1
|
Pemberton JG, Barlow-Busch I, Jenkins ML, Parson MA, Sarnyai F, Bektas SN, Kim YJ, Heuser JE, Burke JE, Balla T. An advanced toolset to manipulate and monitor subcellular phosphatidylinositol 3,5-bisphosphate. J Cell Biol 2025; 224:e202408158. [PMID: 40138452 PMCID: PMC11940380 DOI: 10.1083/jcb.202408158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 01/09/2025] [Accepted: 02/26/2025] [Indexed: 03/29/2025] Open
Abstract
Phosphatidylinositol (PI) 3,5-bisphosphate (PI(3,5)P2) is a minor inositol-containing phospholipid that serves as an important regulator of endolysosomal functions. However, the precise sites of subcellular enrichment and molecular targets of this regulatory lipid are poorly understood. Here, we describe the generation and detailed characterization of a short engineered catalytic fragment of the human PIKfyve enzyme, which potently converts PI 3-phosphate to PI(3,5)P2. This novel tool allowed for the evaluation of reported PI(3,5)P2-sensitive biosensors and showed that the recently identified phox homology (PX) domain of the Dictyostelium discoideum (Dd) protein, SNXA, can be used to monitor the production of PI(3,5)P2 in live cells. Modification and adaptation of the DdSNXAPX-based probes into compartment-specific bioluminescence resonance energy transfer-based biosensors allows for the real-time monitoring of PI(3,5)P2 generation within the endocytic compartments of entire cell populations. Collectively, these molecular tools should allow for exciting new studies to better understand the cellular processes controlled by localized PI(3,5)P2 metabolism.
Collapse
Affiliation(s)
- Joshua G. Pemberton
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- Department of Biology, Western University, London, Canada
- Division of Development and Genetics, Children’s Health Research Institute, London, Canada
| | - Isobel Barlow-Busch
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
| | - Meredith L. Jenkins
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
| | - Matthew A.H. Parson
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
| | - Farkas Sarnyai
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Seyma Nur Bektas
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Yeun Ju Kim
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - John E. Heuser
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - John E. Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Tamas Balla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
2
|
Takeuchi K, Nagase L, Kageyama S, Kanoh H, Oshima M, Ogawa-Iio A, Ikeda Y, Fujii Y, Kondo S, Osaka N, Masuda T, Ishihara T, Nakamura Y, Hirota Y, Sasaki T, Senda T, Sasaki AT. PI5P4K inhibitors: promising opportunities and challenges. FEBS J 2025. [PMID: 39828902 DOI: 10.1111/febs.17393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 09/30/2024] [Accepted: 12/30/2024] [Indexed: 01/22/2025]
Abstract
Phosphatidylinositol 5-phosphate 4-kinases (PI5P4K), also known as type II PIPKs or PIPKIIs, convert the lipid second messenger PI5P to PI(4,5)P2. The PI5P4K family consists of three isozymes in mammals-PI5P4Kα, β, and γ-which notably utilize both GTP and ATP as phosphodonors. Unlike the other two isozymes, which can utilize both ATP and GTP, PI5P4Kβ exhibits a marked preference for GTP over ATP, acting as an intracellular GTP sensor that alters its kinase activity in response to physiological changes in GTP concentration. Knockout studies have demonstrated a critical role for PI5P4Kα and β in tumorigenesis, while PI5P4Kγ has been implicated in regulating immune and neural systems. Pharmacological targeting of PI5P4K holds promise for the development of new therapeutic approaches against cancer, immune dysfunction, and neurodegenerative diseases. Although several PI5P4K inhibitors have already been developed, challenges remain in PI5P4K inhibitor development, including a discrepancy between in vitro and cellular efficacy. This discrepancy is attributable to mainly three factors. (a) Most PI5P4K inhibitors were developed at low ATP levels, where these enzymes exhibit minimal activity. (b) Non-catalytic functions of PI5P4K require careful interpretation of PI5P4K depletion studies, as their scaffolding roles suppress class I PI3K signaling. (c) The lack of pharmacodynamic markers for in vivo assessment complicates efficacy assessment. To address these issues and promote the development of effective and targeted therapeutic strategies, this review provides an analytical overview of the distinct roles of individual isozymes and recent developments in PI5P4K inhibitors, emphasizing structural insights and the importance of pharmacodynamic marker identification.
Collapse
Affiliation(s)
- Koh Takeuchi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Japan
- Cellular and Molecular Biology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Lisa Nagase
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Japan
| | - Shun Kageyama
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Hirotaka Kanoh
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Masashi Oshima
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, OH, USA
| | - Aki Ogawa-Iio
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, OH, USA
- Department of Bioscience and Engineering, College of Systems Engineering and Science, Shibaura Institute of Technology, Minuma-ku, Japan
| | - Yoshiki Ikeda
- Institute for Integrated Cell-Material Sciences, Kyoto University, Sakyo-ku, Japan
| | - Yuki Fujii
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, OH, USA
| | - Sei Kondo
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Natsuki Osaka
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Takeshi Masuda
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Tsukasa Ishihara
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Yoshikazu Nakamura
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Yoshihisa Hirota
- Department of Bioscience and Engineering, College of Systems Engineering and Science, Shibaura Institute of Technology, Minuma-ku, Japan
| | - Takehiko Sasaki
- Department of Biochemical Pathophysiology, Medical Research Laboratory, Institute of Integrated Research, Institute of Science Tokyo, Japan
- Department of Lipid Biology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Japan
| | - Toshiya Senda
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Japan
- Department of Materials Structure Science, School of High Energy Accelerator Science, The Graduate University for Advanced Studies (SOKENDAI), Tsukuba, Japan
- Faculty of Pure and Applied Sciences, University of Tsukuba, Japan
| | - Atsuo T Sasaki
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, OH, USA
- Department of Cancer Biology, University of Cincinnati College of Medicine, OH, USA
- Department of Neurosurgery, Brain Tumor Center at UC Gardner Neuroscience Institute, Cincinnati, OH, USA
- Department of Clinical and Molecular Genetics, Hiroshima University Hospital, Japan
| |
Collapse
|
3
|
Nie D, Tang X, Deng H, Yang X, Tao J, Xu F, Liu Y, Wu K, Wang K, Mei Z, Huang A, Tang N. Metabolic Enzyme SLC27A5 Regulates PIP4K2A pre-mRNA Splicing as a Noncanonical Mechanism to Suppress Hepatocellular Carcinoma Metastasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305374. [PMID: 38059827 PMCID: PMC10837360 DOI: 10.1002/advs.202305374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/24/2023] [Indexed: 12/08/2023]
Abstract
Solute carrier family 27 member 5, a key enzyme in fatty acid transport and bile acid metabolism in the liver, is frequently expressed in low quantities in patients with hepatocellular carcinoma, resulting in poor prognosis. However, it is unclear whether SLC27A5 plays non-canonical functions and regulates HCC progression. Here, an unexpected non-canonical role of SLC27A5 is reported: regulating the alternative splicing of mRNA to inhibit the metastasis of HCC independently of its metabolic enzyme activity. Mechanistically, SLC27A5 interacts with IGF2BP3 to prevent its translocation into the nucleus, thereby inhibiting its binding to target mRNA and modulating PIP4K2A pre-mRNA splicing. Loss of SLC27A5 results in elevated levels of the PIP4K2A-S isoform, thus positively regulating phosphoinositide 3-kinase signaling via enhanced p85 stability in HCC. SLC27A5 restoration by AAV-Slc27a5 or IGF2BP3 RNA decoy oligonucleotides exerts an inhibitory effect on HCC metastasis with reduced expression of the PIP4K2A-S isoform. Therefore, PIP4K2A-S may be a novel target for treating HCC with SLC27A5 deficiency.
Collapse
Affiliation(s)
- Dan Nie
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400010China
- Department of GastroenterologyThe Chongqing Hospital of Traditional Chinese MedicineChongqing Academy of Traditional Chinese MedicineChongqing400016China
| | - Xin Tang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400010China
| | - Haijun Deng
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400010China
| | - Xiaojun Yang
- Department of GastroenterologyThe Chongqing Hospital of Traditional Chinese MedicineChongqing Academy of Traditional Chinese MedicineChongqing400016China
| | - Junji Tao
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400010China
| | - Fengli Xu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400010China
| | - Yi Liu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400010China
| | - Kang Wu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400010China
| | - Kai Wang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400010China
| | - Zhechuan Mei
- Department of GastroenterologyThe Second Affiliated HospitalChongqing Medical UniversityChongqing400016China
| | - Ailong Huang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400010China
| | - Ni Tang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400010China
| |
Collapse
|
4
|
Chen YJ, Wu KY, Lin SF, Huang SH, Hsu HC, Hsu HM. PIP2 regulating calcium signal modulates actin cytoskeleton-dependent cytoadherence and cytolytic capacity in the protozoan parasite Trichomonas vaginalis. PLoS Pathog 2023; 19:e1011891. [PMID: 38109416 PMCID: PMC10758264 DOI: 10.1371/journal.ppat.1011891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 01/01/2024] [Accepted: 12/08/2023] [Indexed: 12/20/2023] Open
Abstract
Trichomonas vaginalis is a prevalent causative agent that causes trichomoniasis leading to uropathogenic inflammation in the host. The crucial role of the actin cytoskeleton in T. vaginalis cytoadherence has been established but the associated signaling has not been fully elucidated. The present study revealed that the T. vaginalis second messenger PIP2 is located in the recurrent flagellum of the less adherent isolate and is more abundant around the cell membrane of the adherent isolates. The T. vaginalis phosphatidylinositol-4-phosphate 5-kinase (TvPI4P5K) with conserved activity phosphorylating PI(4)P to PI(4, 5)P2 was highly expressed in the adherent isolate and partially colocalized with PIP2 on the plasma membrane but with discrete punctate signals in the cytoplasm. Plasma membrane PIP2 degradation by phospholipase C (PLC)-dependent pathway concomitant with increasing intracellular calcium during flagellate-amoeboid morphogenesis. This could be inhibited by Edelfosine or BAPTA simultaneously repressing parasite actin assembly, morphogenesis, and cytoadherence with inhibitory effects similar to the iron-depleted parasite, supporting the significance of PIP2 and iron in T. vaginalis colonization. Intriguingly, iron is required for the optimal expression and cell membrane trafficking of TvPI4P5K for in situ PIP2 production, which was diminished in the iron-depleted parasites. TvPI4P5K-mediated PIP2 signaling may coordinate with iron to modulate T. vaginalis contact-dependent cytolysis to influence host cell viability. These observations provide novel insights into T. vaginalis cytopathogenesis during the host-parasite interaction.
Collapse
Affiliation(s)
- Yen-Ju Chen
- Department of Tropical Medicine and Parasitology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Kuan-Yi Wu
- Department of Tropical Medicine and Parasitology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Shu-Fan Lin
- Department of Tropical Medicine and Parasitology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Sung-Hsi Huang
- Department of Tropical Medicine and Parasitology, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan
| | - Heng-Cheng Hsu
- Department of Obstetrics and Gynecology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Surgery, National Taiwan University Cancer Center, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hong-Ming Hsu
- Department of Tropical Medicine and Parasitology, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
5
|
Aldred GG, Rooney TPC, Willems HMG, Boffey HK, Green C, Winpenny D, Skidmore J, Clarke JH, Andrews SP. The rational design of ARUK2007145, a dual inhibitor of the α and γ isoforms of the lipid kinase phosphatidylinositol 5-phosphate 4-kinase (PI5P4K). RSC Med Chem 2023; 14:2035-2047. [PMID: 37859710 PMCID: PMC10583824 DOI: 10.1039/d3md00355h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/23/2023] [Indexed: 10/21/2023] Open
Abstract
The phosphatidylinositol 5-phosphate 4-kinases (PI5P4Ks) are therapeutic targets for diseases such as cancer, neurodegeneration and immunological disorders as they are key components in regulating cell signalling pathways. In an effort to make probe molecules available for further exploring these targets, we have previously reported PI5P4Kα-selective and PI5P4Kγ-selective ligands. Herein we report the rational design of PI5P4Kα/γ dual inhibitors, using knowledge gained during the development of selective inhibitors for these proteins. ARUK2007145 (39) is disclosed as a potent, cell-active probe molecule with ADMET properties amenable to conducting experiments in cells.
