1
|
Pancsa R, Andreev DE, Dean K. The implication of non-AUG-initiated N-terminally extended proteoforms in cancer. RNA Biol 2025; 22:1-18. [PMID: 40276932 PMCID: PMC12045569 DOI: 10.1080/15476286.2025.2498203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 04/03/2025] [Accepted: 04/21/2025] [Indexed: 04/26/2025] Open
Abstract
Dysregulated translation is a hallmark of cancer, and recent genome-wide studies in tumour cells have uncovered widespread translation of non-canonical reading frames that often initiate at non-AUG codons. If an upstream non-canonical start site is located within a frame with an annotated coding sequence (CDS), such translation events can lead to the production of proteoforms with altered N-termini (PANTs). Certain examples of PANTs from oncogenes (e.g. c-MYC) and tumour suppressors (e.g. PTEN) have been previously linked to cancer. We have performed a systematic computational analysis on recently identified non-AUG initiation-derived N-terminal extensions of cancer-associated proteins, and we discuss how these extended proteoforms may acquire new oncogenic properties. We identified a loss of stability for the N-terminally extended proteoforms of oncogenes TCF-4 and SOX2. Furthermore, we discovered likely functional short linear motifs within the N-terminal extensions of oncogenes and tumour suppressors (SOX2, SUFU, SFPQ, TOP1 and SPEN/SHARP) that could provide an explanation for previously described functionalities or interactions of the proteins. In all, we identify novel cases where PANTs likely show different localization, functions, partner binding or turnover rates compared to the annotated proteoforms. Therefore, we propose that alterations in the stringency of translation initiation, often seen under conditions of cellular stress, may result in reprogramming of translation to generate novel PANTs that influence cancer progression.
Collapse
Affiliation(s)
- Rita Pancsa
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Dmitry E. Andreev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS, Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Kellie Dean
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| |
Collapse
|
2
|
Bose S, Das S, Maity S, Raychaudhuri D, Banerjee T, Paul M, Mukhopadhyay A, Chakrabarti O, Chakrabarti S. Androgen receptor plays critical role in regulating cervical cancer cell migration. Mol Cell Endocrinol 2025:112583. [PMID: 40409531 DOI: 10.1016/j.mce.2025.112583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 04/23/2025] [Accepted: 05/20/2025] [Indexed: 05/25/2025]
Abstract
Cervical cancer (CC) is the second most common cancer among women in India and the fourth worldwide. While major genes and pathways have been studied, further research is needed to identify newer candidates for targeted therapy in metastatic disease. This study used a graph-theory-based network analysis to identify important interacting proteins (IIPs) with maximum connectivity, high centrality scores, and significant global and local network perturbation scores. Among the identified IIPs, the Androgen receptor (AR) emerged as one of the crucial yet understudied regulator in cervical cancer. Patient samples, ex vivo, and in vitro experiments showed significant downregulation of AR in cervical cancer. Ligand-dependent overexpression of AR reduced cancer cell migration while failed to induce apoptosis in CC cell lines. Downregulation of mesenchymal markers and restoration of epithelial markers upon exogenous expression of AR suggested its potential in reversing invasive properties of cervical cancer cells. AR overexpression followed by activation upregulated its downstream target PTEN and downregulated pPI3K levels, which in turn restored GSK3β activity by interfering with AKT phosphorylation, probably leading to degradation of mesenchymal markers in cervical cancer cells. Further studies showed that AR reduced cell motility by hindering focal adhesion formation and Actin filament assembly. An increased G-Actin ratio suggested AR disrupted cytoskeletal dynamics through altering the RhoA/ROCK1/LIMK1/CFL1 pathway eventually impeding cervical cancer cell spread.
Collapse
Affiliation(s)
- Sarpita Bose
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, IICB TRUE Campus, CN-6, Sector 5, Salt Lake, Kolkata 700091, WB, India
| | - Subhrangshu Das
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, IICB TRUE Campus, CN-6, Sector 5, Salt Lake, Kolkata 700091, WB, India
| | - Sebabrata Maity
- Biophysics and Structural Genomics Ddivision, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata - 700064, India; Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Deblina Raychaudhuri
- Division of Cancer Biology and Inflammatory Disorders, CSIR-Indian Institute of Chemical Biology, IICB TRUE Campus, CN-6, Sector 5, Salt Lake, Kolkata 700091, WB, India
| | - Tania Banerjee
- Division of Cancer Biology and Inflammatory Disorders, CSIR-Indian Institute of Chemical Biology, IICB TRUE Campus, CN-6, Sector 5, Salt Lake, Kolkata 700091, WB, India
| | - Madhurima Paul
- Division of Cancer Biology and Inflammatory Disorders, CSIR-Indian Institute of Chemical Biology, IICB TRUE Campus, CN-6, Sector 5, Salt Lake, Kolkata 700091, WB, India
| | - Asima Mukhopadhyay
- Department of Gynecologic Oncosurgery, Tata Medical Center,14, Major Arterial Road (E-W), Kolkata 700160; Kolkata Gynecological Oncology Trials and Translational Research Group (Kolgotrg), DD 92, Street no 271, Newtown AA1, Kolkata 700156
| | - Oishee Chakrabarti
- Biophysics and Structural Genomics Ddivision, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata - 700064, India; Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Saikat Chakrabarti
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, IICB TRUE Campus, CN-6, Sector 5, Salt Lake, Kolkata 700091, WB, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
3
|
Pacheco HFM, Fernandes JLF, Dias FCR, Deus MC, Ribeiro DL, Michelin MA, Gomes MLM. Efficacy of Using Dendritic Cells in the Treatment of Prostate Cancer: A Systematic Review. Int J Mol Sci 2025; 26:4939. [PMID: 40430079 PMCID: PMC12112211 DOI: 10.3390/ijms26104939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/24/2025] [Accepted: 04/28/2025] [Indexed: 05/29/2025] Open
Abstract
(1) The primary prostate cancer treatment involves androgen deprivation therapy, with or without chemotherapy. Immunotherapy has emerged as a promising strategy against cancer due to its ability to modulate the immune system, overcome immune evasion, and stimulate the attack on tumor cells. Thus, this review urges an exploration of the underlying mechanisms to validate the efficacy and safety of dendritic cell immunotherapy for prostate cancer treatment. (2) An extensive literature search identified 45 eligible studies in PubMed, Web of Science, SCOPUS, and Embase databases. Phase I and II clinical trials and in vitro studies (PROSPERO registration number CRD42024538296) were analyzed to extract information on patient selection, vaccine preparation, treatment details, and disease progression. (3) Despite significant variability in vaccine development and treatment protocols, vaccines were shown to induce satisfactory immune responses, including T-cell activation, increased CD4 and CD8 cell populations, upregulated expression of HLA-A2 and HLA-DR, enhanced migratory capacity of dendritic cells, and elevated interferon levels. Cytokine responses, particularly involving Interleukin 10 (IL-10) and Interleukin 12 (IL-12), varied across studies. Immunotherapy demonstrated potential by eliciting positive immune responses, reducing PSA levels, and showing an acceptable safety profile. However, side effects such as erythema and fever were observed. (4) The analyzed treatments were well-tolerated, but variability in clinical responses and side effects underscores the need for further research to optimize the efficacy and safety of this therapeutic approach.
Collapse
Affiliation(s)
- Helen F. M. Pacheco
- Department of Structural Biology, Federal University of Triângulo Mineiro, Rua Vigário Carlos, 100, 10 Andar, Uberaba CEP 38025-350, MG, Brazil; (H.F.M.P.); (J.L.F.F.); (F.C.R.D.); (M.C.D.); (M.A.M.)
| | - Jhessyka L. F. Fernandes
- Department of Structural Biology, Federal University of Triângulo Mineiro, Rua Vigário Carlos, 100, 10 Andar, Uberaba CEP 38025-350, MG, Brazil; (H.F.M.P.); (J.L.F.F.); (F.C.R.D.); (M.C.D.); (M.A.M.)
| | - Fernanda C. R. Dias
- Department of Structural Biology, Federal University of Triângulo Mineiro, Rua Vigário Carlos, 100, 10 Andar, Uberaba CEP 38025-350, MG, Brazil; (H.F.M.P.); (J.L.F.F.); (F.C.R.D.); (M.C.D.); (M.A.M.)
| | - Marina C. Deus
- Department of Structural Biology, Federal University of Triângulo Mineiro, Rua Vigário Carlos, 100, 10 Andar, Uberaba CEP 38025-350, MG, Brazil; (H.F.M.P.); (J.L.F.F.); (F.C.R.D.); (M.C.D.); (M.A.M.)
| | - Daniele L. Ribeiro
- Department of Cell Biology, Histology, and Embryology, Federal University of Uberlandia, Av Maranhão, 1783, Uberlândia CEP 38405-318, MG, Brazil;
| | - Márcia A. Michelin
- Department of Structural Biology, Federal University of Triângulo Mineiro, Rua Vigário Carlos, 100, 10 Andar, Uberaba CEP 38025-350, MG, Brazil; (H.F.M.P.); (J.L.F.F.); (F.C.R.D.); (M.C.D.); (M.A.M.)
| | - Marcos L. M. Gomes
- Department of Structural Biology, Federal University of Triângulo Mineiro, Rua Vigário Carlos, 100, 10 Andar, Uberaba CEP 38025-350, MG, Brazil; (H.F.M.P.); (J.L.F.F.); (F.C.R.D.); (M.C.D.); (M.A.M.)
| |
Collapse
|
4
|
Santos CMDAM, de Souza ATB, Neta APR, Freire LVP, Sarmento ACA, de Medeiros KS, Luchessi AD, Cobucci RN, Gonçalves AK, Crispim JCDO. Exosomal MicroRNAs as Epigenetic Biomarkers for Endometriosis: A Systematic Review and Bioinformatics Analysis. Int J Mol Sci 2025; 26:4564. [PMID: 40429709 PMCID: PMC12111455 DOI: 10.3390/ijms26104564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 11/30/2024] [Accepted: 12/06/2024] [Indexed: 05/29/2025] Open
Abstract
The clinical application of exosomal microRNAs as diagnostic biomarkers presents a promising approach for identifying potential markers of endometriosis. We conducted a systematic review of case-control studies to investigate exosomal microRNAs as epigenetic biomarkers potentially involved in the pathogenesis of endometriosis. A comprehensive literature search was performed across PubMed, Embase, Web of Science, and Scopus databases, yielding 702 studies, with 12 meeting the inclusion criteria after screening and full-text review. These studies included 191 women with confirmed endometriosis and 169 healthy controls. Quality assessment using the Newcastle-Ottawa Scale indicated a moderate quality across studies, with a common score of 5/9. In total, 668 exosomal microRNAs were found to be significantly differentially expressed between endometriosis patients and controls. In serum samples, 119 exosomal microRNAs were differentially expressed, with miR-22-3p, miR-320a, miR-320b, and miR-1273g-3p reported in more than one study. In endometrial tissue samples, miR-200c-3p and miR-425-5p were identified in more than one study, with miR-200c-3p consistently upregulated. Bioinformatic analysis indicated that these exosomal microRNAs are involved in key signaling pathways such as PI3K/Akt, MAPK, and TGF-β, which are associated with cell proliferation, migration, and inflammation. Despite these promising findings, variability in exosomal microRNA expression patterns across studies underscores the need for standardized methods and validation in large-scale, ethnically diverse cohorts. Future research should focus on rigorous validation studies to establish clinically relevant exosomal microRNAs for early diagnosis and improved patient outcomes.
Collapse
Affiliation(s)
| | - Amaxsell Thiago Barros de Souza
- Postgraduate Program in Sciences Applied to Women’s Health, Federal University of Rio Grande do Norte, Natal 59012-310, Brazil; (A.T.B.d.S.); (L.V.P.F.); (R.N.C.); (A.K.G.)
| | - Antonia Pereira Rosa Neta
- Postgraduate Program in Health Sciences, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil; (A.P.R.N.)
| | - Liziane Virginia Pereira Freire
- Postgraduate Program in Sciences Applied to Women’s Health, Federal University of Rio Grande do Norte, Natal 59012-310, Brazil; (A.T.B.d.S.); (L.V.P.F.); (R.N.C.); (A.K.G.)
| | - Ayane Cristine Alves Sarmento
- Department of Clinical and Toxicological Analysis, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil;
| | | | - André Ducati Luchessi
- Postgraduate Program in Health Sciences, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil; (A.P.R.N.)
- Department of Clinical and Toxicological Analysis, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil;
| | - Ricardo Ney Cobucci
- Postgraduate Program in Sciences Applied to Women’s Health, Federal University of Rio Grande do Norte, Natal 59012-310, Brazil; (A.T.B.d.S.); (L.V.P.F.); (R.N.C.); (A.K.G.)
- Postgraduate Program in Biotechnology, Potiguar University, Natal 59056-000, Brazil
| | - Ana Katherine Gonçalves
- Postgraduate Program in Sciences Applied to Women’s Health, Federal University of Rio Grande do Norte, Natal 59012-310, Brazil; (A.T.B.d.S.); (L.V.P.F.); (R.N.C.); (A.K.G.)
- Postgraduate Program in Health Sciences, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil; (A.P.R.N.)
| | - Janaina Cristiana de Oliveira Crispim
- Postgraduate Program in Technological Development and Innovation in Medicines, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil;
- Postgraduate Program in Sciences Applied to Women’s Health, Federal University of Rio Grande do Norte, Natal 59012-310, Brazil; (A.T.B.d.S.); (L.V.P.F.); (R.N.C.); (A.K.G.)
- Department of Clinical and Toxicological Analysis, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil;
| |
Collapse
|
5
|
Mognol GP, Ghebremedhin A, Varner JA. Targeting PI3Kγ in cancer. Trends Cancer 2025; 11:462-474. [PMID: 39947962 DOI: 10.1016/j.trecan.2025.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/09/2025] [Accepted: 01/16/2025] [Indexed: 05/16/2025]
Abstract
The phosphoinositide 3-kinases (PI3Ks) have been the focus of a significant body of cancer research since their discovery nearly 40 years ago. These lipid kinases are now known to play central roles in cancer cell proliferation, survival, migration, metabolism, and immunity and serve as the target of numerous investigational and approved therapeutics. One of these kinases, the unique class IB PI3Kγ, which is highly expressed in myeloid lineage cells and myeloid leukemias, plays prominent roles in tumor immune suppression. Inhibition of this kinase has promoted improved antitumor immune responses in recent solid tumor preclinical studies and clinical trials. New studies also identify this kinase as a driver of acute myeloid leukemia self-renewal and as a new target for the treatment of aggressive leukemias.
