1
|
Smani S, DuBois J, Zhao K, Sutherland R, Rahman SN, Humphrey P, Hesse D, Tan WS, Martin D, Lokeshwar SD, Ghali F. Advancements in the Diagnosis, Treatment, and Risk Stratification of Non-Muscle Invasive Bladder Cancer. Curr Oncol Rep 2025; 27:236-246. [PMID: 39976835 DOI: 10.1007/s11912-025-01645-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2025] [Indexed: 04/01/2025]
Abstract
PURPOSE OF REVIEW This review examines the evolving landscape of non-muscle invasive bladder cancer (NMIBC) management, focusing on risk stratification, novel therapeutic strategies, and the integration of biomarkers into clinical care. RECENT FINDINGS Emerging genomic markers such as FGFR3 and TERT promoter mutations show promise for diagnosis and personalized treatment. Advances in immunotherapy, including the use of pembrolizumab and nadofaragene firadenovec, offer options for BCG-unresponsive NMIBC, though challenges like cost and adverse effects remain. Current guidelines emphasize stratified care based on risk, balancing treatment intensity with recurrence and progression risks. While transurethral resection with intravesical therapy remains the standard for most NMIBC, early radical cystectomy is pivotal for select high-risk cases. Future directions highlight the need for biomarker-driven models to refine treatment paradigms, reduce overtreatment, and improve long-term outcomes. Continued clinical trials are essential to validate these approaches and address unmet needs in NMIBC care.
Collapse
Affiliation(s)
- Shayan Smani
- Department of Urology, Yale University School of Medicine, 789 Howard Avenue FMP 300, New Haven, CT, 06520, USA
| | - Julien DuBois
- Department of Urology, Yale University School of Medicine, 789 Howard Avenue FMP 300, New Haven, CT, 06520, USA
| | - Kai Zhao
- Department of Urology, Yale University School of Medicine, 789 Howard Avenue FMP 300, New Haven, CT, 06520, USA
| | - Ryan Sutherland
- Department of Urology, Yale University School of Medicine, 789 Howard Avenue FMP 300, New Haven, CT, 06520, USA
| | - Syed N Rahman
- Department of Urology, Yale University School of Medicine, 789 Howard Avenue FMP 300, New Haven, CT, 06520, USA
| | - Peter Humphrey
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - David Hesse
- Department of Urology, Yale University School of Medicine, 789 Howard Avenue FMP 300, New Haven, CT, 06520, USA
| | - Wei Shen Tan
- Department of Urology, Yale University School of Medicine, 789 Howard Avenue FMP 300, New Haven, CT, 06520, USA
| | - Darryl Martin
- Department of Urology, Yale University School of Medicine, 789 Howard Avenue FMP 300, New Haven, CT, 06520, USA
| | - Soum D Lokeshwar
- Department of Urology, Yale University School of Medicine, 789 Howard Avenue FMP 300, New Haven, CT, 06520, USA
| | - Fady Ghali
- Department of Urology, Yale University School of Medicine, 789 Howard Avenue FMP 300, New Haven, CT, 06520, USA.
| |
Collapse
|
2
|
Chen J, He D, Yuan C, Li N, Shi B, Niu C, Yang J, Zheng L, Che L, Xu R. Fibroblast growth factor receptor 3 mutation promotes HSPB6-mediated cuproptosis in hypochondroplasia by impairing chondrocyte autophagy. J Orthop Translat 2025; 51:68-81. [PMID: 39991457 PMCID: PMC11847030 DOI: 10.1016/j.jot.2025.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 12/15/2024] [Accepted: 01/20/2025] [Indexed: 02/25/2025] Open
Abstract
Background Hypochondroplasia (HCH) is a prevalent form of dwarfism linked to mutations in the fibroblast growth factor receptor 3 (FGFR3) gene, causing missense alterations. We previous report was the first to identify FGFR3(G382D) gain-of-function variants with a positive family history as a novel cause of HCH. However, the precise contribution of FGFR3 to the pathogenesis of HCH remains elusive. Methods We generated an Fgfr3 (V376D) mutation mouse model using CRISPR/Cas9 technology and performed proteomic analyses to investigate the molecular mechanisms and potential therapeutic targets of HCH. Radiography and micro-computed tomography were employed to assess the bone-specific phenotype in Fgfr3 (V376D)mutant mice. Immunofluorescence, western blotting, and flow cytometry were used to systematically investigate the underlying mechanisms and therapeutic targets. Results We observed that Fgfr3 (V376D) mutant mice exhibit a bone-specific phenotype, with symmetrically short limb bones, partially resembling the dwarfism phenotype of patients with HCH. We demonstrated that the mutant-activated FGFR3 promotes heat shock protein B 6 (HSPB6)-mediated cuproptosis by inhibiting chondrocyte autophagy both in vivo and in vitro. Additionally, we revealed that FGFR3 (G382D) mutation leads to enhanced ERK signaling, increased Drp1-mediated mitochondrial fission, and upregulated cuproptosis-related protein ferredoxin 1 (FDX1). Furthermore, genetic and pharmacological inhibition of the HSPB6-ERK-Drp1-FDX1 pathway partially alleviate the phenotypes of FGFR3 mutants. Conclusions Our study provides the first evidence for the pathogenicity of a gain-of-function mutation in FGFR3 (G382D) using mouse and cell models, and it underscores the potential of targeting the HSPB6-ERK-Drp1-FDX1 axis as a novel therapeutic approach for HCH. Translational potential of this article We first demonstrate that impaired autophagy and enhanced cuproptosis are pivotal in the pathogenesis of HCH. This study not only enlarged the therapeutic potential of targeting cuproptosis for treating FGFR3 mutation-related HCH but also provided a novel perspective on the role of the HSPB6-ERK-Drp1-FDX1 signaling pathway in the development of HCH. Consequently, this article provides valuable insights into the mechanisms and treatment strategies for FGFR3 mutation-related chondrodysplasia.
Collapse
Affiliation(s)
- Jing Chen
- Department of Child Health, Department of Pediatrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Dan He
- Department of Child Health, Department of Pediatrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Chengrun Yuan
- Department of Child Health, Department of Pediatrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Na Li
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Baohong Shi
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Conway Niu
- Department of General Paediatrics, Perth Children's Hospital, Nedlands, Western Australia, Australia
| | - Jiangfei Yang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Liangkai Zheng
- Department of Pathology, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Lin Che
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, China
| | - Ren Xu
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| |
Collapse
|
3
|
Jama MA, Reading NS, Fredrickson E, Shaaban S, Ji Y. A Single Multiplex PCR and Single-Nucleotide Extension Assay for the Detection of Common Thanatophoric Dysplasia I and II Mutations. J Mol Diagn 2024; 26:1102-1108. [PMID: 39357670 DOI: 10.1016/j.jmoldx.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 08/14/2024] [Accepted: 08/30/2024] [Indexed: 10/04/2024] Open
Abstract
Mutation analysis provides confirmation of a clinical and radiological diagnosis of thanatophoric dysplasia types I and II (TD I and II). We developed a single multiplexed PCR and a single-nucleotide extension (SNE) assay to identify 14 common mutations causing 99% of TD I and TD II, including the challenging three adjacent mutations in the stop codon of exon 18 of the FGFR3 gene. The assay design also provides a solution for resolving SNE PCR product sizing using performance optimized polymer-7. The assay was validated using 37 previously characterized, de-identified patient samples representing the nine wild-types and 10 of 14 mutant genotypes. Four artificial templates were synthesized to mimic four TD I mutations not represented in the available patient samples. Fragment size and fluorophore channel for each SNE product from 10 samples and the four artificial templates were used to define bins and panels for analysis with GeneMarker version 3.0 and GeneMapper version 6.0 software. Allele calls (bin placement within the panels) were verified using the remaining 27 previously characterized samples. This TD I and II PCR and SNE assay is a robust multiplexed assay, streamlined, to identify 14 mutations in one single reaction. This assay has a shorter turnaround time in comparison to traditional Sanger or next-generation sequencing.
Collapse
Affiliation(s)
- Mohamed A Jama
- ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, Utah.
| | - N Scott Reading
- ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, Utah; Department of Pathology, University of Utah, Salt Lake City, Utah.
| | - Eric Fredrickson
- ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, Utah
| | - Sherin Shaaban
- ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, Utah; Department of Pathology, University of Utah, Salt Lake City, Utah; ARUP Laboratories, Salt Lake City, Utah
| | - Yuan Ji
- ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, Utah; Department of Pathology, University of Utah, Salt Lake City, Utah; ARUP Laboratories, Salt Lake City, Utah
| |
Collapse
|
4
|
Hasan S, Naseer S, Zamzam M, Mohilldean H, Van Wagoner C, Hasan A, Saleh ES, Uhley V, Kamel-ElSayed S. Nutrient and Hormonal Effects on Long Bone Growth in Healthy and Obese Children: A Literature Review. CHILDREN (BASEL, SWITZERLAND) 2024; 11:817. [PMID: 39062266 PMCID: PMC11276385 DOI: 10.3390/children11070817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024]
Abstract
Longitudinal bone growth is mediated through several mechanisms including macro- and micronutrients, and endocrine and paracrine hormones. These mechanisms can be affected by childhood obesity as excess adiposity may affect signaling pathways, place undue stress on the body, and affect normal physiology. This review describes the physiology of the epiphyseal growth plate, its regulation under healthy weight and obesity parameters, and bone pathology following obesity. A literature review was performed utilizing PubMed, PMC, NIH, and the Cochrane Database of Systematic Reviews pertinent to hormonal and nutritional effects on bone development, child obesity, and pathologic bone development related to weight. The review indicates a complex network of nutrients, hormones, and multi-system interactions mediates long bone growth. As growth of long bones occurs during childhood and the pubertal growth spurt, pediatric bones require adequate levels of minerals, vitamins, amino acids, and a base caloric supply for energy. Recommendations should focus on a nutrient-dense dietary approach rather than restrictive caloric diets to maintain optimal health. In conclusion, childhood obesity has profound multifaceted effects on the developing musculoskeletal system, ultimately causing poor nutritional status during development. Weight loss, under medical supervision, with proper nutritional guidelines, can help counteract the ill effects of childhood obesity.
Collapse
Affiliation(s)
- Sazid Hasan
- School of Medicine, Oakland University William Beaumont, Rochester, MI 48309, USA
| | - Shahrukh Naseer
- School of Medicine, Oakland University William Beaumont, Rochester, MI 48309, USA
| | - Mazen Zamzam
- School of Medicine, Oakland University William Beaumont, Rochester, MI 48309, USA
| | - Hashem Mohilldean
- School of Medicine, Oakland University William Beaumont, Rochester, MI 48309, USA
| | - Colin Van Wagoner
- School of Medicine, Oakland University William Beaumont, Rochester, MI 48309, USA
| | - Ahmad Hasan
- Department of Orthopedic Surgery, Detroit Medical Center, Detroit, MI 48201, USA
| | - Ehab S. Saleh
- School of Medicine, Oakland University William Beaumont, Rochester, MI 48309, USA
- Department of Orthopedic Surgery, Beaumont Hospital, Royal Oak, MI 48073, USA
| | - Virginia Uhley
- School of Medicine, Oakland University William Beaumont, Rochester, MI 48309, USA
| | - Suzan Kamel-ElSayed
- School of Medicine, Oakland University William Beaumont, Rochester, MI 48309, USA
| |
Collapse
|
5
|
Brizini M, Drimes T, Bourne C, Streilein J, Drapeau A, Wrogemann J, Archer LA, Del Bigio M, Vanan MI. Case report: Slipped capital femoral epiphysis: a rare adverse event associated with FGFR tyrosine kinase inhibitor therapy in a child. Front Oncol 2024; 14:1399356. [PMID: 38854731 PMCID: PMC11156995 DOI: 10.3389/fonc.2024.1399356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/07/2024] [Indexed: 06/11/2024] Open
Abstract
We report a case of slipped capital femoral epiphysis (SCFE), an on target skeletal toxicity of a pan-FGFR TKI inhibitor, erdafitinib. A 13-year-old boy was diagnosed to have an optic pathway/hypothalamic glioma with signs of increased intracranial pressure and obstructive hydrocephalus requiring placement of ventriculo-peritoneal (VP) shunt. Sequencing of the tumor showed FGFR1-tyrosine kinase domain internal tandem duplication (FGFR1-KD-ITD). He developed hypothalamic obesity with rapid weight gain and BMI >30. At 12 weeks of treatment with erdafitinib, he developed persistent knee pain. X-ray of the right hip showed SCFE. Erdafitinib was discontinued, and he underwent surgical pinning of the right hip. MRI at discontinuation of erdafitinib showed a 30% decrease in the size of the tumor, which has remained stable at 6 months follow-up. Our experience and literature review suggest that pediatric patients who are treated with pan-FGFR TKIs should be regularly monitored for skeletal side effects.