Collapse
Affiliation(s)
- Gregory G Aldred
- The ALBORADA Drug Discovery Institute, University of Cambridge Island Research Building, Cambridge Biomedical Campus, Hills Road Cambridge CB2 0AH UK
| | - Timothy P C Rooney
- The ALBORADA Drug Discovery Institute, University of Cambridge Island Research Building, Cambridge Biomedical Campus, Hills Road Cambridge CB2 0AH UK
| | - Henriette M G Willems
- The ALBORADA Drug Discovery Institute, University of Cambridge Island Research Building, Cambridge Biomedical Campus, Hills Road Cambridge CB2 0AH UK
| | - Helen K Boffey
- The ALBORADA Drug Discovery Institute, University of Cambridge Island Research Building, Cambridge Biomedical Campus, Hills Road Cambridge CB2 0AH UK
| | - Christopher Green
- The ALBORADA Drug Discovery Institute, University of Cambridge Island Research Building, Cambridge Biomedical Campus, Hills Road Cambridge CB2 0AH UK
| | - David Winpenny
- The ALBORADA Drug Discovery Institute, University of Cambridge Island Research Building, Cambridge Biomedical Campus, Hills Road Cambridge CB2 0AH UK
| | - John Skidmore
- The ALBORADA Drug Discovery Institute, University of Cambridge Island Research Building, Cambridge Biomedical Campus, Hills Road Cambridge CB2 0AH UK
| | - Jonathan H Clarke
- The ALBORADA Drug Discovery Institute, University of Cambridge Island Research Building, Cambridge Biomedical Campus, Hills Road Cambridge CB2 0AH UK
| | - Stephen P Andrews
- The ALBORADA Drug Discovery Institute, University of Cambridge Island Research Building, Cambridge Biomedical Campus, Hills Road Cambridge CB2 0AH UK
| |
Collapse
|
6
|
Wills RC, Doyle CP, Zewe JP, Pacheco J, Hansen SD, Hammond GRV. A novel homeostatic mechanism tunes PI(4,5)P2-dependent signaling at the plasma membrane. J Cell Sci 2023; 136:jcs261494. [PMID: 37534432 PMCID: PMC10482388 DOI: 10.1242/jcs.261494] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 08/04/2023] Open
Abstract
The lipid molecule phosphatidylinositol (4,5)-bisphosphate [PI(4,5)P2] controls all aspects of plasma membrane (PM) function in animal cells, from its selective permeability to the attachment of the cytoskeleton. Although disruption of PI(4,5)P2 is associated with a wide range of diseases, it remains unclear how cells sense and maintain PI(4,5)P2 levels to support various cell functions. Here, we show that the PIP4K family of enzymes, which synthesize PI(4,5)P2 via a minor pathway, also function as sensors of tonic PI(4,5)P2 levels. PIP4Ks are recruited to the PM by elevated PI(4,5)P2 levels, where they inhibit the major PI(4,5)P2-synthesizing PIP5Ks. Perturbation of this simple homeostatic mechanism reveals differential sensitivity of PI(4,5)P2-dependent signaling to elevated PI(4,5)P2 levels. These findings reveal that a subset of PI(4,5)P2-driven functions might drive disease associated with disrupted PI(4,5)P2 homeostasis.
Collapse
Affiliation(s)
- Rachel C. Wills
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Colleen P. Doyle
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - James P. Zewe
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Jonathan Pacheco
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Scott D. Hansen
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403, USA
| | - Gerald R. V. Hammond
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|
7
|
Burke JE, Triscott J, Emerling BM, Hammond GRV. Beyond PI3Ks: targeting phosphoinositide kinases in disease. Nat Rev Drug Discov 2023; 22:357-386. [PMID: 36376561 PMCID: PMC9663198 DOI: 10.1038/s41573-022-00582-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2022] [Indexed: 11/16/2022]
Abstract
Lipid phosphoinositides are master regulators of almost all aspects of a cell's life and death and are generated by the tightly regulated activity of phosphoinositide kinases. Although extensive efforts have focused on drugging class I phosphoinositide 3-kinases (PI3Ks), recent years have revealed opportunities for targeting almost all phosphoinositide kinases in human diseases, including cancer, immunodeficiencies, viral infection and neurodegenerative disease. This has led to widespread efforts in the clinical development of potent and selective inhibitors of phosphoinositide kinases. This Review summarizes our current understanding of the molecular basis for the involvement of phosphoinositide kinases in disease and assesses the preclinical and clinical development of phosphoinositide kinase inhibitors.
Collapse
Affiliation(s)
- John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada.
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada.
| | - Joanna Triscott
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| | | | - Gerald R V Hammond
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
8
|
Hansen SD, Lee AA, Duewell BR, Groves JT. Membrane-mediated dimerization potentiates PIP5K lipid kinase activity. eLife 2022; 11:e73747. [PMID: 35976097 PMCID: PMC9470164 DOI: 10.7554/elife.73747] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 08/16/2022] [Indexed: 11/28/2022] Open
Abstract
The phosphatidylinositol 4-phosphate 5-kinase (PIP5K) family of lipid-modifying enzymes generate the majority of phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] lipids found at the plasma membrane in eukaryotic cells. PI(4,5)P2 lipids serve a critical role in regulating receptor activation, ion channel gating, endocytosis, and actin nucleation. Here, we describe how PIP5K activity is regulated by cooperative binding to PI(4,5)P2 lipids and membrane-mediated dimerization of the kinase domain. In contrast to constitutively dimeric phosphatidylinositol 5-phosphate 4-kinase (PIP4K, type II PIPK), solution PIP5K exists in a weak monomer-dimer equilibrium. PIP5K monomers can associate with PI(4,5)P2-containing membranes and dimerize in a protein density-dependent manner. Although dispensable for cooperative PI(4,5)P2 binding, dimerization enhances the catalytic efficiency of PIP5K through a mechanism consistent with allosteric regulation. Additionally, dimerization amplifies stochastic variation in the kinase reaction velocity and strengthens effects such as the recently described stochastic geometry sensing. Overall, the mechanism of PIP5K membrane binding creates a broad dynamic range of lipid kinase activities that are coupled to the density of PI(4,5)P2 and membrane-bound kinase.
Collapse
Affiliation(s)
- Scott D Hansen
- Department of Chemistry and Biochemistry, University of OregonEugeneUnited States
- Institute of Molecular Biology, University of OregonEugeneUnited States
| | - Albert A Lee
- Department of Chemistry, University of California, BerkeleyBerkeleyUnited States
- California Institute for Quantitative BiosciencesBerkeleyUnited States
- Department of Molecular and Cell BiologyBerkeleyUnited States
| | - Benjamin R Duewell
- Department of Chemistry and Biochemistry, University of OregonEugeneUnited States
- Institute of Molecular Biology, University of OregonEugeneUnited States
| | - Jay T Groves
- Department of Chemistry, University of California, BerkeleyBerkeleyUnited States
- California Institute for Quantitative BiosciencesBerkeleyUnited States
| |
Collapse
|
9
|
Boffey H, Rooney TPC, Willems HMG, Edwards S, Green C, Howard T, Ogg D, Romero T, Scott DE, Winpenny D, Duce J, Skidmore J, Clarke JH, Andrews SP. Development of Selective Phosphatidylinositol 5-Phosphate 4-Kinase γ Inhibitors with a Non-ATP-competitive, Allosteric Binding Mode. J Med Chem 2022; 65:3359-3370. [PMID: 35148092 PMCID: PMC9097471 DOI: 10.1021/acs.jmedchem.1c01819] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Indexed: 12/31/2022]
Abstract
Phosphatidylinositol 5-phosphate 4-kinases (PI5P4Ks) are emerging as attractive therapeutic targets in diseases, such as cancer, immunological disorders, and neurodegeneration, owing to their central role in regulating cell signaling pathways that are either dysfunctional or can be modulated to promote cell survival. Different modes of binding may enhance inhibitor selectivity and reduce off-target effects in cells. Here, we describe efforts to improve the physicochemical properties of the selective PI5P4Kγ inhibitor, NIH-12848 (1). These improvements enabled the demonstration that this chemotype engages PI5P4Kγ in intact cells and that compounds from this series do not inhibit PI5P4Kα or PI5P4Kβ. Furthermore, the first X-ray structure of PI5P4Kγ bound to an inhibitor has been determined with this chemotype, confirming an allosteric binding mode. An exemplar from this chemical series adopted two distinct modes of inhibition, including through binding to a putative lipid interaction site which is 18 Å from the ATP pocket.
Collapse
Affiliation(s)
- Helen
K. Boffey
- The
ALBORADA Drug Discovery Institute, University
of Cambridge, Island Research Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0AH, U.K.
| | - Timothy P. C. Rooney
- The
ALBORADA Drug Discovery Institute, University
of Cambridge, Island Research Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0AH, U.K.
| | - Henriette M. G. Willems
- The
ALBORADA Drug Discovery Institute, University
of Cambridge, Island Research Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0AH, U.K.
| | - Simon Edwards
- The
ALBORADA Drug Discovery Institute, University
of Cambridge, Island Research Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0AH, U.K.
| | - Christopher Green
- UK
Dementia Research Institute, University
of Cambridge, Island
Research Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0AH, U.K.
| | - Tina Howard
- Peak
Proteins, Alderley Park, Macclesfield SK10 4TG, Cheshire, U.K.
| | - Derek Ogg
- Peak
Proteins, Alderley Park, Macclesfield SK10 4TG, Cheshire, U.K.
| | - Tamara Romero
- The
ALBORADA Drug Discovery Institute, University
of Cambridge, Island Research Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0AH, U.K.
| | - Duncan E. Scott
- The
ALBORADA Drug Discovery Institute, University
of Cambridge, Island Research Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0AH, U.K.
| | - David Winpenny
- The
ALBORADA Drug Discovery Institute, University
of Cambridge, Island Research Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0AH, U.K.
| | - James Duce
- The
ALBORADA Drug Discovery Institute, University
of Cambridge, Island Research Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0AH, U.K.
| | - John Skidmore
- The
ALBORADA Drug Discovery Institute, University
of Cambridge, Island Research Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0AH, U.K.
| | - Jonathan H. Clarke
- The
ALBORADA Drug Discovery Institute, University
of Cambridge, Island Research Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0AH, U.K.
| | - Stephen P. Andrews
- The
ALBORADA Drug Discovery Institute, University
of Cambridge, Island Research Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0AH, U.K.
| |
Collapse
|
10
|
Tariq K, Luikart BW. Striking a balance: PIP 2 and PIP 3 signaling in neuronal health and disease. EXPLORATION OF NEUROPROTECTIVE THERAPY 2022; 1:86-100. [PMID: 35098253 PMCID: PMC8797975 DOI: 10.37349/ent.2021.00008] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Phosphoinositides are membrane phospholipids involved in a variety of cellular processes like growth, development, metabolism, and transport. This review focuses on the maintenance of cellular homeostasis of phosphatidylinositol 4,5-bisphosphate (PIP2), and phosphatidylinositol 3,4,5-trisphosphate (PIP3). The critical balance of these PIPs is crucial for regulation of neuronal form and function. The activity of PIP2 and PIP3 can be regulated through kinases, phosphatases, phospholipases and cholesterol microdomains. PIP2 and PIP3 carry out their functions either indirectly through their effectors activating integral signaling pathways, or through direct regulation of membrane channels, transporters, and cytoskeletal proteins. Any perturbations to the balance between PIP2 and PIP3 signaling result in neurodevelopmental and neurodegenerative disorders. This review will discuss the upstream modulators and downstream effectors of the PIP2 and PIP3 signaling, in the context of neuronal health and disease.
Collapse
Affiliation(s)
- Kamran Tariq
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Bryan W Luikart
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| |
Collapse
|
11
|
Pharmacological inhibition of PI5P4Kα/β disrupts cell energy metabolism and selectively kills p53-null tumor cells. Proc Natl Acad Sci U S A 2021; 118:2002486118. [PMID: 34001596 DOI: 10.1073/pnas.2002486118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Most human cancer cells harbor loss-of-function mutations in the p53 tumor suppressor gene. Genetic experiments have shown that phosphatidylinositol 5-phosphate 4-kinase α and β (PI5P4Kα and PI5P4Kβ) are essential for the development of late-onset tumors in mice with germline p53 deletion, but the mechanism underlying this acquired dependence remains unclear. PI5P4K has been previously implicated in metabolic regulation. Here, we show that inhibition of PI5P4Kα/β kinase activity by a potent and selective small-molecule probe disrupts cell energy homeostasis, causing AMPK activation and mTORC1 inhibition in a variety of cell types. Feedback through the S6K/insulin receptor substrate (IRS) loop contributes to insulin hypersensitivity and enhanced PI3K signaling in terminally differentiated myotubes. Most significantly, the energy stress induced by PI5P4Kαβ inhibition is selectively toxic toward p53-null tumor cells. The chemical probe, and the structural basis for its exquisite specificity, provide a promising platform for further development, which may lead to a novel class of diabetes and cancer drugs.
Collapse
|
12
|
Sajko S, Grishkovskaya I, Kostan J, Graewert M, Setiawan K, Trübestein L, Niedermüller K, Gehin C, Sponga A, Puchinger M, Gavin AC, Leonard TA, Svergun DI, Smith TK, Morriswood B, Djinovic-Carugo K. Structures of three MORN repeat proteins and a re-evaluation of the proposed lipid-binding properties of MORN repeats. PLoS One 2020; 15:e0242677. [PMID: 33296386 PMCID: PMC7725318 DOI: 10.1371/journal.pone.0242677] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/08/2020] [Indexed: 11/19/2022] Open
Abstract
MORN (Membrane Occupation and Recognition Nexus) repeat proteins have a wide taxonomic distribution, being found in both prokaryotes and eukaryotes. Despite this ubiquity, they remain poorly characterised at both a structural and a functional level compared to other common repeats. In functional terms, they are often assumed to be lipid-binding modules that mediate membrane targeting. We addressed this putative activity by focusing on a protein composed solely of MORN repeats-Trypanosoma brucei MORN1. Surprisingly, no evidence for binding to membranes or lipid vesicles by TbMORN1 could be obtained either in vivo or in vitro. Conversely, TbMORN1 did interact with individual phospholipids. High- and low-resolution structures of the MORN1 protein from Trypanosoma brucei and homologous proteins from the parasites Toxoplasma gondii and Plasmodium falciparum were obtained using a combination of macromolecular crystallography, small-angle X-ray scattering, and electron microscopy. This enabled a first structure-based definition of the MORN repeat itself. Furthermore, all three structures dimerised via their C-termini in an antiparallel configuration. The dimers could form extended or V-shaped quaternary structures depending on the presence of specific interface residues. This work provides a new perspective on MORN repeats, showing that they are protein-protein interaction modules capable of mediating both dimerisation and oligomerisation.