Collapse
Affiliation(s)
- Giuliana P Mognol
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093-0819, USA
| | - Anghesom Ghebremedhin
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093-0819, USA
| | - Judith A Varner
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093-0819, USA; Department of Pathology, University of California, San Diego, La Jolla, CA 92093-0819, USA.
| |
Collapse
|
6
|
Yin S, Brobbey C, Ball LE, Fu T, Sprague DJ, Gan W. BRD9 functions as a methylarginine reader to regulate AKT-EZH2 signaling. SCIENCE ADVANCES 2025; 11:eads6385. [PMID: 40279411 PMCID: PMC12024519 DOI: 10.1126/sciadv.ads6385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 03/20/2025] [Indexed: 04/27/2025]
Abstract
Recognition of methylarginine marks by effector proteins ("readers") is a critical link between arginine methylation and various cellular processes. Recently, we identified methylation of AKT1 at arginine-391 (R391), but the reader for this methylation has yet to be characterized. Here, we show that bromodomain-containing protein 9 (BRD9), a reader of acetylated lysine, unexpectedly recognizes methylated R391 of AKT1 through an aromatic cage in its bromodomain. Disrupting the methylarginine reader function of BRD9 suppresses AKT activation and tumorigenesis. RNA sequencing data show that BRD9 and AKT coregulate a hallmark transcriptional program in part through enhancer of zeste homolog 2 (EZH2)-mediated methylation of histone-3 lysine-27. We also find that inhibitors of BRD9 and EZH2 display synergistic effects on suppression of cell proliferation and tumor growth. Collectively, our study reveals a previously unknown function of BRD9 and a potential therapeutic strategy for cancer treatment by combining BRD9 and EZH2 inhibitors.
Collapse
Affiliation(s)
- Shasha Yin
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Charles Brobbey
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Lauren E. Ball
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Tianmin Fu
- Department of Biological Chemistry and Pharmacology, Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Daniel J. Sprague
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Wenjian Gan
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
7
|
Li Q, Bai Y, Cavender SM, Miao Y, Nguele Meke F, Lasse-Opsahl EL, Zhu P, Doody GM, Tao WA, Zhang ZY. The PRL2 phosphatase up-regulates miR-21 through activation of the JAK2/STAT3 pathway to down-regulate the PTEN tumor suppressor. Biochem J 2025; 482:341-356. [PMID: 39665584 DOI: 10.1042/bcj20240626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/29/2024] [Accepted: 12/12/2024] [Indexed: 12/13/2024]
Abstract
The phosphatases of regenerating liver (PRLs) are members of the protein tyrosine phosphatase (PTP) superfamily that play pro-oncogenic roles in cell proliferation, migration, and survival. We previously demonstrated that PRLs can post-translationally down-regulate PTEN, a tumor suppressor frequently inactivated in human cancers, by dephosphorylating PTEN at Tyr336, which promotes the NEDD4-mediated PTEN ubiquitination and proteasomal degradation. Here, we report that PRLs can also reduce PTEN expression by up-regulating microRNA-21 (miR-21), which is one of the most frequently overexpressed miRNAs in solid tumors. We observe a broad correlation between PRL and miR-21 levels in multiple human cancers. Mechanistically, PRL2, the most abundant and ubiquitously expressed PRL family member, promotes the JAK2/STAT3 pathway-mediated miR-21 expression by directly dephosphorylating JAK2 at Tyr570. Finally, we confirm that the PRL2-mediated miR-21 expression contributes to its oncogenic potential in breast cancer cells. Our study defines a new functional role of PRL2 in PTEN regulation through a miR-21-dependent post-transcriptional mechanism, in addition to our previously reported NEDD4-dependent post-translational PTEN regulation. Together, these studies further establish the PRLs as negative regulators of PTEN.
Collapse
Affiliation(s)
- Qinglin Li
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, U.S.A
- Current address: Thermo Fisher Scientific, 5781 Van Allen Way, Carlsbad, CA 92008, USA
| | - Yunpeng Bai
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, U.S.A
| | - Sarah M Cavender
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, U.S.A
| | - Yiming Miao
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, U.S.A
| | - Frederick Nguele Meke
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, U.S.A
| | - Emily L Lasse-Opsahl
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, U.S.A
| | - Peipei Zhu
- Department of Biochemistry, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, U.S.A
| | - Gina M Doody
- Division of Haematology and Immunology, Leeds Institute of Medical Research, University of Leeds, U.K
| | - W Andy Tao
- Department of Biochemistry, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, U.S.A
- The James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, U.S.A
- Purdue Institute for Cancer Research, Purdue University, 720 Clinic Drive, West Lafayette, IN, 47907, U.S.A
- Purdue Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, IN, 47907, U.S.A
| | - Zhong-Yin Zhang
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, U.S.A
- The James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, U.S.A
- Purdue Institute for Cancer Research, Purdue University, 720 Clinic Drive, West Lafayette, IN, 47907, U.S.A
- Purdue Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, IN, 47907, U.S.A
| |
Collapse
|
8
|
Porto SA, Birdsall GA, Harper NW, Honeywell ME, Lee MJ. Genome-wide profiling identifies the genetic dependencies of cell death following EGFR inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.04.647273. [PMID: 40291701 PMCID: PMC12026739 DOI: 10.1101/2025.04.04.647273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
EGFR is a proto-oncogene that is mutationally activated in a variety of cancers. Small molecule inhibitors targeting EGFR can be effective in slowing the progression of disease, and in some settings these drugs even cause dramatic tumor regression. However, responses to EGFR inhibitors are rarely durable, and the mechanisms contributing to response variation remain unclear. In particular, several distinct mechanisms have been proposed for how EGFR inhibition activates cell death, and a consensus has yet to emerge. In this study, we use functional genomics with specialized analyses to infer how genetic perturbations effect the drug-induced death rate. Our data clarify that inhibition of PI3K signaling drives the lethality of EGFR inhibition. Inhibition of other pathways downstream of EGFR, including the RAS-MAPK pathway, promote growth suppression, but not the lethal effects of EGFR inhibitors. Taken together, our study reveals the first "reference map" for the genome-wide genetic dependencies of lethality for EGFR inhibitors.
Collapse
|
9
|
Adon T, Bhattacharya S, Madhunapantula SV, Kumar HY. Structural requirements of isoform-specific inhibitors of Akt: Implications in the development of effective cancer treatment strategies. Eur J Med Chem 2025; 287:117334. [PMID: 39904143 DOI: 10.1016/j.ejmech.2025.117334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/18/2024] [Accepted: 01/25/2025] [Indexed: 02/06/2025]
Abstract
Akt, also known as protein kinase-B, is an important therapeutic target in the treatment of cancer due to its pivotal roles in the signaling pathways that regulate various hall-mark features of cancer cells such as cell growth, survival, migration, differentiation, and metabolism. The three closely related isoforms of Akt viz., Akt1, Akt2, and Akt3 exhibit distinct physiological roles that affect cellular behavior and tumor development, making isoform selectivity a crucial driving factor in the design and development of inhibitors. This review outlines key amino acids and their structural traits in Akt isoforms, potentially dictating isoform selectivity. We present an analysis of existing structure-activity relationship data of covalent-allosteric Akt inhibitors to shed light on isoform selectivity. Additionally, a brief review of potential predictive biomarkers in enhancing the therapeutic efficacy of Akt inhibitors is presented. Identifying biomarkers that can reliably predict patient response to treatment is crucial for personalizing cancer therapies and improving overall treatment outcomes. By integrating predictive biomarker identification with the ongoing development of isoform-selective Akt inhibitors, it is plausible to establish a foundation for more precise and efficacious interventions in cancer therapy.
Collapse
Affiliation(s)
- Tenzin Adon
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570015, Karnataka, India; Computer Aided Drug Design Lab, Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570015, Karnataka, India
| | - Sanyukta Bhattacharya
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570015, Karnataka, India; Computer Aided Drug Design Lab, Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570015, Karnataka, India
| | - SubbaRao V Madhunapantula
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR, A DST-FIST Supported Center and ICMR-Collaborating Center of Excellence), Department of Biochemistry (A DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education & Research, Mysuru, 570015, Karnataka, India; Special Interest Group in Cancer Biology and Cancer Stem Cells (SIG-CBCSC), JSS Academy of Higher Education & Research, Mysuru, 570015, Karnataka, India; University Sophisticated Instrumentation Centre (USIC) [Supported by DST-PURSE & DBT-BUILDER], JSS Academy of Higher Education & Research (JSS AHER), Mysuru, 570015, Karnataka, India
| | - Honnavalli Yogish Kumar
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570015, Karnataka, India; Computer Aided Drug Design Lab, Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570015, Karnataka, India; University Sophisticated Instrumentation Centre (USIC) [Supported by DST-PURSE & DBT-BUILDER], JSS Academy of Higher Education & Research (JSS AHER), Mysuru, 570015, Karnataka, India.
| |
Collapse
|
10
|
Heo Y, Kim WJ, Cho YJ, Jung JW, Kim NS, Choi IY. Advances in cancer genomics and precision oncology. Genes Genomics 2025; 47:399-416. [PMID: 39849190 DOI: 10.1007/s13258-024-01614-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/27/2024] [Indexed: 01/25/2025]
Abstract
BACKGROUND Next-generation sequencing has revolutionized genome science over the last two decades. Indeed, the wealth of sequence information on our genome has deepened our understanding on cancer. Cancer is a genetic disease caused by genetic or epigenetic alternations that affect the expression of genes that control cell functions, particularly cell growth and division. Utilization of next-generation sequencing in cancer gene panels has enabled the identification of actionable gene alterations in cancer patients to guide personalized precision medicine. OBJECTIVE The aim is to provide information that can identify actionable gene alterations, enabling personalized precision medicine for cancer patients. RESULTS & DISCUSSION Equipped with next-generation sequencing techniques, international collaboration programs on cancer genomics have identified numerous mutations, gene fusions, microsatellite variations, copy number variations, and epigenetics changes that promote the transformation of normal cells into tumors. Cancer classification has traditionally been based on cell type or tissue-of-origin and the morphological characteristics of the cancer. However, interactive genomic analyses have currently reclassified cancers based on systemic molecular-based taxonomy. Although all cancer-causing genes and mechanisms have yet to be completely understood or identified, personalized or precision medicine is now currently possible for some forms of cancer. Unlike the "one-size-fits-all" approach of traditional medicine, precision medicine allows for customized or personalized treatment based on genomic information. CONCLUSION Despite the availability of numerous cancer gene panels, technological innovation in genomics and expansion of knowledge on the cancer genome will allow precision oncology to manage even more types of cancers.
Collapse
Affiliation(s)
- Yonjong Heo
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, 24341, Gangwon, Republic of Korea
| | - Woo-Jin Kim
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, 24341, Gangwon, Republic of Korea
| | - Yong-Joon Cho
- Department of Molecular Bioscience, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Multidimensional Genomics Research Center, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jae-Won Jung
- Genetic Sciences Group, Thermo Fisher Scientific Solutions Korea Co., Ltd., Seoul, 06349, Republic of Korea
| | - Nam-Soo Kim
- Department of Molecular Bioscience, Kangwon National University, Chuncheon, 24341, Republic of Korea.
- NBIT Co., Ltd., Chuncheon, 24341, Republic of Korea.
| | - Ik-Young Choi
- Department of Smart Farm and Agricultural Industry, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
11
|
Kagan T, Gabay M, Meenakshisundaram A, Levi Y, Eid S, Malchenko N, Maman M, Nitzan A, Ravotto L, Zaidel-Bar R, Eickholt BJ, Gal M, Laviv T. Genetically encoded biosensor for fluorescence lifetime imaging of PTEN dynamics in the intact brain. Nat Methods 2025; 22:764-777. [PMID: 39979596 PMCID: PMC11978514 DOI: 10.1038/s41592-025-02610-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 01/21/2025] [Indexed: 02/22/2025]
Abstract
The phosphatase and tensin homolog (PTEN) is a vital protein that maintains an inhibitory brake for cellular proliferation and growth. Accordingly, PTEN loss-of-function mutations are associated with a broad spectrum of human pathologies. Despite its importance, there is currently no method to directly monitor PTEN activity with cellular specificity within intact biological systems. Here we describe the development of a FRET-based biosensor using PTEN conformation as a proxy for the PTEN activity state, for two-photon fluorescence lifetime imaging microscopy. We identify a point mutation that allows the monitoring of PTEN activity with minimal interference to endogenous PTEN signaling. We demonstrate imaging of PTEN activity in cell lines, intact Caenorhabditis elegans and in the mouse brain. Finally, we develop a red-shifted sensor variant that allows us to identify cell-type-specific PTEN activity in excitatory and inhibitory cortical cells. In summary, our approach enables dynamic imaging of PTEN activity in vivo with unprecedented spatial and temporal resolution.
Collapse
Affiliation(s)
- Tomer Kagan
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Matan Gabay
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Aasha Meenakshisundaram
- Institute of Biochemistry and Molecular Biology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Yossi Levi
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Sharbel Eid
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Nikol Malchenko
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Maya Maman
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Anat Nitzan
- Department of Cell and Developmental Biology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Luca Ravotto
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Ronen Zaidel-Bar
- Department of Cell and Developmental Biology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Britta Johanna Eickholt
- Institute of Biochemistry and Molecular Biology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Maayan Gal
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Tal Laviv
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel.
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
12
|
Hu Z, Tang M, Huang Y, Cai B, Sun X, Chen G, Huang A, Li X, Shah AR, Jiang L, Li Q, Xu X, Lu W, Mao Z, Wan X. SIRT7 facilitates endometrial cancer progression by regulating PTEN stability in an estrogen-dependent manner. Nat Commun 2025; 16:2989. [PMID: 40148340 PMCID: PMC11950185 DOI: 10.1038/s41467-025-58317-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 03/18/2025] [Indexed: 03/29/2025] Open
Abstract
The prognosis of metastatic endometrial carcinoma (EC), one of the most common gynecological malignancies worldwide, remains poor, and the underlying driver of metastases is poorly understood. Dysregulation in estrogen-related signaling and inactivation of tumor suppressor PTEN are two essential risk factors of EC. However, whether and how they are interconnected during EC development remains unclear. Here, we demonstrate that the deacetylase SIRT7 is upregulated in EC patients and mouse models, facilitating EC progression in vitro and in vivo. Mechanistically, in an estrogen-dependent fashion, SIRT7 mediates PTEN deacetylation at K260, promoting PTEN ubiquitination by the E3 ligase NEDD4L, accelerating PTEN degradation and, consequently, expediting EC metastasis. Additionally, SIRT7 expression strongly correlates with poor survival in EC patients with wild-type PTEN, though no significant correlation is observed in PTEN mutation patients. These results lay the foundation for the study of targeting estrogen-SIRT7-PTEN axis, to restore PTEN abundance, offering potential avenues for EC therapy.