Collapse
Affiliation(s)
- Meziane Brizini
- Division of Pediatric Hematology-Oncology, Cancer Care Manitoba, Winnipeg, MB, Canada
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada
| | - Tina Drimes
- Division of Nursing, Cancer Care Manitoba, Winnipeg, MB, Canada
| | | | | | - Annie Drapeau
- Section of Neuro-Surgery, University of Manitoba, Winnipeg, MB, Canada
| | - Jens Wrogemann
- Department of Radiology, University of Manitoba, Winnipeg, MB, Canada
| | - Lori Anne Archer
- Section of Orthopedic Surgery, University of Manitoba, Winnipeg, MB, Canada
| | - Marc Del Bigio
- Department of Pathology, University of Manitoba, Winnipeg, MB, Canada
| | - Magimairajan Issai Vanan
- Division of Pediatric Hematology-Oncology, Cancer Care Manitoba, Winnipeg, MB, Canada
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada
- Paul Albrechtsen Research Institute, Cancer Care Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
6
|
Sulcanese L, Prencipe G, Canciello A, Cerveró-Varona A, Perugini M, Mauro A, Russo V, Barboni B. Stem-Cell-Driven Chondrogenesis: Perspectives on Amnion-Derived Cells. Cells 2024; 13:744. [PMID: 38727280 PMCID: PMC11083072 DOI: 10.3390/cells13090744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Regenerative medicine harnesses stem cells' capacity to restore damaged tissues and organs. In vitro methods employing specific bioactive molecules, such as growth factors, bio-inductive scaffolds, 3D cultures, co-cultures, and mechanical stimuli, steer stem cells toward the desired differentiation pathways, mimicking their natural development. Chondrogenesis presents a challenge for regenerative medicine. This intricate process involves precise modulation of chondro-related transcription factors and pathways, critical for generating cartilage. Cartilage damage disrupts this process, impeding proper tissue healing due to its unique mechanical and anatomical characteristics. Consequently, the resultant tissue often forms fibrocartilage, which lacks adequate mechanical properties, posing a significant hurdle for effective regeneration. This review comprehensively explores studies showcasing the potential of amniotic mesenchymal stem cells (AMSCs) and amniotic epithelial cells (AECs) in chondrogenic differentiation. These cells exhibit innate characteristics that position them as promising candidates for regenerative medicine. Their capacity to differentiate toward chondrocytes offers a pathway for developing effective regenerative protocols. Understanding and leveraging the innate properties of AMSCs and AECs hold promise in addressing the challenges associated with cartilage repair, potentially offering superior outcomes in tissue regeneration.
Collapse
Affiliation(s)
- Ludovica Sulcanese
- Unit of Basic and Applied Sciences, Department of Biosciences and Agri-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (G.P.); (A.C.); (A.C.-V.); (A.M.); (V.R.); (B.B.)
| | - Giuseppe Prencipe
- Unit of Basic and Applied Sciences, Department of Biosciences and Agri-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (G.P.); (A.C.); (A.C.-V.); (A.M.); (V.R.); (B.B.)
| | - Angelo Canciello
- Unit of Basic and Applied Sciences, Department of Biosciences and Agri-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (G.P.); (A.C.); (A.C.-V.); (A.M.); (V.R.); (B.B.)
| | - Adrián Cerveró-Varona
- Unit of Basic and Applied Sciences, Department of Biosciences and Agri-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (G.P.); (A.C.); (A.C.-V.); (A.M.); (V.R.); (B.B.)
| | - Monia Perugini
- Department of Bioscience and Technology for Food, Agriculture, and Environment, University of Teramo, 64100 Teramo, Italy;
| | - Annunziata Mauro
- Unit of Basic and Applied Sciences, Department of Biosciences and Agri-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (G.P.); (A.C.); (A.C.-V.); (A.M.); (V.R.); (B.B.)
| | - Valentina Russo
- Unit of Basic and Applied Sciences, Department of Biosciences and Agri-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (G.P.); (A.C.); (A.C.-V.); (A.M.); (V.R.); (B.B.)
| | - Barbara Barboni
- Unit of Basic and Applied Sciences, Department of Biosciences and Agri-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (G.P.); (A.C.); (A.C.-V.); (A.M.); (V.R.); (B.B.)
| |
Collapse
|
7
|
Yoshida T, Delaney A. Impact of Childhood Cancer on Growth. J Clin Endocrinol Metab 2024; 109:e892-e900. [PMID: 37539847 DOI: 10.1210/clinem/dgad457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/27/2023] [Accepted: 08/02/2023] [Indexed: 08/05/2023]
Abstract
Along with improvements in cancer treatment over time, the number of childhood cancer survivors has been growing. Survivors are at risk for serious medical complications, and growth impairment is among the most common. There are multiple factors that may cause impaired growth among survivors. In this article, we review the impact of cancer on growth in children and adolescents. We first provide an overview of growth disturbance among childhood cancer patients and survivors due to nonhormonal causes, including a recent understanding of the effect of targeted cancer therapies (eg, tyrosine kinase inhibitors and immune checkpoint inhibitors) on growth. Then we describe the hormonal causes of growth impairment among survivors, focusing on growth hormone deficiency, including the prevalence, risk factors, and treatment. Lastly, we briefly summarize overgrowth and tall stature in childhood cancer. It is critical to assess the linear growth of children and adolescents, especially in cancer survivors who are at risk for growth disturbance, since growth is an important measure of their health.
Collapse
Affiliation(s)
- Tomoko Yoshida
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Angela Delaney
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Division of Endocrinology, Department of Pediatric Medicine, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
8
|
Lin YW, Kao HJ, Chen WT, Kao CF, Wu JY, Chen YT, Lee YC. Cell-based screen identifies porphyrins as FGFR3 activity inhibitors with therapeutic potential for achondroplasia and cancer. JCI Insight 2023; 8:e171257. [PMID: 37824212 PMCID: PMC10721322 DOI: 10.1172/jci.insight.171257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/10/2023] [Indexed: 10/14/2023] Open
Abstract
Overactive fibroblast growth factor receptor 3 (FGFR3) signaling drives pathogenesis in a variety of cancers and a spectrum of short-limbed bone dysplasias, including the most common form of human dwarfism, achondroplasia (ACH). Targeting FGFR3 activity holds great promise as a therapeutic approach for treatment of these diseases. Here, we established a receptor/adaptor translocation assay system that can specifically monitor FGFR3 activation, and we applied it to identify FGFR3 modulators from complex natural mixtures. An FGFR3-suppressing plant extract of Amaranthus viridis was identified from the screen, and 2 bioactive porphyrins, pheophorbide a (Pa) and pyropheophorbide a, were sequentially isolated from the extract and functionally characterized. Further analysis showed that Pa reduced excessive FGFR3 signaling by decreasing its half-life in FGFR3-overactivated multiple myeloma cells and chondrocytes. In an ex vivo culture system, Pa alleviated defective long bone growth in humanized ACH mice (FGFR3ACH mice). Overall, our study presents an approach to discovery and validation of plant extracts or drug candidates that target FGFR3 activation. The compounds identified by this approach may have applications as therapeutics for FGFR3-associated cancers and skeletal dysplasias.
Collapse
Affiliation(s)
- Yun-Wen Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Hsiao-Jung Kao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Wei-Ting Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Cheng-Fu Kao
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Jer-Yuarn Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yuan-Tsong Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| | - Yi-Ching Lee
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
9
|
Kinoshita M, Yamada S, Sasaki J, Suzuki S, Kajikawa T, Iwayama T, Fujihara C, Imazato S, Murakami S. Mice Lacking PLAP-1/Asporin Show Alteration of Periodontal Ligament Structures and Acceleration of Bone Loss in Periodontitis. Int J Mol Sci 2023; 24:15989. [PMID: 37958972 PMCID: PMC10649079 DOI: 10.3390/ijms242115989] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/24/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
Periodontal ligament-associated protein 1 (PLAP-1), also known as Asporin, is an extracellular matrix protein expressed in the periodontal ligament and plays a crucial role in periodontal tissue homeostasis. Our previous research demonstrated that PLAP-1 may inhibit TLR2/4-mediated inflammatory responses, thereby exerting a protective function against periodontitis. However, the precise roles of PLAP-1 in the periodontal ligament (PDL) and its relationship to periodontitis have not been fully explored. In this study, we employed PLAP-1 knockout mice to investigate its roles and contributions to PDL tissue and function in a ligature-induced periodontitis model. Mandibular bone samples were collected from 10-week-old male C57BL/6 (WT) and PLAP-1 knockout (KO) mice. These samples were analyzed through micro-computed tomography (μCT) scanning, hematoxylin and eosin (HE) staining, picrosirius red staining, and fluorescence immunostaining using antibodies targeting extracellular matrix proteins. Additionally, the structure of the PDL collagen fibrils was examined using transmission electron microscopy (TEM). We also conducted tooth extraction and ligature-induced periodontitis models using both wild-type and PLAP-1 KO mice. PLAP-1 KO mice did not exhibit any changes in alveolar bone resorption up to the age of 10 weeks, but they did display an enlarged PDL space, as confirmed by μCT and histological analyses. Fluorescence immunostaining revealed increased expression of extracellular matrix proteins, including Col3, BGN, and DCN, in the PDL tissues of PLAP-1 KO mice. TEM analysis demonstrated an increase in collagen diameter within the PDL of PLAP-1 KO mice. In line with these findings, the maximum stress required for tooth extraction was significantly lower in PLAP-1 KO mice in the tooth extraction model compared to WT mice (13.89 N ± 1.34 and 16.51 N ± 1.31, respectively). In the ligature-induced periodontitis model, PLAP-1 knockout resulted in highly severe alveolar bone resorption, with a higher number of collagen fiber bundle tears and significantly more osteoclasts in the periodontium. Our results demonstrate that mice lacking PLAP-1/Asporin show alteration of periodontal ligament structures and acceleration of bone loss in periodontitis. This underscores the significant role of PLAP-1 in maintaining collagen fibrils in the PDL and suggests the potential of PLAP-1 as a therapeutic target for periodontal diseases.
Collapse
Affiliation(s)
- Masaki Kinoshita
- Department of Periodontology and Regenerative Dentistry, Osaka University Graduate School of Dentistry, Suita 565-0871, Osaka, Japan; (M.K.); (T.I.); (C.F.); (S.M.)
| | - Satoru Yamada
- Department of Periodontology and Endodontolgy, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Miyagi, Japan; (S.S.); (T.K.)
| | - Junichi Sasaki
- Department of Dental Biomaterials, Osaka University Graduate School of Dentistry, Suita 565-0871, Osaka, Japan; (J.S.); (S.I.)
| | - Shigeki Suzuki
- Department of Periodontology and Endodontolgy, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Miyagi, Japan; (S.S.); (T.K.)
| | - Tetsuhiro Kajikawa
- Department of Periodontology and Endodontolgy, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Miyagi, Japan; (S.S.); (T.K.)
| | - Tomoaki Iwayama
- Department of Periodontology and Regenerative Dentistry, Osaka University Graduate School of Dentistry, Suita 565-0871, Osaka, Japan; (M.K.); (T.I.); (C.F.); (S.M.)
| | - Chiharu Fujihara
- Department of Periodontology and Regenerative Dentistry, Osaka University Graduate School of Dentistry, Suita 565-0871, Osaka, Japan; (M.K.); (T.I.); (C.F.); (S.M.)
| | - Satoshi Imazato
- Department of Dental Biomaterials, Osaka University Graduate School of Dentistry, Suita 565-0871, Osaka, Japan; (J.S.); (S.I.)
| | - Shinya Murakami
- Department of Periodontology and Regenerative Dentistry, Osaka University Graduate School of Dentistry, Suita 565-0871, Osaka, Japan; (M.K.); (T.I.); (C.F.); (S.M.)
| |
Collapse
|
10
|
Savarirayan R, Hoernschemeyer DG, Ljungberg M, Zarate YA, Bacino CA, Bober MB, Legare JM, Högler W, Quattrin T, Abuzzahab MJ, Hofman PL, White KK, Ma NS, Schnabel D, Sousa SB, Mao M, Smith A, Chakraborty M, Giwa A, Winding B, Volck B, Shu AD, McDonnell C. Once-weekly TransCon CNP (navepegritide) in children with achondroplasia (ACcomplisH): a phase 2, multicentre, randomised, double-blind, placebo-controlled, dose-escalation trial. EClinicalMedicine 2023; 65:102258. [PMID: 37823031 PMCID: PMC10562841 DOI: 10.1016/j.eclinm.2023.102258] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/13/2023] Open
Abstract
Background TransCon CNP (navepegritide) is an investigational prodrug of C-type natriuretic peptide (CNP) designed to allow for continuous CNP exposure with once-weekly dosing. This 52-week phase 2 (ACcomplisH) trial assessed the safety and efficacy of TransCon CNP in children with achondroplasia. Methods ACcomplisH is a global, randomised, double-blind, placebo-controlled, dose-escalation trial. Study participants were recruited between June 10, 2020, and September 24, 2021. Eligible participants were prepubertal, aged 2-10 years, with genetically confirmed achondroplasia, and randomised 3:1 to once-weekly subcutaneous injections of TransCon CNP (6, 20, 50, or 100 μg CNP/kg/week) or placebo for 52 weeks. Primary objectives were safety and annualised growth velocity (AGV). ACcomplisH is registered with ClinicalTrials.gov (NCT04085523) and Eudra (CT 2019-002754-22). Findings Forty-two participants received TransCon CNP at doses of 6 μg (n = 10; 7 female), 20 μg (n = 11; 3 female), 50 μg (n = 10; 3 female), or 100 μg (n = 11; 6 female) CNP/kg/week, with 15 receiving placebo (5 female). Treatment-emergent adverse events (TEAEs) were mild or moderate with no grade 3/4 events reported. There were 2 serious TEAEs that were assessed as not related to TransCon CNP. Eleven injection site reactions occurred in 8 participants receiving TransCon CNP and no symptomatic hypotension occurred. TransCon CNP demonstrated a dose-dependent improvement in AGV. At 52 weeks, TransCon CNP 100 μg CNP/kg/week significantly improved AGV vs placebo (least squares mean [95% CI] 5.42 [4.74-6.11] vs 4.35 [3.75-4.94] cm/year; p = 0.0218), and improved achondroplasia-specific height SDS from baseline (least squares mean [95% CI] 0.22 [0.02-0·41] vs -0·08 [-0.25 to 0.10]; p = 0.0283). All participants completed the randomised period and continued in the ongoing open-label extension period receiving TransCon CNP 100 μg CNP/kg/week. Interpretation This phase 2 trial suggests that TransCon CNP is effective, safe, with low injection site reaction frequency, and may provide a novel, once-weekly treatment option for children with achondroplasia. These results support TransCon CNP at 100 μg CNP/kg/week in the ongoing pivotal trial. Funding Ascendis Pharma, A/S.