Collapse
Affiliation(s)
- Sara Sajko
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
| | - Irina Grishkovskaya
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
| | - Julius Kostan
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
| | - Melissa Graewert
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| | - Kim Setiawan
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Linda Trübestein
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
| | - Korbinian Niedermüller
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Charlotte Gehin
- European Molecular Biology Laboratory, Heidelberg Unit, Heidelberg, Germany
- Institute of Bioengineering, Laboratory of Lipid Cell Biology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Antonio Sponga
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
| | - Martin Puchinger
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
| | - Anne-Claude Gavin
- European Molecular Biology Laboratory, Heidelberg Unit, Heidelberg, Germany
- Department for Cell Physiology and Metabolism, University of Geneva, Centre Medical Universitaire, Geneva, Switzerland
| | - Thomas A. Leonard
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
| | | | - Terry K. Smith
- School of Biology, BSRC, University of St. Andrews, St. Andrews, United Kingdom
| | - Brooke Morriswood
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Kristina Djinovic-Carugo
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
- Department of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
13
|
Sivakumaren SC, Shim H, Zhang T, Ferguson FM, Lundquist MR, Browne CM, Seo HS, Paddock MN, Manz TD, Jiang B, Hao MF, Krishnan P, Wang DG, Yang TJ, Kwiatkowski NP, Ficarro SB, Cunningham JM, Marto JA, Dhe-Paganon S, Cantley LC, Gray NS. Targeting the PI5P4K Lipid Kinase Family in Cancer Using Covalent Inhibitors. Cell Chem Biol 2020; 27:525-537.e6. [PMID: 32130941 PMCID: PMC7286548 DOI: 10.1016/j.chembiol.2020.02.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 11/14/2019] [Accepted: 02/13/2020] [Indexed: 12/12/2022]
Abstract
The PI5P4Ks have been demonstrated to be important for cancer cell proliferation and other diseases. However, the therapeutic potential of targeting these kinases is understudied due to a lack of potent, specific small molecules available. Here, we present the discovery and characterization of a pan-PI5P4K inhibitor, THZ-P1-2, that covalently targets cysteines on a disordered loop in PI5P4Kα/β/γ. THZ-P1-2 demonstrates cellular on-target engagement with limited off-targets across the kinome. AML/ALL cell lines were sensitive to THZ-P1-2, consistent with PI5P4K's reported role in leukemogenesis. THZ-P1-2 causes autophagosome clearance defects and upregulation in TFEB nuclear localization and target genes, disrupting autophagy in a covalent-dependent manner and phenocopying the effects of PI5P4K genetic deletion. Our studies demonstrate that PI5P4Ks are tractable targets, with THZ-P1-2 as a useful tool to further interrogate the therapeutic potential of PI5P4K inhibition and inform drug discovery campaigns for these lipid kinases in cancer metabolism and other autophagy-dependent disorders.
Collapse
Affiliation(s)
- Sindhu Carmen Sivakumaren
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Hyeseok Shim
- Meyer Cancer Center, Weill Cornell Medicine and New York Presbyterian Hospital, New York, NY 10065, USA
| | - Tinghu Zhang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Fleur M Ferguson
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Mark R Lundquist
- Meyer Cancer Center, Weill Cornell Medicine and New York Presbyterian Hospital, New York, NY 10065, USA
| | - Christopher M Browne
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Hyuk-Soo Seo
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Marcia N Paddock
- Meyer Cancer Center, Weill Cornell Medicine and New York Presbyterian Hospital, New York, NY 10065, USA
| | - Theresa D Manz
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Department of Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbruecken, Germany
| | - Baishan Jiang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Ming-Feng Hao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Pranav Krishnan
- Department of Medicine, Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Diana G Wang
- Meyer Cancer Center, Weill Cornell Medicine and New York Presbyterian Hospital, New York, NY 10065, USA
| | - T Jonathan Yang
- Meyer Cancer Center, Weill Cornell Medicine and New York Presbyterian Hospital, New York, NY 10065, USA
| | - Nicholas P Kwiatkowski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Scott B Ficarro
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - James M Cunningham
- Department of Medicine, Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jarrod A Marto
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Sirano Dhe-Paganon
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Lewis C Cantley
- Meyer Cancer Center, Weill Cornell Medicine and New York Presbyterian Hospital, New York, NY 10065, USA.
| | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
14
|
Pemberton JG, Kim YJ, Balla T. Integrated regulation of the phosphatidylinositol cycle and phosphoinositide-driven lipid transport at ER-PM contact sites. Traffic 2019; 21:200-219. [PMID: 31650663 DOI: 10.1111/tra.12709] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/02/2019] [Accepted: 10/16/2019] [Indexed: 12/20/2022]
Abstract
Among the structural phospholipids that form the bulk of eukaryotic cell membranes, phosphatidylinositol (PtdIns) is unique in that it also serves as the common precursor for low-abundance regulatory lipids, collectively referred to as polyphosphoinositides (PPIn). The metabolic turnover of PPIn species has received immense attention because of the essential functions of these lipids as universal regulators of membrane biology and their dysregulation in numerous human pathologies. The diverse functions of PPIn lipids occur, in part, by orchestrating the spatial organization and conformational dynamics of peripheral or integral membrane proteins within defined subcellular compartments. The emerging role of stable contact sites between adjacent membranes as specialized platforms for the coordinate control of ion exchange, cytoskeletal dynamics, and lipid transport has also revealed important new roles for PPIn species. In this review, we highlight the importance of membrane contact sites formed between the endoplasmic reticulum (ER) and plasma membrane (PM) for the integrated regulation of PPIn metabolism within the PM. Special emphasis will be placed on non-vesicular lipid transport during control of the PtdIns biosynthetic cycle as well as toward balancing the turnover of the signaling PPIn species that define PM identity.
Collapse
Affiliation(s)
- Joshua G Pemberton
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, Maryland
| | - Yeun Ju Kim
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, Maryland
| | - Tamas Balla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
15
|
Amos SBTA, Kalli AC, Shi J, Sansom MSP. Membrane Recognition and Binding by the Phosphatidylinositol Phosphate Kinase PIP5K1A: A Multiscale Simulation Study. Structure 2019; 27:1336-1346.e2. [PMID: 31204251 PMCID: PMC6688827 DOI: 10.1016/j.str.2019.05.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/07/2019] [Accepted: 05/14/2019] [Indexed: 11/28/2022]
Abstract
Phosphatidylinositol phosphates (PIPs) are lipid signaling molecules that play key roles in many cellular processes. PIP5K1A kinase catalyzes phosphorylation of PI4P to form PIP2, which in turn interacts with membrane and membrane-associated proteins. We explore the mechanism of membrane binding by the PIP5K1A kinase using a multiscale molecular dynamics approach. Coarse-grained simulations show binding of monomeric PIP5K1A to a model cell membrane containing PI4P. PIP5K1A did not bind to zwitterionic or anionic membranes lacking PIP molecules. Initial encounter of kinase and bilayer was followed by reorientation to enable productive binding to the PI4P-containing membrane. The simulations suggest that unstructured regions may be important for the preferred orientation for membrane binding. Atomistic simulations indicated that the dimeric kinase could not bind to the membrane via both active sites at the same time, suggesting a conformational change in the protein and/or bilayer distortion may be needed for dual-site binding to occur. PIP5K1A kinase interacts with PIP-containing membranes via its activation loop PIP5K1A does not bind to zwitterionic or anionic membranes lacking PIP molecules Initial encounter of protein and bilayer is followed by reorientation and binding Dimeric PIP5K1A binds with membrane contacts via only one catalytic site at a time
Collapse
Affiliation(s)
- Sarah-Beth T A Amos
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Antreas C Kalli
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Jiye Shi
- UCB Pharma, 208 Bath Road, Slough SL1 3WE, UK
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
16
|
Phosphatidylinositol 5 Phosphate (PI5P): From Behind the Scenes to the Front (Nuclear) Stage. Int J Mol Sci 2019; 20:ijms20092080. [PMID: 31035587 PMCID: PMC6539119 DOI: 10.3390/ijms20092080] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 04/20/2019] [Accepted: 04/23/2019] [Indexed: 12/11/2022] Open
Abstract
Phosphatidylinositol (PI)-related signaling plays a pivotal role in many cellular aspects, including survival, cell proliferation, differentiation, DNA damage, and trafficking. PI is the core of a network of proteins represented by kinases, phosphatases, and lipases which are able to add, remove or hydrolyze PI, leading to different phosphoinositide products. Among the seven known phosphoinositides, phosphatidylinositol 5 phosphate (PI5P) was the last to be discovered. PI5P presence in cells is very low compared to other PIs. However, much evidence collected throughout the years has described the role of this mono-phosphoinositide in cell cycles, stress response, T-cell activation, and chromatin remodeling. Interestingly, PI5P has been found in different cellular compartments, including the nucleus. Here, we will review the nuclear role of PI5P, describing how it is synthesized and regulated, and how changes in the levels of this rare phosphoinositide can lead to different nuclear outputs.
Collapse
|
17
|
Khadka B, Gupta RS. Novel Molecular Signatures in the PIP4K/PIP5K Family of Proteins Specific for Different Isozymes and Subfamilies Provide Important Insights into the Evolutionary Divergence of this Protein Family. Genes (Basel) 2019; 10:genes10040312. [PMID: 31010098 PMCID: PMC6523245 DOI: 10.3390/genes10040312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/10/2019] [Accepted: 04/15/2019] [Indexed: 02/07/2023] Open
Abstract
Members of the PIP4K/PIP5K family of proteins, which generate the highly important secondary messenger phosphatidylinositol-4,5-bisphosphate, play central roles in regulating diverse signaling pathways. In eukaryotic organisms, multiple isozymes and subfamilies of PIP4K/PIP5K proteins are found and it is of much interest to understand their evolution and species distribution and what unique molecular and biochemical characteristics distinguish specific isozymes and subfamilies of proteins. We report here the species distribution of different PIP4K/PIP5K family of proteins in eukaryotic organisms and phylogenetic analysis based on their protein sequences. Our results indicate that the distinct homologs of both PIP4K and PIP5K are found in different organisms belonging to the Holozoa clade of eukaryotes, which comprises of various metazoan phyla as well as their close unicellular relatives Choanoflagellates and Filasterea. In contrast, the deeper-branching eukaryotic lineages, as well as plants and fungi, contain only a single homolog of the PIP4K/PIP5K proteins. In parallel, our comparative analyses of PIP4K/PIP5K protein sequences have identified six highly-specific molecular markers consisting of conserved signature indels (CSIs) that are uniquely shared by either the PIP4K or PIP5K proteins, or both, or specific subfamilies of these proteins. Of these molecular markers, 2 CSIs are distinctive characteristics of all PIP4K homologs, 1 CSI distinguishes the PIP4K and PIP5K homologs from the Holozoa clade of species from the ancestral form of PIP4K/PIP5K found in deeper-branching eukaryotic lineages. The remaining three CSIs are specific for the PIP5Kα, PIP5Kβ, and PIP4Kγ subfamilies of proteins from vertebrate species. These molecular markers provide important means for distinguishing different PIP4K/PIP5K isozymes as well as some of their subfamilies. In addition, the distribution patterns of these markers in different isozymes provide important insights into the evolutionary divergence of PIP4K/PIP5K proteins. Our results support the view that the Holozoa clade of eukaryotic organisms shared a common ancestor exclusive of the other eukaryotic lineages and that the initial gene duplication event leading to the divergence of distinct types of PIP4K and PIP5K homologs occurred in a common ancestor of this clade. Based on the results gleaned from different studies presented here, a model for the evolutionary divergence of the PIP4K/PIP5K family of proteins is presented.
Collapse
Affiliation(s)
- Bijendra Khadka
- Department of Biochemistry and Biomedical Sciences McMaster University, Hamilton, ON L8N 3Z5, Canada.
| | - Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences McMaster University, Hamilton, ON L8N 3Z5, Canada.
| |
Collapse
|
18
|
Sharma S, Bhattacharya S, Bhattacharya A. PtdIns(4,5)P 2 is generated by a novel phosphatidylinositol 4-phosphate 5-kinase in the protist parasite Entamoeba histolytica. FEBS J 2019; 286:2216-2234. [PMID: 30843363 DOI: 10.1111/febs.14804] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 02/03/2019] [Accepted: 03/05/2019] [Indexed: 01/02/2023]
Abstract
Entamoeba histolytica is an intestinal protist parasite that causes amoebiasis, a major source of morbidity and mortality in developing countries. Phosphoinositides are involved in signalling systems that have a role in invasion and pathogenesis of this parasite. Phosphatidylinositol 4-phosphate 5-kinase (PIP5K) catalyses the generation of phosphatidylinositol(4,5)bisphosphate (PtdIns(4,5)P2 ), a key species of phosphoinositide that regulates various cellular processes. However, phosphatidylinositol phosphate kinase (PIPK) family of enzymes have not been characterized in E. histolytica. Here, we report the identification and characterization of type I PIPK (EhPIPKI) of E. histolytica. Computational analysis revealed homologs of type I and III PIPK family in E. histolytica and the absence of type II PIPK. In spite of low overall sequence identity, the kinase domain was found to be highly conserved. Interestingly, a unique insertion of a tandem repeat motif was observed in EhPIPKI distinguishing it from existing PIPKs of other organisms. Substrate profiling showed that EhPIPKI could phosphorylate at third and fifth hydroxyl positions of phosphatidylinositols, though the predominant substrate was phosphatidylinositol 4-phosphate (PtdIns(4)P). Furthermore, EhPIPKI underwent intracellular cleavage close to the amino-terminal, generating two distinct fragments Nter-EhPIPKI (27p) and Cter-EhPIPKI (47p). Immunofluorescence and cellular fractionation revealed that the full-length EhPIPKI and the Cter-EhPIPKI containing carboxyl-terminal activation loop were present in the plasma membrane while the Nter-EhPIPKI was observed in the cytosolic region. In conclusion, E. histolytica has a single EhPIPKI gene that displays novel properties of post-translational processing, the presence of a repeat domain and substrate specificity not observed in any PIPK enzyme so far.
