, and feather malformations. Previously, work focused on phenotype description, establishing the autosomal recessive pattern of Mendelian inheritance and placing the mutation on an inbred genetic background to create the congenic line UCD Wingless-2.331. The research described in this paper employed the complementary tools of breeding, genetics, and genomics to map the chromosomal location of the mutation and successively narrow the size of the region for analysis of the causative element. Specifically, the wg-2 mutation was initially mapped to a 7 Mb region of chromosome 12 using an Illumina 3 K SNP array. Subsequent SNP genotyping and exon sequencing combined with analysis from improved genome assemblies narrowed the region of interest to a maximum size of 227 kb. Within this region, 3 validated and 3 predicted candidate genes are found, and these are described. The wg-2 mutation is a valuable resource to contribute to an improved understanding of the developmental pathways involved in chicken and avian limb development as well as serving as a model for human development, as the resulting syndrome shares features with human congenital disorders.
Collapse
Affiliation(s)
- A E Webb
- Department of Animal Science, University of California, Davis 95616
| | - I A Youngworth
- Department of Animal Science, University of California, Davis 95616
| | - M Kaya
- USDA-ARS, Avian Disease and Oncology Laboratory, East Lansing, MI 48823
| | - C L Gitter
- Department of Animal Science, University of California, Davis 95616
| | - E A O'Hare
- Department of Animal Science, University of California, Davis 95616
| | - B May
- Department of Animal Science, University of California, Davis 95616
| | - H H Cheng
- USDA-ARS, Avian Disease and Oncology Laboratory, East Lansing, MI 48823
| | - M E Delany
- Department of Animal Science, University of California, Davis 95616
| |
Collapse
|
41
|
The Role of Fibroblast Growth Factors in Tooth Development and Incisor Renewal. Stem Cells Int 2018; 2018:7549160. [PMID: 29713351 PMCID: PMC5866892 DOI: 10.1155/2018/7549160] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 02/04/2018] [Indexed: 02/08/2023] Open
Abstract
The mineralized tissue of the tooth is composed of enamel, dentin, cementum, and alveolar bone; enamel is a calcified tissue with no living cells that originates from oral ectoderm, while the three other tissues derive from the cranial neural crest. The fibroblast growth factors (FGFs) are critical during the tooth development. Accumulating evidence has shown that the formation of dental tissues, that is, enamel, dentin, and supporting alveolar bone, as well as the development and homeostasis of the stem cells in the continuously growing mouse incisor is mediated by multiple FGF family members. This review discusses the role of FGF signaling in these mineralized tissues, trying to separate its different functions and highlighting the crosstalk between FGFs and other signaling pathways.
Collapse
|
42
|
Jin JZ, Lei Z, Lan ZJ, Mukhopadhyay P, Ding J. Inactivation of Fgfr2 gene in mouse secondary palate mesenchymal cells leads to cleft palate. Reprod Toxicol 2018. [PMID: 29526646 DOI: 10.1016/j.reprotox.2018.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Numerous studies have been conducted to understand the molecular mechanisms controlling mammalian secondary palate development such as growth, reorientation and fusion. However, little is known about the signaling factors regulating palate initiation. Mouse fibroblast growth factor (FGF) receptor 2 gene (Fgfr2) is expressed on E11.5 in the palate outgrowth within the maxillary process, in a region that is responsible for palate cell specification and shelf initiation. Fgfr2 continues to express in palate on E12.5 and E13.5 in both epithelial and mesenchymal cells, and inactivation of Fgfr2 expression in mesenchymal cells using floxed Fgfr2 allele and Osr2-Cre leads to cleft palate at various stages including reorientation, horizontal growth and fusion. Notably, some mutant embryos displayed no sign of palate shelf formation suggesting that FGF receptor 2 mediated FGF signaling may play an important role in palate initiation.