Collapse
Affiliation(s)
- Ravi Savarirayan
- Murdoch Children's Research Institute, Parkville, Australia
- Royal Children's Hospital, Parkville, Australia
- University of Melbourne, Parkville, Australia
| | | | - Merete Ljungberg
- Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Yuri A. Zarate
- University of Arkansas for Medical Sciences, Little Rock, AR, USA
- University of Kentucky, Lexington, KY, USA
| | | | | | - Janet M. Legare
- University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | | | | | | | - Paul L. Hofman
- The Liggins Institute, University of Auckland, Auckland, New Zealand
| | | | - Nina S. Ma
- Children's Hospital Colorado, Aurora, CO, USA
| | - Dirk Schnabel
- Center for Chronically Sick Children, Charité – University Medicine Berlin, Berlin, Germany
| | | | - Meng Mao
- Ascendis Pharma Inc., Palo Alto, CA, USA
| | | | | | | | | | | | | | - Ciara McDonnell
- Children's Health Ireland at Temple Street, Dublin, Ireland
- University of Dublin, Trinity College, Dublin, Ireland
| |
Collapse
|
11
|
Quadri N, Upadhyai P. Primary cilia in skeletal development and disease. Exp Cell Res 2023; 431:113751. [PMID: 37574037 DOI: 10.1016/j.yexcr.2023.113751] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/15/2023]
Abstract
Primary cilia are non-motile, microtubule-based sensory organelle present in most vertebrate cells with a fundamental role in the modulation of organismal development, morphogenesis, and repair. Here we focus on the role of primary cilia in embryonic and postnatal skeletal development. We examine evidence supporting its involvement in physiochemical and developmental signaling that regulates proliferation, patterning, differentiation and homeostasis of osteoblasts, chondrocytes, and their progenitor cells in the skeleton. We discuss how signaling effectors in mechanotransduction and bone development, such as Hedgehog, Wnt, Fibroblast growth factor and second messenger pathways operate at least in part at the primary cilium. The relevance of primary cilia in bone formation and maintenance is underscored by a growing list of rare genetic skeletal ciliopathies. We collate these findings and summarize the current understanding of molecular factors and mechanisms governing primary ciliogenesis and ciliary function in skeletal development and disease.
Collapse
Affiliation(s)
- Neha Quadri
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Priyanka Upadhyai
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India.
| |
Collapse
|
12
|
Loisay L, Komla-Ebri D, Morice A, Heuzé Y, Viaut C, de La Seiglière A, Kaci N, Chan D, Lamouroux A, Baujat G, Bassett JD, Williams GR, Legeai-Mallet L. Hypochondroplasia gain-of-function mutation in FGFR3 causes defective bone mineralization in mice. JCI Insight 2023; 8:e168796. [PMID: 37345656 PMCID: PMC10371252 DOI: 10.1172/jci.insight.168796] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/10/2023] [Indexed: 06/23/2023] Open
Abstract
Hypochondroplasia (HCH) is a mild dwarfism caused by missense mutations in fibroblast growth factor receptor 3 (FGFR3), with the majority of cases resulting from a heterozygous p.Asn540Lys gain-of-function mutation. Here, we report the generation and characterization of the first mouse model (Fgfr3Asn534Lys/+) of HCH to our knowledge. Fgfr3Asn534Lys/+ mice exhibited progressive dwarfism and impairment of the synchondroses of the cranial base, resulting in defective formation of the foramen magnum. The appendicular and axial skeletons were both severely affected and we demonstrated an important role of FGFR3 in regulation of cortical and trabecular bone structure. Trabecular bone mineral density (BMD) of long bones and vertebral bodies was decreased, but cortical BMD increased with age in both tibiae and femurs. These results demonstrate that bones in Fgfr3Asn534Lys/+ mice, due to FGFR3 activation, exhibit some characteristics of osteoporosis. The present findings emphasize the detrimental effect of gain-of-function mutations in the Fgfr3 gene on long bone modeling during both developmental and aging processes, with potential implications for the management of elderly patients with hypochondroplasia and osteoporosis.
Collapse
Affiliation(s)
- Léa Loisay
- Université de Paris Cité, Imagine Institute, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, INSERM UMR1163, Paris, France
| | - Davide Komla-Ebri
- Molecular Endocrinology Laboratory, Department of Metabolism Digestion and Reproduction, Imperial College London, London, United Kingdom
- UCB Pharma, Slough, United Kingdom
| | - Anne Morice
- Université de Paris Cité, Imagine Institute, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, INSERM UMR1163, Paris, France
| | - Yann Heuzé
- UMR5199 PACEA, CNRS, MC, Université de Bordeaux, Pessac, France
| | - Camille Viaut
- Université de Paris Cité, Imagine Institute, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, INSERM UMR1163, Paris, France
| | - Amélie de La Seiglière
- Université de Paris Cité, Imagine Institute, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, INSERM UMR1163, Paris, France
| | - Nabil Kaci
- Université de Paris Cité, Imagine Institute, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, INSERM UMR1163, Paris, France
| | - Danny Chan
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Audrey Lamouroux
- Department of Medical Genetics, CHU Arnaud De Villeneuve, Montpellier, France
| | - Geneviève Baujat
- Université de Paris Cité, Imagine Institute, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, INSERM UMR1163, Paris, France
- Department of Medical Genetics, French Reference Center for Skeletal Dysplasia, AP-HP, Necker Enfants Malades Hospital, Paris, France
| | - J.H. Duncan Bassett
- Molecular Endocrinology Laboratory, Department of Metabolism Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Graham R. Williams
- Molecular Endocrinology Laboratory, Department of Metabolism Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Laurence Legeai-Mallet
- Université de Paris Cité, Imagine Institute, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, INSERM UMR1163, Paris, France
| |
Collapse
|
13
|
Maghnie M, Bruzzi P, Casilli G, Lidonnici D, Scarano G. The management of achondroplasia in Italy: results from a Delphi panel based on real-world experience. Front Pediatr 2023; 11:1209994. [PMID: 37404559 PMCID: PMC10315838 DOI: 10.3389/fped.2023.1209994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/02/2023] [Indexed: 07/06/2023] Open
Abstract
Background Achondroplasia is a rare genetic disorder caused by a mutation in the FGFR3 gene, leading to skeletal changes and other systemic complications that greatly impact the patient's quality of life. There currently are differences in achondroplasia patients' management among countries and centers within the same country. Method A group of Italian experts discussed the best practice and the current unmet needs in the management of patients with achondroplasia though a two-round Delphi panel, between September and November 2022. The Delphi survey consisted of 32 questions covering organizational aspects, diagnosis and follow-up, and management of achondroplasia patient, and was shared among 54 experts from 25 different centers in Italy. The consensus was determined on the basis of the percentage of agreement or disagreement to each statement on a 5-point Likert scale. Results Pediatricians (including specialists in pediatrics, medical genetics, and pediatric endocrinology) orthopedics and medical geneticists were the most represented specialists accounting for 64%, 9% and 9% of participants, respectively. The panel highlighted the need for standardized procedures to identify reference centers, the crucial role of multidisciplinary team, and effective communication among centers (Hub and Spoke model) as the essential organizational features; the importance of genetic counseling, presence of a psychologist, and clear communication during prenatal diagnosis as main points for diagnosis; early intervention by different specialists, personalized care, and promotion of a healthy lifestyle as major points for patient management. Conclusion To ensure an adequate continuity of care over the whole lifespan of a patient with achondroplasia a shared model for patient management is suggested by Italian specialists.
Collapse
Affiliation(s)
- Mohamad Maghnie
- Paediatric Clinic and Endocrinology, IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Paolo Bruzzi
- Clinical Epidemiology Unit, Ospedale Policlinico San Martino, IRCCS, Genova, Italy
| | | | | | | |
Collapse
|
14
|
Wang D, Li Y, Xu C, Wang H, Huang X, Jin X, Ren S, Gao J, Tong J, Liu J, Zhou J, Shi L. SETD7 promotes lateral plate mesoderm formation by modulating the Wnt/β-catenin signaling pathway. iScience 2023; 26:106917. [PMID: 37378343 PMCID: PMC10291335 DOI: 10.1016/j.isci.2023.106917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 02/16/2023] [Accepted: 05/14/2023] [Indexed: 06/29/2023] Open
Abstract
The role of SET domain containing 7 (SETD7) during human hematopoietic development remains elusive. Here, we found that deletion of SETD7 attenuated the generation of hematopoietic progenitor cells (HPCs) during the induction of hematopoietic differentiation from human embryonic stem cells (hESCs). Further analysis specified that SETD7 was required for lateral plate mesoderm (LPM) specification but dispensable for the generation of endothelial progenitor cells (EPCs) and HPCs. Mechanistically, rather than depending on its histone methyltransferase activity, SETD7 interacted with β-catenin at lysine residue 180 facilitated its degradation. Diminished SETD7 expression led to the accumulation of β-catenin and the consequent activation of the Wnt signaling pathway, which altered LPM patterning and facilitated the production of paraxial mesoderm (PM). Taken together, the findings indicate that SETD7 is related to LPM and PM patterning via posttranslational regulation of the Wnt/β-catenin signaling pathway, providing novel insights into mesoderm specification during hematopoietic differentiation from hESCs.
Collapse
Affiliation(s)
- Ding Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Yapu Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Changlu Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Hongtao Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Xin Huang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Xu Jin
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Sirui Ren
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Jie Gao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Jingyuan Tong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Jinhua Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Jiaxi Zhou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Lihong Shi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| |
Collapse
|
15
|
Zhang X, Pu X, Pi C, Xie J. The role of fibroblast growth factor 7 in cartilage development and diseases. Life Sci 2023:121804. [PMID: 37245839 DOI: 10.1016/j.lfs.2023.121804] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/10/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
Fibroblast growth factor 7 (FGF7), also known as keratinocyte growth factor (KGF), shows a crucial biological significance in tissue development, wound repair, tumorigenesis, and immune reconstruction. In the skeletal system, FGF7 directs the cellular synaptic extension of individual cells and facilities functional gap junction intercellular communication of a collective of cells. Moreover, it promotes the osteogenic differentiation of stem cells via a cytoplasmic signaling network. For cartilage, reports have indicated the potential role of FGF7 on the regulation of key molecules Cx43 in cartilage and Runx2 in hypertrophic cartilage. However, the molecular mechanism of FGF7 in chondrocyte behaviors and cartilage pathological process remains largely unknown. In this review, we systematically summarize the recent biological function of FGF7 and its regulatory role on chondrocytes and cartilage diseases, especially through the hot focus of two key molecules, Runx2 and Cx43. The current knowledge of FGF7 on the physiological and pathological processes of chondrocytes and cartilage provides us new cues for wound repair of cartilage defect and therapy of cartilage diseases.
Collapse
Affiliation(s)
- Xinyue Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaohua Pu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Caixia Pi
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
16
|
Zhang S, Li T, Feng Y, Zhang K, Zou J, Weng X, Yuan Y, Zhang L. Exercise improves subchondral bone microenvironment through regulating bone-cartilage crosstalk. Front Endocrinol (Lausanne) 2023; 14:1159393. [PMID: 37288291 PMCID: PMC10242115 DOI: 10.3389/fendo.2023.1159393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/04/2023] [Indexed: 06/09/2023] Open
Abstract
Articular cartilage degeneration has been proved to cause a variety of joint diseases, among which osteoarthritis is the most typical. Osteoarthritis is characterized by articular cartilage degeneration and persistent pain, which affects the quality of life of patients as well as brings a heavy burden to society. The occurrence and development of osteoarthritis is related to the disorder of the subchondral bone microenvironment. Appropriate exercise can improve the subchondral bone microenvironment, thus playing an essential role in preventing and treating osteoarthritis. However, the exact mechanism whereby exercise improves the subchondral bone microenvironment remains unclear. There is biomechanical interaction as well as biochemical crosstalk between bone and cartilage. And the crosstalk between bone and cartilage is the key to bone-cartilage homeostasis maintenance. From the perspective of biomechanical and biochemical crosstalk between bone and cartilage, this paper reviews the effects of exercise-mediated bone-cartilage crosstalk on the subchondral bone microenvironment, aiming to provide a theoretical basis for the prevention and treatment of degenerative bone diseases.
Collapse
Affiliation(s)
- Shihua Zhang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
- School of Exercise and Health, Guangzhou Sport University, Guangzhou, China
| | - Tingting Li
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Yao Feng
- School of Exercise and Health, Guangzhou Sport University, Guangzhou, China
| | - Keping Zhang
- School of Exercise and Health, Guangzhou Sport University, Guangzhou, China
| | - Jun Zou
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Xiquan Weng
- School of Exercise and Health, Guangzhou Sport University, Guangzhou, China
| | - Yu Yuan
- School of Exercise and Health, Guangzhou Sport University, Guangzhou, China
| | - Lan Zhang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
- College of Sports and Health, Shandong Sport University, Jinan, China
| |
Collapse
|
17
|
Farouk Sait S, Fischer C, Antal Z, Spatz K, Prince DE, Ibanez K, Behr GG, Dunkel IJ, Karajannis MA. Slipped capital femoral epiphyses: A major on-target adverse event associated with FGFR tyrosine kinase inhibitors in pediatric patients. Pediatr Blood Cancer 2023; 70:e30410. [PMID: 37158537 PMCID: PMC10957205 DOI: 10.1002/pbc.30410] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/10/2023]
Abstract
Fibroblast growth factor receptor (FGFR) tyrosine kinase inhibitors (TKIs) are increasingly being used off label in pediatrics. Long-term safety data are limited, and serious toxicities unique to pediatrics may emerge. In a retrospective analysis of patients less than 18 years of age with recurrent/refractory FGFR altered gliomas treated with FGFR TKIs at MSKCC (n = 7), we observed slipped capital femoral epiphyses in three of seven patients along with increased linear growth velocity. Clinicians should closely monitor bone health and have a low index of suspicion for serious orthopedic complications including slipped capital femoral epiphyses and inform patients of related risks as part of consent when treating with FGFR TKIs.