Collapse
Affiliation(s)
- Shalini Sharma
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sudha Bhattacharya
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Alok Bhattacharya
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
19
|
Abstract
Carbohydrate kinases activate a wide variety of monosaccharides by adding a phosphate group, usually from ATP. This modification is fundamental to saccharide utilization, and it is likely a very ancient reaction. Modern organisms contain carbohydrate kinases from at least five main protein families. These range from the highly specialized inositol kinases, to the ribokinases and galactokinases, which belong to families that phosphorylate a wide range of substrates. The carbohydrate kinases utilize a common strategy to drive the reaction between the sugar hydroxyl and the donor phosphate. Each sugar is held in position by a network of hydrogen bonds to the non-reactive hydroxyls (and other functional groups). The reactive hydroxyl is deprotonated, usually by an aspartic acid side chain acting as a catalytic base. The deprotonated hydroxyl then attacks the donor phosphate. The resulting pentacoordinate transition state is stabilized by an adjacent divalent cation, and sometimes by a positively charged protein side chain or the presence of an anion hole. Many carbohydrate kinases are allosterically regulated using a wide variety of strategies, due to their roles at critical control points in carbohydrate metabolism. The evolution of a similar mechanism in several folds highlights the elegance and simplicity of the catalytic scheme.
Collapse
|
20
|
Shears SB, Wang H. Inositol phosphate kinases: Expanding the biological significance of the universal core of the protein kinase fold. Adv Biol Regul 2019; 71:118-127. [PMID: 30392847 PMCID: PMC9364425 DOI: 10.1016/j.jbior.2018.10.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 10/23/2018] [Accepted: 10/26/2018] [Indexed: 05/06/2023]
Abstract
The protein kinase family is characterized by substantial conservation of architectural elements that are required for both ATP binding and phosphotransferase activity. Many of these structural features have also been identified in homologous enzymes that phosphorylate a variety of alternative, non-protein substrates. A comparative structural analysis of these different kinase sub-classes is a portal to a greater understanding of reaction mechanisms, enzyme regulation, inhibitor-development strategies, and superfamily-level evolutionary relationships. To serve such advances, we review structural elements of the protein kinase fold that are conserved in the subfamily of inositol phosphate kinases (InsPKs) that share a PxxxDxKxG catalytic signature: inositol 1,4,5-trisphosphate kinase (IP3K), inositol hexakisphosphate kinase (IP6K), and inositol polyphosphate multikinase (IPMK). We describe conservation of the fundamental two-lobe kinase architecture: an N-lobe constructed upon an anti-parallel β-strand scaffold, which is coupled to a largely helical C-lobe by a single, adenine-binding hinge. This equivalency also includes a G-loop that embraces the β/γ-phosphates of ATP, a transition-state stabilizing residue (Lys/His), and a Mg-positioning aspartate residue within a catalytic triad. Furthermore, we expand this list of conserved structural features to include some not previously identified in InsPKs: a 'gatekeeper' residue in the N-lobe, and an 'αF'-like helix in the C-lobe that anchors two structurally-stabilizing, hydrophobic spines, formed from non-consecutive residues that span the two lobes. We describe how this wide-ranging structural homology can be exploited to develop lead inhibitors of IP6K and IPMK, by using strategies similar to those that have generated ATP-competing inhibitors of protein-kinases. We provide several examples to illustrate how such an approach could benefit human health.
Collapse
Affiliation(s)
- Stephen B Shears
- Inositol Signaling Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.
| | - Huanchen Wang
- Inositol Signaling Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.
| |
Collapse
|
21
|
Structural Basis for Regulation of Phosphoinositide Kinases and Their Involvement in Human Disease. Mol Cell 2018; 71:653-673. [DOI: 10.1016/j.molcel.2018.08.005] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/22/2018] [Accepted: 07/30/2018] [Indexed: 01/09/2023]
|
22
|
Choi S, Houdek X, Anderson RA. Phosphoinositide 3-kinase pathways and autophagy require phosphatidylinositol phosphate kinases. Adv Biol Regul 2018; 68:31-38. [PMID: 29472147 PMCID: PMC5955796 DOI: 10.1016/j.jbior.2018.02.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/07/2018] [Accepted: 02/07/2018] [Indexed: 01/10/2023]
Abstract
Phosphatidylinositol phosphate kinases (PIPKs) generate a lipid messenger phosphatidylinositol 4,5-bisphosphate (PI4,5P2) that controls essentially all aspects of cellular functions. PI4,5P2 rapidly diffuses in the membrane of the lipid bilayer and does not greatly change in membrane or cellular content, and thus PI4,5P2 generation by PIPKs is tightly linked to its usage in subcellular compartments. Based on this verity, recent study of PI4,5P2 signal transduction has been focused on investigations of individual PIPKs and their underlying molecular regulation of cellular processes. Here, we will discuss recent advances in the study of how PIPKs control specific cellular events through assembly and regulation of PI4,5P2 effectors that mediate specific cellular processes. A focus will be on the roles of PIPKs in control of the phosphoinositide 3-kinase pathway and autophagy.
Collapse
Affiliation(s)
- Suyong Choi
- University of Wisconsin-Madison, School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA
| | - Xander Houdek
- University of Wisconsin-Madison, School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA
| | - Richard A Anderson
- University of Wisconsin-Madison, School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA.
| |
Collapse
|
23
|
Takeuchi K, Senda M, Lo YH, Kofuji S, Ikeda Y, Sasaki AT, Senda T. Structural reverse genetics study of the PI5P4Kβ-nucleotide complexes reveals the presence of the GTP bioenergetic system in mammalian cells. FEBS J 2017; 283:3556-3562. [PMID: 27090388 DOI: 10.1111/febs.13739] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 04/12/2016] [Accepted: 04/18/2016] [Indexed: 12/13/2022]
Abstract
Reverse genetic analysis can connect a gene and its protein counterpart to a biological function(s) by knockout or knockdown of the specific gene. However, when a protein has multiple biochemical activities, the conventional genetics strategy is incapable of distinguishing which biochemical activity of the protein is critical for the particular biological function(s). Here, we propose a structural reverse genetics strategy to overcome this problem. In a structural reverse genetics study, multiple biochemical activities of a protein are segregated by mapping those activities to a structural element(s) in the atomic resolution tertiary structure. Based on the structural mapping, a mutant lacking one biochemical activity of interest can be produced with the other activities kept intact. Expression of the mutant by knockin or ectopic expression in the knockout strain along with the following analysis can connect the single biochemical activity of interest to a biological function. Using the structural reverse genetics strategy, we have dissected the newly identified GTP-dependent activity of a lipid kinase PI5P4Kβ from its ATP-dependent activity. The GTP-insensitive mutant has demonstrated the existence of the GTP bioenergetic sensor system in mammalian cells and its critical role in tumorigenesis. As structural reverse genetics can identify in vivo significance of individual biochemical activity, it is a powerful approach to reveal hidden biological functions, which could be a novel pharmacological target for therapeutic intervention. Given the recent expansion of choices in structural biological methods and advances in genome editing technologies, the time is ripe for structural reverse genetics strategies.
Collapse
Affiliation(s)
- Koh Takeuchi
- Biomedicinal Information Research Center and Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Koto, Tokyo, Japan.,JST, PRESTO, Tokyo, Japan
| | - Miki Senda
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki, Japan
| | - Yu-Hua Lo
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki, Japan
| | - Satoshi Kofuji
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, OH, USA
| | - Yoshiki Ikeda
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, OH, USA
| | - Atsuo T Sasaki
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, OH, USA. .,Department of Cancer Biology, Brain Tumor Center, Neuroscience Institute, University of Cincinnati College of Medicine, OH, USA. .,Department of Neurosurgery, Brain Tumor Center, Neuroscience Institute, University of Cincinnati College of Medicine, OH, USA.
| | - Toshiya Senda
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki, Japan. .,Department of Materials Structure Science, School of High Energy Accelerator Science, The graduate University of Advanced Studies (Soken-dai), Tsukuba, Ibaraki, Japan.
| |
Collapse
|
24
|
Gerth K, Lin F, Menzel W, Krishnamoorthy P, Stenzel I, Heilmann M, Heilmann I. Guilt by Association: A Phenotype-Based View of the Plant Phosphoinositide Network. ANNUAL REVIEW OF PLANT BIOLOGY 2017; 68:349-374. [PMID: 28125287 DOI: 10.1146/annurev-arplant-042916-041022] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Eukaryotic membranes contain small amounts of phospholipids that have regulatory effects on the physiological functions of cells, tissues, and organs. Phosphoinositides (PIs)-the phosphorylated derivatives of phosphatidylinositol-are one example of such regulatory lipids. Although PIs were described in plants decades ago, their contribution to the regulation of physiological processes in plants is not well understood. In the past few years, evidence has emerged that PIs are essential for plant function and development. Recently reported phenotypes associated with the perturbation of different PIs suggest that some subgroups of PIs influence specific processes. Although the molecular targets of PI-dependent regulation in plants are largely unknown, the effects of perturbed PI metabolism can be used to propose regulatory modules that involve particular downstream targets of PI regulation. This review summarizes phenotypes associated with the perturbation of the plant PI network to categorize functions and suggest possible downstream targets of plant PI regulation.
Collapse
Affiliation(s)
- Katharina Gerth
- Department of Cellular Biochemistry, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; , , , , , ,
| | - Feng Lin
- Department of Cellular Biochemistry, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; , , , , , ,
| | - Wilhelm Menzel
- Department of Cellular Biochemistry, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; , , , , , ,
| | - Praveen Krishnamoorthy
- Department of Cellular Biochemistry, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; , , , , , ,
| | - Irene Stenzel
- Department of Cellular Biochemistry, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; , , , , , ,
| | - Mareike Heilmann
- Department of Cellular Biochemistry, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; , , , , , ,
| | - Ingo Heilmann
- Department of Cellular Biochemistry, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; , , , , , ,
| |
Collapse
|
25
|
Khadka B, Gupta RS. Identification of a conserved 8 aa insert in the PIP5K protein in the Saccharomycetaceae family of fungi and the molecular dynamics simulations and structural analysis to investigate its potential functional role. Proteins 2017; 85:1454-1467. [PMID: 28407364 DOI: 10.1002/prot.25306] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/06/2017] [Accepted: 04/10/2017] [Indexed: 12/29/2022]
Abstract
Homologs of the phosphatidylinositol-4-phosphate-5-kinase (PIP5K), which controls a multitude of essential cellular functions, contain a 8 aa insert in a conserved region that is specific for the Saccharomycetaceae family of fungi. Using structures of human PIP4K proteins as templates, structural models were generated of the Saccharomyces cerevisiae and human PIP5K proteins. In the modeled S. cerevisiae PIP5K, the 8 aa insert forms a surface exposed loop, present on the same face of the protein as the activation loop of the kinase domain. Electrostatic potential analysis indicates that the residues from 8 aa conserved loop form a highly positively charged surface patch, which through electrostatic interaction with the anionic portions of phospholipid head groups, is expected to play a role in the membrane interaction of the yeast PIP5K. To unravel this prediction, molecular dynamics (MD) simulations were carried out to examine the binding interaction of PIP5K, either containing or lacking the conserved signature insert, with two different membrane lipid bilayers. The results from MD studies provide insights concerning the mechanistic of interaction of PIP5K with lipid bilayer, and support the contention that the identified 8 aa conserved insert in fungal PIP5K plays an important role in the binding of this protein with membrane surface. Proteins 2017; 85:1454-1467. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Bijendra Khadka
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada, L8N 3Z5
| | - Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada, L8N 3Z5
| |
Collapse
|
26
|
Patra SK, Sengupta D, Deb M, Kar S, Kausar C. Interaction of phospholipase C with liposome: A conformation transition of the enzyme is critical and specific to liposome composition for burst hydrolysis and fusion in concert. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 173:647-654. [PMID: 27788468 DOI: 10.1016/j.saa.2016.10.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 10/11/2016] [Accepted: 10/16/2016] [Indexed: 06/06/2023]
Abstract
Phospholipase C (PLC)1 is known to help the pathogen B. cereus entry to the host cell and human PLC is over expressed in multiple cancers. Knowledge of dynamic activity of the enzyme PLC while in action on membrane lipids is essential and helpful to drug design and delivery. In view of this, interactions of PLC with liposome of various lipid compositions have been visualized by testing enzyme activity and microenvironments around the intrinsic fluorophores of the enzyme. Overall change of the protein's conformation has been monitored by fluorescence spectroscopy and circular dichroism (CD). Liposome aggregation and fusion were predicted by increase in turbidity and vesicle size. PLC in solution has high fluorescence and exhibit appreciable shift in its emission maxima, upon gradual change in excitation wavelength towards the red edge of the absorption band. REES fluorescence studies indicated that certain Trp fluorophores of inactive PLC are in motionally restricted compact/rigid environments in solution conformation. PLC fluorescence decreased in association with liposome and Trps loosed rigidity where liposome aggregation and fusion occurred. We argue that the structural flexibility is the cause of decrease of fluorescence, mostly to gain optimum conformation for maximum activity of the enzyme PLC. Further studies deciphered that the enzyme PLC undergoes change of conformation when mixed to LUVs prepared with specific lipids. CD data at the far-UV and near-UV regions of PLC in solution are in excellent agreement with the previous reports. CD analyses of PLC with LUVs, showed significant reduction of α-helices, increase of β-sheets; and confirmed dramatic change of orientations of Trps. In case of liposome composed of lipid raft like composition, the enzyme binds very fast, hydrolyze PC with higher rate, exhibit highest structural flexibility and promote vesicle fusion. These data strongly suggest marked differences in conformation transition induced PLC activation and liposome fusion on the lipid composition.