Collapse
Affiliation(s)
- Jiu-Zhen Jin
- Department of Surgical and Hospital Dentistry, University of Louisville School of Dentistry, Louisville, KY, 40202, USA
| | - Zhenmin Lei
- Department of Obstetrics/Gynecology and Women's Health, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Zi-Jian Lan
- Center for Animal Nutrigenomics & Applied Animal Nutrition, Alltech Inc., 3031 Catnip Hill Road, Nicholasville, KY, 40356, USA
| | - Partha Mukhopadhyay
- Department of Surgical and Hospital Dentistry, University of Louisville School of Dentistry, Louisville, KY, 40202, USA
| | - Jixiang Ding
- Department of Surgical and Hospital Dentistry, University of Louisville School of Dentistry, Louisville, KY, 40202, USA.
| |
Collapse
|
43
|
Peluso S, Douglas A, Hill A, De Angelis C, Moore BL, Grimes G, Petrovich G, Essafi A, Hill RE. Fibroblast growth factors (FGFs) prime the limb specific Shh enhancer for chromatin changes that balance histone acetylation mediated by E26 transformation-specific (ETS) factors. eLife 2017; 6:28590. [PMID: 28949289 PMCID: PMC5659820 DOI: 10.7554/elife.28590] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 09/25/2017] [Indexed: 01/12/2023] Open
Abstract
Sonic hedgehog (Shh) expression in the limb bud organizing centre called the zone of polarizing activity is regulated by the ZRS enhancer. Here, we examine in mouse and in a mouse limb-derived cell line the dynamic events that activate and restrict the spatial activity of the ZRS. Fibroblast growth factor (FGF) signalling in the distal limb primes the ZRS at early embryonic stages maintaining a poised, but inactive state broadly across the distal limb mesenchyme. The E26 transformation-specific transcription factor, ETV4, which is induced by FGF signalling and acts as a repressor of ZRS activity, interacts with the histone deacetylase HDAC2 and ensures that the poised ZRS remains transcriptionally inactive. Conversely, GABPα, an activator of the ZRS, recruits p300, which is associated with histone acetylation (H3K27ac) indicative of an active enhancer. Hence, the primed but inactive state of the ZRS is induced by FGF signalling and in combination with balanced histone modification events establishes the restricted, active enhancer responsible for patterning the limb bud during development. As an animal embryo develops, specific genes need to be switched on and off at the right time and place to ensure that the embryo’s tissues and organs form properly. Proteins called transcription factors control the activity of individual genes by binding to regions of DNA known as enhancers. Changes in the way DNA is packaged inside cells can affect the ability of transcription factors to access the enhancers, and therefore also influence when particular genes are switched on or off. Sonic hedgehog (or Shh for short) is a gene that helps to control various aspects of development including the formation of the limbs and brain. The limb forms from a structure in the embryo referred to as the limb bud. An enhancer called ZRS regulates the precise position within the limb bud where the Shh gene is active in a region designated as the “zone of polarizing activity”. Yet, it was not known how the enhancer is controlled to ensure this pattern is achieved. Peluso et al. investigated the events that lead to ZRS becoming active in mice embryos. The experiments show that the ZRS enhancer exists in three different states in cells across the limb bud: poised, active and inactive. The enhancer is poised in a broad region of the limb bud in cells that are potentially able to switch on the Shh gene. Proteins called fibroblast growth factors drive the enhancer to enter this poised state by altering the way the DNA containing the enhancer is packaged in the cell. Specific transcription factors are able to bind to the poised enhancer and it is the balance between these different transcription factors that activates the enhancer in the zone of polarizing activity. Furthermore in the region of the limb bud where the fibroblast growth factors are not present the ZRS is inactive. These findings show that fibroblast growth factors, in combination with other changes to the ZRS enhancer, restrict the area in which the enhancer is active to a particular region of the limb bud. Differences in enhancer elements are known to underlie a range of inherited characteristics and may influence whether an individual develops many common diseases. In the future, investigating how cells control the activity of enhancers may provide clues to identifying new targets for drugs to treat some of these diseases.