Collapse
Affiliation(s)
- Sameer Farouk Sait
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Cheryl Fischer
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Zoltan Antal
- Department of Endocrinology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Krisoula Spatz
- Department of Pharmacology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Daniel E Prince
- Department of Orthopedics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Katarzyna Ibanez
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Gerald G Behr
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Ira J Dunkel
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Matthias A Karajannis
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
18
|
Dardenne E, Ishiyama N, Lin TA, Lucas MC. Current and emerging therapies for Achondroplasia: The dawn of precision medicine. Bioorg Med Chem 2023; 87:117275. [PMID: 37156065 DOI: 10.1016/j.bmc.2023.117275] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/29/2023] [Indexed: 05/10/2023]
Abstract
Achondroplasia is a rare disease affecting bone growth and is caused by a missense mutation in the fibroblast growth factor receptor 3 (FGFR3) gene. In the past few years, there were multiple experimental drugs entering into clinical trials for treating achondroplasia including vosoritide, the first precision medicine approved for this indication. This perspective presents the mechanism of action, benefit, and potential mechanistic limitation of the drugs currently being evaluated in clinical trials for achondroplasia. This article also discusses the potential impact of those drugs not only in increasing the growth of individuals living with achondroplasia but also in improving their quality of life.
Collapse
Affiliation(s)
| | | | - Tai-An Lin
- Black Diamond Therapeutics, New York, NY, USA
| | | |
Collapse
|
19
|
Xu Q, Luo Y, Chao Z, Zhang J, Liu X, Tang Q, Wang K, Tan S, Fang M. Integrated Analysis of Transcriptome Expression Profiles Reveals miRNA-326-NKX3.2-Regulated Porcine Chondrocyte Differentiation. Int J Mol Sci 2023; 24:ijms24087257. [PMID: 37108419 PMCID: PMC10138716 DOI: 10.3390/ijms24087257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/29/2023] Open
Abstract
The porcine body length trait is an essential factor affecting meat production and reproductive performance. It is evident that the development/lengthening of individual vertebrae is one of the main reasons for increases in body length; however, the underlying molecular mechanism remains unclear. In this study, RNA-seq analysis was used to profile the transcriptome (lncRNA, mRNA, and miRNA) of the thoracic intervertebral cartilage (TIC) at two time points (1 and 4 months) during vertebral column development in Yorkshire (Y) and Wuzhishan pigs (W). There were four groups: 1- (Y1) and 4-month-old (Y4) Yorkshire pigs and 1- (W1) and 4-month-old (W4) Wuzhishan pigs. In total, 161, 275, 86, and 126 differentially expressed (DE) lncRNAs, 1478, 2643, 404, and 750 DE genes (DEGs), and 74,51, 34, and 23 DE miRNAs (DE miRNAs) were identified in the Y4 vs. Y1, W4 vs. W1, Y4 vs. W4, and Y1 vs. W1 comparisons, respectively. Functional analysis of these DE transcripts (DETs) demonstrated that they had participated in various biological processes, such as cellular component organization or biogenesis, the developmental process, the metabolic process, bone development, and cartilage development. The crucial bone development-related candidate genes NK3 Homeobox 2 (NKX3.2), Wnt ligand secretion mediator (WLS), gremlin 1 (GREM1), fibroblast growth factor receptor 3 (FGFR3), hematopoietically expressed homeobox (HHEX), (collagen type XI alpha 1 chain (COL11A1), and Wnt Family Member 16 (WNT16)) were further identified by functional analysis. Moreover, lncRNA, miRNA, and gene interaction networks were constructed; a total of 55 lncRNAs, 6 miRNAs, and 7 genes formed lncRNA-gene, miRNA-gene, and lncRNA-miRNA-gene pairs, respectively. The aim was to demonstrate that coding and non-coding genes may co-regulate porcine spine development through interaction networks. NKX3.2 was identified as being specifically expressed in cartilage tissues, and it delayed chondrocyte differentiation. miRNA-326 regulated chondrocyte differentiation by targeting NKX3.2. The present study provides the first non-coding RNA and gene expression profiles in the porcine TIC, constructs the lncRNA-miRNA-gene interaction networks, and confirms the function of NKX3.2 in vertebral column development. These findings contribute to the understanding of the potential molecular mechanisms regulating pig vertebral column development. They expand our knowledge about the differences in body length between different pig species and provide a foundation for future studies.
Collapse
Affiliation(s)
- Qiao Xu
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yabiao Luo
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhe Chao
- Institute of Animal Sciences and Veterinary, Hainan Academy of Agricultural Sciences, Haikou 571100, China
| | - Jibin Zhang
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA 91006, USA
| | - Ximing Liu
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Qiguo Tang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Kejun Wang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shuyi Tan
- Institute of Animal Sciences and Veterinary, Hainan Academy of Agricultural Sciences, Haikou 571100, China
| | - Meiying Fang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
20
|
Kawashima I, Matsushita M, Mishima K, Kamiya Y, Osawa Y, Ohkawara B, Ohno K, Kitoh H, Imagama S. Activated FGFR3 suppresses bone regeneration and bone mineralization in an ovariectomized mouse model. BMC Musculoskelet Disord 2023; 24:200. [PMID: 36927417 PMCID: PMC10018961 DOI: 10.1186/s12891-023-06318-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND Postmenopausal osteoporosis is a widespread health concern due to its prevalence among older adults and an associated high risk of fracture. The downregulation of bone regeneration delays fracture healing. Activated fibroblast growth factor receptor 3 (FGFR3) accelerates bone regeneration at juvenile age and downregulates bone mineralization at all ages. However, the impact of FGFR3 signaling on bone regeneration and bone mineralization post-menopause is still unknown. This study aimed to evaluate the impact of FGFR3 signaling on bone regeneration and bone mineralization during menopause by developing a distraction osteogenesis (DO) mouse model after ovariectomy (OVX) using transgenic mice with activated FGFR3 driven by Col2a1 promoter (Fgfr3 mice). METHODS The OVX or sham operations were performed in 8-week-old female Fgfr3 and wild-type mice. After 8 weeks of OVX surgery, DO surgery in the lower limb was performed. The 5-day-latency period followed by performing distraction for 9 days. Bone mineral density (BMD) and bone regeneration was assessed by micro-computed tomography (micro-CT) scan and soft X-ray. Bone volume in the distraction area was also evaluated by histological analysis after 7 days at the end of distraction. Osteogenic differentiation and mineralization of bone marrow-derived mesenchymal stem cells (BMSCs) derived from each mouse after 8 weeks of the OVX or sham operations were also evaluated with and without an inhibitor for FGFR3 signaling (meclozine). RESULTS BMD decreased after OVX in both groups, and it further deteriorated in Fgfr3 mice. Poor callus formation after DO was also observed in both groups with OVX, and the amount of regenerated bone was further decreased in Fgfr3 mice. Similarly, histological analysis revealed that Fgfr3 OVX mice showed lower bone volume. Osteogenic differentiation and mineralization of BMSCs were also deteriorated in Fgfr3 OVX mice. An inhibitor for FGFR3 signaling dramatically reversed the inhibitory effect of OVX and FGFR3 signaling on BMSC mineralization. CONCLUSION Upregulated FGFR3 decreased newly regenerated bone after DO and BMD in OVX mice. FGFR3 signaling can be a potential therapeutic target in patients with postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Itaru Kawashima
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, 4668550, Nagoya, Aichi, Japan
| | - Masaki Matsushita
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, 4668550, Nagoya, Aichi, Japan.
| | - Kenichi Mishima
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, 4668550, Nagoya, Aichi, Japan
| | - Yasunari Kamiya
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, 4668550, Nagoya, Aichi, Japan
| | - Yusuke Osawa
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, 4668550, Nagoya, Aichi, Japan
| | - Bisei Ohkawara
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, 4668550, Nagoya, Aichi, Japan
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, 4668550, Nagoya, Aichi, Japan
| | - Hiroshi Kitoh
- Department of Orthopaedic Surgery, Aichi Children's Health and Medical Center, 4748710, Obu, Aichi, Japan.,Department of Comprehensive Pediatric Medicine, Nagoya University Graduate School of Medicine, 4668550, Nagoya, Aichi, Japan
| | - Shiro Imagama
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, 4668550, Nagoya, Aichi, Japan
| |
Collapse
|
21
|
Gao Y, Ding Q, Li W, Gu R, Zhang P, Zhang L. Role and Mechanism of a Micro-/Nano-Structured Porous Zirconia Surface in Regulating the Biological Behavior of Bone Marrow Mesenchymal Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36913521 DOI: 10.1021/acsami.2c22736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Zirconia as a promising dental implant material has attracted much attention in recent years. Improving the bone binding ability of zirconia is critical for clinical applications. Here, we established a distinct micro-/nano-structured porous zirconia through dry-pressing with addition of pore-forming agents followed by hydrofluoric acid etching (POROHF). Porous zirconia without hydrofluoric acid treatment (PORO), sandblasting plus acid-etching zirconia, and sintering zirconia surface were applied as controls. After human bone marrow mesenchymal stem cells (hBMSCs) were seeded on these four groups of zirconia specimens, we observed the highest cell affinity and extension on POROHF. In addition, the POROHF surface displayed an improved osteogenic phenotype in contrast to the other groups. Moreover, the POROHF surface facilitated angiogenesis of hBMSCs, as confirmed by optimal stimulation of vascular endothelial growth factor B and angiopoietin 1 (ANGPT1) expression. Most importantly, the POROHF group demonstrated the most obvious bone matrix development in vivo. To investigate further the underlying mechanism, RNA sequencing was employed and critical target genes modulated by POROHF were identified. Taken together, this study established an innovative micro-/nano-structured porous zirconia surface that significantly promoted osteogenesis and investigated the potential underlying mechanism. Our present work will improve the osseointegration of zirconia implants and help further clinical applications.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing 100081, PR China
| | - Qian Ding
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing 100081, PR China
| | - Wenjin Li
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing 100081, PR China
| | - Ranli Gu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing 100081, PR China
| | - Ping Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing 100081, PR China
| | - Lei Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing 100081, PR China
| |
Collapse
|
22
|
Cho HW, Jin HS, Eom YB. Genetic variants of FGFR family associated with height, hypertension, and osteoporosis. Ann Hum Biol 2023:1-26. [PMID: 36876654 DOI: 10.1080/03014460.2023.2187457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
BACKGROUND Hypertension and osteoporosis are the most common types of health problems. A recent study suggested that the fibroblast growth factor receptor-like protein 1 (FGFRL1) gene in giraffes is the most promising candidate gene that may have direct effects on both the skeleton and the cardiovascular system. AIM Our study purposed to replicate the finding that the FGFR5 gene is related to giraffe-related characteristics (height, hypertension, and osteoporosis), and to assess the associations between genetic variants of the FGFR family and three phenotypes. SUBJECTS AND METHODS An association study was performed to confirm the connections between hypertension, osteoporosis, and height and the FGFR family proteins (FGFR1 to FGFR5). RESULTS We identified a total of 192 genetic variants in the FGFR family and found six SNVs in the FGFR2, FGFR3, and FGFR4 genes that were associated with two phenotypes simultaneously. Also, the FGFR family was found to be involved in calcium signalling, and three genetic variants of the FGFR3 gene showed significant signals in the pituitary and hypothalamus. CONCLUSION Taken together, these findings suggest that FGFR genes are associated with hypertension, height, and osteoporosis. In particular, the present study highlights the FGFR3 gene, which influences two fundamental regulators of bone remodelling.
Collapse
Affiliation(s)
- Hye-Won Cho
- Department of Medical Sciences, Graduate School, Soonchunhyang University, Asan, Chungnam 31538, Republic of Korea
| | - Hyun-Seok Jin
- Department of Biomedical Laboratory Science, College of Life and Health Sciences, Hoseo University, Asan, Chungnam 31499, Republic of Korea
| | - Yong-Bin Eom
- Department of Medical Sciences, Graduate School, Soonchunhyang University, Asan, Chungnam 31538, Republic of Korea.,Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan, Chungnam 31538, Republic of Korea
| |
Collapse
|
23
|
Growth Modulation by Tension Band Plate in Achondroplasia With Varus Knee Deformity: Comparison of Gait Analysis Measurements. J Pediatr Orthop 2023; 43:168-173. [PMID: 36583511 DOI: 10.1097/bpo.0000000000002342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Limited evidence exists concerning growth modulation by tension band plate (TBP) to correct varus deformity in patients with achondroplasia with limited growth due to FGFR3 gene mutation. We evaluated the efficacy of TBP in children with achondroplasia with genu varum and reported the static radiographic and dynamic motion data to determine parameters that impact the rate of deformity correction. METHODS Patients with achondroplasia with genu varum who underwent TBP surgery for growth modulation were studied. Those with at least 1 year of follow-up with TBP were included. Radiographic parameters were measured. Growth velocity of femoral/tibial length was calculated separately. Patients were deemed successful or unsuccessful. Spearman correlation analysis and Student t test were used to describe statistical results. RESULTS Twenty-two patients (41 limbs; 12 girls) fulfilled our criteria. Mean age at TBP surgery was 7.6±2.4 years. Thirty-six femoral TBP and 41 tibial TBP were in place for 24.5±9.7 months. Mean mechanical axis deviation, mechanical lateral distal femoral angle, and medial proximal tibial angle preoperatively were 30.1±7.6 mm, 97.2±6.4, and 80.3±4.3 degrees, and 11±15.6 mm, 87.4±5.9, and 84.7±5.3 degrees at last follow-up ( P <0.001). Fifteen limbs were successfully straightened; 4 limbs were in more varus than the initial deformity. Twenty-four limbs with TBP were still undergoing correction. In successful limbs, mean age at surgery was 6.5±1.7 years and duration of TBP was 29.9±7.8 months. In 4 unsuccessful limbs, mean age at surgery was 11.7±1.2 years. Analysis in the gait laboratory included physical examination with the measurement of knee varus and kinematic varus based on a posterior view static standing photograph. Photographic measurement of varus was higher than the radiographic measurement. CONCLUSIONS Growth modulation by TBP surgery is a reliable and simple technique to correct genu varum in achondroplasia. An early age at TBP implementation (mean: 6.5 y) is crucial to successfully correct the varus knee deformity. Furthermore, we recommend early and regular surveillance of achondroplasia for progressive varus knee deformity. LEVEL OF EVIDENCE Level IV-cohort study.