Collapse
Affiliation(s)
- Samir Kumar Patra
- Department of Life Science, National Institute of Technology, Rourkela, Orissa, India.
| | - Dipta Sengupta
- Department of Life Science, National Institute of Technology, Rourkela, Orissa, India
| | - Moonmoon Deb
- Department of Life Science, National Institute of Technology, Rourkela, Orissa, India
| | - Swayamsiddha Kar
- Department of Life Science, National Institute of Technology, Rourkela, Orissa, India
| | - Chahat Kausar
- Department of Life Science, National Institute of Technology, Rourkela, Orissa, India
| |
Collapse
|
27
|
Lang MJ, Strunk BS, Azad N, Petersen JL, Weisman LS. An intramolecular interaction within the lipid kinase Fab1 regulates cellular phosphatidylinositol 3,5-bisphosphate lipid levels. Mol Biol Cell 2017; 28:858-864. [PMID: 28148651 PMCID: PMC5385934 DOI: 10.1091/mbc.e16-06-0390] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 01/24/2017] [Accepted: 01/24/2017] [Indexed: 11/24/2022] Open
Abstract
There is an intramolecular interaction in the lipid kinase Fab1 in which the upstream CCR domain contacts the Fab1 kinase region. Selected dominant-active alleles disrupt this interaction and result in elevated PI(3,5)P2. These findings suggest a regulatory mechanism that contributes to dynamic control of cellular PI(3,5)P2 synthesis. Phosphorylated phosphoinositide lipids (PPIs) are low-abundance signaling molecules that control signal transduction pathways and are necessary for cellular homeostasis. The PPI phosphatidylinositol (3,5)-bisphosphate (PI(3,5)P2) is essential in multiple organ systems. PI(3,5)P2 is generated from PI3P by the conserved lipid kinase Fab1/PIKfyve. Defects in the dynamic regulation of PI(3,5)P2 are linked to human diseases. However, few mechanisms that regulate PI(3,5)P2 have been identified. Here we report an intramolecular interaction between the yeast Fab1 kinase region and an upstream conserved cysteine-rich (CCR) domain. We identify mutations in the kinase domain that lead to elevated levels of PI(3,5)P2 and impair the interaction between the kinase and CCR domain. We also identify mutations in the CCR domain that lead to elevated levels of PI(3,5)P2. Together these findings reveal a regulatory mechanism that involves the CCR domain of Fab1 and contributes to dynamic control of cellular PI(3,5)P2 synthesis.
Collapse
Affiliation(s)
- Michael J Lang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109.,Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Bethany S Strunk
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Nadia Azad
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Jason L Petersen
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Lois S Weisman
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109 .,Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
28
|
Modulation of membrane phosphoinositide dynamics by the phosphatidylinositide 4-kinase activity of the Legionella LepB effector. Nat Microbiol 2016; 2:16236. [PMID: 27941800 DOI: 10.1038/nmicrobiol.2016.236] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 10/07/2016] [Indexed: 11/08/2022]
Abstract
Legionella pneumophila, the causative bacterium for Legionnaires' disease, hijacks host membrane trafficking for the maturation of the Legionella-containing vacuole (LCV). The LCV membrane mainly contains PtdIns4P, which is important for anchoring many secreted Legionella effectors onto the LCV. Here, we identify a cryptic functional domain (LepB_NTD) preceding the well-characterized RabGAP domain in the Legionella Dot/Icm type IV secretion system effector LepB. LepB_NTD alone is toxic to yeast and can disrupt the Golgi in mammalian cells. The crystal structure reveals an unexpected kinase fold and catalytic motif important for LepB_NTD function in eukaryotes. Cell biology-guided biochemical analyses uncovered a lipid kinase activity in LepB_NTD that specifically converts PtdIns3P into PtdIns(3,4)P2. PtdIns(3,4)P2 is efficiently hydrolysed into PtdIns4P by another Dot/Icm effector SidF that is known to possess phosphoinositide phosphatase activity. Consistently, SidF is capable of counteracting the cellular functions of LepB_NTD. Genetic analyses show a requirement for LepB kinase activity as well as lipid phosphatase activity of SidF for PtdIns4P biosynthesis on the LCV membrane. Our study identifies an unprecedented phosphatidylinositide 4-kinase activity from bacteria and highlights a sophisticated manipulation of host phosphoinositide metabolism by a bacterial pathogen.
Collapse
|
29
|
Liu A, Sui D, Wu D, Hu J. The activation loop of PIP5K functions as a membrane sensor essential for lipid substrate processing. SCIENCE ADVANCES 2016; 2:e1600925. [PMID: 28138522 PMCID: PMC5262455 DOI: 10.1126/sciadv.1600925] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 10/20/2016] [Indexed: 05/30/2023]
Abstract
Phosphatidylinositol 4-phosphate 5-kinase (PIP5K), a representative member of the phosphatidylinositol phosphate kinase (PIPK) family, is a major enzyme that biosynthesizes the signaling molecule PI(4,5)P2 (phosphatidylinositol 4,5-bisphosphate) in eukaryotic cells. The stringent specificity toward lipid substrates and the high sensitivity to the membrane environment strongly suggest a membrane-sensing mechanism, but the underlying structural basis is still largely unknown. We present a nuclear magnetic resonance (NMR) study on a peptide commensurate with a PIP5K's activation loop, which has been reported to be a determinant of lipid substrate specificity and subcellular localization of PIP5K. Although the activation loop is severely disordered in the crystal structure of PIP5K, the NMR experiments showed that the largely unstructured peptide folded into an amphipathic helix upon its association with the 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) micellar surface. Systematic mutagenesis and functional assays further demonstrated the crucial roles of the amphipathic helix and its hydrophobic surface in kinase activity and membrane-sensing function, supporting a working model in which the activation loop is a critical structural module conferring a membrane-sensing mechanism on PIP5K. The activation loop, surprisingly functioning as a membrane sensor, represents a new paradigm of kinase regulation by the activation loop through protein-membrane interaction, which also lays a foundation on the regulation of PIP5K (and other PIPKs) by membrane lipids for future studies.
Collapse
Affiliation(s)
- Aizhuo Liu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Dexin Sui
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Dianqing Wu
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06511, USA
| | - Jian Hu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
30
|
Mechanism of substrate specificity of phosphatidylinositol phosphate kinases. Proc Natl Acad Sci U S A 2016; 113:8711-6. [PMID: 27439870 PMCID: PMC4978281 DOI: 10.1073/pnas.1522112113] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The phosphatidylinositol phosphate kinase (PIPK) family of enzymes is primarily responsible for converting singly phosphorylated phosphatidylinositol derivatives to phosphatidylinositol bisphosphates. As such, these kinases are central to many signaling and membrane trafficking processes in the eukaryotic cell. The three types of phosphatidylinositol phosphate kinases are homologous in sequence but differ in catalytic activities and biological functions. Type I and type II kinases generate phosphatidylinositol 4,5-bisphosphate from phosphatidylinositol 4-phosphate and phosphatidylinositol 5-phosphate, respectively, whereas the type III kinase produces phosphatidylinositol 3,5-bisphosphate from phosphatidylinositol 3-phosphate. Based on crystallographic analysis of the zebrafish type I kinase PIP5Kα, we identified a structural motif unique to the kinase family that serves to recognize the monophosphate on the substrate. Our data indicate that the complex pattern of substrate recognition and phosphorylation results from the interplay between the monophosphate binding site and the specificity loop: the specificity loop functions to recognize different orientations of the inositol ring, whereas residues flanking the phosphate binding Arg244 determine whether phosphatidylinositol 3-phosphate is exclusively bound and phosphorylated at the 5-position. This work provides a thorough picture of how PIPKs achieve their exquisite substrate specificity.
Collapse
|
31
|
Nuclear localizations of phosphatidylinositol 5-phosphate 4-kinases α and β are dynamic and independently regulated during starvation-induced stress. Biochem J 2016; 473:2155-63. [PMID: 27208178 DOI: 10.1042/bcj20160380] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 05/16/2016] [Indexed: 01/15/2023]
Abstract
The chicken B-cell line DT40 has two isoforms of phosphatidylinositol 5-phosphate 4-kinase (PI5P4K), α and β, which are likely to exist as a mixture of obligate homo- and hetero-dimers. Previous work has led us to speculate that an important role of the β isoform may be to target the more active PI5P4Kα isoform to the nucleus. In the present study we expand upon that work by genomically tagging the PI5P4Ks with fluorochromes in the presence or absence of stable or acute depletions of PI5P4Kβ. Consistent with our original hypothesis we find that PI5P4Kα is predominantly (possible entirely) cytoplasmic when PI5P4Kβ is stably deleted from cells. In contrast, when PI5P4Kβ is inducibly removed within 1 h PI5P4Kα retains its wild-type distribution of approximately 50:50 between cytoplasm and nucleus even through a number of cell divisions. This leads us to speculate that PI5P4Kα is chromatin-associated. We also find that when cells are in the exponential phase of growth PI5P4Kβ is primarily cytoplasmic but translocates to the nucleus upon growth into the stationary phase or upon serum starvation. Once again this is not accompanied by a change in PI5P4Kα localization and we show, using an in vitro model, that this is possible because the dimerization between the two isoforms is dynamic. Given this shift in PI5P4Kβ upon nutrient deprivation we explore the phenotype of PI5P4K B-null cells exposed to this stress and find that they can sustain a greater degree of nutrient deprivation than their wild-type counterparts possibly as a result of up-regulation of autophagy.
Collapse
|
32
|
Deletion of the gene Pip4k2c, a novel phosphatidylinositol kinase, results in hyperactivation of the immune system. Proc Natl Acad Sci U S A 2016; 113:7596-601. [PMID: 27313209 DOI: 10.1073/pnas.1600934113] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Type 2 phosphatidylinositol-5-phosphate 4-kinase (PI5P4K) converts phosphatidylinositol-5-phosphate to phosphatidylinositol-4,5-bisphosphate. Mammals have three enzymes PI5P4Kα, PI5P4Kβ, and PI5P4Kγ, and these enzymes have been implicated in metabolic control, growth control, and a variety of stress responses. Here, we show that mice with germline deletion of type 2 phosphatidylinositol-5-phosphate 4-kinase gamma (Pip4k2c), the gene encoding PI5P4Kγ, appear normal in regard to growth and viability but have increased inflammation and T-cell activation as they age. Immune cell infiltrates increased in Pip4k2c(-/-) mouse tissues. Also, there was an increase in proinflammatory cytokines, including IFNγ, interleukin 12, and interleukin 2 in plasma of Pip4k2c(-/-) mice. Pip4k2c(-/-) mice had an increase in T-helper-cell populations and a decrease in regulatory T-cell populations with increased proliferation of T cells. Interestingly, mammalian target of rapamycin complex 1 (mTORC1) signaling was hyperactivated in several tissues from Pip4k2c(-/-) mice and treating Pip4k2c(-/-) mice with rapamycin reduced the inflammatory phenotype, resulting in a decrease in mTORC1 signaling in tissues and a decrease in proinflammatory cytokines in plasma. These results indicate that PI5P4Kγ plays a role in the regulation of the immune system via mTORC1 signaling.
Collapse
|
33
|
Heilmann I. Plant phosphoinositide signaling - dynamics on demand. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1345-1351. [PMID: 26924252 DOI: 10.1016/j.bbalip.2016.02.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 02/18/2016] [Accepted: 02/19/2016] [Indexed: 10/22/2022]
Abstract
Eukaryotic membranes contain small amounts of lipids with regulatory roles. An important class of such regulatory lipids are phosphoinositides (PIs). Within membranes, PIs serve as recruitment signals, as regulators of membrane protein function or as precursors for second messenger production, thereby influencing a multitude of cellular processes with key importance for plant function and development. Plant PIs occur locally and transiently within membrane microdomains, and their abundance is strictly controlled. To understand the functions of the plant PI-network it is important to understand not only downstream PI-effects, but also to identify and characterize factors contributing to dynamic PI formation. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner.
Collapse
Affiliation(s)
- Ingo Heilmann
- Department of Cellular Biochemistry, Institute for Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle (Saale), Germany.
| |
Collapse
|
34
|
Ando H, Hirose M, Gainche L, Kawaai K, Bonneau B, Ijuin T, Itoh T, Takenawa T, Mikoshiba K. IRBIT Interacts with the Catalytic Core of Phosphatidylinositol Phosphate Kinase Type Iα and IIα through Conserved Catalytic Aspartate Residues. PLoS One 2015; 10:e0141569. [PMID: 26509711 PMCID: PMC4624786 DOI: 10.1371/journal.pone.0141569] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 10/10/2015] [Indexed: 11/18/2022] Open
Abstract
Phosphatidylinositol phosphate kinases (PIPKs) are lipid kinases that generate phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), a critical lipid signaling molecule that regulates diverse cellular functions, including the activities of membrane channels and transporters. IRBIT (IP3R-binding protein released with inositol 1,4,5-trisphosphate) is a multifunctional protein that regulates diverse target proteins. Here, we report that IRBIT forms signaling complexes with members of the PIPK family. IRBIT bound to all PIPK isoforms in heterologous expression systems and specifically interacted with PIPK type Iα (PIPKIα) and type IIα (PIPKIIα) in mouse cerebellum. Site-directed mutagenesis revealed that two conserved catalytic aspartate residues of PIPKIα and PIPKIIα are involved in the interaction with IRBIT. Furthermore, phosphatidylinositol 4-phosphate, Mg2+, and/or ATP interfered with the interaction, suggesting that IRBIT interacts with catalytic cores of PIPKs. Mutations of phosphorylation sites in the serine-rich region of IRBIT affected the selectivity of its interaction with PIPKIα and PIPKIIα. The structural flexibility of the serine-rich region, located in the intrinsically disordered protein region, is assumed to underlie the mechanism of this interaction. Furthermore, in vitro binding experiments and immunocytochemistry suggest that IRBIT and PIPKIα interact with the Na+/HCO3− cotransporter NBCe1-B. These results suggest that IRBIT forms signaling complexes with PIPKIα and NBCe1-B, whose activity is regulated by PI(4,5)P2.
