1
|
Marakhonov A, Serebryakova E, Mukhina A, Vechkasova A, Prokhorov N, Efimova I, Balinova N, Lobenskaya A, Vasilyeva T, Zabnenkova V, Ryzhkova O, Rodina Y, Pershin D, Soloveva N, Fomenko A, Saydaeva D, Ibisheva A, Irbaieva T, Koroteev A, Zinchenko R, Voronin S, Shcherbina A, Kutsev S. A Rare Case of TP63-Associated Lymphopenia Revealed by Newborn Screening Using TREC. Int J Mol Sci 2024; 25:10844. [PMID: 39409174 PMCID: PMC11482481 DOI: 10.3390/ijms251910844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
The expanded newborn screening (NBS) program in the Russian Federation was initiated in 2023, among which severe combined immunodeficiency (SCID) is screened using TREC/KREC assays. Here, we report a rare case of a TP63-associated disease identified through this NBS program. Dried blood spots from newborns were initially screened for TREC/KREC levels, and those with values below the cut-off underwent confirmatory testing and further genetic analysis, including whole-exome sequencing (WES). A male newborn was identified with significantly reduced TREC values, indicative of T cell lymphopenia. Genetic analysis revealed a heterozygous NM_003722.5:c.1027C>T variant in TP63, leading to the p.(Arg343Trp) substitution within the DNA binding domain. This mutation has been previously associated with Ectrodactyly-Ectodermal Dysplasia-Cleft lip/palate syndrome (EEC) syndrome and shown to reduce the transactivation activity of TP63 in a dominant-negative manner. This case represents one of the few instances of immune system involvement in a patient with a TP63 mutation, highlighting the need for further investigation into the immunological aspects of TP63-associated disorders. Our findings suggest that comprehensive immunological evaluation should be considered for patients with TP63 mutations to better understand and manage potential immune dysfunctions.
Collapse
Affiliation(s)
- Andrey Marakhonov
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (I.E.); (N.B.); (T.V.); (V.Z.); (O.R.); (R.Z.); (S.V.); (S.K.)
| | - Elena Serebryakova
- Saint-Petersburg State Medical Diagnostic Center (Medical Genetic Center), 194044 Saint-Petersburg, Russia; (E.S.); (A.V.); (A.L.); (A.K.)
| | - Anna Mukhina
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117198 Moscow, Russia; (A.M.); (Y.R.); (D.P.); (A.S.)
| | - Anastasia Vechkasova
- Saint-Petersburg State Medical Diagnostic Center (Medical Genetic Center), 194044 Saint-Petersburg, Russia; (E.S.); (A.V.); (A.L.); (A.K.)
| | - Nikolai Prokhorov
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA;
| | - Irina Efimova
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (I.E.); (N.B.); (T.V.); (V.Z.); (O.R.); (R.Z.); (S.V.); (S.K.)
| | - Natalia Balinova
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (I.E.); (N.B.); (T.V.); (V.Z.); (O.R.); (R.Z.); (S.V.); (S.K.)
| | - Anastasia Lobenskaya
- Saint-Petersburg State Medical Diagnostic Center (Medical Genetic Center), 194044 Saint-Petersburg, Russia; (E.S.); (A.V.); (A.L.); (A.K.)
| | - Tatyana Vasilyeva
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (I.E.); (N.B.); (T.V.); (V.Z.); (O.R.); (R.Z.); (S.V.); (S.K.)
| | - Victoria Zabnenkova
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (I.E.); (N.B.); (T.V.); (V.Z.); (O.R.); (R.Z.); (S.V.); (S.K.)
| | - Oxana Ryzhkova
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (I.E.); (N.B.); (T.V.); (V.Z.); (O.R.); (R.Z.); (S.V.); (S.K.)
| | - Yulia Rodina
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117198 Moscow, Russia; (A.M.); (Y.R.); (D.P.); (A.S.)
| | - Dmitry Pershin
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117198 Moscow, Russia; (A.M.); (Y.R.); (D.P.); (A.S.)
| | - Nadezhda Soloveva
- Department of Neonatal and Infantile Pathology, Saint-Petersburg State Pediatric Medical University, 194100 Saint-Petersburg, Russia; (N.S.); (A.F.)
| | - Anna Fomenko
- Department of Neonatal and Infantile Pathology, Saint-Petersburg State Pediatric Medical University, 194100 Saint-Petersburg, Russia; (N.S.); (A.F.)
| | - Djamila Saydaeva
- State Budgetary Institution “Maternity Hospital” of the Ministry of Healthcare of the Chechen Republic, 364017 Grozny, Russia; (D.S.); (A.I.)
| | - Aset Ibisheva
- State Budgetary Institution “Maternity Hospital” of the Ministry of Healthcare of the Chechen Republic, 364017 Grozny, Russia; (D.S.); (A.I.)
| | - Taisiya Irbaieva
- Department of Maternity and Childhood, Ministry of Healthcare of the Chechen Republic, 364061 Grozny, Russia;
| | - Alexander Koroteev
- Saint-Petersburg State Medical Diagnostic Center (Medical Genetic Center), 194044 Saint-Petersburg, Russia; (E.S.); (A.V.); (A.L.); (A.K.)
| | - Rena Zinchenko
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (I.E.); (N.B.); (T.V.); (V.Z.); (O.R.); (R.Z.); (S.V.); (S.K.)
| | - Sergey Voronin
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (I.E.); (N.B.); (T.V.); (V.Z.); (O.R.); (R.Z.); (S.V.); (S.K.)
| | - Anna Shcherbina
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117198 Moscow, Russia; (A.M.); (Y.R.); (D.P.); (A.S.)
| | - Sergey Kutsev
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (I.E.); (N.B.); (T.V.); (V.Z.); (O.R.); (R.Z.); (S.V.); (S.K.)
| |
Collapse
|
2
|
Di Girolamo D, Di Iorio E, Missero C. Molecular and Cellular Function of p63 in Skin Development and Genetic Diseases. J Invest Dermatol 2024:S0022-202X(24)02076-1. [PMID: 39340489 DOI: 10.1016/j.jid.2024.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/02/2024] [Accepted: 08/16/2024] [Indexed: 09/30/2024]
Abstract
The transcription factor p63 is a master regulator of multiple ectodermal derivatives. During epidermal commitment, p63 interacts with several chromatin remodeling complexes to transactivate epidermal-specific genes and repress transcription of simple epithelial and nonepithelial genes. In the postnatal epidermis, p63 is required to control the proliferative potential of progenitor cells, maintain epidermal integrity, and contribute to epidermal differentiation. Autosomal dominant sequence variant in p63 cause a spectrum of syndromic disorders that affect several tissues, including or derived from stratified epithelia. In this review, we describe the recent studies that have provided novel insights into disease pathogenesis and potential therapeutic targets.
Collapse
Affiliation(s)
- Daniela Di Girolamo
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy; Biology Department, University of Naples Federico II, Naples, Italy
| | - Enzo Di Iorio
- Clinical Genetics Unit, University Hospital of Padua, Padua, Italy; Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Caterina Missero
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy; Biology Department, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
3
|
Gall A, Bosticardo M, Ma S, Chen K, Amini K, Pala F, Delmonte OM, Wenger T, Bamshad M, Sleasman J, Blessing M, van Oers NSC, Notarangelo LD, de la Morena MT. Case report: Artificial thymic organoids facilitate clinical decisions for a patient with a TP63 variant and severe persistent T cell lymphopenia. Front Immunol 2024; 15:1438383. [PMID: 39364398 PMCID: PMC11448704 DOI: 10.3389/fimmu.2024.1438383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 08/27/2024] [Indexed: 10/05/2024] Open
Abstract
Pathogenic variants in the transcription factor TP63 are associated with clinically overlapping syndromes including ectrodactyly-ectodermal dysplasia clefting (EEC) and ankyloblepharon-ectodermal defects-cleft lip/palate (AEC). T cell lymphopenia has rarely been described in individuals with TP63 variants and the cause of the T cell defect is unclear. Here, we present a case of a female infant born with TP63-related syndrome and profound T cell lymphopenia, first uncovered through newborn screening. Flow cytometry analysis revealed low CD4+ naïve T cells and nearly absent CD8+ T cells with intact B and NK cell compartments. A de novo heterozygous pathogenic variant c.1040 G>A (C347Y) in exon 8 of TP63 was identified. An artificial thymic organoid system, to assess the intrinsic ability of the patient's hematopoietic cells to develop into T cells, was performed twice using separate peripheral blood samples. Ex vivo T cell differentiation was evident with the artificial organoid system, suggesting that a thymic stromal cell defect may be the cause of the T cell lymphopenia. Consistent with this, interrogation of publicly available data indicated that TP63 expression in the human thymus is restricted to thymic epithelial cells. Based on these data, congenital athymia was suspected and the patient received an allogenic cultured thymus tissue implant (CTTI). This is the first report of suspected congenital athymia and attempted treatment with CTTI associated with TP63 variant. At 9 months post-implant, peripheral lymphocyte analysis revealed measurable T cell receptor excision circles and presence of CD4+ recent thymic emigrants suggestive of early thymopoiesis. She will continue regular monitoring to ensure restoration of T cell immunity.
Collapse
Affiliation(s)
- Alevtina Gall
- Division of Immunology, Department of Pediatrics, University of Washington and Seattle Children’s Hospital, Seattle, WA, United States
| | - Marita Bosticardo
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Stacey Ma
- Division of Allergy and Infectious Diseases, Department of Internal Medicine, University of Washington, Seattle, WA, United States
| | - Karin Chen
- Division of Immunology, Department of Pediatrics, University of Washington and Seattle Children’s Hospital, Seattle, WA, United States
| | - Kayla Amini
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Francesca Pala
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Ottavia M. Delmonte
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Tara Wenger
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children’s Hospital, Seattle, WA, United States
| | - Michael Bamshad
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children’s Hospital, Seattle, WA, United States
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, United States
| | - John Sleasman
- Department of Pediatrics, Duke University Medical Center, Durham, NC, United States
| | - Matthew Blessing
- Division of Craniofacial Medicine, Department of Pediatrics, University of Washington and Seattle Children’s Hospital, Seattle, WA, United States
| | - Nicolai S. C. van Oers
- Department of Immunology, Pediatrics and Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Luigi D. Notarangelo
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, United States
| | - M. Teresa de la Morena
- Division of Immunology, Department of Pediatrics, University of Washington and Seattle Children’s Hospital, Seattle, WA, United States
| |
Collapse
|
4
|
Riller Q, Sorin B, Courteille C, Ho-Nhat D, Voyer TL, Debray JC, Stolzenberg MC, Pellé O, Becquard T, Riestra MR, Berteloot L, Migaud M, Delage L, Jeanpierre M, Boussard C, Brunaud C, Magérus A, Michel V, Roux C, Picard C, Masson C, Bole-Feysot C, Cagnard N, Corneau A, Meyts I, Baud V, Casanova JL, Fischer A, Dejardin E, Puel A, Boulanger C, Neven B, Rieux-Laucat F. Compound heterozygous mutations in the kinase domain of IKKα lead to immunodeficiency and immune dysregulation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.17.24307356. [PMID: 38798321 PMCID: PMC11118628 DOI: 10.1101/2024.05.17.24307356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
IKKα, encoded by CHUK , is crucial in the non-canonical NF-κB pathway and part of the IKK complex activating the canonical pathway alongside IKKβ. Absence of IKKα cause fetal encasement syndrome in human, fatal in utero, while an impaired IKKα-NIK interaction was reported in a single patient and cause combined immunodeficiency. Here, we describe compound heterozygous variants in the kinase domain of IKKα in a female patient with hypogammaglobulinemia, recurrent lung infections, and Hay-Wells syndrome-like features. We showed that both variants were loss-of-function. Non-canonical NF-κB activation was profoundly diminished in stromal and immune cells while the canonical pathway was partially impaired. Reintroducing wild-type CHUK restored non-canonical NF-κB activation. The patient had neutralizing autoantibodies against type I IFN, akin to non-canonical NF-κB pathway deficiencies. Thus, this is the first case of bi-allelic CHUK mutations disrupting IKKα kinase function, broadening non-canonical NF-κB defect understanding and suggesting IKKα's role in canonical NF-κB target gene expression in human.
Collapse
|
5
|
Hizem S, Maamouri R, Zaouak A, Rejeb I, Karoui S, Sebai M, Jilani H, Elaribi Y, Fenniche S, Cheour M, Bilan F, Ben Jemaa L. Absent meibomian glands and cone dystrophy in ADULT syndrome: identification by whole exome sequencing of pathogenic variants in two causal genes TP63 and CNGB3. Ophthalmic Genet 2024; 45:84-94. [PMID: 37158316 DOI: 10.1080/13816810.2023.2206891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 04/20/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND Ectrodactyly is a rare congenital limb malformation characterized by a deep median cleft of the hand and/or foot due to the absence of central rays. It could be isolated or depicts a part of diverse syndromic forms. Heterozygous pathogenic variants in the TP63 gene are responsible for at least four rare syndromic human disorders associated with ectrodactyly. Among them, ADULT (Acro-Dermato-Ungual-Lacrimal-Tooth) syndrome is characterized by ectodermal dysplasia, excessive freckling, nail dysplasia, and lacrimal duct obstruction, in addition to ectrodactyly and/or syndactyly. Ophthalmic findings are very common in TP63-related disorders, consisting mainly of lacrimal duct hypoplasia. Absent meibomian glands have also been well documented in EEC3 (Ectrodactyly Ectodermal dysplasia Cleft lip/palate) syndrome but not in ADULT syndrome. METHODS We report a case of syndromic ectrodactyly consistent with ADULT syndrome, with an additional ophthalmic manifestation of agenesis of meibomian glands. The proband, as well as her elder sister, presented with congenital cone dystrophy.The molecular investigation was performed in the proband using Whole Exome Sequencing. Family segregation of the identified variants was confirmed by Sanger sequencing. RESULTS Two clinically relevant variants were found in the proband: the novel de novo heterozygous missense c.931A > G (p.Ser311Gly) in the TP63 gene classified as pathogenic, and the homozygous nonsense pathogenic c.1810C > T (p.Arg604Ter) in the CNGB3 gene. The same homozygous CNGB3 variation was also found in the sister, explaining the cone dystrophy in both cases. CONCLUSIONS Whole Exome Sequencing allowed dual molecular diagnoses: de novo TP63-related syndromic ectrodactyly and familial CNGB3-related congenital cone dystrophy.