Collapse
Affiliation(s)
- Silvia Peluso
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Adam Douglas
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Alison Hill
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Carlo De Angelis
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Benjamin L Moore
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Graeme Grimes
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Giulia Petrovich
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Abdelkader Essafi
- School of Cellular and Molecular Medicine, Faculty of Biomedical Sciences, University of Bristol, Bristol, United Kingdom
| | - Robert E Hill
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
44
|
Charoenlarp P, Rajendran AK, Iseki S. Role of fibroblast growth factors in bone regeneration. Inflamm Regen 2017; 37:10. [PMID: 29259709 PMCID: PMC5725923 DOI: 10.1186/s41232-017-0043-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 04/25/2017] [Indexed: 11/17/2022] Open
Abstract
Bone is a metabolically active organ that undergoes continuous remodeling throughout life. However, many complex skeletal defects such as large traumatic bone defects or extensive bone loss after tumor resection may cause failure of bone healing. Effective therapies for these conditions typically employ combinations of cells, scaffolds, and bioactive factors. In this review, we pay attention to one of the three factors required for regeneration of bone, bioactive factors, especially the fibroblast growth factor (FGF) family. This family is composed of 22 members and associated with various biological functions including skeletal formation. Based on the phenotypes of genetically modified mice and spatio-temporal expression levels during bone fracture healing, FGF2, FGF9, and FGF18 are regarded as possible candidates useful for bone regeneration. The role of these candidate FGFs in bone regeneration is also discussed in this review.
Collapse
Affiliation(s)
- Pornkawee Charoenlarp
- Section of Molecular Craniofacial Embryology, Tokyo Medical and Dental University Graduate School of Medical and Dental Sciences, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549 Japan
| | - Arun Kumar Rajendran
- Section of Molecular Craniofacial Embryology, Tokyo Medical and Dental University Graduate School of Medical and Dental Sciences, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549 Japan
| | - Sachiko Iseki
- Section of Molecular Craniofacial Embryology, Tokyo Medical and Dental University Graduate School of Medical and Dental Sciences, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549 Japan
| |
Collapse
|
45
|
Matsubara H, Saito D, Abe G, Yokoyama H, Suzuki T, Tamura K. Upstream regulation for initiation of restricted Shh expression in the chick limb bud. Dev Dyn 2017; 246:417-430. [PMID: 28205287 DOI: 10.1002/dvdy.24493] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 02/06/2017] [Accepted: 02/10/2017] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND The organizing center, which serves as a morphogen source, has crucial functions in morphogenesis in animal development. The center is necessarily located in a certain restricted area in the morphogenetic field, and there are several ways in which an organizing center can be restricted. The organizing center for limb morphogenesis, the ZPA (zone of polarizing activity), specifically expresses the Shh gene and is restricted to the posterior region of the developing limb bud. RESULTS The pre-pattern along the limb anteroposterior axis, provided by anterior Gli3 expression and posterior Hand2 expression, seems insufficient for the initiation of Shh expression restricted to a narrow, small spot in the posterior limb field. Comparison of the spatiotemporal patterns of gene expression between Shh and some candidate genes (Fgf8, Hoxd10, Hoxd11, Tbx2, and Alx4) upstream of Shh expression suggested that a combination of these genes' expression provides the restricted initiation of Shh expression. CONCLUSIONS Taken together with results of functional assays, we propose a model in which positive and negative transcriptional regulatory networks accumulate their functions in the intersection area of their expression regions to provide a restricted spot for the ZPA, the source of morphogen, Shh. Developmental Dynamics 246:417-430, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Haruka Matsubara