Collapse
Affiliation(s)
- Hideaki Ando
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Wako, Saitama, Japan
- * E-mail: (HA); (KM)
| | - Matsumi Hirose
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Laura Gainche
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Katsuhiro Kawaai
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Benjamin Bonneau
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Takeshi Ijuin
- Division of Biochemistry, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Toshiki Itoh
- Biosignal Research Center, Organization of Advanced Science and Technology, Kobe University, Kobe, Hyogo, Japan
| | - Tadaomi Takenawa
- Biosignal Research Center, Organization of Advanced Science and Technology, Kobe University, Kobe, Hyogo, Japan
| | - Katsuhiko Mikoshiba
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Wako, Saitama, Japan
- * E-mail: (HA); (KM)
| |
Collapse
|
35
|
Resolution of structure of PIP5K1A reveals molecular mechanism for its regulation by dimerization and dishevelled. Nat Commun 2015; 6:8205. [PMID: 26365782 PMCID: PMC4570271 DOI: 10.1038/ncomms9205] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 07/28/2015] [Indexed: 02/06/2023] Open
Abstract
Type I phosphatidylinositol phosphate kinase (PIP5K1) phosphorylates the head group of phosphatidylinositol 4-phosphate (PtdIns4P) to generate PtdIns4,5P2, which plays important roles in a wide range of cellular functions including Wnt signalling. However, the lack of its structural information has hindered the understanding of its regulation. Here we report the crystal structure of the catalytic domain of zebrafish PIP5K1A at 3.3 Å resolution. This molecule forms a side-to-side dimer. Mutagenesis study of PIP5K1A reveals two adjacent interfaces for the dimerization and interaction with the DIX domain of the Wnt signalling molecule dishevelled. Although these interfaces are located distally to the catalytic/substrate-binding site, binding to these interfaces either through dimerization or the interaction with DIX stimulates PIP5K1 catalytic activity. DIX binding additionally enhances PIP5K1 substrate binding. Thus, this study elucidates regulatory mechanisms for this lipid kinase and provides a paradigm for the understanding of PIP5K1 regulation by their interacting molecules. Type I phosphatidylinositol phosphate kinase is an important component of many cellular pathways, including Wnt signalling. Here the authors report the crystal structure of the zebrafish protein along with in vitro assays that help to elucidate the regulation and function of this kinase.
Collapse
|
36
|
The function of phosphatidylinositol 5-phosphate 4-kinase γ (PI5P4Kγ) explored using a specific inhibitor that targets the PI5P-binding site. Biochem J 2015; 466:359-67. [PMID: 25495341 PMCID: PMC4687057 DOI: 10.1042/bj20141333] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
NIH-12848 (NCGC00012848-02), a putative phosphatidylinositol 5-phosphate 4-kinase γ (PI5P4Kγ) inhibitor, was explored as a tool for investigating this enigmatic, low activity, lipid kinase. PI5P4K assays in vitro showed that NIH-12848 inhibited PI5P4Kγ with an IC50 of approximately 1 μM but did not inhibit the α and β PI5P4K isoforms at concentrations up to 100 μM. A lack of inhibition of PI5P4Kγ ATPase activity suggested that NIH-12848 does not interact with the enzyme's ATP-binding site and direct exploration of binding using hydrogen–deuterium exchange (HDX)-MS (HDX-MS) revealed the putative PI5P-binding site of PI5P4Kγ to be the likely region of interaction. This was confirmed by a series of mutation experiments which led to the identification of a single PI5P4Kγ amino acid residue that can be mutated to its PI5P4Ks α and β homologue to render PI5P4Kγ resistant NIH-12848 inhibition. NIH-12848 (10 μM) was applied to cultured mouse principal kidney cortical collecting duct (mpkCCD) cells which, we show, express PI5P4Kγ that increases when the cells grow to confluence and polarize. NIH-12848 inhibited the translocation of Na+/K+-ATPase to the plasma membrane that occurs when mpkCCD cells grow to confluence and also prevented reversibly their forming of ‘domes’ on the culture dish. Both these NIH-12848-induced effects were mimicked by specific RNAi knockdown of PI5P4Kγ, but not that of PI5P4Ks α or β. Overall, the data reveal a probable contribution of PI5P4Kγ to the development and maintenance of epithelial cell functional polarity and show that NIH-12848 is a potentially powerful tool for exploring the cell physiology of PI5P4Ks. We have characterised a specific inhibitor of the enzyme Phosphatidylinositol 5-phosphate 4-kinase γ, including establishing where on the enzyme the inhibitor binds, and then applied this inhibitor to a kidney cell line to elucidate the intracellular functions of the enzyme.
Collapse
|
37
|
Fiume R, Stijf-Bultsma Y, Shah ZH, Keune WJ, Jones DR, Jude JG, Divecha N. PIP4K and the role of nuclear phosphoinositides in tumour suppression. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:898-910. [PMID: 25728392 DOI: 10.1016/j.bbalip.2015.02.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Revised: 02/03/2015] [Accepted: 02/17/2015] [Indexed: 12/27/2022]
Abstract
Phosphatidylinositol-5-phosphate (PtdIns5P)-4-kinases (PIP4Ks) are stress-regulated lipid kinases that phosphorylate PtdIns5P to generate PtdIns(4,5)P₂. There are three isoforms of PIP4Ks: PIP4K2A, 2B and 2C, which localise to different subcellular compartments with the PIP4K2B isoform being localised predominantly in the nucleus. Suppression of PIP4K expression selectively prevents tumour cell growth in vitro and prevents tumour development in mice that have lost the tumour suppressor p53. p53 is lost or mutated in over 70% of all human tumours. These studies suggest that inhibition of PIP4K signalling constitutes a novel anti-cancer therapeutic target. In this review we will discuss the role of PIP4K in tumour suppression and speculate on how PIP4K modulates nuclear phosphoinositides (PPIns) and how this might impact on nuclear functions to regulate cell growth. This article is part of a Special Issue entitled Phosphoinositides.
Collapse
Affiliation(s)
- Roberta Fiume
- Cellular Signalling Laboratory, DIBINEM, University of Bologna, Bologna, Italy.
| | - Yvette Stijf-Bultsma
- Inositide Laboratory, Centre for Biological Sciences, Faculty of Natural & Environmental Sciences, Life Sciences Building 85, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK
| | - Zahid H Shah
- Inositide Laboratory, Centre for Biological Sciences, Faculty of Natural & Environmental Sciences, Life Sciences Building 85, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK
| | - Willem Jan Keune
- The Netherlands Cancer Institute, Amsterdam 1066CX, The Netherlands
| | - David R Jones
- Oncology iMED, AstraZeneca, Alderley Park, Macclesfield SK10 4TF, UK
| | - Julian Georg Jude
- IMP - Institute of Molecular Pathology, Vienna Biocenter, Dr. Bohr-Gasse 7, 1030 Vienna, Austria
| | - Nullin Divecha
- Inositide Laboratory, Centre for Biological Sciences, Faculty of Natural & Environmental Sciences, Life Sciences Building 85, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK.
| |
Collapse
|
38
|
Lacalle RA, de Karam JC, Martínez-Muñoz L, Artetxe I, Peregil RM, Sot J, Rojas AM, Goñi FM, Mellado M, Mañes S. Type I phosphatidylinositol 4-phosphate 5-kinase homo- and heterodimerization determines its membrane localization and activity. FASEB J 2015; 29:2371-85. [PMID: 25713054 DOI: 10.1096/fj.14-264606] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 02/03/2015] [Indexed: 11/11/2022]
Abstract
Type I phosphatidylinositol 4-phosphate 5-kinases (PIP5KIs; α, β, and γ) are a family of isoenzymes that produce phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] using phosphatidylinositol 4-phosphate as substrate. Their structural homology with the class II lipid kinases [type II phosphatidylinositol 5-phosphate 4-kinase (PIP4KII)] suggests that PIP5KI dimerizes, although this has not been formally demonstrated. Neither the hypothetical structural dimerization determinants nor the functional consequences of dimerization have been studied. Here, we used Förster resonance energy transfer, coprecipitation, and ELISA to show that PIP5KIβ forms homo- and heterodimers with PIP5KIγ_i2 in vitro and in live human cells. Dimerization appears to be a general phenomenon for PIP5KI isoenzymes because PIP5KIβ/PIP5KIα heterodimers were also detected by mass spectrometry. Dimerization was independent of actin cytoskeleton remodeling and was also observed using purified proteins. Mutagenesis studies of PIP5KIβ located the dimerization motif at the N terminus, in a region homologous to that implicated in PIP4KII dimerization. PIP5KIβ mutants whose dimerization was impaired showed a severe decrease in PI(4,5)P2 production and plasma membrane delocalization, although their association to lipid monolayers was unaltered. Our results identify dimerization as an integral feature of PIP5K proteins and a central determinant of their enzyme activity.
Collapse
Affiliation(s)
- Rosa Ana Lacalle
- *Department of Immunology and Oncology, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, Darwin 3, Campus de Cantoblanco, Madrid, Spain; Unidad de Biofísica Consejo Superior de Investigaciones Científicas, Universidad del País Vasco/Euskal Herriko Unibertsitatea, Campus de Leioa, Barrio Sarriena s/n, Leioa, Bizkaia, Spain; and Computational Biology and Bioinformatics Group, Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío-Consejo Superior de Investigaciones Científicas, Manuel Siurot s/n, Seville, Spain
| | - Juan C de Karam
- *Department of Immunology and Oncology, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, Darwin 3, Campus de Cantoblanco, Madrid, Spain; Unidad de Biofísica Consejo Superior de Investigaciones Científicas, Universidad del País Vasco/Euskal Herriko Unibertsitatea, Campus de Leioa, Barrio Sarriena s/n, Leioa, Bizkaia, Spain; and Computational Biology and Bioinformatics Group, Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío-Consejo Superior de Investigaciones Científicas, Manuel Siurot s/n, Seville, Spain
| | - Laura Martínez-Muñoz
- *Department of Immunology and Oncology, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, Darwin 3, Campus de Cantoblanco, Madrid, Spain; Unidad de Biofísica Consejo Superior de Investigaciones Científicas, Universidad del País Vasco/Euskal Herriko Unibertsitatea, Campus de Leioa, Barrio Sarriena s/n, Leioa, Bizkaia, Spain; and Computational Biology and Bioinformatics Group, Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío-Consejo Superior de Investigaciones Científicas, Manuel Siurot s/n, Seville, Spain
| | - Ibai Artetxe
- *Department of Immunology and Oncology, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, Darwin 3, Campus de Cantoblanco, Madrid, Spain; Unidad de Biofísica Consejo Superior de Investigaciones Científicas, Universidad del País Vasco/Euskal Herriko Unibertsitatea, Campus de Leioa, Barrio Sarriena s/n, Leioa, Bizkaia, Spain; and Computational Biology and Bioinformatics Group, Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío-Consejo Superior de Investigaciones Científicas, Manuel Siurot s/n, Seville, Spain
| | - Rosa M Peregil
- *Department of Immunology and Oncology, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, Darwin 3, Campus de Cantoblanco, Madrid, Spain; Unidad de Biofísica Consejo Superior de Investigaciones Científicas, Universidad del País Vasco/Euskal Herriko Unibertsitatea, Campus de Leioa, Barrio Sarriena s/n, Leioa, Bizkaia, Spain; and Computational Biology and Bioinformatics Group, Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío-Consejo Superior de Investigaciones Científicas, Manuel Siurot s/n, Seville, Spain
| | - Jesús Sot
- *Department of Immunology and Oncology, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, Darwin 3, Campus de Cantoblanco, Madrid, Spain; Unidad de Biofísica Consejo Superior de Investigaciones Científicas, Universidad del País Vasco/Euskal Herriko Unibertsitatea, Campus de Leioa, Barrio Sarriena s/n, Leioa, Bizkaia, Spain; and Computational Biology and Bioinformatics Group, Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío-Consejo Superior de Investigaciones Científicas, Manuel Siurot s/n, Seville, Spain
| | - Ana M Rojas
- *Department of Immunology and Oncology, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, Darwin 3, Campus de Cantoblanco, Madrid, Spain; Unidad de Biofísica Consejo Superior de Investigaciones Científicas, Universidad del País Vasco/Euskal Herriko Unibertsitatea, Campus de Leioa, Barrio Sarriena s/n, Leioa, Bizkaia, Spain; and Computational Biology and Bioinformatics Group, Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío-Consejo Superior de Investigaciones Científicas, Manuel Siurot s/n, Seville, Spain
| | - Félix M Goñi
- *Department of Immunology and Oncology, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, Darwin 3, Campus de Cantoblanco, Madrid, Spain; Unidad de Biofísica Consejo Superior de Investigaciones Científicas, Universidad del País Vasco/Euskal Herriko Unibertsitatea, Campus de Leioa, Barrio Sarriena s/n, Leioa, Bizkaia, Spain; and Computational Biology and Bioinformatics Group, Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío-Consejo Superior de Investigaciones Científicas, Manuel Siurot s/n, Seville, Spain
| | - Mario Mellado
- *Department of Immunology and Oncology, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, Darwin 3, Campus de Cantoblanco, Madrid, Spain; Unidad de Biofísica Consejo Superior de Investigaciones Científicas, Universidad del País Vasco/Euskal Herriko Unibertsitatea, Campus de Leioa, Barrio Sarriena s/n, Leioa, Bizkaia, Spain; and Computational Biology and Bioinformatics Group, Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío-Consejo Superior de Investigaciones Científicas, Manuel Siurot s/n, Seville, Spain
| | - Santos Mañes
- *Department of Immunology and Oncology, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, Darwin 3, Campus de Cantoblanco, Madrid, Spain; Unidad de Biofísica Consejo Superior de Investigaciones Científicas, Universidad del País Vasco/Euskal Herriko Unibertsitatea, Campus de Leioa, Barrio Sarriena s/n, Leioa, Bizkaia, Spain; and Computational Biology and Bioinformatics Group, Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío-Consejo Superior de Investigaciones Científicas, Manuel Siurot s/n, Seville, Spain
| |
Collapse
|
39
|
Sartorel E, Barrey E, Lau RK, Thorner J. Plasma membrane aminoglycerolipid flippase function is required for signaling competence in the yeast mating pheromone response pathway. Mol Biol Cell 2015; 26:134-50. [PMID: 25378585 PMCID: PMC4279224 DOI: 10.1091/mbc.e14-07-1193] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 10/17/2014] [Accepted: 10/28/2014] [Indexed: 12/22/2022] Open
Abstract
The class 4 P-type ATPases ("flippases") maintain membrane asymmetry by translocating phosphatidylethanolamine and phosphatidylserine from the outer leaflet to the cytosolic leaflet of the plasma membrane. In Saccharomyces cerevisiae, five related gene products (Dnf1, Dnf2, Dnf3, Drs2, and Neo1) are implicated in flipping of phosphatidylethanolamine, phosphatidylserine, and phosphatidylcholine. In MAT A: cells responding to α-factor, we found that Dnf1, Dnf2, and Dnf3, as well as the flippase-activating protein kinase Fpk1, localize at the projection ("shmoo") tip where polarized growth is occurring and where Ste5 (the central scaffold protein of the pheromone-initiated MAPK cascade) is recruited. Although viable, a MAT A: dnf1∆ dnf2∆ dnf3∆ triple mutant exhibited a marked decrease in its ability to respond to α-factor, which we could attribute to pronounced reduction in Ste5 stability resulting from an elevated rate of its Cln2⋅Cdc28-initiated degradation. Similarly, a MAT A: dnf1∆ dnf3∆ drs2∆ triple mutant also displayed marked reduction in its ability to respond to α-factor, which we could attribute to inefficient recruitment of Ste5 to the plasma membrane due to severe mislocalization of the cellular phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate pools. Thus proper remodeling of plasma membrane aminoglycerolipids and phosphoinositides is necessary for efficient recruitment, stability, and function of the pheromone signaling apparatus.