Collapse
Affiliation(s)
- Zhiyi Hu
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ming Tang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Yujia Huang
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Bailian Cai
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaoxiang Sun
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Guofang Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ao Huang
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, School of Pharmacy, Changsha Medical University, Changsha, China
| | - Xiaoqi Li
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ab Rauf Shah
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Lijun Jiang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Qian Li
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xianghong Xu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wen Lu
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| | - Xiaoping Wan
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
13
|
Mukherjee R, Pancholi P, Sharma M, Solomon H, Timaul MN, Thant C, McGriskin R, Hayatt O, Markov V, D'Allara J, Bekker S, Candelier J, Carrasco SE, de Stanchina E, Vanaja K, Rosen N. Diet induced insulin resistance is due to induction of PTEN expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.25.645201. [PMID: 40196497 PMCID: PMC11974787 DOI: 10.1101/2025.03.25.645201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Insulin resistance is a condition associated with obesity, type 2 diabetes(T2D), hyperinsulinemia, hyperglycemia and defined by reduced sensitivity to insulin signaling. Molecular causes and early signaling events underlying insulin resistance are not well understood. Here we show that insulin activation of PI3K/AKT/mTOR signaling in insulin target tissues, causes mTORC1 induction of PTEN translation, a negative regulator of PI3K signaling. We hypothesized that insulin resistance is due to insulin dependent induction of PTEN that prevents further increases in PI3K signaling. In a diet induced animal model of obesity and insulin resistance, we show that PTEN levels are increased in fat, muscle, and liver. Hyperinsulinemia and PTEN induction are followed by hyperglycemia, severe glucose intolerance, and hepatic steatosis. In response to chronic hyperinsulinemia, PTEN remains increased, while AKT activity is induced transiently before settling down to a PTEN-high and AKT-low state in the tissues, predicted by computational modeling of the PTEN-AKT feedback loop. Treatment with PTEN and mTORC1 inhibitors prevent and reverse the effect of PTEN induction, rescue insulin resistance and increase PI3K/AKT signaling. Thus, we show that PTEN induction by increased insulin levels elevates feedback inhibition of the pathway causing insulin resistance, its associated phenotypes, and is a potential therapeutic target.
Collapse
|
14
|
Fan S, Wang W, Che W, Xu Y, Jin C, Dong L, Xia Q. Nanomedicines Targeting Metabolic Pathways in the Tumor Microenvironment: Future Perspectives and the Role of AI. Metabolites 2025; 15:201. [PMID: 40137165 PMCID: PMC11943624 DOI: 10.3390/metabo15030201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/19/2025] [Accepted: 02/27/2025] [Indexed: 03/27/2025] Open
Abstract
Background: Tumor cells engage in continuous self-replication by utilizing a large number of resources and capabilities, typically within an aberrant metabolic regulatory network to meet their own demands. This metabolic dysregulation leads to the formation of the tumor microenvironment (TME) in most solid tumors. Nanomedicines, due to their unique physicochemical properties, can achieve passive targeting in certain solid tumors through the enhanced permeability and retention (EPR) effect, or active targeting through deliberate design optimization, resulting in accumulation within the TME. The use of nanomedicines to target critical metabolic pathways in tumors holds significant promise. However, the design of nanomedicines requires the careful selection of relevant drugs and materials, taking into account multiple factors. The traditional trial-and-error process is relatively inefficient. Artificial intelligence (AI) can integrate big data to evaluate the accumulation and delivery efficiency of nanomedicines, thereby assisting in the design of nanodrugs. Methods: We have conducted a detailed review of key papers from databases, such as ScienceDirect, Scopus, Wiley, Web of Science, and PubMed, focusing on tumor metabolic reprogramming, the mechanisms of action of nanomedicines, the development of nanomedicines targeting tumor metabolism, and the application of AI in empowering nanomedicines. We have integrated the relevant content to present the current status of research on nanomedicines targeting tumor metabolism and potential future directions in this field. Results: Nanomedicines possess excellent TME targeting properties, which can be utilized to disrupt key metabolic pathways in tumor cells, including glycolysis, lipid metabolism, amino acid metabolism, and nucleotide metabolism. This disruption leads to the selective killing of tumor cells and disturbance of the TME. Extensive research has demonstrated that AI-driven methodologies have revolutionized nanomedicine development, while concurrently enabling the precise identification of critical molecular regulators involved in oncogenic metabolic reprogramming pathways, thereby catalyzing transformative innovations in targeted cancer therapeutics. Conclusions: The development of nanomedicines targeting tumor metabolic pathways holds great promise. Additionally, AI will accelerate the discovery of metabolism-related targets, empower the design and optimization of nanomedicines, and help minimize their toxicity, thereby providing a new paradigm for future nanomedicine development.
Collapse
Affiliation(s)
| | | | | | | | | | - Lei Dong
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (S.F.); (W.W.); (W.C.); (Y.X.); (C.J.)
| | - Qin Xia
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (S.F.); (W.W.); (W.C.); (Y.X.); (C.J.)
| |
Collapse
|
15
|
Wang C, Chen Z, Ni W, Wang J, Zhou W. Research and progress of microRNA-136 in metastatic tumors. Front Oncol 2025; 15:1555270. [PMID: 40104500 PMCID: PMC11913677 DOI: 10.3389/fonc.2025.1555270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 02/11/2025] [Indexed: 03/20/2025] Open
Abstract
Background MiR-136 is abnormally expressed in many types of metastatic tumors and is closely associated with tumor cell proliferation, apoptosis, invasion, and metastasis, indicating its important role in tumor development and progression. This review summarizes current knowledge regarding miR-136's molecular mechanisms, functional roles, and impact on chemotherapy in different human cancers. Methods A literature search was conducted in PubMed and Web of Science using "miR-136" and "metastatic tumors" as English keywords, and in CNKI and Wanfang databases using the same terms in Chinese. Studies related to miR-136 research in metastatic tumors and high-quality evidence from similar studies were included. Meta-analyses, dissertations, conference papers, low-quality articles, unavailable full-text articles, and republished articles were excluded. Results This review synthesizes the current understanding of miR-136's role in various cancers, including osteosarcoma, gastric cancer, gallbladder cancer, esophageal cancer, prostate cancer, colorectal cancer, breast cancer, glioma, and thyroid cancer. miR-136 acts as a tumor suppressor by targeting various genes, including MTDH, PTEN, MAP2K4, MUC1, LRH-1, MIEN1, RASAL2, CYR61, and KLF7. It influences multiple signaling pathways, including the ERK/mitogen-activated protein kinase, Wnt/β-catenin, Ha-Ras, PI3K/Akt, Aurora-A kinase, nuclear factor-κB, and JNK pathways. Furthermore, miR-136 is involved in chemoresistance by modulating ROCK1, PPP2R2A, and the miR-136-Notch3 signaling axis. Conclusions MiR-136 demonstrates promising potential as a novel biomarker and therapeutic target in various human cancers. Further research is needed to fully elucidate its complex roles in cancer development, progression, and drug resistance, particularly regarding its potential in immunotherapy.
Collapse
Affiliation(s)
- Chenwen Wang
- Department of Orthopedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zixiong Chen
- Department of Orthopedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Ni
- Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Jiang Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Zhou
- Department of Orthopedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
16
|
Hanna J, Touahri Y, Pak A, David LA, van Oosten E, Dixit R, Vecchio LM, Mehta DN, Minamisono R, Aubert I, Schuurmans C. Pten Loss Triggers Progressive Photoreceptor Degeneration in an mTORC1-Independent Manner. Invest Ophthalmol Vis Sci 2025; 66:45. [PMID: 40116678 PMCID: PMC11935561 DOI: 10.1167/iovs.66.3.45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 02/19/2025] [Indexed: 03/23/2025] Open
Abstract
Purpose Silencing Phosphatase and tensin homolog (Pten) is a proposed therapeutic strategy for tissue regeneration to treat neurological disorders. However, Pten is pleiotropic, inhibiting several signaling and metabolic pathways, including mTORC1 and glycolysis, both pro-regenerative in certain contexts. This study aims to assess the long-term impact of inactivating Pten on photoreceptor survival in the retina and to identify downstream pathway(s). Methods We assessed retinal integrity in Pten conditional knock-outs (cKOs) that were retinal progenitor cell (RPC)-specific (Pten RPC-cKO), a congenital model, or rod-specific (Pten Rho-cKO). We examined early changes in photoreceptor gene expression and used immunostaining to assess photoreceptors, reactive astrocytes, microglia, angiogenesis, and subretinal deposit formation from postnatal day (P) 21 to 1 year of age. Pten RPC-cKO retinal explants were treated with rapamycin, an mTOR inhibitor, or 2-deoxy-D-glucose (2DG), a glycolysis inhibitor. Results In both Pten-cKO models, retinas display signs of early pathogenesis as photoreceptor-specific gene expression is downregulated at P0, before photoreceptor loss. Pten loss triggers progressive rod and cone degeneration beginning at P21 in Pten RPC-cKOs and at 6 months of age in Pten Rho-cKOs. Activated microglia and astrocytes, and increased angiogenesis, are observed in both Pten-cKO models, while subretinal amyloid-β deposits develop in Pten RPC-cKOs. Rapamycin accelerates photoreceptor degeneration in Pten RPC-cKOs, whereas 2DG has no effect. Conclusions Our findings suggest that Pten loss, either in RPCs as a congenital model, or solely in mature rod photoreceptors, leads to progressive retinal degeneration that is exacerbated by mTORC1 suppression, drawing into question the therapeutic value of Pten-mTORC1 manipulations.
Collapse
Affiliation(s)
- Joseph Hanna
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Yacine Touahri
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Alissa Pak
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Luke Ajay David
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Edwin van Oosten
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Rajiv Dixit
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Laura M. Vecchio
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Dhruv Nimesh Mehta
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Ren Minamisono
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Isabelle Aubert
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Carol Schuurmans
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Maeda Y, Ikeda T, Sato A, Matsumoto A, Jinno H. Breast Cancer with a Newly Diagnosed Variant in the PTEN Gene: A Case Report. Surg Case Rep 2025; 11:24-0082. [PMID: 39974553 PMCID: PMC11835985 DOI: 10.70352/scrj.cr.24-0082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 12/29/2024] [Indexed: 02/21/2025] Open
Abstract
INTRODUCTION The phosphatase and tensin homolog hamartoma tumor syndrome (PHTS) refers to a spectrum of disorders caused by variants of the phosphatase and tensin homolog (PTEN) gene, including Cowden syndrome (CS), Bannayan-Riley-Ruvalcaba syndrome, adult Lhermitte-Duclos disease, and autism spectrum disorders associated with macrocephaly. PHTS is characterized by hamartomas in multiple organs and is associated with an increased risk of developing malignant tumors including, breast, thyroid, endometrial, colorectal, and kidney tumors. Breast cancer is the most common malignancy associated with PHTS. CASE PRESENTATION We describe the case of a 44-year-old female patient with invasive ductal carcinoma of the right breast. Cobblestone papillomatosis was present in the gingiva. She had a medical history of bilateral adenomatous goiters for 10 years. Her mother had been diagnosed with breast cancer, thyroid and tongue tumors, gastric polyps, hepatic hemangioma, and collagen disease. Additionally, the patient's maternal grandmother had a history of colon cancer. Based on the patient's family history and physical findings, CS was suspected, and direct DNA sequencing analysis revealed a haplotype c.634del mutation in exon 7 of the PTEN gene. Although there is no clear evidence supporting risk-reducing surgery for PHTS, a right nipple-sparing mastectomy, sentinel lymph node biopsy, and tissue expander reconstruction were performed. CONCLUSIONS We report a case of breast cancer with a newly diagnosed c.634del mutation in the PTEN gene. We also reviewed the current literature on PTEN genetic variants and breast cancer subtypes.
Collapse
Affiliation(s)
- Yuka Maeda
- Department of Surgery, School of Medicine, Teikyo University, Tokyo, Japan
| | - Tatsuhiko Ikeda
- Department of Surgery, School of Medicine, Teikyo University, Tokyo, Japan
| | - Ayana Sato
- Department of Surgery, School of Medicine, Teikyo University, Tokyo, Japan
| | - Akiko Matsumoto
- Department of Surgery, School of Medicine, Teikyo University, Tokyo, Japan
| | - Hiromitsu Jinno
- Department of Surgery, School of Medicine, Teikyo University, Tokyo, Japan
| |
Collapse
|
18
|
Zhu GQ, Tang Z, Chu TH, Wang B, Chen SP, Tao CY, Cai JL, Yang R, Qu WF, Wang Y, Zhao QF, Huang R, Tian MX, Fang Y, Gao J, Wu XL, Zhou J, Liu WR, Dai Z, Shi YH, Fan J. Targeting SRSF1 improves cancer immunotherapy by dually acting on CD8 +T and tumor cells. Signal Transduct Target Ther 2025; 10:25. [PMID: 39837814 PMCID: PMC11751439 DOI: 10.1038/s41392-024-02118-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 12/02/2024] [Accepted: 12/26/2024] [Indexed: 01/23/2025] Open
Abstract
Serine arginine-rich splicing factor 1 (SRSF1) is a key oncogenic splicing factor in various cancers, promoting abnormal gene expression through post-translational regulation. Although the protumoral function of SRSF1 is well-established, the effects of inhibiting tumor-intrinsic SRSF1 on the tumor microenvironment and its impact on CD8+ T cell-mediated antitumor immunity remain unclear. Our findings indicate that depleting SRSF1 in CD8+ T cells improve antitumor immune function, glycolytic metabolism, and the efficacy of adoptive T cell therapy. The inactivation of SRSF1 in tumor cells reduces transcription factors, including c-Jun, c-myc, and JunB, facilitating glycolytic metabolism reprogramming, which restores CD8+ T cell function and inhibits tumor growth. The small-molecule inhibitor TN2008 targets SRSF1, boosting antitumor immune responses and improving immunotherapy effectiveness in mouse models. We therefore introduce a paradigm targeting SRSF1 that simultaneously disrupts tumor cell metabolism and enhances the antitumor immunity of CD8+ T cells.
Collapse
Affiliation(s)
- Gui-Qi Zhu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
- Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Zheng Tang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
- Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Tian-Hao Chu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
- Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Biao Wang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shi-Ping Chen
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
- Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Chen-Yang Tao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
- Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Jia-Liang Cai
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
- Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Rui Yang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
- Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei-Feng Qu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
- Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Yi Wang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
- Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Qian-Fu Zhao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
- Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Run Huang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
- Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Meng-Xin Tian
- Department of General Surgery, Gastric cancer center, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Yuan Fang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
- Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Jun Gao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
- Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiao-Ling Wu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
- Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
- Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei-Ren Liu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
- Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhi Dai
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China.
| | - Ying-Hong Shi
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China.
- Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China.
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China.
- Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
19
|
Garcia KC, Khan AA, Ghosh K, Sinha S, Scalora N, DeWane G, Fullenkamp C, Merritt N, Drebot Y, Yu S, Leidinger M, Henry MD, Breheny P, Chimenti MS, Tanas MR. PI3K regulates TAZ/YAP and mTORC1 axes that can be synergistically targeted. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.21.634138. [PMID: 39896636 PMCID: PMC11785051 DOI: 10.1101/2025.01.21.634138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Purpose Sarcomas are a heterogeneous group of cancers with few shared therapeutic targets. PI3K signaling is activated in various subsets of sarcomas, representing a shared oncogenic signaling pathway. Oncogenic PI3K signaling has been challenging to target therapeutically. An integrated view of PI3K and Hippo pathway signaling is examined to determine if this could be leveraged therapeutically. Experimental design A tissue microarray containing sarcomas of various histological types was evaluated for PTEN loss and correlated with levels of activated TAZ and YAP. PI3K and Hippo pathways were dissected in sarcoma cell lines. The role of TAZ and YAP were evaluated in a PI3K-driven mouse model. The efficacy of mTORC1 inhibition and TEAD inhibition were evaluated in sarcoma cell lines and in vivo . Results PI3K signaling is frequently activated in sarcomas due to PTEN loss (in 30-60%), representing a common therapeutic target. TAZ and YAP are transcriptional co-activators regulated by PI3K and drive a transcriptome necessary for tumor growth in a PI3K-driven sarcoma mouse model. Combination therapy using IK-930 (TEAD inhibitor) and everolimus (mTORC1 inhibitor) synergistically diminished proliferation and anchorage independent growth of PI3K-activated sarcoma cell lines at low, physiologically achievable doses. Furthermore, this combination therapy showed a synergistic effect in vivo , reducing tumor proliferation and size. Conclusions TAZ and YAP are transcriptional co-activators downstream of PI3K signaling, a pathway that has lacked a well-defined oncogenic transcription factor. This PI3K-TAZ/YAP axis exists in parallel to the known PI3K-Akt-mTORC1 axis allowing for synergistic combination therapy targeting the TAZ/YAP-TEAD interaction and mTORC1 in sarcomas.