Collapse
|
24
|
Ascione CM, Napolitano F, Esposito D, Servetto A, Belli S, Santaniello A, Scagliarini S, Crocetto F, Bianco R, Formisano L. Role of FGFR3 in bladder cancer: Treatment landscape and future challenges. Cancer Treat Rev 2023; 115:102530. [PMID: 36898352 DOI: 10.1016/j.ctrv.2023.102530] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/22/2023] [Accepted: 02/25/2023] [Indexed: 03/02/2023]
Abstract
Bladder cancer is a heterogeneous malignancy and is responsible for approximately 3.2% of new diagnoses of cancer per year (Sung et al., 2021). Fibroblast Growth Factor Receptors (FGFRs) have recently emerged as a novel therapeutic target in cancer. In particular, FGFR3 genomic alterations are potent oncogenic drivers in bladder cancer and represent predictive biomarkers of response to FGFR inhibitors. Indeed, overall ∼50% of bladder cancers have somatic mutations in the FGFR3 -coding sequence (Cappellen et al., 1999; Turner and Grose, 2010). FGFR3 gene rearrangements are typical alterations in bladder cancer (Nelson et al., 2016; Parker et al., 2014). In this review, we summarize the most relevant evidence on the role of FGFR3 and the state-of-art of anti-FGFR3 treatment in bladder cancer. Furthermore, we interrogated the AACR Project GENIE to investigate clinical and molecular features of FGFR3-altered bladder cancers. We found that FGFR3 rearrangements and missense mutations were associated with a lower fraction of mutated genome, compared to the FGFR3 wild-type tumors, as also observed in other oncogene-addicted cancers. Moreover, we observed that FGFR3 genomic alterations are mutually exclusive with other genomic aberrations of canonical bladder cancer oncogenes, such as TP53 and RB1. Finally, we provide an overview of the treatment landscape of FGFR3-altered bladder cancer, discussing future perspectives for the management of this disease.
Collapse
Affiliation(s)
- Claudia Maria Ascione
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131 Naples, Italy
| | - Fabiana Napolitano
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131 Naples, Italy
| | - Daniela Esposito
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131 Naples, Italy
| | - Alberto Servetto
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131 Naples, Italy
| | - Stefania Belli
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131 Naples, Italy
| | - Antonio Santaniello
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131 Naples, Italy
| | - Sarah Scagliarini
- Division of Oncology, Azienda Ospedaliera di Rilievo Nazionale A. Cardarelli, Italy
| | - Felice Crocetto
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", 80131 Naples, Italy
| | - Roberto Bianco
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131 Naples, Italy
| | - Luigi Formisano
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131 Naples, Italy.
| |
Collapse
|
25
|
Yao Q, Wu X, Tao C, Gong W, Chen M, Qu M, Zhong Y, He T, Chen S, Xiao G. Osteoarthritis: pathogenic signaling pathways and therapeutic targets. Signal Transduct Target Ther 2023; 8:56. [PMID: 36737426 PMCID: PMC9898571 DOI: 10.1038/s41392-023-01330-w] [Citation(s) in RCA: 420] [Impact Index Per Article: 210.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/06/2023] [Accepted: 01/17/2023] [Indexed: 02/05/2023] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disorder that leads to disability and affects more than 500 million population worldwide. OA was believed to be caused by the wearing and tearing of articular cartilage, but it is now more commonly referred to as a chronic whole-joint disorder that is initiated with biochemical and cellular alterations in the synovial joint tissues, which leads to the histological and structural changes of the joint and ends up with the whole tissue dysfunction. Currently, there is no cure for OA, partly due to a lack of comprehensive understanding of the pathological mechanism of the initiation and progression of the disease. Therefore, a better understanding of pathological signaling pathways and key molecules involved in OA pathogenesis is crucial for therapeutic target design and drug development. In this review, we first summarize the epidemiology of OA, including its prevalence, incidence and burdens, and OA risk factors. We then focus on the roles and regulation of the pathological signaling pathways, such as Wnt/β-catenin, NF-κB, focal adhesion, HIFs, TGFβ/ΒΜP and FGF signaling pathways, and key regulators AMPK, mTOR, and RUNX2 in the onset and development of OA. In addition, the roles of factors associated with OA, including MMPs, ADAMTS/ADAMs, and PRG4, are discussed in detail. Finally, we provide updates on the current clinical therapies and clinical trials of biological treatments and drugs for OA. Research advances in basic knowledge of articular cartilage biology and OA pathogenesis will have a significant impact and translational value in developing OA therapeutic strategies.
Collapse
Affiliation(s)
- Qing Yao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Xiaohao Wu
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chu Tao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Weiyuan Gong
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Mingjue Chen
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Minghao Qu
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yiming Zhong
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Tailin He
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Sheng Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Guozhi Xiao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
26
|
Histological Assessment of Endochondral Ossification and Bone Mineralization. ENDOCRINES 2023. [DOI: 10.3390/endocrines4010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Finely tuned cartilage mineralization, endochondral ossification, and normal bone formation are necessary for normal bone growth. Hypertrophic chondrocytes in the epiphyseal cartilage secrete matrix vesicles, which are small extracellular vesicles initiating mineralization, into the intercolumnar septa but not the transverse partitions of the cartilage columns. Bone-specific blood vessels invade the unmineralized transverse septum, exposing the mineralized cartilage cores. Many osteoblast precursors migrate to the cartilage cores, where they synthesize abundant bone matrices, and mineralize them in a process of matrix vesicle-mediated bone mineralization. Matrix vesicle-mediated mineralization concentrates calcium (Ca) and inorganic phosphates (Pi), which are converted into hydroxyapatite crystals. These crystals grow radially and are eventually get out of the vesicles to form spherical mineralized nodules, leading to collagen mineralization. The influx of Ca and Pi into the matrix vesicle is regulated by several enzymes and transporters such as TNAP, ENPP1, PiT1, PHOSPHO1, annexins, and others. Such matrix vesicle-mediated mineralization is regulated by osteoblastic activities, synchronizing the synthesis of organic bone material. However, osteocytes reportedly regulate peripheral mineralization, e.g., osteocytic osteolysis. The interplay between cartilage mineralization and vascular invasion during endochondral ossification, as well as that of osteoblasts and osteocytes for normal mineralization, appears to be crucial for normal bone growth.
Collapse
|
27
|
Zhang Y, Fang Q, Liu Y, Zhang D, He Y, Liu F, Sun K, Chen J. Increased FGFR3 is involved in T-2 toxin-induced lesions of hypertrophic cartilage associated with endemic osteoarthritis. Hum Exp Toxicol 2023; 42:9603271231219480. [PMID: 38059300 DOI: 10.1177/09603271231219480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
This study evaluated the effect of fibroblast growth factor receptor 3 (FGFR3) on damaged hypertrophic chondrocytes of Kashin-Beck disease (KBD). Immunohistochemical staining was used to evaluate FGFR3 expression in growth plates from KBD rat models and engineered cartilage. In vitro study, hypertrophic chondrocytes were pretreated by FGFR3 binding inhibitor (BGJ398) for 24 h before incubation at different T-2 toxin concentrations. Differentiation -related genes (Runx2, Sox9, and Col Ⅹ) and ECM degradation -related genes (MMP-13, Col Ⅱ) in the hypertrophic chondrocytes were analyzed using RT-PCR, and the corresponding proteins were analyzed using western blotting. Hypertrophic chondrocytes death was detected by the Annexin V/PI double staining assay. The integrated optical density of FGFR3 staining was increased in knee cartilage of rats and engineered cartilage treated with T-2 toxin. Both protein and mRNA levels of Runx2, Sox9, Col Ⅱ, and Col Ⅹ were decreased in a dose-dependent manner when exposed to the T-2 toxin and significantly upregulated by 1 μM BGJ398. The expression of MMP-1, MMP-9, and MMP-13 increased in a dose-dependent manner when exposed to T-2 toxin and significantly reduced by 1 μM BGJ398. 1 μM BGJ398 could prevent early apoptosis and necrosis induced by the T-2 toxin. Inhibiting the FGFR3 signal could alleviate extracellular matrix degradation, abnormal chondrocytes differentiation, and excessive cell death in T-2 toxin-induced hypertrophic chondrocytes.
Collapse
Affiliation(s)
- Ying Zhang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, China
- School of Nursing, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Qian Fang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, China
- Lanzhou Center for Disease Control and Prevention, Lanzhou, China
| | - Yinan Liu
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, China
| | - Dan Zhang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, China
| | - Ying He
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, China
| | - Fei Liu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medical Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Kun Sun
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, China
| | - Jinghong Chen
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, China
| |
Collapse
|
28
|
Tiffany AS, Harley BAC. Growing Pains: The Need for Engineered Platforms to Study Growth Plate Biology. Adv Healthc Mater 2022; 11:e2200471. [PMID: 35905390 PMCID: PMC9547842 DOI: 10.1002/adhm.202200471] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/11/2022] [Indexed: 01/27/2023]
Abstract
Growth plates, or physis, are highly specialized cartilage tissues responsible for longitudinal bone growth in children and adolescents. Chondrocytes that reside in growth plates are organized into three distinct zones essential for proper function. Modeling key features of growth plates may provide an avenue to develop advanced tissue engineering strategies and perspectives for cartilage and bone regenerative medicine applications and a platform to study processes linked to disease progression. In this review, a brief introduction of the growth plates and their role in skeletal development is first provided. Injuries and diseases of the growth plates as well as physiological and pathological mechanisms associated with remodeling and disease progression are discussed. Growth plate biology, namely, its architecture and extracellular matrix organization, resident cell types, and growth factor signaling are then focused. Next, opportunities and challenges for developing 3D biomaterial models to study aspects of growth plate biology and disease in vitro are discussed. Finally, opportunities for increasingly sophisticated in vitro biomaterial models of the growth plate to study spatiotemporal aspects of growth plate remodeling, to investigate multicellular signaling underlying growth plate biology, and to develop platforms that address key roadblocks to in vivo musculoskeletal tissue engineering applications are described.
Collapse
Affiliation(s)
- Aleczandria S. Tiffany
- Department of Chemical and Biomolecular EngineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Brendan A. C. Harley
- Department of Chemical and Biomolecular EngineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| |
Collapse
|
29
|
MPSI Manifestations and Treatment Outcome: Skeletal Focus. Int J Mol Sci 2022; 23:ijms231911168. [PMID: 36232472 PMCID: PMC9569890 DOI: 10.3390/ijms231911168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 11/23/2022] Open
Abstract
Mucopolysaccharidosis type I (MPSI) (OMIM #252800) is an autosomal recessive disorder caused by pathogenic variants in the IDUA gene encoding for the lysosomal alpha-L-iduronidase enzyme. The deficiency of this enzyme causes systemic accumulation of glycosaminoglycans (GAGs). Although disease manifestations are typically not apparent at birth, they can present early in life, are progressive, and include a wide spectrum of phenotypic findings. Among these, the storage of GAGs within the lysosomes disrupts cell function and metabolism in the cartilage, thus impairing normal bone development and ossification. Skeletal manifestations of MPSI are often refractory to treatment and severely affect patients’ quality of life. This review discusses the pathological and molecular processes leading to impaired endochondral ossification in MPSI patients and the limitations of current therapeutic approaches. Understanding the underlying mechanisms responsible for the skeletal phenotype in MPSI patients is crucial, as it could lead to the development of new therapeutic strategies targeting the skeletal abnormalities of MPSI in the early stages of the disease.
Collapse
|
30
|
Ekinci S, Ülger Y, Acar MO, Ceran A, Aycan Z, Fitoz ÖS, Ilgın Ruhi H. Clinical and radiologic evaluation of a Turkish family with hypochondroplasia and a rare FGFR3 variant. J Pediatr Endocrinol Metab 2022; 35:1097-1101. [PMID: 35438268 DOI: 10.1515/jpem-2021-0773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/28/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Hypochondroplasia (HCH) is characterized by disproportionate short stature and regarded as a milder form of achondroplasia (ACH), which is another skeletal dysplasia, both caused by variants in fibroblast growth factor receptor 3 (FGFR3) gene. HCH diagnosis is based on the clinical features and skeletal survey findings. The most common FGFR3 variant in HCH affects the codon 540, leading to substitution of asparagine with lysine in about 70% of patients. CASE PRESENTATION Herein, we described the clinical and radiographical manifestations of HCH in affected members of a Turkish family with very rare Asn540Thr (c.1619A>C) variant within hot spot of the gene for this condition. CONCLUSIONS This is a very rarely reported variant in the literature and this report is the first case with this variant in Turkish population. The report also presents the phenotypic variability within a family with the same variant, which is inherent to HCH.