Collapse
Affiliation(s)
- Elodie Sartorel
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3202
| | - Evelyne Barrey
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3202
| | - Rebecca K Lau
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3202
| | - Jeremy Thorner
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3202
| |
Collapse
|
40
|
Mackey AM, Sarkes DA, Bettencourt I, Asara JM, Rameh LE. PIP4kγ is a substrate for mTORC1 that maintains basal mTORC1 signaling during starvation. Sci Signal 2014; 7:ra104. [PMID: 25372051 DOI: 10.1126/scisignal.2005191] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Phosphatidylinositol-5-phosphate 4-kinases (PIP4ks) are a family of lipid kinases that specifically use phosphatidylinositol 5-monophosphate (PI-5-P) as a substrate to synthesize phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]. Suppression of PIP4k function in Drosophila results in smaller cells and reduced target of rapamycin complex 1 (TORC1) signaling. We showed that the γ isoform of PIP4k stimulated signaling through mammalian TORC1 (mTORC1). Knockdown of PIP4kγ reduced cell mass in cells in which mTORC1 is constitutively activated by Tsc2 deficiency. In Tsc2 null cells, mTORC1 activation was partially independent of amino acids or glucose and glutamine. PIP4kγ knockdown inhibited the nutrient-independent activation of mTORC1 in Tsc2 knockdown cells and reduced basal mTORC1 signaling in wild-type cells. PIP4kγ was phosphorylated by mTORC1 and associated with the complex. Phosphorylated PIP4kγ was enriched in light microsomal vesicles, whereas the unphosphorylated form was enriched in heavy microsomal vesicles associated with the Golgi. Furthermore, basal mTORC1 signaling was enhanced by overexpression of unphosphorylated wild-type PIP4kγ or a phosphorylation-defective mutant and decreased by overexpression of a phosphorylation-mimetic mutant. Together, these results demonstrate that PIP4kγ and mTORC1 interact in a self-regulated feedback loop to maintain low and tightly regulated mTORC1 activation during starvation.
Collapse
Affiliation(s)
- Ashley M Mackey
- Boston Biomedical Research Institute, Watertown, MA 02472, USA. Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | | | - Ian Bettencourt
- Boston Biomedical Research Institute, Watertown, MA 02472, USA
| | - John M Asara
- Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA. Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Lucia E Rameh
- Boston Biomedical Research Institute, Watertown, MA 02472, USA. Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
41
|
Baumlova A, Chalupska D, Róźycki B, Jovic M, Wisniewski E, Klima M, Dubankova A, Kloer DP, Nencka R, Balla T, Boura E. The crystal structure of the phosphatidylinositol 4-kinase IIα. EMBO Rep 2014; 15:1085-92. [PMID: 25168678 DOI: 10.15252/embr.201438841] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Phosphoinositides are a class of phospholipids generated by the action of phosphoinositide kinases with key regulatory functions in eukaryotic cells. Here, we present the atomic structure of phosphatidylinositol 4-kinase type IIα (PI4K IIα), in complex with ATP solved by X-ray crystallography at 2.8 Å resolution. The structure revealed a non-typical kinase fold that could be divided into N- and C-lobes with the ATP binding groove located in between. Surprisingly, a second ATP was found in a lateral hydrophobic pocket of the C-lobe. Molecular simulations and mutagenesis analysis revealed the membrane binding mode and the putative function of the hydrophobic pocket. Taken together, our results suggest a mechanism of PI4K IIα recruitment, regulation, and function at the membrane.
Collapse
Affiliation(s)
- Adriana Baumlova
- Institute of Organic Chemistry and Biochemistry AS CR, Prague, Czech Republic
| | - Dominika Chalupska
- Institute of Organic Chemistry and Biochemistry AS CR, Prague, Czech Republic
| | - Bartosz Róźycki
- Institute of Physics Polish Academy of Sciences, Warsaw, Poland
| | - Marko Jovic
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, NICHD NIH, Bethesda, MD, USA
| | - Eva Wisniewski
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, NICHD NIH, Bethesda, MD, USA
| | - Martin Klima
- Institute of Organic Chemistry and Biochemistry AS CR, Prague, Czech Republic
| | - Anna Dubankova
- Institute of Organic Chemistry and Biochemistry AS CR, Prague, Czech Republic
| | - Daniel P Kloer
- Syngenta Jealott's Hill Internation Research Centre, Bracknell, UK
| | - Radim Nencka
- Institute of Organic Chemistry and Biochemistry AS CR, Prague, Czech Republic
| | - Tamas Balla
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, NICHD NIH, Bethesda, MD, USA
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry AS CR, Prague, Czech Republic
| |
Collapse
|
42
|
Hayakawa N, Noguchi M, Takeshita S, Eviryanti A, Seki Y, Nishio H, Yokoyama R, Noguchi M, Shuto M, Shima Y, Kuribayashi K, Kageyama S, Eda H, Suzuki M, Hatta T, Iemura SI, Natsume T, Tanabe I, Nakagawa R, Shiozaki M, Sakurai K, Shoji M, Andou A, Yamamoto T. Structure-activity relationship study, target identification, and pharmacological characterization of a small molecular IL-12/23 inhibitor, APY0201. Bioorg Med Chem 2014; 22:3021-9. [PMID: 24767819 DOI: 10.1016/j.bmc.2014.03.036] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 03/19/2014] [Accepted: 03/21/2014] [Indexed: 02/06/2023]
Abstract
Interleukin-12 (IL-12) and IL-23 are proinflammatory cytokines and therapeutic targets for inflammatory and autoimmune diseases, including inflammatory bowel diseases, psoriasis, rheumatoid arthritis, and multiple sclerosis. We describe the discovery of APY0201, a unique small molecular IL-12/23 production inhibitor, from activated macrophages and monocytes, and demonstrate ameliorated inflammation in an experimental model of colitis. Through a chemical proteomics approach using a highly sensitive direct nanoflow LC-MS/MS system and bait compounds equipped with the FLAG epitope associated regulator of PIKfyve (ArPIKfyve) was detected. Further study identified its associated protein phosphoinositide kinase, FYVE finger-containing (PIKfyve), as the target protein of APY0201, which was characterized as a potent, highly selective, ATP-competitive PIKfyve inhibitor that interrupts the conversion of phosphatidylinositol 3-phosphate (PtdIns3P) to PtdIns(3,5)P2. These results elucidate the function of PIKfyve kinase in the IL-12/23 production pathway and in IL-12/23-driven inflammatory disease pathologies to provide a compelling rationale for targeting PIKfyve kinase in inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Nobuhiko Hayakawa
- Research Institute, Ajinomoto Pharmaceuticals Co. Ltd, 1-1, Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-8681, Japan
| | - Masatsugu Noguchi
- Research Institute, Ajinomoto Pharmaceuticals Co. Ltd, 1-1, Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-8681, Japan
| | - Sen Takeshita
- Research Institute, Ajinomoto Pharmaceuticals Co. Ltd, 1-1, Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-8681, Japan
| | - Agung Eviryanti
- Research Institute, Ajinomoto Pharmaceuticals Co. Ltd, 1-1, Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-8681, Japan
| | - Yukie Seki
- Research Institute, Ajinomoto Pharmaceuticals Co. Ltd, 1-1, Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-8681, Japan
| | - Hikaru Nishio
- Research Institute, Ajinomoto Pharmaceuticals Co. Ltd, 1-1, Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-8681, Japan
| | - Ryohei Yokoyama
- Research Institute, Ajinomoto Pharmaceuticals Co. Ltd, 1-1, Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-8681, Japan
| | - Misato Noguchi
- Research Institute, Ajinomoto Pharmaceuticals Co. Ltd, 1-1, Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-8681, Japan
| | - Manami Shuto
- Research Institute, Ajinomoto Pharmaceuticals Co. Ltd, 1-1, Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-8681, Japan
| | - Yoichiro Shima
- Research Institute, Ajinomoto Pharmaceuticals Co. Ltd, 1-1, Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-8681, Japan
| | - Kanna Kuribayashi
- Research Institute, Ajinomoto Pharmaceuticals Co. Ltd, 1-1, Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-8681, Japan
| | - Shunsuke Kageyama
- Research Institute, Ajinomoto Pharmaceuticals Co. Ltd, 1-1, Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-8681, Japan
| | - Hiroyuki Eda
- Research Institute, Ajinomoto Pharmaceuticals Co. Ltd, 1-1, Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-8681, Japan
| | - Manabu Suzuki
- Research Institute, Ajinomoto Pharmaceuticals Co. Ltd, 1-1, Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-8681, Japan
| | - Tomohisa Hatta
- Molecular Profiling Research Center for Drug Discovery (molprof), National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Shun-Ichiro Iemura
- Molecular Profiling Research Center for Drug Discovery (molprof), National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Tohru Natsume
- Molecular Profiling Research Center for Drug Discovery (molprof), National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Itsuya Tanabe
- Research Institute, Ajinomoto Pharmaceuticals Co. Ltd, 1-1, Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-8681, Japan
| | - Ryusuke Nakagawa
- Research Institute, Ajinomoto Pharmaceuticals Co. Ltd, 1-1, Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-8681, Japan
| | - Makoto Shiozaki
- Research Institute, Ajinomoto Pharmaceuticals Co. Ltd, 1-1, Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-8681, Japan
| | - Kuniya Sakurai
- Research Institute, Ajinomoto Pharmaceuticals Co. Ltd, 1-1, Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-8681, Japan
| | - Masataka Shoji
- Research Institute, Ajinomoto Pharmaceuticals Co. Ltd, 1-1, Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-8681, Japan
| | - Ayatoshi Andou
- Research Institute, Ajinomoto Pharmaceuticals Co. Ltd, 1-1, Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-8681, Japan.
| | - Takashi Yamamoto
- Research Institute, Ajinomoto Pharmaceuticals Co. Ltd, 1-1, Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-8681, Japan.
| |
Collapse
|
43
|
Zhou Q, Li J, Yu H, Zhai Y, Gao Z, Liu Y, Pang X, Zhang L, Schulten K, Sun F, Chen C. Molecular insights into the membrane-associated phosphatidylinositol 4-kinase IIα. Nat Commun 2014; 5:3552. [PMID: 24675427 PMCID: PMC3974213 DOI: 10.1038/ncomms4552] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 03/05/2014] [Indexed: 12/31/2022] Open
Abstract
Phosphatidylinositol 4-kinase IIα (PI4KIIα), a membrane-associated PI kinase, plays a central role in cell signalling and trafficking. Its kinase activity critically depends on palmitoylation of its cysteine-rich motif (-CCPCC-) and is modulated by the membrane environment. Lack of atomic structure impairs our understanding of the mechanism regulating kinase activity. Here we present the crystal structure of human PI4KIIα in ADP-bound form. The structure identifies the nucleotide-binding pocket that differs notably from that found in PI3Ks. Two structural insertions, a palmitoylation insertion and an RK-rich insertion, endow PI4KIIα with the ‘integral’ membrane-binding feature. Molecular dynamics simulations, biochemical and mutagenesis studies reveal that the palmitoylation insertion, containing an amphipathic helix, contributes to the PI-binding pocket and anchors PI4KIIα to the membrane, suggesting that fluctuation of the palmitoylation insertion affects PI4KIIα’s activity. We conclude from our results that PI4KIIα’s activity is regulated indirectly through changes in the membrane environment. Type II PI4-kinase dysfunction is associated with diseases including cancer and Alzheimer's disease; however, the development of specific modulators has been hampered by a lack of structural information. Zhou et al. present the crystal structure of PI4KIIα in its ADP-bound form, providing insight into its regulation.