Collapse
|
20
|
Zhang PP, Li L, Qu HY, Chen GY, Xie MZ, Chen YK. Traditional Chinese medicine in the treatment of Helicobacter pylori-related gastritis: The mechanisms of signalling pathway regulations. World J Gastroenterol 2025; 31:96582. [PMID: 39839895 PMCID: PMC11684169 DOI: 10.3748/wjg.v31.i3.96582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/29/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024] Open
Abstract
Helicobacter pylori-associated gastritis (HPAG) is a common condition of the gastrointestinal tract. However, extensive and long-term antibiotic use has resulted in numerous adverse effects, including increased resistance, gastrointestinal dysfunction, and increased recurrence rates. When these concerns develop, traditional Chinese medicine (TCM) may have advantages. TCM is based on the concept of completeness and aims to eliminate pathogens and strengthen the body. It has the potential to prevent this condition while also boosting the rate of Helicobacter pylori eradication. This review elaborates on the mechanism of TCM treatment for HPAG based on cellular signalling pathways, which reflects the flexibility of TCM in treating diseases and the advantages of multi-level, multi-pathway, and multi-target treatments for HPAG.
Collapse
Affiliation(s)
- Pei-Pei Zhang
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410200, Hunan Province, China
- Hunan Engineering Technology Research Center for Medicinal and Functional Food, Hunan University of Chinese Medicine, Changsha 410200, Hunan Province, China
- Key Laboratory of Traditional Chinese Medicine Heart and Lung Syndrome Differentiation and Medicated Diet and Dietotherapy, Hunan University of Chinese Medicine, Changsha 410200, Hunan Province, China
| | - Liang Li
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410200, Hunan Province, China
- Hunan Engineering Technology Research Center for Medicinal and Functional Food, Hunan University of Chinese Medicine, Changsha 410200, Hunan Province, China
- Key Laboratory of Traditional Chinese Medicine Heart and Lung Syndrome Differentiation and Medicated Diet and Dietotherapy, Hunan University of Chinese Medicine, Changsha 410200, Hunan Province, China
| | - Hao-Yu Qu
- Hunan Engineering Technology Research Center for Medicinal and Functional Food, Hunan University of Chinese Medicine, Changsha 410200, Hunan Province, China
- School of Informatics, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Guang-Yu Chen
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410200, Hunan Province, China
- Hunan Engineering Technology Research Center for Medicinal and Functional Food, Hunan University of Chinese Medicine, Changsha 410200, Hunan Province, China
- Key Laboratory of Traditional Chinese Medicine Heart and Lung Syndrome Differentiation and Medicated Diet and Dietotherapy, Hunan University of Chinese Medicine, Changsha 410200, Hunan Province, China
| | - Meng-Zhou Xie
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410200, Hunan Province, China
- Hunan Engineering Technology Research Center for Medicinal and Functional Food, Hunan University of Chinese Medicine, Changsha 410200, Hunan Province, China
- Key Laboratory of Traditional Chinese Medicine Heart and Lung Syndrome Differentiation and Medicated Diet and Dietotherapy, Hunan University of Chinese Medicine, Changsha 410200, Hunan Province, China
| | - Yan-Kun Chen
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410200, Hunan Province, China
- Precision Medicine Research and Development Center, Zhuhai Institute of Advanced Technology, Chinese Academy of Sciences, Zhuhai 519000, Guangdong Province, China
| |
Collapse
|
21
|
Fernandez A, Sarn N, Eng C, Wright KM. Altered primary somatosensory neuron development in a Pten heterozygous model for autism spectrum disorder. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.08.04.552039. [PMID: 37781577 PMCID: PMC10541114 DOI: 10.1101/2023.08.04.552039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder characterized by deficits in social interactions, repetitive behaviors, and hyper- or hyposensitivity to sensory stimuli. The mechanisms underlying the emergence of sensory features in ASD are not fully understood, but recent studies in rodent models highlight that these may result from differences in primary sensory neurons themselves. We examined sensory behaviors in a Pten haploinsufficient mouse model ( Pten Het ) for syndromic ASD and identified elevated responses to mechanical stimuli and a higher threshold to thermal responses. Transcriptomic and in vivo anatomical analysis identified alterations in subtype-specific markers of primary somatosensory neurons in Pten Het dorsal root ganglia (DRG). These defects emerge early during DRG development and involve dysregulation of multiple signaling pathways downstream of Pten . Finally, we show that mice harboring an ASD-associated mutation ( Pten Y69H ) also show altered expression of somatosensory neuron subtype-specific markers. Together, these results show that precise levels of Pten are required for proper somatosensory development and provide insight into the molecular and cellular basis of sensory abnormalities in a model for syndromic ASD.
Collapse
|
22
|
Ashadul Sk M, K H, Matada GSP, Pal R, B V M, Mounika S, E H, M P V, D A. Current developments in PI3K-based anticancer agents: Designing strategies, biological activity, selectivity, structure-activity correlation, and docking insight. Bioorg Chem 2025; 154:108011. [PMID: 39662340 DOI: 10.1016/j.bioorg.2024.108011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 12/13/2024]
Abstract
The phospatidylinositol-3 kinase (PI3K) pathway is a critical intracellular signalling mechanism that is changed or amplified in a variety of cancers, including breast, gastric, ovarian, colorectal, prostate, glioma, and endometrial. PI3K signalling is important for cancer cell survival, angiogenesis, and metastasis, making it a promising therapeutic target. The PI3K kinases in their different isoforms, namely α, β, δ, and γ, encode PIK3CA, PIK3CB, PIK3CD, and PIK3CG genes. Specific gene mutation or overexpression of the protein is responsible for the therapeutic failure of current therapeutics. There are several current and completed clinical trials using PI3K inhibitors (pan, isoform-specific, and dual PI3K/mTOR) to develop effective PI3K inhibitors capable of overcoming resistance to existing drugs. However, the bulk of these inhibitors have had their indications revoked or voluntarily withdrawn due to concerns about their harmful consequences. Several inhibitors containing medicinally privileged scaffolds like thiazole, triazine, benzimidazole, podophyllotoxin, pyridine, quinazoline, thieno-triazole, pyrimidine, triazole, benzofuran, imidazo-pyridazine, oxazole, coumarin, and azepine derivatives have been explored to target the PI3K pathway and/or a specific isoform in the current overview. This article reviews the structure, biological activities, and clinical status of PI3K inhibitors. It focuses on the development techniques, docking insight, and structure-activity connections of PI3K-based inhibitors. The findings provide useful insights and future approaches for the development of promising PI3K-based inhibitors.
Collapse
Affiliation(s)
- Md Ashadul Sk
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru 560107, Karnataka, India
| | - Hemalatha K
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru 560107, Karnataka, India.
| | - Gurubasavaraja Swamy Purawarga Matada
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru 560107, Karnataka, India
| | - Rohit Pal
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru 560107, Karnataka, India.
| | - Manjushree B V
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru 560107, Karnataka, India
| | - S Mounika
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru 560107, Karnataka, India
| | - Haripriya E
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru 560107, Karnataka, India
| | - Viji M P
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru 560107, Karnataka, India
| | - Anjan D
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru 560107, Karnataka, India
| |
Collapse
|
23
|
Sharma D, Singh H, Arya A, Choudhary H, Guleria P, Saini S, Thakur CJ. Comprehensive computational analysis of deleterious nsSNPs in PTEN gene for structural and functional insights. MOLECULAR BIOLOGY RESEARCH COMMUNICATIONS 2025; 14:219-239. [PMID: 40321699 PMCID: PMC12046362 DOI: 10.22099/mbrc.2025.52148.2092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Single nucleotide polymorphisms (SNPs) are pivotal in understanding the genetic basis of complex disorders. Among them, nonsynonymous SNPs (nsSNPs) that alter amino acid sequences can significantly impact protein structure and function. This study focuses on analyzing deleterious nsSNPs in the tumor suppressor gene PTEN (Phosphatase and TENsin Homolog), which plays a central role in regulating the PI3K/Akt signaling pathway and tumorigenesis. Out of 43,855 SNPs in PTEN, 17 deleterious nsSNPs were identified using six computational tools. Protein stability analysis revealed that 15 variants reduce stability, potentially leading to functional impairment. Structural evaluations using HOPE and ConSurf classified mutations into buried structural residues disrupting protein integrity and exposed functional residues affecting molecular interactions. STRING database analysis highlighted PTEN as a central node in an intricate protein network, with deleterious mutations impairing critical interactions with partners such as PIK3CA, AKT1, and TP53. Secondary structure analysis revealed distinct structural deviations, particularly for G129E, which exhibited the most pronounced destabilization. Molecular dynamics simulations confirmed stability variations across mutants, with G129E exhibiting greater instability. This comprehensive analysis enhances understanding of PTEN nsSNP impacts, offering insights for therapeutic interventions and future experimental validation.
Collapse
Affiliation(s)
- Divyanshi Sharma
- Department of Bioinformatics, Goswami Ganesh Dutta Sanatan Dharma College, Sector 32C, 160030, Chandigarh, India
| | - Harasees Singh
- Department of Bioinformatics, Goswami Ganesh Dutta Sanatan Dharma College, Sector 32C, 160030, Chandigarh, India
| | - Aryan Arya
- Department of Bioinformatics, Goswami Ganesh Dutta Sanatan Dharma College, Sector 32C, 160030, Chandigarh, India
| | - Himanshi Choudhary
- Department of Bioinformatics, Goswami Ganesh Dutta Sanatan Dharma College, Sector 32C, 160030, Chandigarh, India
| | - Pragya Guleria
- Department of Bioinformatics, Goswami Ganesh Dutta Sanatan Dharma College, Sector 32C, 160030, Chandigarh, India
| | - Sandeep Saini
- Department of Bioinformatics, Goswami Ganesh Dutta Sanatan Dharma College, Sector 32C, 160030, Chandigarh, India
- Department of Biophysics, Panjab University, Sector 25, 160014, Chandigarh, India
| | - Chander Jyoti Thakur
- Department of Bioinformatics, Goswami Ganesh Dutta Sanatan Dharma College, Sector 32C, 160030, Chandigarh, India
| |
Collapse
|
24
|
Li Z, Duan R, Jiang Q, Liu J, Chen J, Jiang L, Wang T, Li H, Zhang Y, Peng X, Huang Z, Zhu L, Zou W, Lin Y, Su W. Dietary caloric restriction protects experimental autoimmune uveitis by regulating Teff/Treg balance. iScience 2024; 27:111279. [PMID: 39628557 PMCID: PMC11612795 DOI: 10.1016/j.isci.2024.111279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/29/2024] [Accepted: 10/25/2024] [Indexed: 12/06/2024] Open
Abstract
Uveitis, an autoimmune disease, often leads to blindness. CD4+ T cells, including regulatory T cells (Tregs) and effector T cells (Th1 and Th17), play a critical role in its pathogenesis. Caloric restriction (CR) has been shown to alleviate autoimmune diseases. However, careful characterization of the impact of CR on experimental autoimmune uveitis (EAU) is poorly understood. This study used single-cell RNA sequencing to analyze cervical draining lymph nodes in mice under ad libitum (AL) and CR diets, with or without EAU. CR increased Tregs, altered immune cell metabolism, reduced EAU symptoms, and downregulated inflammatory and glycolysis genes. Flow cytometry confirmed CR's inhibitory effect on Th1 and Th17 proliferation and its promotion of Treg proliferation. CR also balanced CD4+ T cells by inhibiting the PI3K/AKT/c-Myc pathway and reducing GM-CSF in Th17 cells. These findings suggest CR as a potential therapeutic strategy for autoimmune diseases.
Collapse
Affiliation(s)
- Zhaohuai Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Runping Duan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Qi Jiang
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
| | - Jiaying Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Jialing Chen
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510060, China
| | - Loujing Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Tianfu Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - He Li
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
| | - Yihan Zhang
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
| | - Xuening Peng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Zhaohao Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Lei Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Wenjun Zou
- Department of Ophthalmology, Wuxi No.2 People’s Hospital, Jiangnan University Medical Center, Wuxi, Jiangsu, China
| | - Ying Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Wenru Su
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
| |
Collapse
|
25
|
Nazari M, Babakhanzadeh E, Mollazadeh A, Ahmadzade M, Mohammadi Soleimani E, Hajimaqsoudi E. HOTAIR in cancer: diagnostic, prognostic, and therapeutic perspectives. Cancer Cell Int 2024; 24:415. [PMID: 39702144 DOI: 10.1186/s12935-024-03612-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024] Open
Abstract
The long non-coding RNA HOTAIR is overexpressed in many cancers and is associated with several cancer-promoting effects, including increased cell proliferation, migration and treatment resistance. HOTAIR levels correlate with tumor stage, lymph node metastasis and overall survival in patients with various types of cancer. This highlights the potential uses of HOTAIR, including early cancer detection, predicting patient outcome, identifying high-risk individuals and assisting in therapy selection and monitoring. The aim of this review is to provide a comprehensive summary of the research progress, molecular mechanisms and clinical significance of HOTAIR in various human cancers. In addition, the clinical applications of HOTAIR, such as targeted therapy, radiotherapy, chemotherapy and immunotherapy, are discussed, and relevant information on the potential future advances of HOTAIR in cancer research is provided.
Collapse
Affiliation(s)
- Majid Nazari
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, P.O. Box 64155-65117, Tehran, Yazd, Iran.
| | - Emad Babakhanzadeh
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arghavan Mollazadeh
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, 60115, USA
| | - Mohadese Ahmadzade
- Department of Urology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Elnaz Hajimaqsoudi
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
26
|
Lu Q, Sasaki S, Sera T, Kudo S. Spatiotemporal distribution of PTEN before directed cell migration in monolayers. In Vitro Cell Dev Biol Anim 2024; 60:1160-1173. [PMID: 38926230 DOI: 10.1007/s11626-024-00927-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/12/2024] [Indexed: 06/28/2024]
Abstract
The intracellular distribution of phosphatase and tensin homolog (PTEN) is closely related to directed cell migration. In single cells, PTEN accumulates at the rear of the cell before and during directed migration; however, the spatiotemporal distribution of PTEN in confluent cell monolayers, particularly before directed migration, remains unclear. In this study, we wounded a cell in confluent fetal rat skin keratinocytes (FRSKs) and examined the dynamics of PTEN in the cells adjacent to the wounded cell. In contrast to single-cell migration, we found that PTEN translocated to the nucleus before the beginning of directed migration. This nuclear translocation of PTEN did not occur in disconnected cells, and it was also suppressed by importin-β inhibitor and actin inhibitor. When the nuclear localization of PTEN was inhibited by an importin-β inhibitor, cell elongation in the direction of migration was also significantly inhibited. Our results indicate that PTEN translocation is induced by the disruption of cell-cell adhesion and requires the involvement of importin-β and actin cytoskeleton signaling. In addition, phosphatidylinositol 3,4,5-triphosphate (PIP3) may regulate PTEN distribution through its localized accumulation at the cell edge. Our findings suggest that the translocation of PTEN is crucial for directed cell migration and for responding to mechanical environmental changes in confluent cell monolayers.