Collapse
Affiliation(s)
- Sadiye Ekinci
- Medical Genetics Department, Ankara University School of Medicine, Ankara, Turkey
| | - Yasemin Ülger
- Medical Genetics Department, Ankara University School of Medicine, Ankara, Turkey
| | - Mustafa Oğuz Acar
- Medical Genetics Department, Ankara University School of Medicine, Ankara, Turkey
| | - Ayşegül Ceran
- Pediatric Endocrinology Department, Ankara University School of Medicine, Ankara, Turkey
| | - Zehra Aycan
- Pediatric Endocrinology Department, Ankara University School of Medicine, Ankara, Turkey
| | - Ömer Suat Fitoz
- Radiology Department, Ankara University School of Medicine, Ankara, Turkey
| | - Hatice Ilgın Ruhi
- Medical Genetics Department, Ankara University School of Medicine, Ankara, Turkey
| |
Collapse
|
31
|
Chaya T, Maeda Y, Sugimura R, Okuzaki D, Watanabe S, Varner LR, Motooka D, Gyoten D, Yamamoto H, Kato H, Furukawa T. Multiple knockout mouse and embryonic stem cell models reveal the role of miR-124a in neuronal maturation. J Biol Chem 2022; 298:102293. [PMID: 35868558 PMCID: PMC9418502 DOI: 10.1016/j.jbc.2022.102293] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 11/09/2022] Open
Abstract
MicroRNA-124a (miR-124a) is one of the most abundantly expressed microRNAs in the central nervous system and is encoded in mammals by the three genomic loci miR-124a-1/2/3; however, its in vivo roles in neuronal development and function remain ambiguous. In the present study, we investigated the effect of miR-124a loss on neuronal differentiation in mice and in embryonic stem (ES) cells. Since miR-124a-3 exhibits only background expression levels in the brain and we were unable to obtain miR-124a-1/2/3 triple knockout (TKO) mice by mating, we generated and analyzed miR-124a-1/2 double knockout (DKO) mice. We found that these DKO mice exhibit perinatal lethality. RNA-seq analysis demonstrated that the expression levels of proneural and neuronal marker genes were almost unchanged between the control and miR-124a-1/2 DKO brains; however, genes related to neuronal synaptic formation and function were enriched among downregulated genes in the miR-124a-1/2 DKO brain. In addition, we found the transcription regulator Tardbp/TDP-43, loss of which leads to defects in neuronal maturation and function, was inactivated in the miR-124a-1/2 DKO brain. Furthermore, Tardbp knockdown suppressed neurite extension in cultured neuronal cells. We also generated miR-124a-1/2/3 TKO ES cells using CRISPR-Cas9 as an alternative to TKO mice. Phase-contrast microscopic, immunocytochemical, and gene expression analyses showed that miR-124a-1/2/3 TKO ES cell lines were able to differentiate into neurons. Collectively, these results suggest that miR-124a plays a role in neuronal maturation rather than neurogenesis in vivo and advance our understanding of the functional roles of microRNAs in central nervous system development.
Collapse
Affiliation(s)
- Taro Chaya
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Yamato Maeda
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Ryo Sugimura
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Satoshi Watanabe
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Leah R. Varner
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Daisuke Motooka
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Daichi Gyoten
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Haruka Yamamoto
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Hidemasa Kato
- Department of Functional Histology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Takahisa Furukawa
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan.
| |
Collapse
|
32
|
Ornitz DM, Itoh N. New developments in the biology of fibroblast growth factors. WIREs Mech Dis 2022; 14:e1549. [PMID: 35142107 PMCID: PMC10115509 DOI: 10.1002/wsbm.1549] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 01/28/2023]
Abstract
The fibroblast growth factor (FGF) family is composed of 18 secreted signaling proteins consisting of canonical FGFs and endocrine FGFs that activate four receptor tyrosine kinases (FGFRs 1-4) and four intracellular proteins (intracellular FGFs or iFGFs) that primarily function to regulate the activity of voltage-gated sodium channels and other molecules. The canonical FGFs, endocrine FGFs, and iFGFs have been reviewed extensively by us and others. In this review, we briefly summarize past reviews and then focus on new developments in the FGF field since our last review in 2015. Some of the highlights in the past 6 years include the use of optogenetic tools, viral vectors, and inducible transgenes to experimentally modulate FGF signaling, the clinical use of small molecule FGFR inhibitors, an expanded understanding of endocrine FGF signaling, functions for FGF signaling in stem cell pluripotency and differentiation, roles for FGF signaling in tissue homeostasis and regeneration, a continuing elaboration of mechanisms of FGF signaling in development, and an expanding appreciation of roles for FGF signaling in neuropsychiatric diseases. This article is categorized under: Cardiovascular Diseases > Molecular and Cellular Physiology Neurological Diseases > Molecular and Cellular Physiology Congenital Diseases > Stem Cells and Development Cancer > Stem Cells and Development.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nobuyuki Itoh
- Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| |
Collapse
|
33
|
Kim HY, Ko JM. Clinical management and emerging therapies of FGFR3-related skeletal dysplasia in childhood. Ann Pediatr Endocrinol Metab 2022; 27:90-97. [PMID: 35793999 PMCID: PMC9260370 DOI: 10.6065/apem.2244114.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 11/28/2022] Open
Abstract
Skeletal dysplasia is a diverse group of disorders that affect bone development and morphology. Currently, approximately 461 different genetic skeletal disorders have been identified, with over 430 causative genes. Among these, fibroblast growth factor receptor 3 (FGFR3)-related skeletal dysplasia is a relatively common subgroup of skeletal dysplasia. Pediatric endocrinologists may encounter a suspected case of skeletal dysplasia in their practice, especially when evaluating children with short stature. Early and accurate diagnosis of FGFR3-related skeletal dysplasia is essential for timely management of complications and genetic counseling. This review summarizes 5 representative and distinct entities of skeletal dysplasia caused by pathogenic variants in FGFR3 and discusses emerging therapies for FGFR3-related skeletal dysplasias.
Collapse
Affiliation(s)
- Hwa Young Kim
- Department of Pediatrics, Seoul National University Children’s Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Jung Min Ko
- Department of Pediatrics, Seoul National University Children’s Hospital, Seoul National University College of Medicine, Seoul, Korea,Rare Disease Center, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea,Address for correspondence: Jung Min Ko Department of Pediatrics, Seoul National University Children's Hospital, Seoul National University College of Medicine, Jongno-gu Daehak-ro 101, Seoul 03080, Korea
| |
Collapse
|
34
|
Zhang Y, Ling L, Ajay D/O Ajayakumar A, Eio YM, van Wijnen AJ, Nurcombe V, Cool SM. FGFR2 accommodates osteogenic cell fate determination in human mesenchymal stem cells. Gene 2022; 818:146199. [PMID: 35093449 PMCID: PMC9256080 DOI: 10.1016/j.gene.2022.146199] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 12/09/2021] [Accepted: 01/13/2022] [Indexed: 01/14/2023]
Abstract
The multilineage differentiation potential of human mesenchymal stem cells (hMSCs) underpins their clinical utility for tissue regeneration. Control of such cell-fate decisions is tightly regulated by different growth factors/cytokines and their cognate receptors. Fibroblast growth factors (FGFs) are among such factors critical for osteogenesis. However, how FGF receptors (FGFRs) help to orchestrate osteogenic progression remains to be fully elucidated. Here, we studied the protein levels of FGFRs during osteogenesis in human adult bone marrow-derived MSCs and discovered a positive correlation between FGFR2 expression and alkaline phosphatase (ALP) activity, an early marker of osteogenesis. Through RNA interference studies, we confirmed the role of FGFR2 in promoting the osteogenic differentiation of hMSCs. Knockdown of FGFR2 resulted in downregulation of pro-osteogenic genes and upregulation of pro-adipogenic genes and adipogenic commitment. Moreover, under osteogenic induction, FGFR2 knockdown resulted in upregulation of Enhancer of Zeste Homolog 2 (EZH2), an epigenetic enzyme that regulates MSC lineage commitment and suppresses osteogenesis. Lastly, we show that serial-passaged hMSCs have reduced FGFR2 expression and impaired osteogenic potential. Our study suggests that FGFR2 is critical for mediating osteogenic fate by regulating the balance of osteo-adipogenic lineage commitment. Therefore, examining FGFR2 levels during serial-passaging of hMSCs may prove useful for monitoring their multipotency.
Collapse
Affiliation(s)
- Ying Zhang
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 138673, Singapore
| | - Ling Ling
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 138648, Singapore
| | - Arya Ajay D/O Ajayakumar
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 138673, Singapore
| | - Yating Michelle Eio
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 138673, Singapore
| | - Andre J van Wijnen
- Department of Biochemistry, University of Vermont, Burlington, VT 05405, USA
| | - Victor Nurcombe
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 138648, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University-Imperial College London, 636921, Singapore
| | - Simon M Cool
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 138673, Singapore; Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 119288, Singapore.
| |
Collapse
|
35
|
Expanding horizons of achondroplasia treatment: current options and future developments. Osteoarthritis Cartilage 2022; 30:535-544. [PMID: 34864168 DOI: 10.1016/j.joca.2021.11.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/23/2021] [Accepted: 11/28/2021] [Indexed: 02/02/2023]
Abstract
Activating mutations in the FGFR3 receptor tyrosine kinase lead to most prevalent form of genetic dwarfism in humans, the achondroplasia. Many features of the complex function of FGFR3 in growing skeleton were characterized, which facilitated identification of therapy targets, and drove progress toward treatment. In August 2021, the vosoritide was approved for treatment of achondroplasia, which is based on a stable variant of the C-natriuretic peptide. Other drugs may soon follow, as several conceptually different inhibitors of FGFR3 signaling progress through clinical trials. Here, we review the current achondroplasia therapeutics, describe their mechanisms, and illuminate motivations leading to their development. We also discuss perspectives of curing achondroplasia, and options for repurposing achondroplasia drugs for dwarfing conditions unrelated to FGFR3.
Collapse
|
36
|
Chioni AM, Grose RP. Biological Significance and Targeting of the FGFR Axis in Cancer. Cancers (Basel) 2021; 13:5681. [PMID: 34830836 PMCID: PMC8616401 DOI: 10.3390/cancers13225681] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 12/15/2022] Open
Abstract
The pleiotropic effects of fibroblast growth factors (FGFs), the widespread expression of all seven signalling FGF receptors (FGFRs) throughout the body, and the dramatic phenotypes shown by many FGF/R knockout mice, highlight the diversity, complexity and functional importance of FGFR signalling. The FGF/R axis is critical during normal tissue development, homeostasis and repair. Therefore, it is not surprising that substantial evidence also pinpoints the involvement of aberrant FGFR signalling in disease, including tumourigenesis. FGFR aberrations in cancer include mutations, gene fusions, and amplifications as well as corrupted autocrine/paracrine loops. Indeed, many clinical trials on cancer are focusing on targeting the FGF/FGFR axis, using selective FGFR inhibitors, nonselective FGFR tyrosine kinase inhibitors, ligand traps, and monoclonal antibodies and some have already been approved for the treatment of cancer patients. The heterogeneous tumour microenvironment and complexity of FGFR signalling may be some of the factors responsible for the resistance or poor response to therapy with FGFR axis-directed therapeutic agents. In the present review we will focus on the structure and function of FGF(R)s, their common irregularities in cancer and the therapeutic value of targeting their function in cancer.
Collapse
Affiliation(s)
- Athina-Myrto Chioni
- School of Life Sciences Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames KT1 2EE, UK
| | - Richard P. Grose
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK;
| |
Collapse
|
37
|
Kumble S, Savarirayan R. Emerging therapies for Achondroplasia: changing the rules of the game. Expert Opin Emerg Drugs 2021; 26:425-431. [PMID: 34758681 DOI: 10.1080/14728214.2021.2005577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Achondroplasia is the most common genetic cause of disproportionate short stature, affecting over 360,000 individuals. Serious complications contributing to significant morbidity in affected individuals include cranio-cervical junction compression and obstructive sleep apnoea. Current clinically available treatments are predominantly symptomatic, and associated with variable outcomes. We summarise the new precision investigational products that are currently in Phase 2 and Phase 3 clinical trials for the treatment of individuals with achondroplasia. AREAS COVERED Fibroblast growth factor receptor 3 (FGFR3), a membrane-spanning tyrosine kinase receptor, binds various fibroblast growth factors (FGF) to regulate the normal process of endochondral bone growth. Gain of FGFR3 function in individuals with achondroplasia results in inhibition of normal endochondral ossification. A greater understanding of these molecular pathways through animal models has led to the development of several targeted therapies being tested in children, which we discuss in this review. EXPERT OPINION The last decade has been game-changing in terms of new precision therapies for children with achondroplasia that have the potential to fundamentally change the natural history of this condition. The next decade will see how these therapies compare, if they might be used in combination, and evaluate the balance of their long-term benefits and harms.
Collapse
Affiliation(s)
- Smitha Kumble
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria Australia
| | - Ravi Savarirayan
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria Australia.,University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
38
|
Abraham SP, Nita A, Krejci P, Bosakova M. Cilia kinases in skeletal development and homeostasis. Dev Dyn 2021; 251:577-608. [PMID: 34582081 DOI: 10.1002/dvdy.426] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 11/08/2022] Open
Abstract
Primary cilia are dynamic compartments that regulate multiple aspects of cellular signaling. The production, maintenance, and function of cilia involve more than 1000 genes in mammals, and their mutations disrupt the ciliary signaling which manifests in a plethora of pathological conditions-the ciliopathies. Skeletal ciliopathies are genetic disorders affecting the development and homeostasis of the skeleton, and encompass a broad spectrum of pathologies ranging from isolated polydactyly to lethal syndromic dysplasias. The recent advances in forward genetics allowed for the identification of novel regulators of skeletogenesis, and revealed a growing list of ciliary proteins that are critical for signaling pathways implicated in bone physiology. Among these, a group of protein kinases involved in cilia assembly, maintenance, signaling, and disassembly has emerged. In this review, we summarize the functions of cilia kinases in skeletal development and disease, and discuss the available and upcoming treatment options.