Collapse
Affiliation(s)
- Qiangjun Zhou
- 1] National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China [2] University of Chinese Academy of Sciences, Beijing 100049, China [3]
| | - Jiangmei Li
- 1] National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China [2]
| | - Hang Yu
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Yujia Zhai
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhen Gao
- 1] National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China [2] University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanxin Liu
- Beckman Institute and Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Xiaoyun Pang
- 1] National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China [2] University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lunfeng Zhang
- 1] National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China [2] University of Chinese Academy of Sciences, Beijing 100049, China
| | - Klaus Schulten
- 1] Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA [2] Beckman Institute and Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Fei Sun
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Chang Chen
- 1] National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China [2] Beijing Institute for Brain Disorders, Beijing 100069, China
| |
Collapse
|
44
|
Xu Q, Zhang Y, Xiong X, Huang Y, Salisbury JL, Hu J, Ling K. PIPKIγ targets to the centrosome and restrains centriole duplication. J Cell Sci 2014; 127:1293-305. [PMID: 24434581 DOI: 10.1242/jcs.141465] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Centriole biogenesis depends on the polo-like kinase (PLK4) and a small group of structural proteins. The spatiotemporal regulation of these proteins at pre-existing centrioles is essential to ensure that centriole duplication occurs once per cell cycle. Here, we report that phosphatidylinositol 4-phosphate 5-kinase type-1 gamma (PIP5K1C, hereafter referred to as PIPKIγ) plays an important role in centriole fidelity. PIPKIγ localized in a ring-like pattern in the intermediate pericentriolar materials around the proximal end of the centriole in G1, S and G2 phases, but not in M phase. This localization was dependent upon an association with centrosomal protein of 152 KDa (CEP152). Without detaining cells in S or M phase, the depletion of PIPKIγ led to centriole amplification in a manner that was dependent upon PLK4 and spindle assembly abnormal protein 6 homolog (SAS6). The expression of exogenous PIPKIγ reduced centriole amplification that occurred as a result of endogenous PIPKIγ depletion, hydroxyurea treatment or PLK4 overexpression, suggesting that PIPKIγ is likely to function at the PLK4 level to restrain centriole duplication. Importantly, we found that PIPKIγ bound to the cryptic polo-box domain of PLK4 and that this binding reduced the kinase activity of PLK4. Together, our findings suggest that PIPKIγ is a novel negative regulator of centriole duplication, which acts by modulating the homeostasis of PLK4 activity.
Collapse
Affiliation(s)
- Qingwen Xu
- Department of Biochemistry and Molecular Biology, and Division of Hypertension and Nephrology, Mayo Clinic, 200 First Street SW, Rochester, MN 55902, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Structural basis of PI(4,5)P2-dependent regulation of GluA1 by phosphatidylinositol-5-phosphate 4-kinase, type II, alpha (PIP5K2A). Pflugers Arch 2014; 466:1885-97. [PMID: 24389605 PMCID: PMC4159565 DOI: 10.1007/s00424-013-1424-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 11/21/2013] [Accepted: 12/08/2013] [Indexed: 12/19/2022]
Abstract
Ionotropic glutamate receptors are the most important excitatory receptors in the central nervous system, and their impairment can lead to multiple neuronal diseases. Here, we show that glutamate-induced currents in oocytes expressing GluA1 are increased by coexpression of the schizophrenia-associated phosphoinositide kinase PIP5K2A. This effect was due to enhanced membrane abundance and was blunted by a point mutation (N251S) in PIP5K2A. An increase in GluA1 currents was also observed upon acute injection of PI(4,5)P2, the main product of PIP5K2A. By expression of wild-type and mutant PIP5K2A in human embryonic kidney cells, we were able to provide evidence of impaired kinase activity of the mutant PIP5K2A. We defined the region K813–K823 of GluA1 as critical for the PI(4,5)P2 effect by performing an alanine scan that suggested PI(4,5)P2 binding to this area. A PIP strip assay revealed PI(4,5)P2 binding to the C-terminal GluA1 peptide. The present observations disclose a novel mechanism in the regulation of GluA1.
Collapse
|
46
|
Genome-wide analysis of the phosphoinositide kinome from two ciliates reveals novel evolutionary links for phosphoinositide kinases in eukaryotic cells. PLoS One 2013; 8:e78848. [PMID: 24244373 PMCID: PMC3823935 DOI: 10.1371/journal.pone.0078848] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 09/16/2013] [Indexed: 11/19/2022] Open
Abstract
Background The complexity of phosphoinositide signaling in higher eukaryotes is partly due to expansion of specific families and types of phosphoinositide kinases (PIKs) that can generate all phosphoinositides via multiple routes. This is particularly evident in the PI3Ks and PIPKs, and it is considered an evolutionary trait associated with metazoan diversification. Yet, there are limited comprehensive studies on the PIK repertoire of free living unicellular organisms. Methodology/Principal Findings We undertook a genome-wide analysis of putative PIK genes in two free living ciliated cells, Tetrahymena and Paramecium. The Tetrahymena thermophila and Paramecium tetraurelia genomes were probed with representative kinases from all families and types. Putative homologs were verified by EST, microarray and deep RNA sequencing database searches and further characterized for domain structure, catalytic efficiency, expression patterns and phylogenetic relationships. In total, we identified and characterized 22 genes in the Tetrahymena thermophila genome and 62 highly homologues genes in Paramecium tetraurelia suggesting a tight evolutionary conservation in the ciliate lineage. Comparison to the kinome of fungi reveals a significant expansion of PIK genes in ciliates. Conclusions/Significance Our study highlights four important aspects concerning ciliate and other unicellular PIKs. First, ciliate-specific expansion of PI4KIII-like genes. Second, presence of class I PI3Ks which, at least in Tetrahymena, are associated with a metazoan-type machinery for PIP3 signaling. Third, expansion of divergent PIPK enzymes such as the recently described type IV transmembrane PIPKs. Fourth, presence of possible type II PIPKs and presumably inactive PIKs (hence, pseudo-PIKs) not previously described. Taken together, our results provide a solid framework for future investigation of the roles of PIKs in ciliates and indicate that novel functions and novel regulatory pathways of phosphoinositides may be more widespread than previously thought in unicellular organisms.
Collapse
|
47
|
Evolutionarily conserved structural changes in phosphatidylinositol 5-phosphate 4-kinase (PI5P4K) isoforms are responsible for differences in enzyme activity and localization. Biochem J 2013; 454:49-57. [PMID: 23758345 PMCID: PMC3749867 DOI: 10.1042/bj20130488] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Mammals have genes coding for three PI5P4Ks (PtdIns5P 4-kinases), and these have different cellular localizations, tissue distributions and lipid kinase activities. We describe in the present paper a detailed molecular exploration of human PI5P4Ks α, β and γ, as well as their fly and worm homologues, to understand how and why these differences came to be. The intrinsic ATPase activities of the three isoforms are very similar, and we show that differences in their G-loop regions can account for much of their wide differences in lipid kinase activity. We have also undertaken an extensive in silico evolutionary study of the PI5P4K family, and show experimentally that the single PI5P4K homologues from Caenorhabditis elegans and Drosophila melanogaster are as widely different in activity as the most divergent mammalian isoforms. Finally we show that the close association of PI5P4Ks α and γ is a true heterodimerization, and not a higher oligomer association of homodimers. We reveal that structural modelling is consistent with this and with the apparently random heterodimerization that we had earlier observed between PI5P4Kα and PI5P4Kβ [Wang, Bond, Letcher, Richardson, Lilley, Irvine and Clarke (2010), Biochem. J. 430, 215–221]. Overall the molecular diversity of mammalian PI5P4Ks explains much of their properties and behaviour, but their physiological functionality remains elusive.
Collapse
|
48
|
Abstract
Phosphoinositides (PIs) make up only a small fraction of cellular phospholipids, yet they control almost all aspects of a cell's life and death. These lipids gained tremendous research interest as plasma membrane signaling molecules when discovered in the 1970s and 1980s. Research in the last 15 years has added a wide range of biological processes regulated by PIs, turning these lipids into one of the most universal signaling entities in eukaryotic cells. PIs control organelle biology by regulating vesicular trafficking, but they also modulate lipid distribution and metabolism via their close relationship with lipid transfer proteins. PIs regulate ion channels, pumps, and transporters and control both endocytic and exocytic processes. The nuclear phosphoinositides have grown from being an epiphenomenon to a research area of its own. As expected from such pleiotropic regulators, derangements of phosphoinositide metabolism are responsible for a number of human diseases ranging from rare genetic disorders to the most common ones such as cancer, obesity, and diabetes. Moreover, it is increasingly evident that a number of infectious agents hijack the PI regulatory systems of host cells for their intracellular movements, replication, and assembly. As a result, PI converting enzymes began to be noticed by pharmaceutical companies as potential therapeutic targets. This review is an attempt to give an overview of this enormous research field focusing on major developments in diverse areas of basic science linked to cellular physiology and disease.
Collapse
Affiliation(s)
- Tamas Balla
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
49
|
Guillas I, Vernay A, Vitagliano JJ, Arkowitz RA. Phosphatidylinositol 4,5-bisphosphate is required for invasive growth in Saccharomyces cerevisiae. J Cell Sci 2013; 126:3602-14. [PMID: 23781030 DOI: 10.1242/jcs.122606] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Phosphatidylinositol phosphates are important regulators of processes such as the cytoskeleton organization, membrane trafficking and gene transcription, which are all crucial for polarized cell growth. In particular, phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] has essential roles in polarized growth as well as in cellular responses to stress. In the yeast Saccharomyces cerevisiae, the sole phosphatidylinositol-4-phosphate 5-kinase (PI4P5K) Mss4p is essential for generating plasma membrane PtdIns(4,5)P2. Here, we show that Mss4p is required for yeast invasive growth in low-nutrient conditions. We isolated specific mss4 mutants that were defective in cell elongation, induction of the Flo11p flocculin, adhesion and cell wall integrity. We show that mss4-f12 cells have reduced plasma membrane PtdIns(4,5)P2 levels as well as a defect in its polarized distribution, yet Mss4-f12p is catalytically active in vitro. In addition, the Mss4-f12 protein was defective in localizing to the plasma membrane. Furthermore, addition of cAMP, but not an activated MAPKKK allele, partially restored the invasive growth defect of mss4-f12 cells. Taken together, our results indicate that plasma membrane PtdIns(4,5)P2 is crucial for yeast invasive growth and suggest that this phospholipid functions upstream of the cAMP-dependent protein kinase A signaling pathway.
Collapse
Affiliation(s)
- Isabelle Guillas
- Université Nice - Sophia Antipolis, Institute of Biology Valrose, 06108 Nice Cedex 2, France
| | | | | | | |
Collapse
|
50
|
Jiang L, Phang JM, Yu J, Harrop SJ, Sokolova AV, Duff AP, Wilk KE, Alkhamici H, Breit SN, Valenzuela SM, Brown LJ, Curmi PMG. CLIC proteins, ezrin, radixin, moesin and the coupling of membranes to the actin cytoskeleton: a smoking gun? BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:643-57. [PMID: 23732235 DOI: 10.1016/j.bbamem.2013.05.025] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 05/20/2013] [Accepted: 05/21/2013] [Indexed: 12/20/2022]
Abstract
The CLIC proteins are a highly conserved family of metazoan proteins with the unusual ability to adopt both soluble and integral membrane forms. The physiological functions of CLIC proteins may include enzymatic activity in the soluble form and anion channel activity in the integral membrane form. CLIC proteins are associated with the ERM proteins: ezrin, radixin and moesin. ERM proteins act as cross-linkers between membranes and the cortical actin cytoskeleton. Both CLIC and ERM proteins are controlled by Rho family small GTPases. CLIC proteins, ERM and Rho GTPases act in a concerted manner to control active membrane processes including the maintenance of microvillar structures, phagocytosis and vesicle trafficking. All of these processes involve the interaction of membranes with the underlying cortical actin cytoskeleton. The relationships between Rho GTPases, CLIC proteins, ERM proteins and the membrane:actin cytoskeleton interface are reviewed. Speculative models are proposed involving the formation of localised multi-protein complexes on the membrane surface that assemble via multiple weak interactions. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé.
Collapse
Affiliation(s)
- Lele Jiang
- St Vincent's Centre for Applied Medical Research, St Vincent's Hospital, Sydney, NSW 2010, Australia
| | - Juanita M Phang
- School of Physics, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Jiang Yu
- School of Physics, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Stephen J Harrop
- School of Physics, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Anna V Sokolova
- Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, Australia
| | - Anthony P Duff
- Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, Australia
| | - Krystyna E Wilk
- School of Physics, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Heba Alkhamici
- School of Medical and Molecular Biosciences, The University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Samuel N Breit
- St Vincent's Centre for Applied Medical Research, St Vincent's Hospital, Sydney, NSW 2010, Australia
| | - Stella M Valenzuela
- School of Medical and Molecular Biosciences, The University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Louise J Brown
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Paul M G Curmi
- St Vincent's Centre for Applied Medical Research, St Vincent's Hospital, Sydney, NSW 2010, Australia; School of Physics, The University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|