Collapse
Affiliation(s)
- Quanzhi Lu
- Department of Mechanical Engineering, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka-Shi, Fukuoka, 819-0395, Japan
| | - Saori Sasaki
- Department of Mechanical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka-Shi, Fukuoka, 819-0395, Japan
| | - Toshihiro Sera
- Department of Medical and Robotic Engineering Design, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| | - Susumu Kudo
- Department of Mechanical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka-Shi, Fukuoka, 819-0395, Japan.
| |
Collapse
|
27
|
Gupta I, Gaykalova DA. Unveiling the role of PIK3R1 in cancer: A comprehensive review of regulatory signaling and therapeutic implications. Semin Cancer Biol 2024; 106-107:58-86. [PMID: 39197810 DOI: 10.1016/j.semcancer.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/11/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024]
Abstract
Phosphoinositide 3-kinase (PI3K) is responsible for phosphorylating phosphoinositides to generate secondary signaling molecules crucial for regulating various cellular processes, including cell growth, survival, and metabolism. The PI3K is a heterodimeric enzyme complex comprising of a catalytic subunit (p110α, p110β, or p110δ) and a regulatory subunit (p85). The binding of the regulatory subunit, p85, with the catalytic subunit, p110, forms an integral component of the PI3K enzyme. PIK3R1 (phosphoinositide-3-kinase regulatory subunit 1) belongs to class IA of the PI3K family. PIK3R1 exhibits structural complexity due to alternative splicing, giving rise to distinct isoforms, prominently p85α and p55α. While the primary p85α isoform comprises multiple domains, including Src homology 3 (SH3) domains, a Breakpoint Cluster Region Homology (BH) domain, and Src homology 2 (SH2) domains (iSH2 and nSH2), the shorter isoform, p55α, lacks certain domains present in p85α. In this review, we will highlight the intricate regulatory mechanisms governing PI3K signaling along with the impact of PIK3R1 alterations on cellular processes. We will further delve into the clinical significance of PIK3R1 mutations in various cancer types and their implications for prognosis and treatment outcomes. Additionally, we will discuss the evolving landscape of targeted therapies aimed at modulating PI3K-associated pathways. Overall, this review will provide insights into the dynamic interplay of PIK3R1 in cancer, fostering advancements in precision medicine and the development of targeted interventions.
Collapse
Affiliation(s)
- Ishita Gupta
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Otorhinolaryngology-Head and Neck Surgery, Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Medical Center, Baltimore, MD, USA
| | - Daria A Gaykalova
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Otorhinolaryngology-Head and Neck Surgery, Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Medical Center, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
28
|
Bezrookove V, Kianian S, McGeever L, Jones R, Caressi C, Nosrati M, Kim KB, Leong SP, Miller JR, Desprez PY, Kashani-Sabet M. The Molecular Evolution of Melanoma Distant Metastases. J Invest Dermatol 2024; 144:2530-2540.e1. [PMID: 38582370 DOI: 10.1016/j.jid.2024.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/26/2024] [Accepted: 03/14/2024] [Indexed: 04/08/2024]
Abstract
The evolution of primary melanoma to lymph node and distant metastasis is incompletely understood. We examined the genomic diversity in melanoma progression in matched primary melanomas and lymph node and distant metastases from 17 patients. FISH analysis revealed cancer cell fractions with monotonic copy number alterations, including PHIP gain and PTEN loss, in the metastatic cascade. By contrast, the cancer cell fraction with copy number alterations for BPTF and MITF was reduced in lymph node metastases but increased in distant metastases. Separately, the cancer cell fraction with NCOA3 copy number alteration was comparable between primary tumors and lymph node metastases yet increased in distant metastases. These results suggest enrichment of the phosphoinositide 3-kinase and MITF pathways in the transition through the metastatic cascade. By contrast, next-generation sequencing analysis did not identify a consistent pattern of changes in variant allele frequency while revealing several intriguing findings, including decreased variant allele frequency in distant metastases and distinct drivers in lymph node versus distant metastases. These results provide evidence that distant melanoma metastasis does not always emanate from lymph node metastasis. These results enhance our understanding of clonal patterns of melanoma metastasis, with possible implications for targeted therapy and metastasis competency.
Collapse
Affiliation(s)
- Vladimir Bezrookove
- Center for Melanoma Research and Treatment, California Pacific Medical Center, San Francisco, California, USA; California Pacific Medical Center Research Institute, San Francisco, California, USA
| | - Sara Kianian
- Center for Melanoma Research and Treatment, California Pacific Medical Center, San Francisco, California, USA; California Pacific Medical Center Research Institute, San Francisco, California, USA
| | - Lea McGeever
- California Pacific Medical Center Research Institute, San Francisco, California, USA
| | - Robyn Jones
- California Pacific Medical Center Research Institute, San Francisco, California, USA
| | - Chongshan Caressi
- Center for Melanoma Research and Treatment, California Pacific Medical Center, San Francisco, California, USA; California Pacific Medical Center Research Institute, San Francisco, California, USA
| | - Mehdi Nosrati
- Center for Melanoma Research and Treatment, California Pacific Medical Center, San Francisco, California, USA; California Pacific Medical Center Research Institute, San Francisco, California, USA
| | - Kevin B Kim
- Center for Melanoma Research and Treatment, California Pacific Medical Center, San Francisco, California, USA; California Pacific Medical Center Research Institute, San Francisco, California, USA
| | - Stanley P Leong
- Center for Melanoma Research and Treatment, California Pacific Medical Center, San Francisco, California, USA; California Pacific Medical Center Research Institute, San Francisco, California, USA
| | - James R Miller
- Center for Melanoma Research and Treatment, California Pacific Medical Center, San Francisco, California, USA; California Pacific Medical Center Research Institute, San Francisco, California, USA
| | - Pierre-Yves Desprez
- California Pacific Medical Center Research Institute, San Francisco, California, USA
| | - Mohammed Kashani-Sabet
- Center for Melanoma Research and Treatment, California Pacific Medical Center, San Francisco, California, USA; California Pacific Medical Center Research Institute, San Francisco, California, USA.
| |
Collapse
|
29
|
Chong ZX. Roles of miRNAs in regulating ovarian cancer stemness. Biochim Biophys Acta Rev Cancer 2024; 1879:189191. [PMID: 39353485 DOI: 10.1016/j.bbcan.2024.189191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/02/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
Ovarian cancer is one of the gynaecology malignancies with the highest mortality rate. Ovarian cancer stem cell (CSC) is a subpopulation of ovarian cancer cells with increased self-renewability, aggression, metastatic potentials, and resistance to conventional anti-cancer therapy. The emergence of ovarian CSC is a critical factor that promotes treatment resistance and frequent relapse among ovarian cancer patients, leading to poor clinical outcomes. MicroRNA (miRNA) is a short, non-protein-coding RNA that regulates ovarian CSC development. Although multiple original research articles have discussed the CSC-regulatory roles of different miRNAs in ovarian cancer, there is a deficiency of a review article that can summarize the findings from different research papers. To narrow the gap in the literature, this review aimed to provide an up-to-date summary of the CSC-regulatory roles of various miRNAs in modulating ovarian cancer cell stemness. This review will begin by giving an overview of ovarian CSC and the pathways responsible for driving its appearance. Next, the CSC-regulatory roles of miRNAs in controlling ovarian CSC development will be discussed. Overall, more than 60 miRNAs have been reported to play CSC-regulatory roles in the development and progression of ovarian cancer. By targeting various downstream targets, these miRNAs can control the signaling activities of PI3K/AKT, EGFR/ERK, WNT/ß-catenin, NF-kß, Notch, Hippo/YAP, EMT, and DNA repair pathways. Hence, these CSC-modulatory miRNAs have the potential to be used as prognostic biomarkers in predicting the clinical outcomes of ovarian cancer patients. Targeting CSC-promoting miRNAs or increasing the expressions of CSC-repressing miRNAs can help slow ovarian cancer progression. However, more in-depth functional and clinical trials must be carried out to evaluate the suitability, safety, sensitivity, and specificity of these CSC-regulating miRNAs as prognostic biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Zhi-Xiong Chong
- Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor, Malaysia; NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Centre for Translational Medicine, 14 Medical Drive, #12-01, Singapore 117599; Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, 14 Medical Drive, #12-01, Singapore 117599.
| |
Collapse
|
30
|
Cheng S, Chen J, Li Q, Nie Y, Ni T, Peng C, Luo X, Yasin P, Zhang S, Tang J, Liu Z. Protective effect of folic acid on MNNG-induced proliferation of esophageal epithelial cells via the PI3K/AKT/mTOR signaling pathway. J Nutr Biochem 2024; 133:109702. [PMID: 39025456 DOI: 10.1016/j.jnutbio.2024.109702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 06/19/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
Recent research has revealed that N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) constitutes a significant risk factor in the development of esophageal cancer. Several investigations have elucidated the beneficial impact of folic acid (FA) in safeguarding esophageal epithelial cells against MNNG-induced damage. Therefore, we hypothesized that FA might prevent MNNG-induced proliferation of esophageal epithelial cells by interfering with the PI3K/AKT/mTOR signaling pathway. In vivo experiments, we found that FA antagonized MNNG-induced proliferation of rat esophageal mucosal epithelial echinocytes and activation of the PI3K/AKT/mTOR signaling pathway. In our in vitro experiments, it was observed that acute exposure to MNNG for 24 h led to a decrease in proliferative capacity and inhibition of the PI3K/AKT/mTOR signaling pathway in an immortalized human normal esophageal epithelial cell line (Het-1A), which was also ameliorated by supplementation with FA. We successfully established a Het-1A-T-cell line by inducing malignant transformation in Het-1A cells through exposure to MNNG. Notably, the PI3K/AKT2/mTOR pathway showed early suppression followed by activation during this transition. Next, we observed that FA inhibited cell proliferation and activation of the PI3K/AKT2/mTOR signaling pathway in Het-1A-T malignantly transformed cells. We further investigated the impact of 740Y-P, a PI3K agonist, and LY294002, a PI3K inhibitor, on Het-1A-T-cell proliferation. Overall, our findings show that FA supplementation may be beneficial in safeguarding normal esophageal epithelial cell proliferation and avoiding the development of esophageal cancer by decreasing the activation of the MNNG-induced PI3K/AKT2/mTOR signaling pathway.
Collapse
Affiliation(s)
- Suizhi Cheng
- Department of Nutrition and Food Hygiene, School of Public Health, North Sichuan Medical College, Nanchong 637000, China; Department of Pharmacology, School of Pharmacy, North Sichuan Medical College, Nanchong 637000, China
| | - Jin Chen
- Department of Nutrition and Food Hygiene, School of Public Health, North Sichuan Medical College, Nanchong 637000, China
| | - Qianhui Li
- Department of Nutrition and Food Hygiene, School of Public Health, North Sichuan Medical College, Nanchong 637000, China; Department of Pharmacology, School of Pharmacy, North Sichuan Medical College, Nanchong 637000, China
| | - Yuhong Nie
- Department of Nutrition and Food Hygiene, School of Public Health, North Sichuan Medical College, Nanchong 637000, China
| | - Ting Ni
- Department of Nutrition and Food Hygiene, School of Public Health, North Sichuan Medical College, Nanchong 637000, China
| | - Caiting Peng
- Department of Nutrition and Food Hygiene, School of Public Health, North Sichuan Medical College, Nanchong 637000, China
| | - Xi Luo
- Department of Nutrition and Food Hygiene, School of Public Health, North Sichuan Medical College, Nanchong 637000, China
| | - Pazilat Yasin
- Department of Nutrition and Food Hygiene, School of Public Health, North Sichuan Medical College, Nanchong 637000, China
| | - Shumin Zhang
- Department of Biochemistry, School of Basic Medical Sciences, North Sichuan Medical College, Nanchong 637000, China
| | - Jiancai Tang
- Department of Biochemistry, School of Basic Medical Sciences, North Sichuan Medical College, Nanchong 637000, China
| | - Zhenzhong Liu
- Department of Nutrition and Food Hygiene, School of Public Health, North Sichuan Medical College, Nanchong 637000, China.
| |
Collapse
|
31
|
Wei R, Hitomi M, Sadler T, Yehia L, Calvetti D, Scott J, Eng C. Quantitative evaluation of DNA damage repair dynamics to elucidate predictors of autism vs. cancer in individuals with germline PTEN variants. PLoS Comput Biol 2024; 20:e1012449. [PMID: 39356721 PMCID: PMC11472915 DOI: 10.1371/journal.pcbi.1012449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 10/14/2024] [Accepted: 08/31/2024] [Indexed: 10/04/2024] Open
Abstract
Persons with germline variants in the tumor suppressor gene phosphatase and tensin homolog, PTEN, are molecularly diagnosed with PTEN hamartoma tumor syndrome (PHTS). PHTS confers high risks of specific malignancies, and up to 23% of the patients are diagnosed with autism spectrum disorder (ASD) and/or developmental delay (DD). The accurate prediction of these two seemingly disparate phenotypes (cancer vs. ASD/DD) for PHTS at the individual level remains elusive despite the available statistical prevalence of specific phenotypes of the syndrome at the population level. The pleiotropy of the syndrome may, in part, be due to the alterations of the key multi-functions of PTEN. Maintenance of genome integrity is one of the key biological functions of PTEN, but no integrative studies have been conducted to quantify the DNA damage response (DDR) in individuals with PHTS and to relate to phenotypes and genotypes. In this study, we used 43 PHTS patient-derived lymphoblastoid cell lines (LCLs) to investigate the associations between DDR and PTEN genotypes and/or clinical phenotypes ASD/DD vs. cancer. The dynamics of DDR of γ-irradiated LCLs were analyzed using the exponential decay mathematical model to fit temporal changes in γH2AX levels which report the degree of DNA damage. We found that PTEN nonsense variants are associated with less efficient DNA damage repair ability resulting in higher DNA damage levels at 24 hours after irradiation compared to PTEN missense variants. Regarding PHTS phenotypes, LCLs from PHTS individuals with ASD/DD showed faster DNA damage repairing rate than those from patients without ASD/DD or cancer. We also applied the reaction-diffusion partial differential equation (PDE) mathematical model, a cell growth model with a DNA damage term, to accurately describe the DDR process in the LCLs. For each LCL, we can derive parameters of the PDE. Then we averaged the numerical results by PHTS phenotypes. By performing simple subtraction of two subgroup average results, we found that PHTS-ASD/DD is associated with higher live cell density at lower DNA damage level but lower cell density level at higher DNA damage level compared to LCLs from individuals with PHTS-cancer and PHTS-neither.