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama Aoba-ku, Sendai, 980-8578, Japan
| | - Daisuke Saito
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama Aoba-ku, Sendai, 980-8578, Japan.,Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Aobayama Aoba-ku, Sendai, 980-8578, Japan
| | - Gembu Abe
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama Aoba-ku, Sendai, 980-8578, Japan
| | - Hitoshi Yokoyama
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, 036-8561, Japan
| | - Takayuki Suzuki
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-Cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Koji Tamura
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama Aoba-ku, Sendai, 980-8578, Japan
| |
Collapse
|
46
|
Saiz-Lopez P, Chinnaiya K, Towers M, Ros MA. Intrinsic properties of limb bud cells can be differentially reset. Development 2017; 144:479-486. [PMID: 28087638 PMCID: PMC5341798 DOI: 10.1242/dev.137661] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 12/15/2016] [Indexed: 02/04/2023]
Abstract
An intrinsic timing mechanism specifies the positional values of the zeugopod (i.e. radius/ulna) and then autopod (i.e. wrist/digits) segments during limb development. Here, we have addressed whether this timing mechanism ensures that patterning events occur only once by grafting GFP-expressing autopod progenitor cells to the earlier host signalling environment of zeugopod progenitor cells. We show by detecting Hoxa13 expression that early and late autopod progenitors fated for the wrist and phalanges, respectively, both contribute to the entire host autopod, indicating that the autopod positional value is irreversibly determined. We provide evidence that Hoxa13 provides an autopod-specific positional value that correctly allocates cells into the autopod, most likely through the control of cell-surface properties as shown by cell-cell sorting analyses. However, we demonstrate that only the earlier autopod cells can adopt the host proliferation rate to permit normal morphogenesis. Therefore, our findings reveal that the ability of embryonic cells to differentially reset their intrinsic behaviours confers robustness to limb morphogenesis. We speculate that this plasticity could be maintained beyond embryogenesis in limbs with regenerative capacity.
Collapse
Affiliation(s)
- Patricia Saiz-Lopez
- Departamento de Señalización Celular y Molecular, Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (CSIC-Universidad de Cantabria), Santander 39011, Spain
| | - Kavitha Chinnaiya
- Bateson Centre, Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Matthew Towers
- Bateson Centre, Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Maria A Ros
- Departamento de Señalización Celular y Molecular, Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (CSIC-Universidad de Cantabria), Santander 39011, Spain
- Departamento de Anatomía y Biología Celular, Facultad de Medicina, Universidad de Cantabria, Santander 39011, Spain
| |
Collapse
|
47
|
Constantin L. The Role of MicroRNAs in Cerebellar Development and Autism Spectrum Disorder During Embryogenesis. Mol Neurobiol 2016; 54:6944-6959. [PMID: 27774573 DOI: 10.1007/s12035-016-0220-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/12/2016] [Indexed: 02/03/2023]
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNA molecules with wide-ranging and subtle effects on protein production. Their activity during the development of the cerebellum provides a valuable exemplar of how non-coding molecules may assist the development and function of the central nervous system and drive neurodevelopmental disorders. Three distinct aspects of miRNA contribution to early cerebellar development will here be reviewed. Aspects are the establishment of the cerebellar anlage, the generation and maturation of at least two principal cell types of the developing cerebellar microcircuit, and the etiology and early progression of autism spectrum disorder. It will be argued here that the autism spectrum is an adept model to explore miRNA impact on the cognitive and affective processes that descend from the developing cerebellum.