Collapse
Affiliation(s)
- Syrine Hizem
- Department of congenital and hereditary diseases, Mongi Slim hospital, La Marsa, Tunisia
- Human genetics laboratory, LR99ES10- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Rym Maamouri
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
- Department of Ophthalmology, Habib Thameur hospital, Tunis, Tunisia
| | - Anissa Zaouak
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
- Department of Dermatology, Genodermatosis and Cancers Laboratory LR12SP03, Habib Thameur Hospital, Tunis, Tunisia
| | - Imen Rejeb
- Department of congenital and hereditary diseases, Mongi Slim hospital, La Marsa, Tunisia
- Maternal and Child health laboratory, LR22SP01- Mongi Slim Hospital, Tunis, Tunisia
| | - Sana Karoui
- Department of congenital and hereditary diseases, Mongi Slim hospital, La Marsa, Tunisia
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
- Maternal and Child health laboratory, LR22SP01- Mongi Slim Hospital, Tunis, Tunisia
| | - Molka Sebai
- Department of congenital and hereditary diseases, Mongi Slim hospital, La Marsa, Tunisia
- Human genetics laboratory, LR99ES10- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Houweyda Jilani
- Department of congenital and hereditary diseases, Mongi Slim hospital, La Marsa, Tunisia
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Yasmina Elaribi
- Department of congenital and hereditary diseases, Mongi Slim hospital, La Marsa, Tunisia
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Sami Fenniche
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
- Department of Dermatology, Genodermatosis and Cancers Laboratory LR12SP03, Habib Thameur Hospital, Tunis, Tunisia
| | - Monia Cheour
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
- Department of Ophthalmology, Habib Thameur hospital, Tunis, Tunisia
| | - Frédéric Bilan
- Laboratoire de Génétique, Service de Génétique, CHU Poitiers, Poitiers, France
| | - Lamia Ben Jemaa
- Department of congenital and hereditary diseases, Mongi Slim hospital, La Marsa, Tunisia
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
- Maternal and Child health laboratory, LR22SP01- Mongi Slim Hospital, Tunis, Tunisia
| |
Collapse
|
6
|
Ramal M, Corral S, Kalisz M, Lapi E, Real FX. The urothelial gene regulatory network: understanding biology to improve bladder cancer management. Oncogene 2024; 43:1-21. [PMID: 37996699 DOI: 10.1038/s41388-023-02876-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 11/25/2023]
Abstract
The urothelium is a stratified epithelium composed of basal cells, one or more layers of intermediate cells, and an upper layer of differentiated umbrella cells. Most bladder cancers (BLCA) are urothelial carcinomas. Loss of urothelial lineage fidelity results in altered differentiation, highlighted by the taxonomic classification into basal and luminal tumors. There is a need to better understand the urothelial transcriptional networks. To systematically identify transcription factors (TFs) relevant for urothelial identity, we defined highly expressed TFs in normal human bladder using RNA-Seq data and inferred their genomic binding using ATAC-Seq data. To focus on epithelial TFs, we analyzed RNA-Seq data from patient-derived organoids recapitulating features of basal/luminal tumors. We classified TFs as "luminal-enriched", "basal-enriched" or "common" according to expression in organoids. We validated our classification by differential gene expression analysis in Luminal Papillary vs. Basal/Squamous tumors. Genomic analyses revealed well-known TFs associated with luminal (e.g., PPARG, GATA3, FOXA1) and basal (e.g., TP63, TFAP2) phenotypes and novel candidates to play a role in urothelial differentiation or BLCA (e.g., MECOM, TBX3). We also identified TF families (e.g., KLFs, AP1, circadian clock, sex hormone receptors) for which there is suggestive evidence of their involvement in urothelial differentiation and/or BLCA. Genomic alterations in these TFs are associated with BLCA. We uncover a TF network involved in urothelial cell identity and BLCA. We identify novel candidate TFs involved in differentiation and cancer that provide opportunities for a better understanding of the underlying biology and therapeutic intervention.
Collapse
Affiliation(s)
- Maria Ramal
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Sonia Corral
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Mark Kalisz
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- CIBERONC, Madrid, Spain
| | - Eleonora Lapi
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- CIBERONC, Madrid, Spain
| | - Francisco X Real
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
- CIBERONC, Madrid, Spain.
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
7
|
Katoh I, Tsukinoki K, Hata RI, Kurata SI. ΔNp63 silencing, DNA methylation shifts, and epithelial-mesenchymal transition resulted from TAp63 genome editing in squamous cell carcinoma. Neoplasia 2023; 45:100938. [PMID: 37778252 PMCID: PMC10544079 DOI: 10.1016/j.neo.2023.100938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023]
Abstract
TP63 (p63) is strongly expressed in lower-grade carcinomas of the head and neck, skin, breast, and urothelium to maintain a well-differentiated phenotype. TP63 has two transcription start sites at exons 1 and 3' that produce TAp63 and ΔNp63 isoforms, respectively. The major protein, ΔNp63α, epigenetically activates genes essential for epidermal/craniofacial differentiation, including ΔNp63 itself. To examine the specific role of weakly expressed TAp63, we disrupted exon 1 using CRISPR-Cas9 homology-directed repair in a head and neck squamous cell carcinoma (SCC) line. Surprisingly, TAp63 knockout cells having either monoallelic GFP cassette insertion paired with a frameshift deletion allele or biallelic GFP cassette insertion exhibited ΔNp63 silencing. Loss of keratinocyte-specific gene expression, switching of intermediate filament genes from KRT(s) to VIM, and suppression of cell-cell and cell-matrix adhesion components indicated the core events of epithelial-mesenchymal transition. Many of the positively and negatively affected genes, including ΔNp63, displayed local DNA methylation changes. Furthermore, ΔNp63 expression was partially rescued by transfection of the TAp63 knockout cells with TAp63α and application of DNA methyltransferase inhibitor zebularine. These results suggest that TAp63, a minor part of the TP63 gene, may be involved in the auto-activation mechanism of ΔNp63 by which the keratinocyte-specific epigenome is maintained in SCC.
Collapse
Affiliation(s)
- Iyoko Katoh
- Faculty of Dentistry, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka, Kanagawa 238-8580, Japan.
| | - Keiichi Tsukinoki
- Department of Environmental Pathology, Graduate School of Dentistry, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka, Kanagawa 238-8580, Japan
| | - Ryu-Ichiro Hata
- Faculty of Dentistry, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka, Kanagawa 238-8580, Japan
| | - Shun-Ichi Kurata
- Faculty of Dentistry, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka, Kanagawa 238-8580, Japan
| |
Collapse
|
8
|
Oda S, Ushiama M, Nakamura W, Gotoh M, Tanabe N, Watanabe T, Odaka Y, Aoyagi K, Sakamoto H, Nakajima T, Sugano K, Yoshida T, Shiraishi Y, Hirata M. A complex rearrangement between APC and TP63 associated with familial adenomatous polyposis identified by multimodal genomic analysis: a case report. Front Oncol 2023; 13:1205847. [PMID: 37601671 PMCID: PMC10434623 DOI: 10.3389/fonc.2023.1205847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/11/2023] [Indexed: 08/22/2023] Open
Abstract
Genetic testing of the APC gene by sequencing analysis and MLPA is available across commercial laboratories for the definitive genetic diagnosis of familial adenomatous polyposis (FAP). However, some genetic alterations are difficult to detect using conventional analyses. Here, we report a case of a complex genomic APC-TP63 rearrangement, which was identified in a patient with FAP by a series of genomic analyses, including multigene panel testing, chromosomal analyses, and long-read sequencing. A woman in her thirties was diagnosed with FAP due to multiple polyps in her colon and underwent total colectomy. Subsequent examination revealed fundic gland polyposis. No family history suggesting FAP was noted except for a first-degree relative with desmoid fibromatosis. The conventional APC gene testing was performed by her former doctor, but no pathogenic variant was detected, except for 2 variants of unknown significance. The patient was referred to our hospital for further genetic analysis. After obtaining informed consent in genetic counseling, we conducted a multigene panel analysis. As insertion of a part of the TP63 sequence was detected within exon16 of APC, further analyses, including chromosomal analysis and long-read sequencing, were performed and a complex translocation between chromosomes 3 and 5 containing several breakpoints in TP63 and APC was identified. No phenotype associated with TP63 pathogenic variants, such as split-hand/foot malformation (SHFM) or ectrodactyly, ectodermal dysplasia, or cleft lip/palate syndrome (EEC) was identified in the patient or her relatives. Multimodal genomic analyses should be considered in cases where no pathogenic germline variants are detected by conventional genetic testing despite an evident medical or family history of hereditary cancer syndromes.
Collapse
Affiliation(s)
- Satoyo Oda
- Department of Genetic Medicine and Services, National Cancer Center Hospital, Tokyo, Japan
- Department of Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan
| | - Mineko Ushiama
- Department of Genetic Medicine and Services, National Cancer Center Hospital, Tokyo, Japan
- Department of Clinical Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Wataru Nakamura
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Masahiro Gotoh
- Department of Genetic Medicine and Services, National Cancer Center Hospital, Tokyo, Japan
- Department of Clinical Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Noriko Tanabe
- Department of Genetic Medicine and Services, National Cancer Center Hospital, Tokyo, Japan
| | - Tomoko Watanabe
- Department of Genetic Medicine and Services, National Cancer Center Hospital, Tokyo, Japan
| | - Yoko Odaka
- Department of Clinical Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Kazuhiko Aoyagi
- Department of Clinical Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Hiromi Sakamoto
- Department of Genetic Medicine and Services, National Cancer Center Hospital, Tokyo, Japan
- Department of Clinical Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Takeshi Nakajima
- Department Medical Ethics/Medical Genetics, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Clinical Genetics, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kokichi Sugano
- Department of Genetic Medicine and Services, National Cancer Center Hospital, Tokyo, Japan
- Department of Genetic Medicine, Kyoundo Hospital, Sasaki Foundation, Tokyo, Japan
| | - Teruhiko Yoshida
- Department of Genetic Medicine and Services, National Cancer Center Hospital, Tokyo, Japan
- Department of Clinical Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Yuichi Shiraishi
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Makoto Hirata
- Department of Genetic Medicine and Services, National Cancer Center Hospital, Tokyo, Japan
- Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
9
|
Bloch-Zupan A, Rey T, Jimenez-Armijo A, Kawczynski M, Kharouf N, Dure-Molla MDL, Noirrit E, Hernandez M, Joseph-Beaudin C, Lopez S, Tardieu C, Thivichon-Prince B, Dostalova T, Macek M, Alloussi ME, Qebibo L, Morkmued S, Pungchanchaikul P, Orellana BU, Manière MC, Gérard B, Bugueno IM, Laugel-Haushalter V. Amelogenesis imperfecta: Next-generation sequencing sheds light on Witkop's classification. Front Physiol 2023; 14:1130175. [PMID: 37228816 PMCID: PMC10205041 DOI: 10.3389/fphys.2023.1130175] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/06/2023] [Indexed: 05/27/2023] Open
Abstract
Amelogenesis imperfecta (AI) is a heterogeneous group of genetic rare diseases disrupting enamel development (Smith et al., Front Physiol, 2017a, 8, 333). The clinical enamel phenotypes can be described as hypoplastic, hypomineralized or hypomature and serve as a basis, together with the mode of inheritance, to Witkop's classification (Witkop, J Oral Pathol, 1988, 17, 547-553). AI can be described in isolation or associated with others symptoms in syndromes. Its occurrence was estimated to range from 1/700 to 1/14,000. More than 70 genes have currently been identified as causative. Objectives: We analyzed using next-generation sequencing (NGS) a heterogeneous cohort of AI patients in order to determine the molecular etiology of AI and to improve diagnosis and disease management. Methods: Individuals presenting with so called "isolated" or syndromic AI were enrolled and examined at the Reference Centre for Rare Oral and Dental Diseases (O-Rares) using D4/phenodent protocol (www.phenodent.org). Families gave written informed consents for both phenotyping and molecular analysis and diagnosis using a dedicated NGS panel named GenoDENT. This panel explores currently simultaneously 567 genes. The study is registered under NCT01746121 and NCT02397824 (https://clinicaltrials.gov/). Results: GenoDENT obtained a 60% diagnostic rate. We reported genetics results for 221 persons divided between 115 AI index cases and their 106 associated relatives from a total of 111 families. From this index cohort, 73% were diagnosed with non-syndromic amelogenesis imperfecta and 27% with syndromic amelogenesis imperfecta. Each individual was classified according to the AI phenotype. Type I hypoplastic AI represented 61 individuals (53%), Type II hypomature AI affected 31 individuals (27%), Type III hypomineralized AI was diagnosed in 18 individuals (16%) and Type IV hypoplastic-hypomature AI with taurodontism concerned 5 individuals (4%). We validated the genetic diagnosis, with class 4 (likely pathogenic) or class 5 (pathogenic) variants, for 81% of the cohort, and identified candidate variants (variant of uncertain significance or VUS) for 19% of index cases. Among the 151 sequenced variants, 47 are newly reported and classified as class 4 or 5. The most frequently discovered genotypes were associated with MMP20 and FAM83H for isolated AI. FAM20A and LTBP3 genes were the most frequent genes identified for syndromic AI. Patients negative to the panel were resolved with exome sequencing elucidating for example the gene involved ie ACP4 or digenic inheritance. Conclusion: NGS GenoDENT panel is a validated and cost-efficient technique offering new perspectives to understand underlying molecular mechanisms of AI. Discovering variants in genes involved in syndromic AI (CNNM4, WDR72, FAM20A … ) transformed patient overall care. Unravelling the genetic basis of AI sheds light on Witkop's AI classification.