Collapse
Affiliation(s)
- Ruipeng Wei
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Nutrition and Systems Biology and Bioinformatics Program, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Masahiro Hitomi
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Translational Hematology & Oncology Research, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Tammy Sadler
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Lamis Yehia
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Daniela Calvetti
- Department of Mathematics, Applied Mathematics, and Statistics, Case Western Reserve University College of Arts and Sciences, Cleveland, Ohio, United States of America
| | - Jacob Scott
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Translational Hematology & Oncology Research, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, Ohio, United States of America
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Center for Personalized Genetic Healthcare, Medical Specialties Institute, Cleveland Clinic, United States of America
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
- Germline High Risk Cancer Focus Group, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, United States of America
| |
Collapse
|
32
|
Alshehri MA, Seyed MA, Panneerselvam C, Sayed SM, Shukry M. Mechanistic insights into Retama raetam's anti-proliferative and pro-apoptotic effects in A549 lung cancer cells: targeting PI3K/Akt pathway and ROS production. Toxicol Res (Camb) 2024; 13:tfae137. [PMID: 39233844 PMCID: PMC11368664 DOI: 10.1093/toxres/tfae137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/12/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024] Open
Abstract
Lung cancer, particularly non-small cell lung cancer (NSCLC), is a leading cause of cancer-related deaths worldwide. This study investigates the molecular mechanisms behind the anti-cancer effects of the tropical desert plant Retama raetam (R. raetam) on the A549 NSCLC cell line. The research examined R. raetam's anti-proliferative effects, cytotoxicity, apoptosis, reactive oxygen species (ROS) generation, mitochondrial membrane potential, and cell morphology in NSCLC A549 and L-132 cells. In addition, the influence of R. raetam on DNA fragmentation, apoptotic signaling, and PI3K/Akt pathways for its anti-cancer mechanism was examined. Our results indicated that R. raetam's effects were dose- and time-dependent to exhibit anti-proliferative effects on A549 cells. R. raetam treatment promoted apoptotic cell death cycle arrest, increased apoptotic cells, depolarized the mitochondrial membrane, and induced morphological alterations in cells and nuclei. It also inhibited A549 cell migration (P < 0.05), colonization, and invasiveness. Moreover, the study demonstrated that R. raetam treatment resulted in the upregulation of Bax expression, downregulation of Bcl-2 expression, and apoptotic fragmented DNA in A549 cells. The top five bioactive compounds derived from R. raetam exhibited molecular interactions that inhibit PIK3CA and AKT1. This inhibition leads to an increased frequency of apoptosis and subsequent death of cancer cells. Additionally, R. raetam extract induced an increase in ROS formation and cytochrome c levels, indicating that its toxic effects on A549 cells involve both ROS-dependent cytotoxicity through the disruption of mitochondrial transmembrane potential ΔΨm and ROS-independent cell cycle arrest through downregulation BCL-2, PARP, E-Cadherin, PI3K, and Akt expressions pathways.
Collapse
Affiliation(s)
- Mohammed Ali Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Mohamed Ali Seyed
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Chellasamy Panneerselvam
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Samy M Sayed
- Department of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| |
Collapse
|
33
|
Jung EJ, Lee WJ, Bae JW, Kwon WS. Miltefosine induces reproductive toxicity during sperm capacitation by altering PI3K/AKT signaling pathway. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 111:104565. [PMID: 39265707 DOI: 10.1016/j.etap.2024.104565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/01/2024] [Accepted: 09/07/2024] [Indexed: 09/14/2024]
Abstract
Miltefosine is the first and only drug approved for the treatment of leishmaniasis. It is also known as a PI3K/AKT signaling pathway inhibitor utilized in anti-cancer or anti-viral therapies. However, the impact of miltefosine on male fertility has not been fully understood. Therefore, this study was performed to investigate the effects of miltefosine on sperm function during capacitation. Duroc spermatozoa were exposed to 0, 2.5, 5, 10, 20, 40, and 80 μM miltefosine and induced for capacitation. Our results showed that miltefosine dramatically increased the expression of PI3K/AKT signaling pathway-associated proteins. Sperm motility, motion kinetics, capacitation, and tyrosine phosphorylation were significantly suppressed by miltefosine. However, intracellular ATP levels and cell viability were not significantly affected. Our findings suggest that miltefosine may disrupt sperm function by abnormally increasing the levels of PI3K/AKT signaling pathway-associated proteins. Therefore, the harmful effects of miltefosine on male reproduction should be considered when using this drug.
Collapse
Affiliation(s)
- Eun-Ju Jung
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea.
| | - Woo-Jin Lee
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea.
| | - Jeong-Won Bae
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea.
| | - Woo-Sung Kwon
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea; Research Institute for Innovative Animal Science, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea.
| |
Collapse
|
34
|
Vida-Navas E, Barca-Tierno V, López-Gómez V, Salazar MT, Moreno-Pelayo MA, Guillén-Ponce C. Constitutional Mutation of PIK3CA: A Variant of Cowden Syndrome? Genes (Basel) 2024; 15:1209. [PMID: 39336800 PMCID: PMC11431818 DOI: 10.3390/genes15091209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/04/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
We present a family in which four individuals have been identified with the same likely pathogenic genetic alteration in the PIK3CA gene at the germinal level; specifically, c.1145G>A p.(Arg382Lys) missense type. The index case patient was diagnosed with multinodular goiter and breast cancer at 61 years old. Among the other three carrier relatives: one has been diagnosed with serous cystadenoma of the ovary and a thyroid nodule with no radiological suspicion of malignancy; the other two present multinodular goiter. Additionally, a sister of three of the carriers suffered from an ovarian teratoma, follicular thyroid carcinoma on multinodular goiter, and high-grade serous ovarian carcinoma. No direct mutation study was performed on her as she had died due to ovarian carcinoma. This finding suggests that the PIK3CA gene should be considered in Cowden-like families when no other gene mutations have been found. Furthermore, this report contributes to characterization of the clinical phenotype caused by mutations in PIK3CA, which may be shared with other hereditary breast and ovarian cancer syndromes.
Collapse
Affiliation(s)
- Elena Vida-Navas
- Medical Oncology Department, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (E.V.-N.); (V.L.-G.); (M.T.S.)
| | - Verónica Barca-Tierno
- Genetics Department, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (V.B.-T.); (M.A.M.-P.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28034 Madrid, Spain
| | - Victoria López-Gómez
- Medical Oncology Department, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (E.V.-N.); (V.L.-G.); (M.T.S.)
| | - María Teresa Salazar
- Medical Oncology Department, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (E.V.-N.); (V.L.-G.); (M.T.S.)
| | - Miguel A. Moreno-Pelayo
- Genetics Department, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (V.B.-T.); (M.A.M.-P.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28034 Madrid, Spain
| | - Carmen Guillén-Ponce
- Medical Oncology Department, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (E.V.-N.); (V.L.-G.); (M.T.S.)
| |
Collapse
|
35
|
Grazini U, Markovets A, Ireland L, O'Neill D, Phillips B, Xu M, Pfeifer M, Vaclova T, Martin MJ, Bigot L, Friboulet L, Hartmaier R, Cuomo ME, Barry ST, Smith PD, Floc'h N. Overcoming Osimertinib Resistance with AKT Inhibition in EGFRm-Driven Non-Small Cell Lung Cancer with PIK3CA/PTEN Alterations. Clin Cancer Res 2024; 30:4143-4154. [PMID: 38630555 DOI: 10.1158/1078-0432.ccr-23-2540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/31/2023] [Accepted: 04/05/2024] [Indexed: 04/19/2024]
Abstract
PURPOSE Osimertinib is an EGFR tyrosine kinase inhibitor indicated for the treatment of EGFR-mutated (EGFRm)-driven lung adenocarcinomas. Osimertinib significantly improves progression-free survival in first-line-treated patients with EGFRm advanced non-small cell lung cancer (NSCLC). Despite the durable disease control, the majority of patients receiving osimertinib eventually develop disease progression. EXPERIMENTAL DESIGN ctDNA profiling analysis of on-progression plasma samples from patients treated with osimertinib in both first- (phase III, FLAURA trial) and second-line trials (phase III, AURA3 trial) revealed a high prevalence of PIK3CA/AKT/PTEN alterations. In vitro and in vivo evidence using CRISPR-engineered NSCLC cell lines and patient-derived xenograft (PDX) models supports a functional role for PIK3CA and PTEN mutations in the development of osimertinib resistance. RESULTS These alterations are functionally relevant as EGFRm NSCLC cells with engineered PIK3CA/AKT/PTEN alterations develop resistance to osimertinib and can be resensitized by treatment with the combination of osimertinib and the AKT inhibitor capivasertib. Moreover, xenograft and PDX in vivo models with PIK3CA/AKT/PTEN alterations display limited sensitivity to osimertinib relative to models without alterations, and in these double-mutant models, capivasertib and osimertinib combination elicits an improved antitumor effect versus osimertinib alone. CONCLUSIONS Together, this approach offers a potential treatment strategy for patients with EGFRm-driven NSCLC who have a suboptimal response or develop resistance to osimertinib through PIK3CA/AKT/PTEN alterations. See related commentary by Vokes et al., p. 3968.
Collapse
Affiliation(s)
- Ursula Grazini
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | | | - Lucy Ireland
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Daniel O'Neill
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Benjamin Phillips
- Data Sciences and Quantitative Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Man Xu
- Bioscience, Oncology R&D, AstraZeneca, Boston, Massachusetts
| | - Matthias Pfeifer
- Leibniz-Institute of Virology, Universität Sklinikum Hamburg-Eppendorf (UKE) Hamburg, Germany
| | - Tereza Vaclova
- Translational Medicine, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Matthew J Martin
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Ludovic Bigot
- Université Paris-Saclay, Gustave Roussy, Inserm U981, Villejuif, France
| | - Luc Friboulet
- Université Paris-Saclay, Gustave Roussy, Inserm U981, Villejuif, France
| | - Ryan Hartmaier
- Translational Medicine, Oncology R&D, AstraZeneca, Boston, Massachusetts
| | - Maria E Cuomo
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Simon T Barry
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Paul D Smith
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Nicolas Floc'h
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| |
Collapse
|
36
|
Sam Lee J, Kim M, Jin H, Kwak M, Cho E, Kim KS, Kim DE. DNA aptamer-conjugated lipid nanoparticle for targeted PTEN mRNA delivery to prostate cancer cells. Int J Pharm 2024; 662:124519. [PMID: 39067551 DOI: 10.1016/j.ijpharm.2024.124519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
The use of messenger RNA (mRNA) as a cancer vaccine and gene therapy requires targeted vehicle delivery to the site of disease. Here, we designed a mRNA-encapsulating lipid nanoparticle (LNP) conjugated with anti-programmed death-ligand 1 (PD-L1) DNA aptamer that delivers mRNA encoding a tumor suppressor gene, namely phosphatase and tensin homolog (PTEN), to castration-resistant prostate cancer (CRPC) cells expressing PD-L1 on the cell surface. The DNA aptamer-conjugated LNP-based mRNA delivery system (Apt-LNP[PTEN mRNA]) mediated efficient mRNA delivery and transfection in CRPC cells than LNPs without targeting ligands. Cancer-targeted PTEN mRNA delivery using Apt-LNPs achieved significantly higher PTEN expression via aptamer-mediated endocytosis in target cancer cells compared with non-targeted LNP delivery, resulting in significant downregulation of AKT phosphorylation. This enhanced PI3K/AKT pathway regulation, and in turn reduced cell migration after two days along with a 70 % decrease in cell viability, leading to effective apoptotic cell death. In a CRPC xenograft model, Apt-LNP[PTEN mRNA] led to an approximate 60 % reduction in tumor growth, which was attributable to the effective PTEN restoration and PI3K/AKT signaling pathway regulation. PTEN expression was significantly enhanced in CRPC tumor tissues, which abolished cancer cell tumorigenicity. These findings demonstrated the potential of Apt-LNPs for targeted mRNA delivery to cancer cells, thus providing a promising tool for targeted mRNA delivery to a range of cancers and tissues using a conventional LNP systems.
Collapse
Affiliation(s)
- Jong Sam Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Minhee Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyesoo Jin
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Minseo Kwak
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Eunbin Cho
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Keun-Sik Kim
- Department of Biomedical Laboratory Science, Konyang University, Daejeon 35365, Republic of Korea
| | - Dong-Eun Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
37
|
Tian X, Zhang C, Wang D, Li X, Wang Q. Ginseng polysaccharide promotes the apoptosis of colon cancer cells via activating the NLRP3 inflammasome. Immunopharmacol Immunotoxicol 2024:1-12. [PMID: 39219032 DOI: 10.1080/08923973.2024.2398472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Ginseng polysaccharide (GPS) is an ingredient of ginseng with documented anti-tumor properties. However, its effect on colon cancer and the underlying molecular mechanisms have not been investigated clearly. METHODS Cell viability of HT29 and CT26 cells treated with different concentrations of GPS was assessed using the Cell Counting Kit-8 (CCK-8) assay. Western blot assay was used to detect the expression of apoptotic proteins, while the mRNA levels were assessed by real-time quantitative polymerase chain reaction (RT-qPCR). Transwell migration assays were used to examine the migration and invasion of cells. RESULTS The results revealed that GPS effectively suppressed the proliferation of HT29 and CT26 cells. We demonstrated an upregulation of apoptotic proteins in GPS-treated cells, including Bax, cleaved Caspase-3, and p-p53. GPS treatment also increased the mRNA levels of cytochrome C and Bax. Furthermore, the results showed that GPS treatment concurrently promoted the activation of nucleotide-binding domain leucine-rich family pyrin-containing 3 (NLRP3) inflammasome. Transwell migration assays showed that GPS inhibited the migratory and invasive abilities of colon cancer cells. As expected, inhibition of NLRP3 expression using INF39 attenuated the inhibitory effect of GPS on migration and invasion. Upon NLRP3 inhibition, GPS-induced apoptosis was dramatically alleviated, accompanied by a reduction in the expression of apoptotic proteins. CONCLUSION In conclusion, this research provides compelling evidence that the GPS-induced NLRP3 signaling pathway plays a pivotal role in apoptosis of colon cells, suggesting potential clinical implications for the therapeutic intervention of colon cancer. Thus, GPS might be a promising anti-tumor drug for the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Xiaoyan Tian
- Department of General Surgery, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Chuanqiang Zhang
- Department of General Surgery, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Daojuan Wang
- Department of Pain, The Affiliated Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Xiaowei Li
- Department of General Surgery, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Qiang Wang
- Department of General Surgery, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| |
Collapse
|
38
|
Casacuberta-Serra S, González-Larreategui Í, Capitán-Leo D, Soucek L. MYC and KRAS cooperation: from historical challenges to therapeutic opportunities in cancer. Signal Transduct Target Ther 2024; 9:205. [PMID: 39164274 PMCID: PMC11336233 DOI: 10.1038/s41392-024-01907-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/05/2024] [Accepted: 06/24/2024] [Indexed: 08/22/2024] Open
Abstract
RAS and MYC rank amongst the most commonly altered oncogenes in cancer, with RAS being the most frequently mutated and MYC the most amplified. The cooperative interplay between RAS and MYC constitutes a complex and multifaceted phenomenon, profoundly influencing tumor development. Together and individually, these two oncogenes regulate most, if not all, hallmarks of cancer, including cell death escape, replicative immortality, tumor-associated angiogenesis, cell invasion and metastasis, metabolic adaptation, and immune evasion. Due to their frequent alteration and role in tumorigenesis, MYC and RAS emerge as highly appealing targets in cancer therapy. However, due to their complex nature, both oncogenes have been long considered "undruggable" and, until recently, no drugs directly targeting them had reached the clinic. This review aims to shed light on their complex partnership, with special attention to their active collaboration in fostering an immunosuppressive milieu and driving immunotherapeutic resistance in cancer. Within this review, we also present an update on the different inhibitors targeting RAS and MYC currently undergoing clinical trials, along with their clinical outcomes and the different combination strategies being explored to overcome drug resistance. This recent clinical development suggests a paradigm shift in the long-standing belief of RAS and MYC "undruggability", hinting at a new era in their therapeutic targeting.