Collapse
Affiliation(s)
- Sara P Abraham
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Alexandru Nita
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Pavel Krejci
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Institute of Animal Physiology and Genetics of the CAS, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Michaela Bosakova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Institute of Animal Physiology and Genetics of the CAS, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| |
Collapse
|
39
|
Huang Z, Feng J, Feng X, Chan L, Lu J, Lei L, Huang Z, Zhang X. Loss of signal transducer and activator of transcription 3 impaired the osteogenesis of mesenchymal progenitor cells in vivo and in vitro. Cell Biosci 2021; 11:172. [PMID: 34496957 PMCID: PMC8424822 DOI: 10.1186/s13578-021-00685-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 08/31/2021] [Indexed: 01/27/2023] Open
Abstract
Background Signal transducer and activator of transcription 3 (Stat3) is a cytoplasmic transcription factor that participates in various biologic processes. Loss of Stat3 causes hyperimmunoglobulin E syndrome, presenting with skeletal disorders including osteoporosis, recurrent fractures, scoliosis, and craniosynostosis. The objective of this study is to explore the effect and mechanism of Stat3 on osteogenesis of mesenchymal progenitors. Methods Stat3 was conditionally knockout (CKO) in mesenchymal progenitors by crossing the pair-related homeobox gene 1-cre (Prx1-Cre) with Stat3-floxed strain mice. Whole-mount-skeletal staining, histology, and micro-CT were used to assess the differences between Stat3 CKO and control mice. Further, in vitro experiments were conducted to evaluate the osteogenesis potential of primary isolated bone marrow mesenchymal stem cells (BMSCs) from both control and Stat3 CKO mice. After osteogenic induction for 14d, alizarin red staining was used to show the calcium deposit, while the western blotting was applied to detect the expression of osteogenic markers. Results Compared with the control, Stat3 CKO mice were present with shortened limbs, multiple fractures of long bone, and open calvarial fontanels. The abnormal growth plate structure and reduced collagen fiber were found in Stat3 CKO limbs. According to micro-CT analysis, the reduced cortical bone thickness and bone volume were found on Stat3 CKO mice. The in vitro osteogenic differentiation of BMSCs was inhibited in Stat3 CKO samples. After osteogenic induction for 14d, the significantly diminished calcium deposits were found in Stat3 CKO BMSCs. The decreased expression of osteogenic markers (OPN and COL1A1) was observed in Stat3 CKO BMSCs, compared with the control. Conclusions Stat3 played a critical role in bone development and osteogenesis. Loss of Stat3 impaired the osteogenesis of mesenchymal progenitors in vivo and in vitro. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-021-00685-3.
Collapse
Affiliation(s)
- Zijing Huang
- Department of Operative Dentistry and Endodontics, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China.,Guangdong Province Key Laboratory of Stomatology, Guangzhou, Guangdong, China
| | - Jingyi Feng
- Department of Operative Dentistry and Endodontics, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China.,Guangdong Province Key Laboratory of Stomatology, Guangzhou, Guangdong, China
| | - Xin Feng
- Department of Operative Dentistry and Endodontics, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China.,Guangdong Province Key Laboratory of Stomatology, Guangzhou, Guangdong, China
| | - Laiting Chan
- Department of Operative Dentistry and Endodontics, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China.,Guangdong Province Key Laboratory of Stomatology, Guangzhou, Guangdong, China
| | - Jiarui Lu
- Department of Operative Dentistry and Endodontics, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China.,Guangdong Province Key Laboratory of Stomatology, Guangzhou, Guangdong, China
| | - Lizhen Lei
- Department of Operative Dentistry and Endodontics, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China.,Guangdong Province Key Laboratory of Stomatology, Guangzhou, Guangdong, China
| | - Zhuwei Huang
- Department of Operative Dentistry and Endodontics, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China.,Guangdong Province Key Laboratory of Stomatology, Guangzhou, Guangdong, China
| | - Xiaolei Zhang
- Department of Operative Dentistry and Endodontics, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China. .,Guangdong Province Key Laboratory of Stomatology, Guangzhou, Guangdong, China.
| |
Collapse
|
40
|
Mizutani Y, Nagai M, Iwata H, Matsunami K, Seishima M. Epidermal Nevus Syndrome Associated with Dwarfism and Atopic Dermatitis. CHILDREN-BASEL 2021; 8:children8080697. [PMID: 34438587 PMCID: PMC8394286 DOI: 10.3390/children8080697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/06/2021] [Accepted: 08/11/2021] [Indexed: 11/16/2022]
Abstract
Epidermal nevus syndrome (ENS) is a congenital disorder characterized by widespread linear epidermal lesions consisting of epidermal nevus and extracutaneous involvements, especially of the central nervous system and skeletal system. Garcia-Hafner-Happle syndrome, also known as fibroblast growth factor receptor 3 (FGFR3)-ENS, is characterized by a systematized keratinocytic EN of soft and velvety type with neurological abnormalities such as seizures, intellectual impairment, and cortical atrophy. We present a case of a 9-year-old Japanese boy afflicted with Garcia-Hafner-Happle syndrome associated with dwarfism and atopic dermatitis. We show the results of physical examination, DNA analysis, and imaging studies and discuss the mutation underlying the child's disorder.
Collapse
Affiliation(s)
- Yuki Mizutani
- Department of Dermatology, Gifu Prefectural General Medical Center, Gifu 500-8717, Japan;
- Correspondence: ; Tel.:+81-246-1111
| | - Miki Nagai
- Department of Dermatology, Gifu Prefectural General Medical Center, Gifu 500-8717, Japan;
| | - Hitoshi Iwata
- Department of Pathology, Gifu Prefectural General Medical Center, Gifu 500-8717, Japan;
| | - Kunihiro Matsunami
- Department of Pediatrics, Gifu Prefectural General Medical Center, Gifu 500-8717, Japan;
| | - Mariko Seishima
- Department of Dermatology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan;
| |
Collapse
|
41
|
Cao Y, Liu L, Lin J, Sun P, Guo K, Li S, Li X, Lan ZJ, Wang H, Lei Z. Dysregulation of Notch-FGF signaling axis in germ cells results in cystic dilation of the rete testis in mice. J Cell Commun Signal 2021; 16:75-92. [PMID: 34101112 PMCID: PMC8688682 DOI: 10.1007/s12079-021-00628-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/26/2021] [Indexed: 11/27/2022] Open
Abstract
Numb (Nb) and Numb-like (Nbl) are functionally redundant adaptor proteins that critically regulate cell fate and morphogenesis in a variety of organs. We selectively deleted Nb and Nbl in testicular germ cells by breeding Nb/Nbl floxed mice with a transgenic mouse line Tex101-Cre. The mutant mice developed unilateral or bilateral cystic dilation in the rete testis (RT). Dye trace indicated partial blockages in the testicular hilum. Morphological and immunohistochemical evaluations revealed that the lining epithelium of the cysts possessed similar characteristics of RT epithelium, suggesting that the cyst originated from dilation of the RT lumen. Spermatogenesis and the efferent ducts were unaffected. In comparisons of isolated germ cells from mutants to control mice, the Notch activity considerably increased and the expression of Notch target gene Hey1 significantly elevated. Further studies identified that germ cell Fgf4 expression negatively correlated the Notch activity and demonstrated that blockade of FGF receptors mediated FGF4 signaling induced enlargement of the RT lumen in vitro. The crucial role of the FGF4 signaling in modulation of RT development was verified by the selective germ cell Fgf4 ablation, which displayed a phenotype similar to that of germ cell Nb/Nbl null mutant males. These findings indicate that aberrant over-activation of the Notch signaling in germ cells due to Nb/Nbl abrogation impairs the RT development, which is through the suppressing germ cell Fgf4 expression. The present study uncovers the presence of a lumicrine signal pathway in which secreted/diffusible protein FGF4 produced by germ cells is essential for normal RT development.
Collapse
Affiliation(s)
- Yin Cao
- Department of Andrology, the First Hospital of Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Lingyun Liu
- Department of Andrology, the First Hospital of Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Jing Lin
- Department of OB/GYN and Women's Health, MDR Building, University of Louisville School of Medicine, 511 South Floyd Street, Louisville, KY, 40292, USA
| | - Penghao Sun
- Department of Andrology, the First Hospital of Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Kaimin Guo
- Department of Andrology, the First Hospital of Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Shengqiang Li
- Department of OB/GYN and Women's Health, MDR Building, University of Louisville School of Medicine, 511 South Floyd Street, Louisville, KY, 40292, USA
- Fujian Academy of Traditional Chinese Medicine, Fuzhou, 350003, China
| | - Xian Li
- Department of OB/GYN and Women's Health, MDR Building, University of Louisville School of Medicine, 511 South Floyd Street, Louisville, KY, 40292, USA
| | - Zi-Jian Lan
- Division of Life Sciences, Alltech, Nicholasville, KY, 40356, USA
| | - Hongliang Wang
- Department of Andrology, the First Hospital of Jilin University, Changchun, Jilin, 130021, People's Republic of China.
| | - Zhenmin Lei
- Department of OB/GYN and Women's Health, MDR Building, University of Louisville School of Medicine, 511 South Floyd Street, Louisville, KY, 40292, USA.
| |
Collapse
|
42
|
Leek CC, Soulas JM, Bhattacharya I, Ganji E, Locke RC, Smith MC, Bhavsar JD, Polson SW, Ornitz DM, Killian ML. Deletion of Fibroblast growth factor 9 globally and in skeletal muscle results in enlarged tuberosities at sites of deltoid tendon attachments. Dev Dyn 2021; 250:1778-1795. [PMID: 34091985 PMCID: PMC8639753 DOI: 10.1002/dvdy.383] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The growth of most bony tuberosities, like the deltoid tuberosity (DT), rely on the transmission of muscle forces at the tendon-bone attachment during skeletal growth. Tuberosities distribute muscle forces and provide mechanical leverage at attachment sites for joint stability and mobility. The genetic factors that regulate tuberosity growth remain largely unknown. In mouse embryos with global deletion of fibroblast growth factor 9 (Fgf9), the DT size is notably enlarged. In this study, we explored the tissue-specific regulation of DT size using both global and targeted deletion of Fgf9. RESULTS We showed that cell hypertrophy and mineralization dynamics of the DT, as well as transcriptional signatures from skeletal muscle but not bone, were influenced by the global loss of Fgf9. Loss of Fgf9 during embryonic growth led to increased chondrocyte hypertrophy and reduced cell proliferation at the DT attachment site. This endured hypertrophy and limited proliferation may explain the abnormal mineralization patterns and locally dysregulated expression of markers of endochondral development in Fgf9null attachments. We then showed that targeted deletion of Fgf9 in skeletal muscle leads to postnatal enlargement of the DT. CONCLUSION Taken together, we discovered that Fgf9 may play an influential role in muscle-bone cross-talk during embryonic and postnatal development.
Collapse
Affiliation(s)
- Connor C Leek
- College of Engineering, University of Delaware, Newark, Delaware, USA.,Department of Orthopaedic Surgery, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Jaclyn M Soulas
- College of Engineering, University of Delaware, Newark, Delaware, USA.,College of Agriculture and Natural Resources, University of Delaware, Newark, Delaware, USA
| | - Iman Bhattacharya
- College of Engineering, University of Delaware, Newark, Delaware, USA.,Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware, USA
| | - Elahe Ganji
- College of Engineering, University of Delaware, Newark, Delaware, USA.,Department of Orthopaedic Surgery, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Ryan C Locke
- College of Engineering, University of Delaware, Newark, Delaware, USA
| | - Megan C Smith
- College of Engineering, University of Delaware, Newark, Delaware, USA.,Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jaysheel D Bhavsar
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware, USA
| | - Shawn W Polson
- College of Engineering, University of Delaware, Newark, Delaware, USA.,Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware, USA
| | - David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Megan L Killian
- College of Engineering, University of Delaware, Newark, Delaware, USA.,Department of Orthopaedic Surgery, Michigan Medicine, Ann Arbor, Michigan, USA
| |
Collapse
|
43
|
Zhou Z, Wang M, Yang J, Liu B, Li L, Shi Y, Pu F, Xu P. Genome-wide association analysis reveals genetic variations and candidate genes associated with growth-related traits and condition factor in Takifugu bimaculatus. REPRODUCTION AND BREEDING 2021. [DOI: 10.1016/j.repbre.2021.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
44
|
Shuhaibar LC, Kaci N, Egbert JR, Horville T, Loisay L, Vigone G, Uliasz TF, Dambroise E, Swingle MR, Honkanen RE, Biosse Duplan M, Jaffe LA, Legeai-Mallet L. Phosphatase inhibition by LB-100 enhances BMN-111 stimulation of bone growth. JCI Insight 2021; 6:141426. [PMID: 33986191 PMCID: PMC8262325 DOI: 10.1172/jci.insight.141426] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 03/25/2021] [Indexed: 12/16/2022] Open
Abstract
Activating mutations in fibroblast growth factor receptor 3 (FGFR3) and inactivating mutations in the natriuretic peptide receptor 2 (NPR2) guanylyl cyclase both result in decreased production of cyclic GMP in chondrocytes and severe short stature, causing achondroplasia (ACH) and acromesomelic dysplasia, type Maroteaux, respectively. Previously, we showed that an NPR2 agonist BMN-111 (vosoritide) increases bone growth in mice mimicking ACH (Fgfr3Y367C/+). Here, because FGFR3 signaling decreases NPR2 activity by dephosphorylating the NPR2 protein, we tested whether a phosphatase inhibitor (LB-100) could enhance BMN-111–stimulated bone growth in ACH. Measurements of cGMP production in chondrocytes of living tibias, and of NPR2 phosphorylation in primary chondrocytes, showed that LB-100 counteracted FGF-induced dephosphorylation and inactivation of NPR2. In ex vivo experiments with Fgfr3Y367C/+ mice, the combination of BMN-111 and LB-100 increased bone length and cartilage area, restored chondrocyte terminal differentiation, and increased the proliferative growth plate area, more than BMN-111 alone. The combination treatment also reduced the abnormal elevation of MAP kinase activity in the growth plate of Fgfr3Y367C/+ mice and improved the skull base anomalies. Our results provide a proof of concept that a phosphatase inhibitor could be used together with an NPR2 agonist to enhance cGMP production as a therapy for ACH.