Collapse
Affiliation(s)
- Agnes Bloch-Zupan
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France
- Université de Strasbourg, Institut d’études avancées (USIAS), Strasbourg, France
- Hôpitaux Universitaires de Strasbourg (HUS), Pôle de Médecine et Chirurgie Bucco-dentaires, Hôpital Civil, Centre de référence des maladies rares orales et dentaires, O-Rares, Filiére Santé Maladies rares TETE COU, European Reference Network ERN CRANIO, Strasbourg, France
- Université de Strasbourg, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), IN-SERM U1258, CNRS- UMR7104, Illkirch, France
- Eastman Dental Institute, University College London, London, United Kingdom
| | - Tristan Rey
- Université de Strasbourg, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), IN-SERM U1258, CNRS- UMR7104, Illkirch, France
- Hôpitaux Universitaires de Strasbourg, Laboratoires de diagnostic génétique, Institut de Génétique Médicale d’Alsace, Strasbourg, France
| | - Alexandra Jimenez-Armijo
- Université de Strasbourg, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), IN-SERM U1258, CNRS- UMR7104, Illkirch, France
| | - Marzena Kawczynski
- Hôpitaux Universitaires de Strasbourg (HUS), Pôle de Médecine et Chirurgie Bucco-dentaires, Hôpital Civil, Centre de référence des maladies rares orales et dentaires, O-Rares, Filiére Santé Maladies rares TETE COU, European Reference Network ERN CRANIO, Strasbourg, France
| | - Naji Kharouf
- Université de Strasbourg, Laboratoire de Biomatériaux et Bioingénierie, Inserm UMR_S 1121, Strasbourg, France
| | | | - Muriel de La Dure-Molla
- Rothschild Hospital, Public Assistance-Paris Hospitals (AP-HP), Reference Center for Rare Oral and Den-tal Diseases (O-Rares), Paris, France
| | - Emmanuelle Noirrit
- Centre Hospitalier Universitaire (CHU) Rangueil, Toulouse, Competence Center for Rare Oral and Den-tal Diseases, Toulouse, France
| | - Magali Hernandez
- Centre Hospitalier Régional Universitaire de Nancy, Université de Lorraine, Competence Center for Rare Oral and Dental Diseases, Nancy, France
| | - Clara Joseph-Beaudin
- Centre Hospitalier Universitaire de Nice, Competence Center for Rare Oral and Dental Diseases, Nice, France
| | - Serena Lopez
- Centre Hospitalier Universitaire de Nantes, Competence Center for Rare Oral and Dental Diseases, Nantes, France
| | - Corinne Tardieu
- APHM, Hôpitaux Universitaires de Marseille, Hôpital Timone, Competence Center for Rare Oral and Dental Diseases, Marseille, France
| | - Béatrice Thivichon-Prince
- Centre Hospitalier Universitaire de Lyon, Competence Center for Rare Oral and Dental Diseases, Lyon, France
| | | | - Tatjana Dostalova
- Department of Stomatology (TD) and Department of Biology and Medical Genetics (MM) Charles University 2nd Faculty of Medicine and Motol University Hospital, Prague, Czechia
| | - Milan Macek
- Department of Stomatology (TD) and Department of Biology and Medical Genetics (MM) Charles University 2nd Faculty of Medicine and Motol University Hospital, Prague, Czechia
| | | | - Mustapha El Alloussi
- Faculty of Dentistry, International University of Rabat, CReSS Centre de recherche en Sciences de la Santé, Rabat, Morocco
| | - Leila Qebibo
- Unité de génétique médicale et d’oncogénétique, CHU Hassan II, Fes, Morocco
| | | | | | - Blanca Urzúa Orellana
- Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Marie-Cécile Manière
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France
- Hôpitaux Universitaires de Strasbourg (HUS), Pôle de Médecine et Chirurgie Bucco-dentaires, Hôpital Civil, Centre de référence des maladies rares orales et dentaires, O-Rares, Filiére Santé Maladies rares TETE COU, European Reference Network ERN CRANIO, Strasbourg, France
| | - Bénédicte Gérard
- Hôpitaux Universitaires de Strasbourg, Laboratoires de diagnostic génétique, Institut de Génétique Médicale d’Alsace, Strasbourg, France
| | - Isaac Maximiliano Bugueno
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France
- Hôpitaux Universitaires de Strasbourg (HUS), Pôle de Médecine et Chirurgie Bucco-dentaires, Hôpital Civil, Centre de référence des maladies rares orales et dentaires, O-Rares, Filiére Santé Maladies rares TETE COU, European Reference Network ERN CRANIO, Strasbourg, France
- Université de Strasbourg, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), IN-SERM U1258, CNRS- UMR7104, Illkirch, France
| | - Virginie Laugel-Haushalter
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France
- Université de Strasbourg, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), IN-SERM U1258, CNRS- UMR7104, Illkirch, France
- Hôpitaux Universitaires de Strasbourg, Laboratoires de diagnostic génétique, Institut de Génétique Médicale d’Alsace, Strasbourg, France
| |
Collapse
|
10
|
Osterburg C, Ferniani M, Antonini D, Frombach AS, D'Auria L, Osterburg S, Lotz R, Löhr F, Kehrloesser S, Zhou H, Missero C, Dötsch V. Disease-related p63 DBD mutations impair DNA binding by distinct mechanisms and varying degree. Cell Death Dis 2023; 14:274. [PMID: 37072394 PMCID: PMC10113246 DOI: 10.1038/s41419-023-05796-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 04/20/2023]
Abstract
The transcription factor p63 shares a high sequence identity with the tumour suppressor p53 which manifests itself in high structural similarity and preference for DNA sequences. Mutations in the DNA binding domain (DBD) of p53 have been studied in great detail, enabling a general mechanism-based classification. In this study we provide a detailed investigation of all currently known mutations in the p63 DBD, which are associated with developmental syndromes, by measuring their impact on transcriptional activity, DNA binding affinity, zinc binding capacity and thermodynamic stability. Some of the mutations we have further characterized with respect to their ability to convert human dermal fibroblasts into induced keratinocytes. Here we propose a classification of the p63 DBD mutations based on the four different mechanisms of DNA binding impairment which we identified: direct DNA contact, zinc finger region, H2 region, and dimer interface mutations. The data also demonstrate that, in contrast to p53 cancer mutations, no p63 mutation induces global unfolding and subsequent aggregation of the domain. The dimer interface mutations that affect the DNA binding affinity by disturbing the interaction between the individual DBDs retain partial DNA binding capacity which correlates with a milder patient phenotype.
Collapse
Affiliation(s)
- Christian Osterburg
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438, Frankfurt, Germany
| | - Marco Ferniani
- CEINGE Biotecnologie Avanzate Franco Salvatore, 80145, Naples, Italy
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy
| | - Dario Antonini
- CEINGE Biotecnologie Avanzate Franco Salvatore, 80145, Naples, Italy
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy
| | - Ann-Sophie Frombach
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438, Frankfurt, Germany
| | - Ludovica D'Auria
- CEINGE Biotecnologie Avanzate Franco Salvatore, 80145, Naples, Italy
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy
| | - Susanne Osterburg
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438, Frankfurt, Germany
| | - Rebecca Lotz
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438, Frankfurt, Germany
| | - Frank Löhr
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438, Frankfurt, Germany
| | - Sebastian Kehrloesser
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438, Frankfurt, Germany
| | - Huiqing Zhou
- Departments of Human Genetics, Radboud Institute of Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
- Departments of Molecular Developmental Biology, Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Caterina Missero
- CEINGE Biotecnologie Avanzate Franco Salvatore, 80145, Naples, Italy.
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy.
| | - Volker Dötsch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438, Frankfurt, Germany.
| |
Collapse
|
11
|
Garrocho-Rangel A, Serrano-Aguilar G, Hernández-Molinar Y, Aranda-Romo S, Alejandri-Gamboa V, Pozos-Guillén A. Oral management of children/adolescents with ectrodactyly-ectodermal dysplasia-clefting (EEC) syndrome: A scoping review. SPECIAL CARE IN DENTISTRY 2023; 43:152-162. [PMID: 35879828 DOI: 10.1111/scd.12752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 11/30/2022]
Abstract
AIMS EEC is a rare syndrome characterized by the triad of ectrodactyly, ectodermal dysplasia, and orofacial clefting, along with other clinical manifestations mainly in hair, skin, and teeth. The present paper aimed to perform a scoping review to collect the most relevant studies and focused on the diagnosis and oral management of EEC syndrome in the pediatric dental setting. This review also pretended to make recommendations and map the gaps in this clinical topic. METHODS An exhaustive electronic and manual search was conducted in four databases (PubMed, EMBASE, Google Scholar, and Dentistry & Oral Sciences Source/EBSCO) according to previously established eligibility criteria, using different combinations of keywords, MeSH terms, and Boolean operators. Titles, abstracts, and full-text articles were screened and selected by precalibrated reviewers. A data charting was also accomplished for summarizing the overview of the evidence. RESULTS A total of 37 references were identified, and 32 titles remained after removing duplicates; then, 25 potential full-text articles were carefully reviewed. Finally, 15 relevant and most informative studies were included. Most studies were single clinical case reports. Only one descriptive retrospective study was detected. None randomized clinical trials or comparative observational studies were found. A medical/dental multidisciplinary approach is needed for the management of EEC syndrome. CONCLUSIONS Diverse dental specialists must be involved. Pediatric dentists must play a principal role in the prevention and treatment of oral diseases; particularly the preservation of the primary and mixed dentitions, trying to achieve normal orofacial growth.
Collapse
Affiliation(s)
- Arturo Garrocho-Rangel
- Pediatric Dentistry Postgraduate Program, Faculty of Dentistry, San Luis Potosí University, San Luis Potosí, SLP, Mexico
| | - Guadalupe Serrano-Aguilar
- Pediatric Dentistry Postgraduate Program, Faculty of Dentistry, San Luis Potosí University, San Luis Potosí, SLP, Mexico
| | - Yolanda Hernández-Molinar
- Pediatric Dentistry Postgraduate Program, Faculty of Dentistry, San Luis Potosí University, San Luis Potosí, SLP, Mexico
| | - Saray Aranda-Romo
- Pediatric Dentistry Postgraduate Program, Faculty of Dentistry, San Luis Potosí University, San Luis Potosí, SLP, Mexico
| | - Vanessa Alejandri-Gamboa
- Pediatric Dentistry Postgraduate Program, Faculty of Dentistry, San Luis Potosí University, San Luis Potosí, SLP, Mexico
| | - Amaury Pozos-Guillén
- Pediatric Dentistry Postgraduate Program, Faculty of Dentistry, San Luis Potosí University, San Luis Potosí, SLP, Mexico
| |
Collapse
|
12
|
Klein A, Rhinn M, Keyes WM. Cellular senescence and developmental defects. FEBS J 2023; 290:1303-1313. [PMID: 36856681 DOI: 10.1111/febs.16731] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/05/2023] [Accepted: 01/20/2023] [Indexed: 03/02/2023]
Abstract
Cellular senescence is a distinct state that is frequently induced in response to ageing and stress. Yet studies have also uncovered beneficial functions in development, repair and regeneration. Current opinion therefore suggests that timely and controlled induction of senescence can be beneficial, while misregulation of the senescence program, either through mis-timed activation, or chronic accumulation of senescent cells, contributes to many disease states and the ageing process. Whether atypical activation of senescence plays a role in the pathogenesis of developmental defects has been relatively underexplored. Here, we discuss three recent studies that implicate ectopic senescence in neurodevelopmental defects, with possible causative roles for senescence in these birth defects. In addition, we highlight how the examination of senescence in other birth defects is warranted, and speculate that aberrantly activated senescence may play a much broader role in developmental defects than currently appreciated.
Collapse
Affiliation(s)
- Annabelle Klein
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,UMR7104, Centre National de la Recherche Scientifique (CNRS), Illkirch, France.,U1258, Institut National de la Santé et de la Recherche Médicale (INSERM), Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Muriel Rhinn
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,UMR7104, Centre National de la Recherche Scientifique (CNRS), Illkirch, France.,U1258, Institut National de la Santé et de la Recherche Médicale (INSERM), Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - William M Keyes
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,UMR7104, Centre National de la Recherche Scientifique (CNRS), Illkirch, France.,U1258, Institut National de la Santé et de la Recherche Médicale (INSERM), Illkirch, France.,Université de Strasbourg, Illkirch, France
| |
Collapse
|
13
|
Helenius K, Ojala L, Kainulainen L, Peltonen S, Hietala M, Pohjola P, Parikka V. Overlap between EEC and AEC syndrome and immunodeficiency in a preterm infant with a TP63 variant. Eur J Med Genet 2023; 66:104735. [PMID: 36863510 DOI: 10.1016/j.ejmg.2023.104735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 02/06/2023] [Accepted: 02/27/2023] [Indexed: 03/04/2023]
Abstract
Pathogenic variants in the transcription factor TP63 gene cause a variety of clinical phenotypes, such as ectrodactyly-ectodermal dysplasia-clefting (EEC) syndrome and ankyloblepharon-ectodermal dysplasia-clefting (AEC) syndrome. Historically, TP63-related phenotypes have been divided into several syndromes based on both the clinical presentation and location of the pathogenic variant on the TP63 gene. This division is complicated by significant overlap between syndromes. Here we describe a patient with clinical characteristics of different TP63-associated syndromes (cleft lip and palate, split feet, ectropion, erosions of the skin and corneas), associated with a de novo heterozygous pathogenic variant c.1681 T>C, p.(Cys561Arg) in exon 13 of the TP63 gene. Our patient also developed enlargement of the left-sided cardiac compartments and secondary mitral insufficiency, which is a novel finding, and immune deficiency, which has only rarely been reported. The clinical course was further complicated by prematurity and very low birth weight. We illustrate the overlapping features of EEC and AEC syndrome and multidisciplinary care needed to address the various clinical challenges.