Collapse
Affiliation(s)
| | - Íñigo González-Larreategui
- Models of cancer therapies Laboratory, Vall d'Hebron Institute of Oncology, Cellex Centre, Hospital University Vall d'Hebron Campus, Barcelona, Spain
| | - Daniel Capitán-Leo
- Models of cancer therapies Laboratory, Vall d'Hebron Institute of Oncology, Cellex Centre, Hospital University Vall d'Hebron Campus, Barcelona, Spain
| | - Laura Soucek
- Peptomyc S.L., Barcelona, Spain.
- Models of cancer therapies Laboratory, Vall d'Hebron Institute of Oncology, Cellex Centre, Hospital University Vall d'Hebron Campus, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain.
- Department of Biochemistry and Molecular Biology, Universitat Autonoma de Barcelona, Bellaterra, Spain.
| |
Collapse
|
39
|
Bergez-Hernández F, Irigoyen-Arredondo M, Martínez-Camberos A. A systematic review of mechanisms of PTEN gene down-regulation mediated by miRNA in prostate cancer. Heliyon 2024; 10:e34950. [PMID: 39144981 PMCID: PMC11320309 DOI: 10.1016/j.heliyon.2024.e34950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 08/16/2024] Open
Abstract
Background The Phosphatase and Tensin Homolog gene (PTEN) is pivotal in regulating diverse cellular processes, including growth, differentiation, proliferation, and cell survival, mainly by modulating the PI3K/AKT/mTOR pathway. Alterations in the expression of the PTEN gene have been associated with epigenetic mechanisms, particularly the regulation by small non-coding RNAs, such as miRNAs. Modifications in the expression levels of miRNAs that control PTEN have been shown to lead to its underexpression. This underexpression, in turn, impacts the PI3K/AKT/mTOR pathway, thereby influencing crucial mechanisms like proliferation and apoptosis, playing an important role in the initiation and progression of prostate cancer (PCa). Thus, we aimed to systematically reviewed available information concerning the regulation of PTEN mediated by miRNA in PCa. Methods Electronic databases were searched to identify studies assessing PTEN regulation via PCa miRNAs, the search included combination of the words microRNAs, PTEN and prostatic neoplasms. The quality assessment of the articles included was carried out using an adapted version of SYRCLE and CASP tool. Results We included 39 articles that measured the relative gene expression of miRNAs in PCa and their relationship with PTEN regulation. A total of 42 miRNAs were reported involved in the development and progression of PCa via PTEN dysregulation (34 miRNAs up-regulated and eight miRNAs down-regulated). Sixteen miRNAs were shown as the principal regulators for genetic interactions leading to carcinogenesis, being the miR-21 the most reported in PCa associated with PTEN down-regulation. We showed the silencing of PTEN could be promoted by a loop between miR-200b and DNMT1 or by direct targeting of PTEN by microRNAs, leading to the constitutive activation of PI3K/AKT/mTOR and interactions with intermediary genes support apoptosis inhibition, proliferation, invasion, and metastasis in PCa. Conclusion According to our review, dysregulation of PTEN mediated mainly by miR-21, -20a, -20b, -93, -106a, and -106b up-regulation has a central role in PCa development and could be potential biomarkers for diagnosis, prognostic, and therapeutic targets.
Collapse
Affiliation(s)
| | | | - Alejandra Martínez-Camberos
- Laboratorio de Biomedicina y Biología Molecular. Lic. en Ciencias Biomédicas, Universidad Autónoma de Occidente. Av del Mar 1200, Tellerías, 82100, Mazatlán, Sinaloa, Mexico
| |
Collapse
|
40
|
Ortega-Molina A, Lebrero-Fernández C, Sanz A, Calvo-Rubio M, Deleyto-Seldas N, de Prado-Rivas L, Plata-Gómez AB, Fernández-Florido E, González-García P, Vivas-García Y, Sánchez García E, Graña-Castro O, Price NL, Aroca-Crevillén A, Caleiras E, Monleón D, Borrás C, Casanova-Acebes M, de Cabo R, Efeyan A. A mild increase in nutrient signaling to mTORC1 in mice leads to parenchymal damage, myeloid inflammation and shortened lifespan. NATURE AGING 2024; 4:1102-1120. [PMID: 38849535 PMCID: PMC11333293 DOI: 10.1038/s43587-024-00635-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/25/2024] [Indexed: 06/09/2024]
Abstract
The mechanistic target of rapamycin complex 1 controls cellular anabolism in response to growth factor signaling and to nutrient sufficiency signaled through the Rag GTPases. Inhibition of mTOR reproducibly extends longevity across eukaryotes. Here we report that mice that endogenously express active mutant variants of RagC exhibit multiple features of parenchymal damage that include senescence, expression of inflammatory molecules, increased myeloid inflammation with extensive features of inflammaging and a ~30% reduction in lifespan. Through bone marrow transplantation experiments, we show that myeloid cells are abnormally activated by signals emanating from dysfunctional RagC-mutant parenchyma, causing neutrophil extravasation that inflicts additional inflammatory damage. Therapeutic suppression of myeloid inflammation in aged RagC-mutant mice attenuates parenchymal damage and extends survival. Together, our findings link mildly increased nutrient signaling to limited lifespan in mammals, and support a two-component process of parenchymal damage and myeloid inflammation that together precipitate a time-dependent organ deterioration that limits longevity.
Collapse
Affiliation(s)
- Ana Ortega-Molina
- Metabolism and Cell Signaling Laboratory, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
- Metabolism in cancer and aging Laboratory, Immune System Development And Function Department, Centro de Biología Molecular Severo Ochoa (CBM), Madrid, Spain.
| | - Cristina Lebrero-Fernández
- Metabolism and Cell Signaling Laboratory, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Metabolism in cancer and aging Laboratory, Immune System Development And Function Department, Centro de Biología Molecular Severo Ochoa (CBM), Madrid, Spain
| | - Alba Sanz
- Metabolism and Cell Signaling Laboratory, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Miguel Calvo-Rubio
- Translational Gerontology Branch, National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Nerea Deleyto-Seldas
- Metabolism and Cell Signaling Laboratory, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Lucía de Prado-Rivas
- Metabolism and Cell Signaling Laboratory, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Ana Belén Plata-Gómez
- Metabolism and Cell Signaling Laboratory, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Elena Fernández-Florido
- Metabolism and Cell Signaling Laboratory, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | - Yurena Vivas-García
- Metabolism and Cell Signaling Laboratory, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Elena Sánchez García
- Metabolism and Cell Signaling Laboratory, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Osvaldo Graña-Castro
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Institute of Applied Molecular Medicine (IMMA-Nemesio Díez), Department of Basic Medical Sciences, School of Medicine, San Pablo-CEU University, CEU Universities, Boadilla del Monte, Madrid, Spain
| | - Nathan L Price
- Translational Gerontology Branch, National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Alejandra Aroca-Crevillén
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Eduardo Caleiras
- Histopathology Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Daniel Monleón
- Department of Pathology, University of Valencia, Valencia, Spain; Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), Institute of Health Research-INCLIVA, Valencia, Spain
| | - Consuelo Borrás
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), MiniAging Research Group, Institute of Health Research-INCLIVA, Valencia, Spain
| | - María Casanova-Acebes
- Cancer Immunity Laboratory, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Alejo Efeyan
- Metabolism and Cell Signaling Laboratory, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
| |
Collapse
|
41
|
Bastos IM, Rebelo S, Silva VLM. A comprehensive review on phosphatidylinositol-3-kinase (PI3K) and its inhibitors bearing pyrazole or indazole core for cancer therapy. Chem Biol Interact 2024; 398:111073. [PMID: 38823538 DOI: 10.1016/j.cbi.2024.111073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
Cancer is a complex and multifaceted group of diseases with a high mortality rate characterized by uncontrolled proliferation of abnormal cells. Dysregulation of normal signalling pathways in cancer contributes to the different hallmarks of this disease. The signalling pathway of which phosphatidylinositol 3-kinase (PI3K) is a part is not an exception. In fact, dysregulated activation of PI3K signalling pathways can result in unbridled cellular proliferation and enhanced cell survival, thereby fostering the onset and advancement of cancer. Therefore, there is substantial interest in developing targeted therapies specifically aimed at inhibiting the PI3K enzyme and its associated pathways. Also, the therapeutic interest on pyrazoles and indazoles has been growing due to their various medicinal properties, namely, anticancer activity. Derivatives of these compounds have been studied as PI3K inhibitors, and they showed promising results. There are already some PI3K inhibitors approved by Food and Drug Administration (FDA), such as Idelalisib (Zydelig®) and Alpelisib (Piqray®). In this context, this review aims to address the importance of PI3K in cellular processes and its role in cancer. Additionally, it aims to report a comprehensive literature review of PI3K inhibitors, containing the pyrazole and indazole scaffolds, published in the last fifteen years, focusing on structure-activity relationship aspects, thus providing important insights for the design of novel and more effective PI3K inhibitors.
Collapse
Affiliation(s)
- Inês M Bastos
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Sandra Rebelo
- Institute of Biomedicine-iBiMED, Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Vera L M Silva
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
42
|
Pesini C, Artal L, Paúl Bernal J, Sánchez Martinez D, Pardo J, Ramírez-Labrada A. In-depth analysis of the interplay between oncogenic mutations and NK cell-mediated cancer surveillance in solid tumors. Oncoimmunology 2024; 13:2379062. [PMID: 39036370 PMCID: PMC11259085 DOI: 10.1080/2162402x.2024.2379062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/08/2024] [Indexed: 07/23/2024] Open
Abstract
Natural killer (NK) cells play a crucial role in antitumoral and antiviral responses. Yet, cancer cells can alter themselves or the microenvironment through the secretion of cytokines or other factors, hindering NK cell activation and promoting a less cytotoxic phenotype. These resistance mechanisms, often referred to as the "hallmarks of cancer" are significantly influenced by the activation of oncogenes, impacting most, if not all, of the described hallmarks. Along with oncogenes, other types of genes, the tumor suppressor genes are frequently mutated or modified during cancer. Traditionally, these genes have been associated with uncontrollable tumor growth and apoptosis resistance. Recent evidence suggests oncogenic mutations extend beyond modulating cell death/proliferation programs, influencing cancer immunosurveillance. While T cells have been more studied, the results obtained highlight NK cells as emerging key protagonists for enhancing tumor cell elimination by modulating oncogenic activity. A few recent studies highlight the crucial role of oncogenic mutations in NK cell-mediated cancer recognition, impacting angiogenesis, stress ligands, and signaling balance within the tumor microenvironment. This review will critically examine recent discoveries correlating oncogenic mutations to NK cell-mediated cancer immunosurveillance, a relatively underexplored area, particularly in the era dominated by immune checkpoint inhibitors and CAR-T cells. Building on these insights, we will explore opportunities to improve NK cell-based immunotherapies, which are increasingly recognized as promising alternatives for treating low-antigenic tumors, offering significant advantages in terms of safety and manufacturing suitability.
Collapse
Affiliation(s)
- Cecilia Pesini
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Center for Biomedical Research in the Network of Infectious Diseases (CIBERINFEC), Carlos III Health Institute, Zaragoza, Spain
- Department of Microbiology, Radiology, Pediatry and Public Health, University of Zaragoza, Zaragoza, Spain
| | - Laura Artal
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Institute of Carbochemistry (ICB-CSIC), Zaragoza, Spain
| | - Jorge Paúl Bernal
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
| | - Diego Sánchez Martinez
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Aragón I + D Foundation (ARAID), Government of Aragon, Zaragoza, Spain
| | - Julián Pardo
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Center for Biomedical Research in the Network of Infectious Diseases (CIBERINFEC), Carlos III Health Institute, Zaragoza, Spain
- Department of Microbiology, Radiology, Pediatry and Public Health, University of Zaragoza, Zaragoza, Spain
| | - Ariel Ramírez-Labrada
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Center for Biomedical Research in the Network of Infectious Diseases (CIBERINFEC), Carlos III Health Institute, Zaragoza, Spain
| |
Collapse
|
43
|
Márton A, Veres KB, Erdődi F, Udvardy M, Illés Á, Rejtő L. The roles of phosphorylation of signaling proteins in the prognosis of acute myeloid leukemia. Pathol Oncol Res 2024; 30:1611747. [PMID: 39035053 PMCID: PMC11257863 DOI: 10.3389/pore.2024.1611747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/12/2024] [Indexed: 07/23/2024]
Abstract
Signaling pathways of Retinoblastoma (Rb) protein, Akt-kinase, and Erk-kinase (extracellular signal-regulated kinase) have an important role in the pathogenesis of acute myeloid leukemia. Constitutive activation of these proteins by phosphorylation contributes to cell survival by regulation of cell cycle, proliferation and proapoptotic signaling processes. According to previous data phosphorylated forms of these proteins represent a worse outcome for cancer patients. We investigated the presence of phosphorylated Rb (P-Rb), Akt (P-Akt) and Erk (P-Erk) proteins by Western blot technique using phospho-specific antibodies in bone marrow or peripheral blood samples of 69 AML patients, 36 patients with myelodysplastic syndrome (MDS) and 10 healthy volunteers. Expression level of PTEN (Phosphatase and tensin homolog) and PHLPP (PH domain and leucine-rich repeat Protein Phosphatase) phosphatases, the negative regulators of Akt kinase pathway were also examined. We tested the effect of these proteins on survival and on the correlation with known prognostic features in AML. We found 46.3% of AML patients had detectable P-Rb, 34.7% had P-Akt and 28.9% had P-Erk protein. 66.1% of patients expressing PTEN, 38.9% PHLPP, 37.2% both PTEN and PHLPP and 32.2% neither PTEN nor PHLPP phosphatases. Compared to nucleophosmin mutation (NPMc) negative samples P-Erk was significantly less in nucleophosmin mutated patients, P-Rb was significantly less in patients' group with more than 30 G/L peripheral leukocyte count by diagnosis. PHLPP was significantly present in FAB type M5. The expression of P-Rb represented significant better overall survival (OS), while P-Akt represented significantly worse event-free survival (EFS) in unfavorable cytogenetics patients. The presence of both PHLPP and PTEN phosphatases contributes to better OS and EFS, although the differences were not statistically significant. We confirmed significant positive correlation between P-Akt and PHLPP. Assessing the phosphorylation of Rb, Akt and Erk may define a subgroup of AML patients who would benefit especially from new targeted treatment options complemented the standard chemotherapy, and it may contribute to monitoring remission, relapse or progression of AML.