Collapse
Affiliation(s)
- Leia C Shuhaibar
- Department of Cell Biology, University of Connecticut Health Center, Farmington Connecticut, USA
| | - Nabil Kaci
- Université de Paris, Imagine Institute, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, INSERM UMR 1163, F‑75015, Paris, France.,Inovarion, F-75005 Paris, France
| | - Jeremy R Egbert
- Department of Cell Biology, University of Connecticut Health Center, Farmington Connecticut, USA
| | - Thibault Horville
- Université de Paris, Imagine Institute, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, INSERM UMR 1163, F‑75015, Paris, France
| | - Léa Loisay
- Université de Paris, Imagine Institute, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, INSERM UMR 1163, F‑75015, Paris, France
| | - Giulia Vigone
- Department of Cell Biology, University of Connecticut Health Center, Farmington Connecticut, USA
| | - Tracy F Uliasz
- Department of Cell Biology, University of Connecticut Health Center, Farmington Connecticut, USA
| | - Emilie Dambroise
- Université de Paris, Imagine Institute, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, INSERM UMR 1163, F‑75015, Paris, France
| | - Mark R Swingle
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile Alabama, USA
| | - Richard E Honkanen
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile Alabama, USA
| | - Martin Biosse Duplan
- Université de Paris, Imagine Institute, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, INSERM UMR 1163, F‑75015, Paris, France.,Service de Médecine Bucco-Dentaire, Hôpital Bretonneau, AP-HP, Paris, France
| | - Laurinda A Jaffe
- Department of Cell Biology, University of Connecticut Health Center, Farmington Connecticut, USA
| | - Laurence Legeai-Mallet
- Université de Paris, Imagine Institute, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, INSERM UMR 1163, F‑75015, Paris, France
| |
Collapse
|
45
|
Guo C, Ran Q, Sun C, Zhou T, Yang X, Zhang J, Pang S, Xiao Y. Loss of FGFR3 Delays Acute Myeloid Leukemogenesis by Programming Weakly Pathogenic CD117-Positive Leukemia Stem-Like Cells. Front Pharmacol 2021; 11:632809. [PMID: 33584313 PMCID: PMC7879375 DOI: 10.3389/fphar.2020.632809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 12/21/2020] [Indexed: 11/21/2022] Open
Abstract
Chemotherapeutic patients with leukemia often relapse and produce drug resistance due to the existence of leukemia stem cells (LSCs). Fibroblast growth factor receptor 3 (FGFR3) signaling mediates the drug resistance of LSCs in chronic myeloid leukemia (CML). However, the function of FGFR3 in acute myeloid leukemia (AML) is less understood. Here, we identified that the loss of FGFR3 reprograms MLL-AF9 (MA)-driven murine AML cells into weakly pathogenic CD117-positive leukemia stem-like cells by activating the FGFR1-ERG signaling pathway. FGFR3 deletion significantly inhibits AML cells engraftment in vivo and extends the survival time of leukemic mice. FGFR3 deletion sharply decreased the expression of chemokines and the prolonged survival time in mice receiving FGFR3-deficient MA cells could be neutralized by overexpression of CCL3. Here we firstly found that FGFR3 had a novel regulatory mechanism for the stemness of LSCs in AML, and provided a promising anti-leukemia approach by interrupting FGFR3.
Collapse
Affiliation(s)
- Chen Guo
- Department of Biotechnology, Guangdong Medical University, Dongguan, China.,Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Jilin University, Changchun, China
| | - Qiuju Ran
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Jilin University, Changchun, China
| | - Chun Sun
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Jilin University, Changchun, China
| | - Tingting Zhou
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Jilin University, Changchun, China
| | - Xi Yang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Jilin University, Changchun, China
| | - Jizhou Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Jilin University, Changchun, China
| | - Shifeng Pang
- Department of Biotechnology, Guangdong Medical University, Dongguan, China
| | - Yechen Xiao
- Department of Biotechnology, Guangdong Medical University, Dongguan, China.,Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Jilin University, Changchun, China
| |
Collapse
|
46
|
Legare JM, Pauli RM, Hecht JT, Bober MB, Smid CJ, Modaff P, Little ME, Rodriguez-Buritica DF, Serna ME, Alade AY, Liu C, Hoover-Fong JE, Hashmi SS. CLARITY: Co-occurrences in achondroplasia-craniosynostosis, seizures, and decreased risk of diabetes mellitus. Am J Med Genet A 2021; 185:1168-1174. [PMID: 33496070 DOI: 10.1002/ajmg.a.62096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 12/03/2020] [Accepted: 01/09/2021] [Indexed: 12/12/2022]
Abstract
Achondroplasia is the most common disproportionate short statured skeletal dysplasia with a prevalence of approximately 1:20,000-30,000. We created the largest database to date of a historical cohort of 1374 patients with achondroplasia (CLARITY-aChondropLasia nAtuRal hIsTory studY). This cohort was queried for the presence of unrecognized or under-recognized features associated with achondroplasia. Craniosynostosis was found to co-occur with achondroplasia in 9 (0.65%) patients in this cohort, which is much higher than the general population prevalence of 3.1-7.2 per 10,000. In addition, 27 patients had seizures (2.0%), an apparent excess as compared to the general population. Only two people had diabetes despite a high rate of adult obesity. This report documents for the first time an increased prevalence of craniosynostosis in persons with achondroplasia, and adds support to previous observations of an apparently higher than expected prevalence of seizures and lower prevalence of diabetes mellitus.
Collapse
Affiliation(s)
- Janet M Legare
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Richard M Pauli
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Jacqueline T Hecht
- Department of Pediatrics, McGovern Medical School at UT Health, Houston, Texas, USA
| | - Michael B Bober
- Department of Pediatrics, A. l. duPont Hospital for Children, Thomas Jefferson University, Wilmington, Delaware, USA
| | - Cory J Smid
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA.,Department of Genetics, Children's Wisconsin; Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Peggy Modaff
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Mary Ellen Little
- Department of Pediatrics, A. l. duPont Hospital for Children, Thomas Jefferson University, Wilmington, Delaware, USA
| | | | - Maria Elena Serna
- Department of Pediatrics, McGovern Medical School at UT Health, Houston, Texas, USA
| | | | - Chengxin Liu
- Greenberg Center for Skeletal Dysplasias, McKusick Nathans Department of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Julie E Hoover-Fong
- Greenberg Center for Skeletal Dysplasias, McKusick Nathans Department of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - S Shahrukh Hashmi
- Department of Pediatrics, McGovern Medical School at UT Health, Houston, Texas, USA
| |
Collapse
|
47
|
Legeai-Mallet L, Savarirayan R. Novel therapeutic approaches for the treatment of achondroplasia. Bone 2020; 141:115579. [PMID: 32795681 DOI: 10.1016/j.bone.2020.115579] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 08/06/2020] [Indexed: 02/08/2023]
Abstract
Achondroplasia is the most common form of human dwarfism. The molecular basis of achondroplasia was elucidated in 1994 with the identification of the fibroblast growth factor receptor 3 (FGFR3) as the causative gene. Missense mutations causing achondroplasia result in activation of FGFR3 and its downstream signaling pathways, disturbing chondrogenesis, osteogenesis, and long bone elongation. A more accurate understanding of the clinical and molecular aspects of achondroplasia has allowed new therapeutic approaches to be developed. These are based on: clear understanding of the natural history of the disease; proof-of-concept preclinical studies in mouse models; and the current state of knowledge regarding FGFR3 and related growth plate homeostatic pathways. This review provides a brief overview of the preclinical mouse models of achondroplasia that have led to new, non-surgical therapeutic strategies being assessed and applied to children with achondroplasia through pioneering clinical trials.
Collapse
Affiliation(s)
- Laurence Legeai-Mallet
- Université de Paris, Imagine Institute, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, INSERM UMR 1163, F-75015 Paris, France.
| | - Ravi Savarirayan
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, University of Melbourne, Parkville, Victoria 3052, Australia.
| |
Collapse
|
48
|
Ozaki T, Kawamoto T, Iimori Y, Takeshita N, Yamagishi Y, Nakamura H, Kamohara M, Fujita K, Tanahashi M, Tsumaki N. Evaluation of FGFR inhibitor ASP5878 as a drug candidate for achondroplasia. Sci Rep 2020; 10:20915. [PMID: 33262386 PMCID: PMC7708468 DOI: 10.1038/s41598-020-77345-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/06/2020] [Indexed: 12/19/2022] Open
Abstract
Achondroplasia is caused by gain-of-function mutations in FGFR3 gene and leads to short-limb dwarfism. A stabilized analogue of C-type natriuretic peptide (CNP) is known to elongate bone by interacting with FGFR3 signals and thus is a promising drug candidate. However, it needs daily administration by percutaneous injection. FGFR inhibitor compounds are other drug candidates for achondroplasia because they directly fix the mutant protein malfunction. Although FGFR inhibitors elongate the bone of model mice, their adverse effects are not well studied. In this study, we found that a new FGFR inhibitor, ASP5878, which was originally developed as an anti-cancer drug, elongated the bone of achondroplasia model male mice at the dose of 300 μg/kg, which confers an AUC of 275 ng·h/ml in juvenile mice. Although ASP5878 was less effective in bone elongation than a CNP analogue, it is advantageous in that ASP5878 can be administered orally. The AUC at which minimal adverse effects were observed (very slight atrophy of the corneal epithelium) was 459 ng·h/ml in juvenile rats. The positive discrepancy between AUCs that brought efficacy and minimal adverse effect suggests the applicability of ASP5878 to achondroplasia in the clinical setting. We also analyzed effects of ASP5878 in a patient-specific induced pluripotent stem cell (iPSC) model for achondroplasia and found the effects on patient chondrocyte equivalents. Nevertheless, cautious consideration is needed when referring to safety data obtained from its application to adult patients with cancer in clinical tests.
Collapse
Affiliation(s)
- Tomonori Ozaki
- Cell Induction and Regulation Field, Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.,Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | | | - Yuki Iimori
- Cell Induction and Regulation Field, Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | | | | | - Hiroaki Nakamura
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | | | - Kaori Fujita
- Cell Induction and Regulation Field, Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | | | - Noriyuki Tsumaki
- Cell Induction and Regulation Field, Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
| |
Collapse
|
49
|
Lens fiber cell differentiation occurs independently of fibroblast growth factor receptor signaling in the absence of Pten. Dev Biol 2020; 467:1-13. [PMID: 32858001 DOI: 10.1016/j.ydbio.2020.07.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 11/21/2022]
Abstract
Fibroblast growth factor receptor (FGFR) signaling patterns multiple tissues in both vertebrates and invertebrates, largely through the activation of intracellular kinases. Recent studies have demonstrated that the phosphatase, PTEN negatively regulates FGFR signaling, such that the loss of PTEN can compensate for reduced FGFR signaling to rescue aspects of normal development. In the developing mouse lens, FGFR signaling promotes cell survival and fiber cell differentiation, and the loss of Pten largely compensates for the loss of Fgfr2 during lens development. To explore this regulatory relationship further, we focused on the phenotypic consequences of Pten loss on lens development and fiber cell differentiation in the absence of all FGFR signaling, both in vivo and in lens epithelial explants. Pten deletion partially rescues primary fiber cell elongation and γ-crystallin accumulation in FGFR-deficient lenses in vivo but fails to rescue cell survival or proliferation. However, in lens epithelial explants, where cells survive without FGFR signaling, Pten deletion rescues vitreous humor-induced lens fiber cell differentiation in the combined absence of Fgfr1, Fgfr2 and Fgfr3. This represents the first evidence that vitreous-initiated signaling cascades, independent of FGFR signaling, can drive mammalian lens fiber cell differentiation, when freed from repression by PTEN.
Collapse
|
50
|
Loss of FGFR3 Accelerates Bone Marrow Suppression-Induced Hematopoietic Stem and Progenitor Cell Expansion by Activating FGFR1-ELK1-Cyclin D1 Signaling. Transplant Cell Ther 2020; 27:45.e1-45.e10. [PMID: 32966879 DOI: 10.1016/j.bbmt.2020.09.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/26/2020] [Accepted: 09/02/2020] [Indexed: 12/15/2022]
Abstract
Patients with chemotherapy or radiation therapy often generate anemia and low immunity due to the therapy-induced bone marrow (BM) suppression. To enhance hematopoietic regeneration during the therapy-induced BM suppression urgently need to be solved. Fibroblast growth factors (FGFs) play important regulatory roles in hematopoietic stem and progenitor cell (HSPC) expansion in vitro and in vivo by the FGF receptor (FGFR1-4)-mediated signaling pathway. FGFR3 is an important member of the FGFR family, and its regulatory function in hematopoiesis is largely unknown. Using knockout (KO) mice of FGFR3, we found that loss of FGFR3 does not affect HSPC functions or lineage differentiation during steady-state hematopoiesis, but FGFR3 deletion accelerates HSPC expansion and hematopoiesis recovery via a cell-autonomous manner under 5-fluorouracil-induced BM suppression. Our results showed that FGFR3 inactivation accelerates BM suppression-induced HSPC expansion by upregulating FGFR1 and its downstream transcriptional factor, ELK, which regulates the expression of the cyclin D1 gene at the level of transcription. Further studies confirmed that loss of FGFR3 in hematopoietic cells inhibits in vivo leukemogenesis under BM suppression. Our data found a novel hematopoietic regulatory mechanism by which FGFR3 deletion promotes HSPC expansion under BM suppression and also provided a promising approach to enhance antileukemia and hematopoietic regeneration by inhibiting FGFR3 functions in HSPCs combined with leukemic chemotherapy.
Collapse
|