Collapse
Affiliation(s)
- Kjell Helenius
- Department of Paediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland.
| | - Liisa Ojala
- Department of Ophthalmology, Turku University Hospital, Turku, Finland
| | - Leena Kainulainen
- Department of Paediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
| | - Sirkku Peltonen
- Department of Dermatology, Turku University Hospital and University of Turku, Turku, Finland; Department of Dermatology and Venereology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Marja Hietala
- Department of Genomics and Clinical Genetics, Turku University Hospital, Turku, Finland
| | - Pia Pohjola
- Department of Genomics and Clinical Genetics, Turku University Hospital, Turku, Finland
| | - Vilhelmiina Parikka
- Department of Paediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
| |
Collapse
|
14
|
Petrin AL, Zeng E, Thomas MA, Moretti-Ferreira D, Marazita ML, Xie XJ, Murray JC, Moreno-Uribe LM. DNA methylation differences in monozygotic twins with Van der Woude syndrome. FRONTIERS IN DENTAL MEDICINE 2023; 4:1120948. [PMID: 36936396 PMCID: PMC10019782 DOI: 10.3389/fdmed.2023.1120948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
Abstract
Introduction Van der Woude Syndrome (VWS) is an autosomal dominant disorder responsible for 2% of all syndromic orofacial clefts (OFCs) with IRF6 being the primary causal gene (70%). Cases may present with lip pits and either cleft lip, cleft lip with cleft palate, or cleft palate, with marked phenotypic discordance even among individuals carrying the same mutation. This suggests that genetic or epigenetic modifiers may play additional roles in the syndrome's etiology and variability in expression. We report the first DNA methylation profiling of 2 pairs of monozygotic twins with VWS. Our goal is to explore epigenetic contributions to VWS etiology and variable phenotypic expressivity by comparing DNAm profiles in both twin pairs. While the mutations that cause VWS in these twins are known, the additional mechanism behind their phenotypic risk and variability in expression remains unclear. Methods We generated whole genome DNAm data for both twin pairs. Differentially methylated positions (DMPs) were selected based on: (1) a coefficient of variation in DNAm levels in unaffected individuals < 20%, and (2) intra-twin pair absolute difference in DNAm levels >5% (delta beta > | 0.05|). We then divided the DMPs in two subgroups for each twin pair for further analysis: (1) higher methylation levels in twin A (Twin A > Twin B); and (2) higher methylation levels in twin B (Twin B >Twin A). Results and Discussion Gene ontology analysis revealed a list of enriched genes that showed significant differential DNAm, including clef-associated genes. Among the cleft-associated genes, TP63 was the most significant hit (p=7.82E-12). Both twin pairs presented differential DNAm levels in CpG sites in/near TP63 (Twin 1A > Twin 1B and Twin 2A < Twin 2B). The genes TP63 and IRF6 function in a biological regulatory loop to coordinate epithelial proliferation and differentiation in a process that is critical for palatal fusion. The effects of the causal mutations in IRF6 can be further impacted by epigenetic dysregulation of IRF6 itself, or genes in its pathway. Our data shows evidence that changes in DNAm is a plausible mechanism that can lead to markedly distinct phenotypes, even among individuals carrying the same mutation.
Collapse
Affiliation(s)
- A. L. Petrin
- College of Dentistry and Dental Clinics, University of Iowa, Iowa, IA, United States
| | - E. Zeng
- College of Dentistry and Dental Clinics, University of Iowa, Iowa, IA, United States
| | - M. A. Thomas
- Departments of Medical Genetics and Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - D. Moretti-Ferreira
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - M. L. Marazita
- Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| | - X. J. Xie
- College of Dentistry and Dental Clinics, University of Iowa, Iowa, IA, United States
| | - J. C. Murray
- Carver College of Medicine, University of Iowa, Iowa, IA, United States
| | - L. M. Moreno-Uribe
- College of Dentistry and Dental Clinics, University of Iowa, Iowa, IA, United States
| |
Collapse
|
15
|
Innovative Therapeutic Approaches for the Treatment of the Ocular Morbidities in Patients with EEC Syndrome. Cells 2023; 12:cells12030495. [PMID: 36766837 PMCID: PMC9914602 DOI: 10.3390/cells12030495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/19/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Ectrodactyly-Ectodermal dysplasia-Clefting (EEC) syndrome is caused by heterozygous missense point mutations in the p63 gene, an important transcription factor during embryogenesis and for stem cell differentiation in stratified epithelia. Most of the cases are sporadic, related to de novo mutations arising during early-stage development. Familial cases show an autosomic dominant inheritance. The major cause of visual morbidity is limbal stem cell failure, which develops in the second to third decade of life. Patients often show ocular surface alterations, such as recurrent blepharitis and conjunctivitis, superficial microlesions of the cornea, and spontaneous corneal perforation and ulceration, leading to progressive corneal clouding and eventually visual loss. No definitive cures are currently available, and treatments to alleviate symptoms are only palliative. In this review, we will discuss the proposed therapeutic strategies that have been tested or are under development for the management of the ocular defects in patients affected by EEC syndrome: (i) gene therapy-based approaches by means of Allele-Specific (AS) siRNAs to correct the p63 mutations; (ii) cell therapy-based approaches to replenish the pool of limbal stem cells; and (iii) drug therapy to correct/bypass the genetic defect. However, as the number of patients with EEC syndrome is too limited, further studies are still necessary to prove the effectiveness (and safety) of these innovative therapeutic approaches to counteract the premature differentiation of limbal stem cells.
Collapse
|
16
|
Strubel A, Münick P, Chaikuad A, Dreier B, Schaefer J, Gebel J, Osterburg C, Tuppi M, Schäfer B, Knapp S, Plückthun A, Dötsch V. Designed Ankyrin Repeat Proteins as a tool box for analyzing p63. Cell Death Differ 2022; 29:2445-2458. [PMID: 35717504 PMCID: PMC9751120 DOI: 10.1038/s41418-022-01030-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 01/31/2023] Open
Abstract
The function of the p53 transcription factor family is dependent on several folded domains. In addition to a DNA-binding domain, members of this family contain an oligomerization domain. p63 and p73 also contain a C-terminal Sterile α-motif domain. Inhibition of most transcription factors is difficult as most of them lack deep pockets that can be targeted by small organic molecules. Genetic knock-out procedures are powerful in identifying the overall function of a protein, but they do not easily allow one to investigate roles of individual domains. Here we describe the characterization of Designed Ankyrin Repeat Proteins (DARPins) that were selected as tight binders against all folded domains of p63. We determine binding affinities as well as specificities within the p53 protein family and show that DARPins can be used as intracellular inhibitors for the modulation of transcriptional activity. By selectively inhibiting DNA binding of the ΔNp63α isoform that competes with p53 for the same promoter sites, we show that p53 can be reactivated. We further show that inhibiting the DNA binding activity stabilizes p63, thus providing evidence for a transcriptionally regulated negative feedback loop. Furthermore, the ability of DARPins to bind to the DNA-binding domain and the Sterile α-motif domain within the dimeric-only and DNA-binding incompetent conformation of TAp63α suggests a high structural plasticity within this special conformation. In addition, the developed DARPins can also be used to specifically detect p63 in cell culture and in primary tissue and thus constitute a very versatile research tool for studying the function of p63.
Collapse
Affiliation(s)
- Alexander Strubel
- grid.7839.50000 0004 1936 9721Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438 Frankfurt, Germany
| | - Philipp Münick
- grid.7839.50000 0004 1936 9721Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438 Frankfurt, Germany
| | - Apirat Chaikuad
- grid.7839.50000 0004 1936 9721Institute of Pharmaceutical Chemistry, Goethe University, 60438 Frankfurt, Germany ,grid.7839.50000 0004 1936 9721Structural Genomics Consortium, Goethe University, 60438 Frankfurt, Germany
| | - Birgit Dreier
- grid.7400.30000 0004 1937 0650Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Jonas Schaefer
- grid.7400.30000 0004 1937 0650Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Jakob Gebel
- grid.7839.50000 0004 1936 9721Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438 Frankfurt, Germany
| | - Christian Osterburg
- grid.7839.50000 0004 1936 9721Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438 Frankfurt, Germany
| | - Marcel Tuppi
- grid.7839.50000 0004 1936 9721Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438 Frankfurt, Germany
| | - Birgit Schäfer
- grid.7839.50000 0004 1936 9721Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438 Frankfurt, Germany
| | - Stefan Knapp
- grid.7839.50000 0004 1936 9721Institute of Pharmaceutical Chemistry, Goethe University, 60438 Frankfurt, Germany ,grid.7839.50000 0004 1936 9721Structural Genomics Consortium, Goethe University, 60438 Frankfurt, Germany
| | - Andreas Plückthun
- grid.7400.30000 0004 1937 0650Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Volker Dötsch
- grid.7839.50000 0004 1936 9721Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438 Frankfurt, Germany
| |
Collapse
|
17
|
Tucker EJ, Gutfreund N, Belaud-Rotureau MA, Gilot D, Brun T, Kline BL, Domin-Bernhard M, Théard C, Touraine P, Robevska G, van den Bergen J, Ayers KL, Sinclair AH, Dötsch V, Jaillard S. Dominant TP63 missense variants lead to constitutive activation and premature ovarian insufficiency. Hum Mutat 2022; 43:1443-1453. [PMID: 35801529 PMCID: PMC9542062 DOI: 10.1002/humu.24432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/15/2022] [Accepted: 07/01/2022] [Indexed: 11/23/2022]
Abstract
Premature ovarian insufficiency (POI) is a leading form of female infertility, characterised by menstrual disturbance and elevated follicle‐stimulating hormone before age 40. It is highly heterogeneous with variants in over 80 genes potentially causative, but the majority of cases having no known cause. One gene implicated in POI pathology is TP63. TP63 encodes multiple p63 isoforms, one of which has been shown to have a role in the surveillance of genetic quality in oocytes. TP63 C‐terminal truncation variants and N‐terminal duplication have been described in association with POI, however, functional validation has been lacking. Here we identify three novel TP63 missense variants in women with nonsyndromic POI, including one in the N‐terminal activation domain, one in the C‐terminal inhibition domain, and one affecting a unique and poorly understood p63 isoform, TA*p63. Via blue‐native page and luciferase reporter assays we demonstrate that two of these variants disrupt p63 dimerization, leading to constitutively active p63 tetramer that significantly increases the transcription of downstream targets. This is the first evidence that TP63 missense variants can cause isolated POI and provides mechanistic insight that TP63 variants cause POI due to constitutive p63 activation and accelerated oocyte loss in the absence of DNA damage.
Collapse
Affiliation(s)
- Elena J Tucker
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Niklas Gutfreund
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438, Frankfurt, Germany
| | - Marc-Antoine Belaud-Rotureau
- CHU Rennes, Service de Biologie de la Reproduction-CECOS, F-35033, Rennes, France.,Univ Rennes, CHU Rennes, INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France.,CHU Rennes, Service de Cytogénétique et Biologie Cellulaire, F-35033, Rennes, France
| | - David Gilot
- CHU Rennes, Service de Cytogénétique et Biologie Cellulaire, F-35033, Rennes, France.,INSERM U1242, COSS, Université Rennes 1, Rennes, 35042, France
| | - Tiffany Brun
- CHU Rennes, Service de Cytogénétique et Biologie Cellulaire, F-35033, Rennes, France.,CHU Rennes, Département de Gynécologie Obstétrique et Reproduction Humaine, F-35033, Rennes, France
| | - Brianna L Kline
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia
| | - Mathilde Domin-Bernhard
- CHU Rennes, Département de Gynécologie Obstétrique et Reproduction Humaine, F-35033, Rennes, France
| | - Camille Théard
- CHU Rennes, Service de Génétique Clinique, CLAD Ouest, F-35033, Rennes, France
| | - Philippe Touraine
- Department of Endocrinology and Reproductive Medicine, AP-HP, Sorbonne University Medicine, Centre de Référence des Maladies Endocriniennes Rares de la Croissance et du Développement, Centre des Pathologies Gynécologiques Rares, Paris, France
| | - Gorjana Robevska
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia
| | - Jocelyn van den Bergen
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia
| | - Katie L Ayers
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Andrew H Sinclair
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Volker Dötsch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438, Frankfurt, Germany
| | - Sylvie Jaillard
- Univ Rennes, CHU Rennes, INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France.,CHU Rennes, Service de Cytogénétique et Biologie Cellulaire, F-35033, Rennes, France
| |
Collapse
|
18
|
Use of FACIAL ARTERY MUSCULOMUCOSAL and Turbinate Flaps for Rapp Hodgkin Syndrome. World J Plast Surg 2022; 11:153-156. [PMID: 36117904 PMCID: PMC9446118 DOI: 10.52547/wjps.11.2.153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/19/2022] [Indexed: 11/18/2022] Open
|
19
|
Hammond NL, Dixon MJ. Revisiting the embryogenesis of lip and palate development. Oral Dis 2022; 28:1306-1326. [PMID: 35226783 PMCID: PMC10234451 DOI: 10.1111/odi.14174] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 12/13/2022]
Abstract
Clefts of the lip and palate (CLP), the major causes of congenital facial malformation globally, result from failure of fusion of the facial processes during embryogenesis. With a prevalence of 1 in 500-2500 live births, CLP causes major morbidity throughout life as a result of problems with facial appearance, feeding, speaking, obstructive apnoea, hearing and social adjustment and requires complex, multi-disciplinary care at considerable cost to healthcare systems worldwide. Long-term outcomes for affected individuals include increased mortality compared with their unaffected siblings. The frequent occurrence and major healthcare burden imposed by CLP highlight the importance of dissecting the molecular mechanisms driving facial development. Identification of the genetic mutations underlying syndromic forms of CLP, where CLP occurs in association with non-cleft clinical features, allied to developmental studies using appropriate animal models is central to our understanding of the molecular events underlying development of the lip and palate and, ultimately, how these are disturbed in CLP.