Collapse
Affiliation(s)
- Lena Constantin
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia. .,Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
48
|
Figueiredo M, Silva JC, Santos AS, Proa V, Alcobia I, Zilhão R, Cidadão A, Neves H. Notch and Hedgehog in the thymus/parathyroid common primordium: Crosstalk in organ formation. Dev Biol 2016; 418:268-82. [DOI: 10.1016/j.ydbio.2016.08.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 08/12/2016] [Accepted: 08/13/2016] [Indexed: 12/30/2022]
|
49
|
Dowling A, Doroba C, Maier JA, Cohen L, VandeBerg J, Sears KE. Cellular and molecular drivers of differential organ growth: insights from the limbs of Monodelphis domestica. Dev Genes Evol 2016; 226:235-43. [PMID: 27194412 DOI: 10.1007/s00427-016-0549-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 05/03/2016] [Indexed: 10/21/2022]
Abstract
A fundamental question in biology is "how is growth differentially regulated during development to produce organs of particular sizes?" We used a new model system for the study of differential organ growth, the limbs of the opossum (Monodelphis domestica), to investigate the cellular and molecular basis of differential organ growth in mammals. Opossum forelimbs grow much faster than hindlimbs, making opossum limbs an exceptional system with which to study differential growth. We first used the great differences in opossum forelimb and hindlimb growth to identify cellular processes and molecular signals that underlie differential limb growth. We then used organ culture and pharmacological addition of FGF ligands and inhibitors to test the role of the Fgf/Mitogen-activated protein kinases (MAPK) signaling pathway in driving these cellular processes. We found that molecular signals from within the limb drive differences in cell proliferation that contribute to the differential growth of the forelimb and hindlimbs of opossums. We also found that alterations in the Fgf/MAPK pathway can generate differences in cell proliferation that mirror those observed between wild-type forelimb and hindlimbs of opossums and that manipulation of Fgf/MAPK signaling affects downstream focal adhesion-extracellular matrix (FA-ECM) and Wnt signaling in opossum limbs. Taken together, these findings suggest that evolutionary changes in the Fgf/MAPK pathway could help drive the observed differences in cell behaviors and growth in opossum forelimb and hindlimbs.
Collapse
Affiliation(s)
- Anna Dowling
- School of Integrative Biology, University of Illinois, 505 S Goodwin Avenue, Urbana, IL, 61801, USA
| | - Carolyn Doroba
- School of Integrative Biology, University of Illinois, 505 S Goodwin Avenue, Urbana, IL, 61801, USA
| | - Jennifer A Maier
- School of Integrative Biology, University of Illinois, 505 S Goodwin Avenue, Urbana, IL, 61801, USA
| | - Lorna Cohen
- School of Integrative Biology, University of Illinois, 505 S Goodwin Avenue, Urbana, IL, 61801, USA
| | - John VandeBerg
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Karen E Sears
- School of Integrative Biology, University of Illinois, 505 S Goodwin Avenue, Urbana, IL, 61801, USA.
- Institute for Genomic Biology, University of Illinois, 1206 W Gregory Drive, Urbana, IL, 61801, USA.
| |
Collapse
|
50
|
Immunolocalization of FGF8/10 in the Apical Epidermal Peg and Blastema of the regenerating tail in lizard marks this apical growing area. Ann Anat 2016; 206:14-20. [PMID: 27113329 DOI: 10.1016/j.aanat.2016.03.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 03/28/2016] [Accepted: 03/30/2016] [Indexed: 11/20/2022]
Abstract
Previous studies have shown that Fibroblast Growth Factors are present in the regenerating tail tissues of lizards where they may stimulate the process of regeneration. The present study is focused on the immunolocalization of FGF8 and FGF10 in the regenerating lizard tail, two signaling proteins of the apical epidermal cup/ridge and mesenchymal blastema sustaining tail and limb regeneration in amphibians and the development of the tail and limbs in vertebrate embryos. Main immunoreactive protein bands at 15-18kDa for FGF8/10 are detected in the regenerating epidermis and only a band at 30 or 35kDa in the underlying connective tissues. FGF8 appears particularly localized in cells and nuclei of the apical epidermal peg and of the ependymal ampulla present at the tip of the regenerating tail. FGF10 is also immuno-localized in the apical epidermis but is particularly intensely localized in the mesenchyme of the apical blastema. In accordance with previous studies, the present observations supports the hypothesis that the apical epidermal peg and the ependymal tube with the few regenerated neurons present within it, release FGF8/10 that may contribute to maintenance of cell proliferation in the apical front of the mesenchyme for the growth of the regenerating tail.
Collapse
|