Collapse
Affiliation(s)
- Nigel L. Hammond
- Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - Michael J. Dixon
- Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| |
Collapse
|
20
|
Distinct interactors define the p63 transcriptional signature in epithelial development or cancer. Biochem J 2022; 479:1375-1392. [PMID: 35748701 PMCID: PMC9250260 DOI: 10.1042/bcj20210737] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 11/24/2022]
Abstract
The TP63 is an indispensable transcription factor for development and homeostasis of epithelia and its derived glandular tissue. It is also involved in female germline cell quality control, muscle and thymus development. It is expressed as multiple isoforms transcribed by two independent promoters, in addition to alternative splicing occurring at the mRNA 3′-UTR. Expression of the TP63 gene, specifically the amino-deleted p63 isoform, ΔNp63, is required to regulate numerous biological activities, including lineage specification, self-renewal capacity of epithelial stem cells, proliferation/expansion of basal keratinocytes, differentiation of stratified epithelia. In cancer, ΔNp63 is implicated in squamous cancers pathogenesis of different origin including skin, head and neck and lung and in sustaining self-renewal of cancer stem cells. How this transcription factor can control such a diverse set of biological pathways is central to the understanding of the molecular mechanisms through which p63 acquires oncogenic activity, profoundly changing its down-stream transcriptional signature. Here, we highlight how different proteins interacting with p63 allow it to regulate the transcription of several central genes. The interacting proteins include transcription factors/regulators, epigenetic modifiers, and post-transcriptional modifiers. Moreover, as p63 depends on its interactome, we discuss the hypothesis to target the protein interactors to directly affect p63 oncogenic activities and p63-related diseases.
Collapse
|
21
|
The Therapeutic Potential of the Restoration of the p53 Protein Family Members in the EGFR-Mutated Lung Cancer. Int J Mol Sci 2022; 23:ijms23137213. [PMID: 35806218 PMCID: PMC9267050 DOI: 10.3390/ijms23137213] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 02/06/2023] Open
Abstract
Despite the recent development of precision medicine and targeted therapies, lung cancer remains the top cause of cancer-related mortality worldwide. The patients diagnosed with metastatic disease have a five-year survival rate lower than 6%. In metastatic disease, EGFR is the most common driver of mutation, with the most common co-driver hitting TP53. EGFR-positive patients are offered the frontline treatment with tyrosine kinase inhibitors, yet the development of resistance and the lack of alternative therapies make this group of patients only fit for clinical trial participation. Since mutant p53 is the most common co-driver in the metastatic setting, therapies reactivating the p53 pathway might serve as a promising alternative therapeutic approach in patients who have developed a resistance to tyrosine kinase inhibitors. This review focuses on the molecular background of EGFR-mutated lung cancer and discusses novel therapeutic options converging on the reactivation of p53 tumor suppressor pathways.
Collapse
|
22
|
P63 and P73 Activation in Cancers with p53 Mutation. Biomedicines 2022; 10:biomedicines10071490. [PMID: 35884795 PMCID: PMC9313412 DOI: 10.3390/biomedicines10071490] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 12/27/2022] Open
Abstract
The members of the p53 family comprise p53, p63, and p73, and full-length isoforms of the p53 family have a tumor suppressor function. However, p53, but not p63 or p73, has a high mutation rate in cancers causing it to lose its tumor suppressor function. The top and second-most prevalent p53 mutations are missense and nonsense mutations, respectively. In this review, we discuss possible drug therapies for nonsense mutation and a missense mutation in p53. p63 and p73 activators may be able to replace mutant p53 and act as anti-cancer drugs. Herein, these p63 and p73 activators are summarized and how to improve these activator responses, particularly focusing on p53 gain-of-function mutants, is discussed.
Collapse
|
23
|
Askarian S, Gholami M, Khalili-Tanha G, Tehrani NC, Joudi M, Khazaei M, Ferns GA, Hassanian SM, Avan A, Joodi M. The genetic factors contributing to the risk of cleft lip-cleft palate and their clinical utility. Oral Maxillofac Surg 2022:10.1007/s10006-022-01052-3. [PMID: 35426585 DOI: 10.1007/s10006-022-01052-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 03/03/2022] [Indexed: 10/18/2022]
Abstract
Cleft lip and cleft palate (CL/P) are among the most common congenital malformations in neonates and have syndromic or nonsyndromic forms. Nonsyndromic forms of malformation are being reported to be associated with chromosomal DNA modification by teratogenic exposure and to complex genetic contributions of multiple genes. Syndromic forms are shown to be related to chromosomal aberrations or monogenic diseases. There is a growing body of data illustrating the association of several genes with risk of developing this malformation, including genetic defects in T-box transcription factor-22 (TBX22), interferon regulatory factor-6 (IRF6), and poliovirus receptor-like-1 (PVRL1), responsible for X-linked cleft palate, cleft lip/palate-ectodermal dysplasia syndrome, and Van der Woude and popliteal pterygium syndromes, respectively. Genetic variants in MTR, PCYT1A, ASS1, SLC 25A13, GSTM1, GSTT1, SUMO1 BHMT1, and BHMT2 are being reported to be linked with CL/P risk. The etiology of nonsyndromic CLP is still remained to be unknown, although mutations in candidate genes have been found. Here, we provide an overview about the potential variants to be associated with CL/P for identification of the relative risk of CLP with respect to the basis of genetic background and environmental factors (e.g., dietary factors, alcohol use).
Collapse
Affiliation(s)
- Saeedeh Askarian
- Department of Medical Biotechnology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.,Department of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Masoumeh Gholami
- Department of Physiology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Ghazaleh Khalili-Tanha
- Metabolic syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negin Chaeichi Tehrani
- Metabolic syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Joudi
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Metabolic syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Falmer, Brighton, BN1 9PH, Sussex, UK
| | - Seyed Mahdi Hassanian
- Metabolic syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. .,Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran. .,Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Marjan Joodi
- Endoscopic and Minimally Invasive Surgery Research Center, Sarvar Children's Hospital, Mashhad, Iran. .,Department of Pediatric Surgery, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
24
|
Van Otterloo E, Milanda I, Pike H, Thompson JA, Li H, Jones KL, Williams T. AP-2α and AP-2β cooperatively function in the craniofacial surface ectoderm to regulate chromatin and gene expression dynamics during facial development. eLife 2022; 11:e70511. [PMID: 35333176 PMCID: PMC9038197 DOI: 10.7554/elife.70511] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
The facial surface ectoderm is essential for normal development of the underlying cranial neural crest cell populations, providing signals that direct appropriate growth, patterning, and morphogenesis. Despite the importance of the ectoderm as a signaling center, the molecular cues and genetic programs implemented within this tissue are understudied. Here, we show that removal of two members of the AP-2 transcription factor family, AP-2α and AP-2ß, within the early embryonic ectoderm of the mouse leads to major alterations in the craniofacial complex. Significantly, there are clefts in both the upper face and mandible, accompanied by fusion of the upper and lower jaws in the hinge region. Comparison of ATAC-seq and RNA-seq analyses between controls and mutants revealed significant changes in chromatin accessibility and gene expression centered on multiple AP-2 binding motifs associated with enhancer elements within these ectodermal lineages. In particular, loss of these AP-2 proteins affects both skin differentiation as well as multiple signaling pathways, most notably the WNT pathway. We also determined that the mutant clefting phenotypes that correlated with reduced WNT signaling could be rescued by Wnt1 ligand overexpression in the ectoderm. Collectively, these findings highlight a conserved ancestral function for AP-2 transcription factors in ectodermal development and signaling, and provide a framework from which to understand the gene regulatory network operating within this tissue that directs vertebrate craniofacial development.
Collapse
Affiliation(s)
- Eric Van Otterloo
- Iowa Institute for Oral Health Research, College of Dentistry & Dental Clinics, University of IowaIowa CityUnited States
- Department of Periodontics, College of Dentistry & Dental Clinics, University of IowaIowa CityUnited States
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of IowaIowa CityUnited States
- Department of Craniofacial Biology, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Isaac Milanda
- Department of Craniofacial Biology, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Hamish Pike
- Department of Craniofacial Biology, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Jamie A Thompson
- Iowa Institute for Oral Health Research, College of Dentistry & Dental Clinics, University of IowaIowa CityUnited States
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of IowaIowa CityUnited States
| | - Hong Li
- Department of Craniofacial Biology, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Kenneth L Jones
- Department of Pediatrics, Section of Hematology, Oncology, and Bone Marrow Transplant, University of Colorado School of Medicine, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Trevor Williams
- Department of Craniofacial Biology, University of Colorado Anschutz Medical CampusAuroraUnited States
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical CampusAuroraUnited States
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Children's Hospital ColoradoAuroraUnited States
| |
Collapse
|
25
|
ΔNp63-Senataxin circuit controls keratinocyte differentiation by promoting the transcriptional termination of epidermal genes. Proc Natl Acad Sci U S A 2022; 119:e2104718119. [PMID: 35235452 PMCID: PMC8915885 DOI: 10.1073/pnas.2104718119] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
ΔNp63 is a master regulator of skin homeostasis since it finely controls keratinocyte differentiation and proliferation. Here, we provide cellular and molecular evidence demonstrating the functional role of a ΔNp63 interactor, the R-loop–resolving enzyme Senataxin (SETX), in fine-tuning keratinocyte differentiation. We found that SETX physically binds the p63 DNA–binding motif present in two early epidermal differentiation genes, Keratin 1 (KRT1) and ZNF750, facilitating R-loop removal over their 3′ ends and thus allowing efficient transcriptional termination and gene expression. These molecular events translate into the inability of SETX-depleted keratinocytes to undergo the correct epidermal differentiation program. Remarkably, SETX is dysregulated in cutaneous squamous cell carcinoma, suggesting its potential involvement in the pathogenesis of skin disorders. ΔNp63, a master regulator of epithelial biology, is involved in regulating epithelial stem cell function, maintaining the integrity of stratified epithelial cells, and committing epidermal cells to the differentiation program. To this end, ΔNp63 exploits several direct mechanisms. Here, we elucidated a mechanism whereby ΔNp63 efficiently sustains the expression of epidermal differentiation genes. We show that ΔNp63 interacts with Senataxin (SETX), an RNA/DNA helicase able to resolve the R-loop intermediates over the GC-rich termination sites of coding genes. Notably, we found that SETX and ΔNp63 coregulate a subset of genes involved in the early step of the keratinocyte differentiation program. At the molecular level, SETX physically binds the p63 DNA–binding motifs present in two early epidermal differentiation genes, Keratin 1 (KRT1) and ZNF750, facilitating R-loop removal over their 3′ ends and thus promoting efficient transcriptional termination and gene expression. Remarkably, SETX loss affects the activation of the proper epidermal differentiation program in vitro and impacts epidermal layer stratification in organotypic human skin. Furthermore, we found that SETX is mutated or downmodulated in squamous cell carcinoma (SCC), and SETX gene mutation is a negative prognostic factor for cutaneous SCC patient survival. Collectively, our results unveil SETX as a molecular player of skin homeostasis potentially involved in hyperproliferative skin disorders.
Collapse
|
26
|
Enhanced pro-apoptosis gene signature following the activation of TAp63α in oocytes upon γ irradiation. Cell Death Dis 2022; 13:204. [PMID: 35246516 PMCID: PMC8897389 DOI: 10.1038/s41419-022-04659-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 02/01/2022] [Accepted: 02/14/2022] [Indexed: 12/20/2022]
Abstract
Specialized surveillance mechanisms are essential to maintain the genetic integrity of germ cells, which are not only the source of all somatic cells but also of the germ cells of the next generation. DNA damage and chromosomal aberrations are, therefore, not only detrimental for the individual but affect the entire species. In oocytes, the surveillance of the structural integrity of the DNA is maintained by the p53 family member TAp63α. The TAp63α protein is highly expressed in a closed and inactive state and gets activated to the open conformation upon the detection of DNA damage, in particular DNA double-strand breaks. To understand the cellular response to DNA damage that leads to the TAp63α triggered oocyte death we have investigated the RNA transcriptome of oocytes following irradiation at different time points. The analysis shows enhanced expression of pro-apoptotic and typical p53 target genes such as CDKn1a or Mdm2, concomitant with the activation of TAp63α. While DNA repair genes are not upregulated, inflammation-related genes become transcribed when apoptosis is initiated by activation of STAT transcription factors. Furthermore, comparison with the transcriptional profile of the ΔNp63α isoform from other studies shows only a minimal overlap, suggesting distinct regulatory programs of different p63 isoforms.
Collapse
|
27
|
Lan Y, Jiang R. Mouse models in palate development and orofacial cleft research: Understanding the crucial role and regulation of epithelial integrity in facial and palate morphogenesis. Curr Top Dev Biol 2022; 148:13-50. [PMID: 35461563 PMCID: PMC9060390 DOI: 10.1016/bs.ctdb.2021.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cleft lip and cleft palate are common birth defects resulting from genetic and/or environmental perturbations of facial development in utero. Facial morphogenesis commences during early embryogenesis, with cranial neural crest cells interacting with the surface ectoderm to form initially partly separate facial primordia consisting of the medial and lateral nasal prominences, and paired maxillary and mandibular processes. As these facial primordia grow around the primitive oral cavity and merge toward the ventral midline, the surface ectoderm undergoes a critical differentiation step to form an outer layer of flattened and tightly connected periderm cells with a non-stick apical surface that prevents epithelial adhesion. Formation of the upper lip and palate requires spatiotemporally regulated inter-epithelial adhesions and subsequent dissolution of the intervening epithelial seam between the maxillary and medial/lateral nasal processes and between the palatal shelves. Proper regulation of epithelial integrity plays a paramount role during human facial development, as mutations in genes encoding epithelial adhesion molecules and their regulators have been associated with syndromic and non-syndromic orofacial clefts. In this chapter, we summarize mouse genetic studies that have been instrumental in unraveling the mechanisms regulating epithelial integrity and periderm differentiation during facial and palate development. Since proper epithelial integrity also plays crucial roles in wound healing and cancer, understanding the mechanisms regulating epithelial integrity during facial development have direct implications for improvement in clinical care of craniofacial patients.
Collapse
Affiliation(s)
- Yu Lan
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Rulang Jiang
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.
| |
Collapse
|
28
|
Abstract
Though melanocytic nevi are ubiquitous in the general population, they can also be key cutaneous manifestations of genetic syndromes. We describe genodermatoses associated with melanocytic nevi and discuss their clinical characteristics, cutaneous manifestations, underlying genetics, and, if applicable, guidelines for when genetic testing should be performed. We categorized these genodermatoses based on their association with congenital nevi, acquired nevi, or nevi whose first appearance is unknown. In many cases, the distinctive morphology or distribution of melanocytic nevi can be an important clue that an underlying genetic syndrome is present, allowing both the patient as well as family members to be screened for the more serious complications of their genetic disorder and receive education on potential preventative measures. As we continue to advance our understanding of how various genotypes give rise to the wide spectrum of phenotypes observed in these genodermatoses, we shall be able to better stratify risk and tailor our screening methods to clinically manage the heterogeneous manifestations of genodermatoses among these patients.
Collapse
Affiliation(s)
- Julie Y Ramseier
- Department of Dermatology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520
| | - Sara H Perkins
- Department of Dermatology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520.
| |
Collapse
|
29
|
Harazono Y, Morita KI, Tonouchi E, Anzai E, Takahara N, Kohmoto T, Imoto I, Yoda T. TP63 mutation mapping information in TP63 mutation-associated syndromes. ADVANCES IN ORAL AND MAXILLOFACIAL SURGERY 2022. [DOI: 10.1016/j.adoms.2022.100253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
30
|
Lena AM, Foffi E, Agostini M, Mancini M, Annicchiarico-Petruzzelli M, Aberdam D, Velletri T, Shi Y, Melino G, Wang Y, Candi E. TAp63 regulates bone remodeling by modulating the expression of TNFRSF11B/Osteoprotegerin. Cell Cycle 2021; 20:2428-2441. [PMID: 34763601 DOI: 10.1080/15384101.2021.1985772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
ABBREVIATIONS MSC, mesenchymal stem cells; OPG, osteoprotegerin; RUNX2, Run-trelated transcription factor 2.
Collapse
Affiliation(s)
- Anna Maria Lena
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome, Italy
| | - Erica Foffi
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome, Italy
| | - Massimiliano Agostini
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome, Italy
| | | | | | | | - Tania Velletri
- Cogentech Società Benefit Srl, Parco Scientifico E Tecnologico Della Sicilia, Catania, Italy
| | - Yufang Shi
- Cas Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, China
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome, Italy
| | - Ying Wang
- Cas Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Eleonora Candi
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome, Italy.,IDI-IRCCS, Via dei Monti di Creta, Rome, IT
| |
Collapse
|
31
|
Van Sciver N, Ohashi M, Nawandar DM, Pauly NP, Lee D, Makielski KR, Bristol JA, Tsao SW, Lambert PF, Johannsen EC, Kenney SC. ΔNp63α promotes Epstein-Barr virus latency in undifferentiated epithelial cells. PLoS Pathog 2021; 17:e1010045. [PMID: 34748616 PMCID: PMC8601603 DOI: 10.1371/journal.ppat.1010045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/18/2021] [Accepted: 10/18/2021] [Indexed: 01/27/2023] Open
Abstract
Epstein-Barr virus (EBV) is a human herpesvirus that causes infectious mononucleosis and contributes to both B-cell and epithelial-cell malignancies. EBV-infected epithelial cell tumors, including nasopharyngeal carcinoma (NPC), are largely composed of latently infected cells, but the mechanism(s) maintaining viral latency are poorly understood. Expression of the EBV BZLF1 (Z) and BRLF1 (R) encoded immediate-early (IE) proteins induces lytic infection, and these IE proteins activate each other's promoters. ΔNp63α (a p53 family member) is required for proliferation and survival of basal epithelial cells and is over-expressed in NPC tumors. Here we show that ΔNp63α promotes EBV latency by inhibiting activation of the BZLF1 IE promoter (Zp). Furthermore, we find that another p63 gene splice variant, TAp63α, which is expressed in some Burkitt and diffuse large B cell lymphomas, also represses EBV lytic reactivation. We demonstrate that ΔNp63α inhibits the Z promoter indirectly by preventing the ability of other transcription factors, including the viral IE R protein and the cellular KLF4 protein, to activate Zp. Mechanistically, we show that ΔNp63α promotes viral latency in undifferentiated epithelial cells both by enhancing expression of a known Zp repressor protein, c-myc, and by decreasing cellular p38 kinase activity. Furthermore, we find that the ability of cis-platinum chemotherapy to degrade ΔNp63α contributes to the lytic-inducing effect of this agent in EBV-infected epithelial cells. Together these findings demonstrate that the loss of ΔNp63α expression, in conjunction with enhanced expression of differentiation-dependent transcription factors such as BLIMP1 and KLF4, induces lytic EBV reactivation during normal epithelial cell differentiation. Conversely, expression of ΔNp63α in undifferentiated nasopharyngeal carcinoma cells and TAp63α in Burkitt lymphoma promotes EBV latency in these malignancies.
Collapse
Affiliation(s)
- Nicholas Van Sciver
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Makoto Ohashi
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Dhananjay M. Nawandar
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
- Currently at Ring Therapeutics, Cambridge, Massachusetts, United States of America
| | - Nicholas P. Pauly
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Denis Lee
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Kathleen R. Makielski
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Jillian A. Bristol
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Sai Wah Tsao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Paul F. Lambert
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Eric C. Johannsen
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Shannon C. Kenney
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
32
|
Hayashi R, Shimomura Y. Update of recent findings in genetic hair disorders. J Dermatol 2021; 49:55-67. [PMID: 34676598 DOI: 10.1111/1346-8138.16204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/03/2021] [Accepted: 10/04/2021] [Indexed: 11/30/2022]
Abstract
Genetic hair disorders, although unusual, are not very rare, and dermatologists often have opportunities to see patients. Significant advances in molecular genetics have led to identifying many causative genes for genetic hair disorders, including the recently identified causative genes, such as LSS and C3ORF52. Many patients have been detected with autosomal recessive woolly hair/hypotrichosis in the Japanese population caused by founder mutations in the LIPH gene. Additionally, many patients with genetic hair disorders caused by other genes have been reported in East Asia including Japan. Understanding genetic hair disorders is essential for dermatologists, and the findings obtained from analyzing these diseases will contribute to revealing the mechanisms of hair follicle morphogenesis and development in humans.
Collapse
Affiliation(s)
- Ryota Hayashi
- Division of Dermatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yutaka Shimomura
- Department of Dermatology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| |
Collapse
|
33
|
Kobayashi T, Makino T, Yamashita K, Saito T, Tanaka K, Takahashi T, Kurokawa Y, Yamasaki M, Nakajima K, Morii E, Eguchi H, Doki Y. APR-246 induces apoptosis and enhances chemo-sensitivity via activation of ROS and TAp73-Noxa signal in oesophageal squamous cell cancer with TP53 missense mutation. Br J Cancer 2021; 125:1523-1532. [PMID: 34599296 DOI: 10.1038/s41416-021-01561-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 08/08/2021] [Accepted: 09/17/2021] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Mutations in p53, identified in 90% of oesophageal squamous cell carcinoma (ESCC), are associated with unfavourable prognosis and chemo-resistance. APR-246 induces apoptosis by restoring transcriptional ability of mutant p53, and may be a promising therapeutic agent to overcome chemo-resistance in ESCC. METHODS In ESCC cell lines differing in p53 status, we performed in vitro cell viability and apoptosis assays, evaluated reactive oxygen species (ROS) generation, and assessed signal changes by western blot after APR-246 administration with/without chemo-agent. Antitumour effects and signal changes were evaluated in in vivo experiments using xenograft and patient-derived xenograft (PDX) mouse models. RESULTS APR-246 administration induced significant apoptosis by upregulating p73 and Noxa via ROS induction in ESCC cell lines harbouring p53 missense mutations. Moreover, APR-246 plus chemotherapy exerted combined antitumour effects in ESCC with p53 missense mutations. This effect was also mediated through enhanced ROS activity, leading to massive apoptosis via upregulation of p73 and Noxa. These findings were confirmed by xenograft and PDX models with p53 mutant ESCC. CONCLUSION APR-246 strongly induced apoptosis by inducing ROS activity and p73-Noxa signalling, specifically in ESCC with p53 missense mutation. This antitumour effect was further enhanced by combination with 5-FU, which we first confirmed in ESCC preclinical model.
Collapse
Affiliation(s)
- Teruyuki Kobayashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tomoki Makino
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan.
| | - Kotaro Yamashita
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Takuro Saito
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Koji Tanaka
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tsuyoshi Takahashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yukinori Kurokawa
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Makoto Yamasaki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Kiyokazu Nakajima
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Eiichi Morii
- Department of Pathology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
34
|
Koch PJ, Koster MI. Rare Genetic Disorders: Novel Treatment Strategies and Insights Into Human Biology. Front Genet 2021; 12:714764. [PMID: 34422015 PMCID: PMC8378213 DOI: 10.3389/fgene.2021.714764] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/19/2021] [Indexed: 11/13/2022] Open
Abstract
The last decade has seen a dramatic increase in innovative ideas for the treatment of genetic disorders for which no curative therapies exist. Gene and protein replacement therapies stand out as novel approaches to treat a select group of these diseases, such as certain tissue fragility disorders. Further, the advent of stem cell approaches, such as induced pluripotent stem cells (iPSC) technology, has led to the development of new methods of creating replacement tissues for regenerative medicine. This coincided with the discovery of genome editing techniques, which allow for the correction of disease-causing mutations. The culmination of these discoveries suggests that new and innovative therapies for monogenetic disorders affecting single organs or tissues are on the horizon. Challenges remain, however, especially with diseases that simultaneously affect several tissues and organs during development. Examples of this group of diseases include ectodermal dysplasias, genetic disorders affecting the development of tissues and organs such as the skin, cornea, and epithelial appendages. Gene or protein replacement strategies are unlikely to be successful in addressing the multiorgan phenotype of these diseases. Instead, we believe that a more effective approach will be to focus on correcting phenotypes in the most severely affected tissues. This could include the generation of replacement tissues or the identification of pharmaceutical compounds that correct disease pathways in specific tissues.
Collapse
Affiliation(s)
- Peter J Koch
- Department of Anatomy and Cell Biology, Brody School of Medicine (BSOM) at East Carolina University (ECU), Greenville, NC, United States
| | - Maranke I Koster
- Department of Anatomy and Cell Biology, Brody School of Medicine (BSOM) at East Carolina University (ECU), Greenville, NC, United States
| |
Collapse
|
35
|
Hurni Y, Marangoni M, Garofalo G, Cassart M, Tomasi L, Vandernoot I, Smits G, Gounongbé C. Spontaneous resolution of nonimmune hydrops fetalis in a fetus with TP63 gene mutation and LZTR1 gene variants. Clin Case Rep 2021; 9:e04624. [PMID: 34401172 PMCID: PMC8353418 DOI: 10.1002/ccr3.4624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/23/2021] [Accepted: 07/06/2021] [Indexed: 11/13/2022] Open
Abstract
In cases of fetal hydrops, searching for an etiology is essential to evaluate the fetal prognosis and propose the most appropriate management.
Collapse
Affiliation(s)
- Yannick Hurni
- Department of Fetal MedicineCHU Saint‐PierreBrusselsBelgium
| | - Martina Marangoni
- Center of Human GeneticsHôpital ErasmeUniversité Libre de BruxellesBrusselsBelgium
| | | | - Marie Cassart
- Department of Fetal MedicineCHU Saint‐PierreBrusselsBelgium
- Department of RadiologyHôpitaux Iris Sud and CHU Saint‐PierreBrusselsBelgium
| | - Lisa Tomasi
- Department of PediatricsCHU Saint‐PierreBrusselsBelgium
| | - Isabelle Vandernoot
- Center of Human GeneticsHôpital ErasmeUniversité Libre de BruxellesBrusselsBelgium
| | - Guillaume Smits
- Center of Human GeneticsHôpital ErasmeUniversité Libre de BruxellesBrusselsBelgium
| | | |
Collapse
|
36
|
Laubach K, Zhang J, Chen X. The p53 Family: A Role in Lipid and Iron Metabolism. Front Cell Dev Biol 2021; 9:715974. [PMID: 34395447 PMCID: PMC8358664 DOI: 10.3389/fcell.2021.715974] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/08/2021] [Indexed: 12/11/2022] Open
Abstract
The p53 family of tumor suppressors, which includes p53, p63, and p73, has a critical role in many biological processes, such as cell cycle arrest, apoptosis, and differentiation. In addition to tumor suppression, the p53 family proteins also participate in development, multiciliogenesis, and fertility, indicating these proteins have diverse roles. In this review, we strive to cover the relevant studies that demonstrate the roles of p53, p63, and p73 in lipid and iron metabolism.
Collapse
Affiliation(s)
| | | | - Xinbin Chen
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
37
|
Patel R, Singh SK, Bhattacharya V, Ali A. Novel HOXD13 variants in syndactyly type 1b and type 1c, and a new spectrum of TP63-related disorders. J Hum Genet 2021; 67:43-49. [PMID: 34321610 DOI: 10.1038/s10038-021-00963-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 07/09/2021] [Indexed: 12/15/2022]
Abstract
Syndactyly is the most common limb defect depicting the bony and/or cutaneous fusion of digits. Syndactyly can be of various types depending on the digits involved in the fusion. To date, eight syndactyly-associated genes have been reported, of which HOXD13 and GJA1 have been explored in a few syndactyly but most of them have unknown underlying genetics. In the present study HOXD13, GJA1 and TP63 genes have been screened by resequencing in 24 unrelated sporadic cases with various syndactyly. The screening revealed two pathogenic HOXD13 variants, NM_000523:c.500 A > G [p.(Y167C)], and NM_000523:c.961 A > C [p.(T321P)] in syndactyly type 1b and type 1c, respectively. This is the first report to identify HOXD13 pathogenic variant in syndactyly type 1b and third report in syndactyly type 1c pathogenesis. Furthermore, this study also reports a TP63 pathogenic variant, NM_003722:c.953 G > A [p.(R318H)] in Ectrodactyly and Cleft lip and palate (ECLP). In conclusion, the current study expands the clinical spectrum of HOXD13 and TP63-related disorders.
Collapse
Affiliation(s)
- Rashmi Patel
- Centre for Genetic Disorders, Institute of Science, Banaras Hindu University, Varanasi, India.,National Cancer Institute, Frederick, NIH, USA
| | | | - Visweswar Bhattacharya
- Department of Plastic Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Akhtar Ali
- Centre for Genetic Disorders, Institute of Science, Banaras Hindu University, Varanasi, India.
| |
Collapse
|
38
|
Su P, Qiao Q, Ji G, Zhang Z. CircAMD1 regulates proliferation and collagen synthesis via sponging miR-27a-3p in P63-mutant human dermal fibroblasts. Differentiation 2021; 119:10-18. [PMID: 33991897 DOI: 10.1016/j.diff.2021.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/20/2021] [Accepted: 04/27/2021] [Indexed: 10/21/2022]
Abstract
Transcription factor p63 has critical functions in epidermal, hindgut/anorectal, and limb development. Human mutations in P63 correlate with congenital syndromes affecting the skin, anorectal, and limbs. Nevertheless, less are detected regarding networks and functions controlled by P63 mutations in dermal fibroblasts, which are closely related to skin physiology. To screen for new targets, we employed microarray technology to investigate the R226Q P63 mutation with regards to the resulting circular RNA (circRNA) profiles from P63 point mutations in human dermal fibroblasts (HDFs). In this study, we show that P63-mutant HDFs display reduced proliferation, collagen synthesis, and myofibroblast differentiation; circAMD1 was also downregulated in P63-mutant HDFs compared with wild-type HDFs. Furthermore, overexpressing circAMD1 rescued the functional and phenotypic alterations of p63-mutant HDFs. We as well determined that miR-27a-3p was circAMD1 target involved in effects of circAMD1 in P63-mutant HDFs. Collectively, our data show that circAMD1 functions as a miR-27a-3p sponge that inhibits the functional and phenotypical alteration of P63-mutant HDFs and may be a critical marker in pathogenesis regarding P63-associated traits.
Collapse
Affiliation(s)
- Pengjun Su
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Qi Qiao
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Gengfeng Ji
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhibo Zhang
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
39
|
Nasreddine G, El Hajj J, Ghassibe-Sabbagh M. Orofacial clefts embryology, classification, epidemiology, and genetics. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2021; 787:108373. [PMID: 34083042 DOI: 10.1016/j.mrrev.2021.108373] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/21/2021] [Accepted: 02/23/2021] [Indexed: 01/14/2023]
Abstract
Orofacial clefts (OFCs) rank as the second most common congenital birth defect in the United States after Down syndrome and are the most common head and neck congenital malformations. They are classified as cleft lip with or without cleft palate (CL/P) and cleft palate only (CPO). OFCs have significant psychological and socio-economic impact on patients and their families and require a multidisciplinary approach for management and counseling. A complex interaction between genetic and environmental factors contributes to the incidence and clinical presentation of OFCs. In this comprehensive review, the embryology, classification, epidemiology and etiology of clefts are thoroughly discussed and a "state-of-the-art" snapshot of the recent advances in the genetics of OFCs is presented.
Collapse
Affiliation(s)
- Ghenwa Nasreddine
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, P.O. Box: 13-5053, Chouran, 1102 2801, Beirut, Lebanon.
| | - Joelle El Hajj
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, P.O. Box: 13-5053, Chouran, 1102 2801, Beirut, Lebanon.
| | - Michella Ghassibe-Sabbagh
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, P.O. Box: 13-5053, Chouran, 1102 2801, Beirut, Lebanon.
| |
Collapse
|
40
|
Xu T, Du M, Bu X, Yuan D, Gu Z, Yu P, Li X, Chen J, Jin C. Identification of a novel TP63 mutation causing nonsyndromic cleft lip with or without cleft palate. BMC Med Genomics 2021; 14:53. [PMID: 33622322 PMCID: PMC7903685 DOI: 10.1186/s12920-021-00903-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/14/2021] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Cleft lip with or without cleft palate (CL/P) is the most common craniofacial anomaly with a high incidence of live births. The specific pathogenesis of CL/P is still unclear, although plenty of studies have been conducted. Variations of tumor protein 63 (TP63) was reported to be related to the phenotype of CL/P. The case discussed in this report involves a pedigree with mutation at TP63 gene, and the variation was not reported before. CASE PRESENTATION A Chinese pedigree with CL/P was collected in this study. The proband is a 3-year-old boy with the phenotype of CL/P, while his global development and intelligence are normal. After two CL/P repair operations, he looks almost normal. The proband's uncle and grandmother both have the phenotype of CL/P. Cytogenetic analysis and chromosomal microarray analysis (CMA) were performed, followed by whole exome sequencing (WES) and sanger validation. Analysis of WES revealed a variant of C>T at nucleotide position 1324 (1324C>T) of TP63 gene, possibly producing a truncated protein with a premature stop codon at amino acid position 442 (p.Q442*). This mutation was localized at the oligomerization domain (OD) of TP63 and might impair the capacity of p63 oligomerization. CONCLUSION The mutation in TP63 was recognized to be the possible cause of the phenotype of CL/P in this pedigree. This report provides some evidence for the clinical diagnosis of CL/P. And our study also provides clinical evidence for the molecular mechanism of TP63 gene causing nonsyndromic cleft lip with or without cleft palate (NSCL/P).
Collapse
Affiliation(s)
- Tianhui Xu
- Department of Medical Genetics and Prenatal Diagnosis, Hospital Affiliated 5 to Nantong University (Taizhou People's Hospital), Taizhou, Jiangsu, China
| | - Mengmeng Du
- Department of Medical Genetics and Prenatal Diagnosis, Hospital Affiliated 5 to Nantong University (Taizhou People's Hospital), Taizhou, Jiangsu, China
| | - Xinhua Bu
- Department of Medical Genetics and Prenatal Diagnosis, Hospital Affiliated 5 to Nantong University (Taizhou People's Hospital), Taizhou, Jiangsu, China
| | - Donglan Yuan
- Department of Medical Genetics and Prenatal Diagnosis, Hospital Affiliated 5 to Nantong University (Taizhou People's Hospital), Taizhou, Jiangsu, China
| | - Zhiping Gu
- Department of Medical Genetics and Prenatal Diagnosis, Hospital Affiliated 5 to Nantong University (Taizhou People's Hospital), Taizhou, Jiangsu, China
| | - Pei Yu
- Department of Medical Genetics and Prenatal Diagnosis, Hospital Affiliated 5 to Nantong University (Taizhou People's Hospital), Taizhou, Jiangsu, China
| | - Xuefang Li
- Department of Medical Genetics and Prenatal Diagnosis, Hospital Affiliated 5 to Nantong University (Taizhou People's Hospital), Taizhou, Jiangsu, China
| | - Jiao Chen
- Department of Medical Genetics and Prenatal Diagnosis, Hospital Affiliated 5 to Nantong University (Taizhou People's Hospital), Taizhou, Jiangsu, China
| | - Chunyan Jin
- Department of Medical Genetics and Prenatal Diagnosis, Hospital Affiliated 5 to Nantong University (Taizhou People's Hospital), Taizhou, Jiangsu, China.
| |
Collapse
|
41
|
Li J, Xu X, Tiwari M, Chen Y, Fuller M, Bansal V, Tamayo P, Das S, Ghosh P, Sen GL. SPT6 promotes epidermal differentiation and blockade of an intestinal-like phenotype through control of transcriptional elongation. Nat Commun 2021; 12:784. [PMID: 33542242 PMCID: PMC7862286 DOI: 10.1038/s41467-021-21067-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 01/11/2021] [Indexed: 12/16/2022] Open
Abstract
In adult tissue, stem and progenitor cells must tightly regulate the balance between proliferation and differentiation to sustain homeostasis. How this exquisite balance is achieved is an area of active investigation. Here, we show that epidermal genes, including ~30% of induced differentiation genes already contain stalled Pol II at the promoters in epidermal stem and progenitor cells which is then released into productive transcription elongation upon differentiation. Central to this process are SPT6 and PAF1 which are necessary for the elongation of these differentiation genes. Upon SPT6 or PAF1 depletion there is a loss of human skin differentiation and stratification. Unexpectedly, loss of SPT6 also causes the spontaneous transdifferentiation of epidermal cells into an intestinal-like phenotype due to the stalled transcription of the master regulator of epidermal fate P63. Our findings suggest that control of transcription elongation through SPT6 plays a prominent role in adult somatic tissue differentiation and the inhibition of alternative cell fate choices.
Collapse
Affiliation(s)
- Jingting Li
- Department of Dermatology, Department of Cellular and Molecular Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, CA, USA
| | - Xiaojun Xu
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Manisha Tiwari
- Department of Dermatology, Department of Cellular and Molecular Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, CA, USA
| | - Yifang Chen
- Department of Dermatology, Department of Cellular and Molecular Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, CA, USA
| | - Mackenzie Fuller
- Departments of Medicine and Cellular and Molecular Medicine, HUMANOID Center of Research Excellence, University of California, San Diego, La Jolla, CA, USA
- Department of Pathology, HUMANOID Center of Research Excellence, University of California, San Diego, La Jolla, CA, USA
| | - Varun Bansal
- Department of Dermatology, Department of Cellular and Molecular Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, CA, USA
| | - Pablo Tamayo
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
- Division of Medical Genetics, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Soumita Das
- Department of Pathology, HUMANOID Center of Research Excellence, University of California, San Diego, La Jolla, CA, USA
| | - Pradipta Ghosh
- Departments of Medicine and Cellular and Molecular Medicine, HUMANOID Center of Research Excellence, University of California, San Diego, La Jolla, CA, USA
| | - George L Sen
- Department of Dermatology, Department of Cellular and Molecular Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
42
|
Truong BT, Artinger KB. The power of zebrafish models for understanding the co-occurrence of craniofacial and limb disorders. Genesis 2021; 59:e23407. [PMID: 33393730 PMCID: PMC8153179 DOI: 10.1002/dvg.23407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 12/30/2022]
Abstract
Craniofacial and limb defects are two of the most common congenital anomalies in the general population. Interestingly, these defects are not mutually exclusive. Many patients with craniofacial phenotypes, such as orofacial clefting and craniosynostosis, also present with limb defects, including polydactyly, syndactyly, brachydactyly, or ectrodactyly. The gene regulatory networks governing craniofacial and limb development initially seem distinct from one another, and yet these birth defects frequently occur together. Both developmental processes are highly conserved among vertebrates, and zebrafish have emerged as an advantageous model due to their high fecundity, relative ease of genetic manipulation, and transparency during development. Here we summarize studies that have used zebrafish models to study human syndromes that present with both craniofacial and limb phenotypes. We discuss the highly conserved processes of craniofacial and limb/fin development and describe recent zebrafish studies that have explored the function of genes associated with human syndromes with phenotypes in both structures. We attempt to identify commonalities between the two to help explain why craniofacial and limb anomalies often occur together.
Collapse
Affiliation(s)
- Brittany T. Truong
- Human Medical Genetics & Genomics Graduate Program, University of Colorado Denver Anschutz Medical Campus, Aurora, CO
- Department of Craniofacial Biology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO
| | - Kristin Bruk Artinger
- Department of Craniofacial Biology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
43
|
Isoform-Specific Roles of Mutant p63 in Human Diseases. Cancers (Basel) 2021; 13:cancers13030536. [PMID: 33572532 PMCID: PMC7866788 DOI: 10.3390/cancers13030536] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 12/26/2022] Open
Abstract
Simple Summary The protein p63 belongs to the family of the p53 tumor suppressor. Mouse models have, however, shown that it is not a classical tumor suppressor but instead involved in developmental processes. Mutations in the p63 gene cause several developmental defects in human patients characterized by limb deformation, cleft lip/palate, and ectodermal dysplasia due to p63’s role as a master regulator of epidermal development. In addition, p63 plays a key role as a quality control factor in oocytes and p63 mutations can result either in compromised genetic quality control or premature cell death of all oocytes. Abstract The p63 gene encodes a master regulator of epidermal commitment, development, and differentiation. Heterozygous mutations in the DNA binding domain cause Ectrodactyly, Ectodermal Dysplasia, characterized by limb deformation, cleft lip/palate, and ectodermal dysplasia while mutations in in the C-terminal domain of the α-isoform cause Ankyloblepharon-Ectodermal defects-Cleft lip/palate (AEC) syndrome, a life-threatening disorder characterized by skin fragility, severe, long-lasting skin erosions, and cleft lip/palate. The molecular disease mechanisms of these syndromes have recently become elucidated and have enhanced our understanding of the role of p63 in epidermal development. Here we review the molecular cause and functional consequences of these p63-mutations for skin development and discuss the consequences of p63 mutations for female fertility.
Collapse
|
44
|
Lena AM, Rossi V, Osterburg S, Smirnov A, Osterburg C, Tuppi M, Cappello A, Amelio I, Dötsch V, De Felici M, Klinger FG, Annicchiarico-Petruzzelli M, Valensise H, Melino G, Candi E. The p63 C-terminus is essential for murine oocyte integrity. Nat Commun 2021; 12:383. [PMID: 33452256 PMCID: PMC7810856 DOI: 10.1038/s41467-020-20669-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 11/26/2020] [Indexed: 01/21/2023] Open
Abstract
The transcription factor p63 mediates distinct cellular responses, primarily regulating epithelial and oocyte biology. In addition to the two amino terminal isoforms, TAp63 and ΔNp63, the 3'-end of p63 mRNA undergoes tissue-specific alternative splicing that leads to several isoforms, including p63α, p63β and p63γ. To investigate in vivo how the different isoforms fulfil distinct functions at the cellular and developmental levels, we developed a mouse model replacing the p63α with p63β by deletion of exon 13 in the Trp63 gene. Here, we report that whereas in two organs physiologically expressing p63α, such as thymus and skin, no abnormalities are detected, total infertility is evident in heterozygous female mice. A sharp reduction in the number of primary oocytes during the first week after birth occurs as a consequence of the enhanced expression of the pro-apoptotic transcriptional targets Puma and Noxa by the tetrameric, constitutively active, TAp63β isoform. Hence, these mice show a condition of ovary dysfunction, resembling human primary ovary insufficiency. Our results show that the p63 C-terminus is essential in TAp63α-expressing primary oocytes to control cell death in vivo, expanding the current understanding of human primary ovarian insufficiency.
Collapse
Affiliation(s)
- Anna Maria Lena
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Valerio Rossi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Susanne Osterburg
- Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance and Cluster of Excellence Macromolecular Complexes (CEF), Goethe University, Frankfurt, Germany
| | - Artem Smirnov
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, OX3 7DQ, UK
| | - Christian Osterburg
- Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance and Cluster of Excellence Macromolecular Complexes (CEF), Goethe University, Frankfurt, Germany
| | - Marcel Tuppi
- Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance and Cluster of Excellence Macromolecular Complexes (CEF), Goethe University, Frankfurt, Germany
- The Francis Crick Institute, London, NW11ST, UK
| | - Angela Cappello
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Ivano Amelio
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Volker Dötsch
- Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance and Cluster of Excellence Macromolecular Complexes (CEF), Goethe University, Frankfurt, Germany
| | - Massimo De Felici
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | | | | | - Herbert Valensise
- Department of Surgery, University of Rome "Tor Vergata", Rome, Italy
- Policlinico "Casilino", Rome, Italy
| | - Gerry Melino
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy.
| | - Eleonora Candi
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy.
- IDI-IRCCS, Via dei Monti di Creta, Rome, Italy.
| |
Collapse
|
45
|
Guan Y, Yang YJ, Nagarajan P, Ge Y. Transcriptional and signalling regulation of skin epithelial stem cells in homeostasis, wounds and cancer. Exp Dermatol 2020; 30:529-545. [PMID: 33249665 DOI: 10.1111/exd.14247] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/10/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023]
Abstract
The epidermis and skin appendages are maintained by their resident epithelial stem cells, which undergo long-term self-renewal and multilineage differentiation. Upon injury, stem cells are activated to mediate re-epithelialization and restore tissue function. During this process, they often mount lineage plasticity and expand their fates in response to damage signals. Stem cell function is tightly controlled by transcription machineries and signalling transductions, many of which derail in degenerative, inflammatory and malignant dermatologic diseases. Here, by describing both well-characterized and newly emerged pathways, we discuss the transcriptional and signalling mechanisms governing skin epithelial homeostasis, wound repair and squamous cancer. Throughout, we highlight common themes underscoring epithelial stem cell plasticity and tissue-level crosstalk in the context of skin physiology and pathology.
Collapse
Affiliation(s)
- Yinglu Guan
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Youn Joo Yang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Priyadharsini Nagarajan
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yejing Ge
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
46
|
Gebel J, Tuppi M, Sänger N, Schumacher B, Dötsch V. DNA Damaged Induced Cell Death in Oocytes. Molecules 2020; 25:molecules25235714. [PMID: 33287328 PMCID: PMC7730327 DOI: 10.3390/molecules25235714] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/25/2020] [Accepted: 11/30/2020] [Indexed: 12/19/2022] Open
Abstract
The production of haploid gametes through meiosis is central to the principle of sexual reproduction. The genetic diversity is further enhanced by exchange of genetic material between homologous chromosomes by the crossover mechanism. This mechanism not only requires correct pairing of homologous chromosomes but also efficient repair of the induced DNA double-strand breaks. Oocytes have evolved a unique quality control system that eliminates cells if chromosomes do not correctly align or if DNA repair is not possible. Central to this monitoring system that is conserved from nematodes and fruit fly to humans is the p53 protein family, and in vertebrates in particular p63. In mammals, oocytes are stored for a long time in the prophase of meiosis I which, in humans, can last more than 50 years. During the entire time of this arrest phase, the DNA damage checkpoint remains active. The treatment of female cancer patients with DNA damaging irradiation or chemotherapeutics activates this checkpoint and results in elimination of the oocyte pool causing premature menopause and infertility. Here, we review the molecular mechanisms of this quality control system and discuss potential therapeutic intervention for the preservation of the oocyte pool during chemotherapy.
Collapse
Affiliation(s)
- Jakob Gebel
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438 Frankfurt, Germany; (J.G.); (M.T.)
| | - Marcel Tuppi
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438 Frankfurt, Germany; (J.G.); (M.T.)
| | - Nicole Sänger
- Department for Gynecological Endocrinology and Reproductive Medicine, University Hospital of Bonn, Venusberg-Campus 1, 53217 Bonn, Germany;
| | - Björn Schumacher
- Institute for Genome Stability in Aging and Disease, Cologne Cluster of Excellence in Cellular Stress Responses in Aging-Associated Diseases (CECAD) Research Center, and Center for Molecular Medicine, University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany;
| | - Volker Dötsch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438 Frankfurt, Germany; (J.G.); (M.T.)
- Correspondence: ; Tel.: +49-69-798-29631
| |
Collapse
|
47
|
A Novel Missense Variant of TP63 Heterozygously Present in Split-Hand/Foot Malformation. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4215632. [PMID: 33294441 PMCID: PMC7714569 DOI: 10.1155/2020/4215632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/29/2020] [Accepted: 11/11/2020] [Indexed: 11/18/2022]
Abstract
Background Split-hand/foot malformation (SHFM) is a severe congenital disability mainly characterized by the absence or hypoplasia of the central ray of the hand/foot. To date, several candidate genes associated with SHFM have been identified, including TP63, DLX5, DLX6, FGFR1, and WNT10B. Herein, we report a novel variant of TP63 heterozygously present in affected members of a family with SHFM. Methods This study investigated a Chinese family, in which the proband and his son suffered from SHFM. The peripheral blood sample of the proband was used to perform whole-exome sequencing (WES) to explore the possible genetic causes of this disease. Postsequencing bioinformatic analyses and Sanger sequencing were conducted to verify the identified variants and parental origins on all family members in the pedigree. Results By postsequencing bioinformatic analyses and Sanger sequencing, we identified a novel missense variant (NM_003722.4:c.948G>A; p.Met316Ile) of TP63 in this family that results in a substitution of methionine with isoleucine, which is probably associated with the occurrence of SHFM. Conclusion A novel missense variant (NM_003722.4:c.948G>A; p.Met316Ile) of TP63 in SHFM was thus identified, which may enlarge the spectrum of known TP63 variants and also provide new approaches for genetic counselling of families with SHFM.
Collapse
|
48
|
Yi M, Tan Y, Wang L, Cai J, Li X, Zeng Z, Xiong W, Li G, Li X, Tan P, Xiang B. TP63 links chromatin remodeling and enhancer reprogramming to epidermal differentiation and squamous cell carcinoma development. Cell Mol Life Sci 2020; 77:4325-4346. [PMID: 32447427 PMCID: PMC7588389 DOI: 10.1007/s00018-020-03539-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/21/2020] [Accepted: 04/24/2020] [Indexed: 12/19/2022]
Abstract
Squamous cell carcinoma (SCC) is an aggressive malignancy that can originate from various organs. TP63 is a master regulator that plays an essential role in epidermal differentiation. It is also a lineage-dependent oncogene in SCC. ΔNp63α is the prominent isoform of TP63 expressed in epidermal cells and SCC, and overexpression promotes SCC development through a variety of mechanisms. Recently, ΔNp63α was highlighted to act as an epidermal-specific pioneer factor that binds closed chromatin and enhances chromatin accessibility at epidermal enhancers. ΔNp63α coordinates chromatin-remodeling enzymes to orchestrate the tissue-specific enhancer landscape and three-dimensional high-order architecture of chromatin. Moreover, ΔNp63α establishes squamous-like enhancer landscapes to drive oncogenic target expression during SCC development. Importantly, ΔNp63α acts as an upstream regulator of super enhancers to activate a number of oncogenic transcripts linked to poor prognosis in SCC. Mechanistically, ΔNp63α activates genes transcription through physically interacting with a number of epigenetic modulators to establish enhancers and enhance chromatin accessibility. In contrast, ΔNp63α also represses gene transcription via interacting with repressive epigenetic regulators. ΔNp63α expression is regulated at multiple levels, including transcriptional, post-transcriptional, and post-translational levels. In this review, we summarize recent advances of p63 in epigenomic and transcriptional control, as well as the mechanistic regulation of p63.
Collapse
Affiliation(s)
- Mei Yi
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Yixin Tan
- Department of Dermatology, The Second Xiangya Hospital, The Central South University, Changsha, 410011, Hunan, China
| | - Li Wang
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Jing Cai
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Xiaoling Li
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Xiayu Li
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| | - Pingqing Tan
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
- Department of Head and Neck Surgery, Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China.
| | - Bo Xiang
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China.
| |
Collapse
|
49
|
Reynolds K, Zhang S, Sun B, Garland M, Ji Y, Zhou CJ. Genetics and signaling mechanisms of orofacial clefts. Birth Defects Res 2020; 112:1588-1634. [PMID: 32666711 PMCID: PMC7883771 DOI: 10.1002/bdr2.1754] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 12/31/2022]
Abstract
Craniofacial development involves several complex tissue movements including several fusion processes to form the frontonasal and maxillary structures, including the upper lip and palate. Each of these movements are controlled by many different factors that are tightly regulated by several integral morphogenetic signaling pathways. Subject to both genetic and environmental influences, interruption at nearly any stage can disrupt lip, nasal, or palate fusion and result in a cleft. Here, we discuss many of the genetic risk factors that may contribute to the presentation of orofacial clefts in patients, and several of the key signaling pathways and underlying cellular mechanisms that control lip and palate formation, as identified primarily through investigating equivalent processes in animal models, are examined.
Collapse
Affiliation(s)
- Kurt Reynolds
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) graduate group, University of California, Davis, CA 95616
| | - Shuwen Zhang
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
| | - Bo Sun
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
| | - Michael Garland
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
| | - Yu Ji
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) graduate group, University of California, Davis, CA 95616
| | - Chengji J. Zhou
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) graduate group, University of California, Davis, CA 95616
| |
Collapse
|
50
|
P63 modulates the expression of the WDFY2 gene which is implicated in cancer regulation and limb development. Biosci Rep 2020; 39:221381. [PMID: 31789342 PMCID: PMC6914664 DOI: 10.1042/bsr20192114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 11/15/2019] [Accepted: 11/29/2019] [Indexed: 12/31/2022] Open
Abstract
TP63 is a member of the TP53 gene family, sharing a common gene structure that produces two groups of mRNAs' encoding proteins with different N-terminal regions (ΔN and TA isoforms); both transcripts are also subjected to alternative splicing mechanisms at C-terminus, generating a variety of isoforms. p63 is a master regulator of epidermal development and homoeostasis as well as an important player in tumorigenesis and cancer progression with both oncogenic and tumour suppressive roles. A number of studies have aimed at the identification of p63 target genes, allowing the dissection of the molecular pathways orchestrated by the different isoforms. In the present study we investigated in more detail the p63 responsiveness of the WDFY2 (WD repeat and FYVE domain containing 2) gene, encoding for an endosomal protein identified as a binding partner of the PI-3K/AKT signalling pathway. We showed that overexpression of different p63 isoforms was able to induce WDFY2 expression in TP53-null cells. The p63-dependent transcriptional activation was associated with specific response elements (REs) that have been identified by a bioinformatics tool and validated by yeast- and mammal-based assays. Interestingly, to confirm that WDFY2 belongs to the p63 network of cancer regulation, we analysed the impact of WDFY2 alterations, by showing its frequent deletion in different types of tumours and suggesting its expression level as a prognostic biomarker. Lastly, we identified a chromosomal translocation involving the WDFY2 locus in a patient affected by a rare congenital limb anomaly, indicating WDFY2 as a possible susceptibility gene placed downstream p63 in the network of limb development.
Collapse
|