Collapse
Affiliation(s)
- Adrienn Márton
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Kálmán Laki Doctoral School, University of Debrecen, Debrecen, Hungary
| | | | - Ferenc Erdődi
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Miklós Udvardy
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Árpád Illés
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - László Rejtő
- Department of Hematology, Szabolcs-Szatmár-Bereg County Teaching Hospital, Nyíregyháza, Hungary
| |
Collapse
|
44
|
Zhang HP, Jiang RY, Zhu JY, Sun KN, Huang Y, Zhou HH, Zheng YB, Wang XJ. PI3K/AKT/mTOR signaling pathway: an important driver and therapeutic target in triple-negative breast cancer. Breast Cancer 2024; 31:539-551. [PMID: 38630392 PMCID: PMC11194209 DOI: 10.1007/s12282-024-01567-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/10/2024] [Indexed: 06/24/2024]
Abstract
Triple-negative breast cancer (TNBC) is a highly heterogeneous tumor lacking estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) expression. It has higher aggressiveness and metastasis than other subtypes, with limited effective therapeutic strategies, leading to a poor prognosis. The phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mechanistic target of rapamycin (mTOR) signaling pathway is prevalently over-activated in human cancers and contributes to breast cancer (BC) growth, survival, proliferation, and angiogenesis, which could be an interesting therapeutic target. This review summarizes the PI3K/AKT/mTOR signaling pathway activation mechanism in TNBC and discusses the relationship between its activation and various TNBC subtypes. We also report the latest clinical studies on kinase inhibitors related to this pathway for treating TNBC. Our review discusses the issues that need to be addressed in the clinical application of these inhibitors.
Collapse
Affiliation(s)
- Huan-Ping Zhang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310000, Zhejiang, China
- Wenzhou Medical University, No. 270, Xueyuan West Road, Lucheng District, Wenzhou, 325027, Zhejiang, China
| | - Rui-Yuan Jiang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310000, Zhejiang, China
- Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang District, Hangzhou, 310000, Zhejiang, China
| | - Jia-Yu Zhu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310000, Zhejiang, China
- Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang District, Hangzhou, 310000, Zhejiang, China
| | - Ke-Na Sun
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310000, Zhejiang, China
- Wenzhou Medical University, No. 270, Xueyuan West Road, Lucheng District, Wenzhou, 325027, Zhejiang, China
| | - Yuan Huang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310000, Zhejiang, China
| | - Huan-Huan Zhou
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310000, Zhejiang, China
| | - Ya-Bing Zheng
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310000, Zhejiang, China.
| | - Xiao-Jia Wang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310000, Zhejiang, China.
| |
Collapse
|
45
|
Lee J, Mani A, Shin MJ, Krauss RM. Leveraging altered lipid metabolism in treating B cell malignancies. Prog Lipid Res 2024; 95:101288. [PMID: 38964473 PMCID: PMC11347096 DOI: 10.1016/j.plipres.2024.101288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/12/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
B cell malignancies, comprising over 80 heterogeneous blood cancers, pose significant prognostic challenges due to intricate oncogenic signaling. Emerging evidence emphasizes the pivotal role of disrupted lipid metabolism in the development of these malignancies. Variations in lipid species, such as phospholipids, cholesterol, sphingolipids, and fatty acids, are widespread across B cell malignancies, contributing to uncontrolled cell proliferation and survival. Phospholipids play a crucial role in initial signaling cascades leading to B cell activation and malignant transformation through constitutive B cell receptor (BCR) signaling. Dysregulated cholesterol and sphingolipid homeostasis support lipid raft integrity, crucial for propagating oncogenic signals. Sphingolipids impact malignant B cell stemness, proliferation, and survival, while glycosphingolipids in lipid rafts modulate BCR activation. Additionally, cancer cells enhance fatty acid-related processes to meet heightened metabolic demands. In obese individuals, the obesity-derived lipids and adipokines surrounding adipocytes rewire lipid metabolism in malignant B cells, evading cytotoxic therapies. Genetic drivers such as MYC translocations also intrinsically alter lipid metabolism in malignant B cells. In summary, intrinsic and extrinsic factors converge to reprogram lipid metabolism, fostering aggressive phenotypes in B cell malignancies. Therefore, targeting altered lipid metabolism has translational potential for improving risk stratification and clinical management of diverse B cell malignancy subtypes.
Collapse
Affiliation(s)
- Jaewoong Lee
- School of Biosystems and Biomedical Sciences, College of Health Science, Korea University, Seoul 02841, Republic of Korea; Department of Integrated Biomedical and Life Science, Korea University, Seoul 02841, Republic of Korea; Interdisciplinary Program in Precision Public Health, Korea University, Seoul 02841, Republic of Korea; Center of Molecular and Cellular Oncology, Yale University, New Haven, CT 06511, USA.
| | - Arya Mani
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale University, New Haven, CT 06511, USA; Department of Genetics, Yale University, New Haven, CT 06511, USA
| | - Min-Jeong Shin
- School of Biosystems and Biomedical Sciences, College of Health Science, Korea University, Seoul 02841, Republic of Korea; Department of Integrated Biomedical and Life Science, Korea University, Seoul 02841, Republic of Korea; Interdisciplinary Program in Precision Public Health, Korea University, Seoul 02841, Republic of Korea
| | - Ronald M Krauss
- Department of Pediatrics and Medicine, University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
46
|
He W, Li ZQ, Gu HY, Pan QL, Lin FX. Targeted Therapy of Spinal Cord Injury: Inhibition of Apoptosis Is a Promising Therapeutic Strategy. Mol Neurobiol 2024; 61:4222-4239. [PMID: 38066400 DOI: 10.1007/s12035-023-03814-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/16/2023] [Indexed: 07/11/2024]
Abstract
Spinal cord injury (SCI) is a serious disabling central nervous system injury that can lead to motor, sensory, and autonomic dysfunction below the injury level. SCI can be divided into primary injury and secondary injury according to pathological process. Primary injury is mostly irreversible, while secondary injury is a dynamic regulatory process. Apoptosis is an important pathological event of secondary injury and has a significant effect on the recovery of nerve function after SCI. Nerve cell death can further aggravate the microenvironment of the injured site, leading to neurological dysfunction and thus affect the clinical outcome of patients. Therefore, apoptosis plays a crucial role in the pathological progression of secondary SCI, while inhibiting apoptosis may be a promising therapeutic strategy for SCI. This review will summarize and explore the factors that lead to cell death after SCI, the influence of cross talk between signaling pathways and pathways involved in apoptosis and discuss the influence of apoptosis on SCI, and the therapeutic significance of targeting apoptosis on SCI. This review helps us to understand the role of apoptosis in secondary SCI and provides a theoretical basis for the treatment of SCI based on apoptosis.
Collapse
Affiliation(s)
- Wei He
- Department of Spine Surgery, Ganzhou People's Hospital, Jiangxi Province, 16 Meiguan Avenue, Ganzhou, 341000, People's Republic of China
- Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), Jiangxi Province, 16 Meiguan Avenue, Ganzhou, 341000, People's Republic of China
| | - Zhi-Qiang Li
- Department of Spine Surgery, Ganzhou People's Hospital, Jiangxi Province, 16 Meiguan Avenue, Ganzhou, 341000, People's Republic of China
- Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), Jiangxi Province, 16 Meiguan Avenue, Ganzhou, 341000, People's Republic of China
| | - Hou-Yun Gu
- Department of Spine Surgery, Ganzhou People's Hospital, Jiangxi Province, 16 Meiguan Avenue, Ganzhou, 341000, People's Republic of China
- Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), Jiangxi Province, 16 Meiguan Avenue, Ganzhou, 341000, People's Republic of China
| | - Qi-Lin Pan
- Department of Spine Surgery, Ganzhou People's Hospital, Jiangxi Province, 16 Meiguan Avenue, Ganzhou, 341000, People's Republic of China
- Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), Jiangxi Province, 16 Meiguan Avenue, Ganzhou, 341000, People's Republic of China
| | - Fei-Xiang Lin
- Department of Spine Surgery, Ganzhou People's Hospital, Jiangxi Province, 16 Meiguan Avenue, Ganzhou, 341000, People's Republic of China.
- Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), Jiangxi Province, 16 Meiguan Avenue, Ganzhou, 341000, People's Republic of China.
| |
Collapse
|
47
|
Rosen N, Mukherjee R, Pancholi P, Sharma M, Solomon H, Timaul M, Thant C, McGriskin R, Hayatt O, Markov V, D'Allara J, Bekker S, Candelier J, Carrasco S, de Stanchina E, Vanaja K. Diet induced insulin resistance is due to induction of PTEN expression. RESEARCH SQUARE 2024:rs.3.rs-4021885. [PMID: 38978604 PMCID: PMC11230483 DOI: 10.21203/rs.3.rs-4021885/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Type 2 Diabetes (T2D) is a condition that is often associated with obesity and defined by reduced sensitivity of PI3K signaling to insulin (insulin resistance), hyperinsulinemia and hyperglycemia. Molecular causes and early signaling events underlying insulin resistance are not well understood. Insulin activation of PI3K signaling causes mTOR dependent induction of PTEN translation, a negative regulator of PI3K signaling. We speculated that insulin resistance is due to insulin dependent induction of PTEN protein that prevent further increases in PI3K signaling. Here we show that in a diet induced model of obesity and insulin resistance, PTEN levels are increased in fat, muscle and liver tissues. Onset of hyperinsulinemia and PTEN induction in tissue is followed by hyperglycemia, hepatic steatosis and severe glucose intolerance. Treatment with a PTEN phosphatase inhibitor prevents and reverses these phenotypes, whereas an mTORC1 kinase inhibitor reverses all but the hepatic steatosis. These data suggest that induction of PTEN by increasing levels of insulin elevates feedback inhibition of the pathway to a point where downstream PI3K signaling is reduced and hyperglycemia ensues. PTEN induction is thus necessary for insulin resistance and the type 2 diabetes phenotype and a potential therapeutic target.
Collapse
|
48
|
Kim Y, Choi J, Kim EH, Park W, Jang H, Jang Y, Chi S, Kweon D, Lee K, Kim SH, Yang Y. Design of PD-L1-Targeted Lipid Nanoparticles to Turn on PTEN for Efficient Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309917. [PMID: 38520717 PMCID: PMC11165541 DOI: 10.1002/advs.202309917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/15/2024] [Indexed: 03/25/2024]
Abstract
Lipid nanoparticles (LNPs) exhibit remarkable mRNA delivery efficiency, yet their majority accumulate in the liver or spleen after injection. Tissue-specific mRNA delivery can be achieved through modulating LNP properties, such as tuning PEGylation or varying lipid components systematically. In this paper, a streamlined method is used for incorporating tumor-targeting peptides into the LNPs; the programmed death ligand 1 (PD-L1) binding peptides are conjugated to PEGylated lipids via a copper-free click reaction, and directly incorporated into the LNP composition (Pep LNPs). Notably, Pep LNPs display robust interaction with PD-L1 proteins, which leads to the uptake of LNPs into PD-L1 overexpressing cancer cells both in vitro and in vivo. To evaluate anticancer immunotherapy mediated by restoring tumor suppressor, mRNA encoding phosphatase and tensin homolog (PTEN) is delivered via Pep LNPs to PTEN-deficient triple-negative breast cancers (TNBCs). Pep LNPs loaded with PTEN mRNA specifically promotes autophagy-mediated immunogenic cell death in 4T1 tumors, resulting in effective anticancer immune responses. This study highlights the potential of tumor-targeted LNPs for mRNA-based cancer therapy.
Collapse
Affiliation(s)
- Yelee Kim
- Biomedical Research DivisionKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- Department of Life SciencesKorea UniversitySeoul02841Republic of Korea
| | - Jiwoong Choi
- Biomedical Research DivisionKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| | - Eun Hye Kim
- Biomedical Research DivisionKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- Department of Life SciencesKorea UniversitySeoul02841Republic of Korea
| | - Wonbeom Park
- Department of Integrative BiotechnologySungkyunkwan UniversitySuwon16419Republic of Korea
| | - Hochung Jang
- Biomedical Research DivisionKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- Division of Bio‐Medical Science and TechnologyKIST SchoolKorea University of Science and TechnologySeoul02792Republic of Korea
| | - Yeongji Jang
- Biomedical Research DivisionKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- Department of Life SciencesKorea UniversitySeoul02841Republic of Korea
| | - Sung‐Gil Chi
- Department of Life SciencesKorea UniversitySeoul02841Republic of Korea
| | - Dae‐Hyuk Kweon
- Department of Integrative BiotechnologySungkyunkwan UniversitySuwon16419Republic of Korea
| | - Kyuri Lee
- College of Pharmacy and Research Institute of Pharmaceutical SciencesGyeongsang National UniversityJinju52828Republic of Korea
| | - Sun Hwa Kim
- Biomedical Research DivisionKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Republic of Korea
| | - Yoosoo Yang
- Biomedical Research DivisionKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- Division of Bio‐Medical Science and TechnologyKIST SchoolKorea University of Science and TechnologySeoul02792Republic of Korea
| |
Collapse
|
49
|
Takanashi Y, Kahyo T, Sekihara K, Kawase A, Setou M, Funai K. Prognostic potential of lipid profiling in cancer patients: a systematic review of mass spectrometry-based studies. Lipids Health Dis 2024; 23:154. [PMID: 38796445 PMCID: PMC11128116 DOI: 10.1186/s12944-024-02121-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 04/24/2024] [Indexed: 05/28/2024] Open
Abstract
Cancer prognosis remains a critical clinical challenge. Lipidomic analysis via mass spectrometry (MS) offers the potential for objective prognostic prediction, leveraging the distinct lipid profiles of cancer patient-derived specimens. This review aims to systematically summarize the application of MS-based lipidomic analysis in prognostic prediction for cancer patients. Our systematic review summarized 38 studies from the past decade that attempted prognostic prediction of cancer patients through lipidomics. Commonly analyzed cancers included colorectal, prostate, and breast cancers. Liquid (serum and urine) and tissue samples were equally used, with liquid chromatography-tandem MS being the most common analytical platform. The most frequently evaluated prognostic outcomes were overall survival, stage, and recurrence. Thirty-eight lipid markers (including phosphatidylcholine, ceramide, triglyceride, lysophosphatidylcholine, sphingomyelin, phosphatidylethanolamine, diacylglycerol, phosphatidic acid, phosphatidylserine, lysophosphatidylethanolamine, lysophosphatidic acid, dihydroceramide, prostaglandin, sphingosine-1-phosphate, phosphatidylinosito, fatty acid, glucosylceramide and lactosylceramide) were identified as prognostic factors, demonstrating potential for clinical application. In conclusion, the potential for developing lipidomics in cancer prognostic prediction was demonstrated. However, the field is still nascent, necessitating future studies for validating and establishing lipid markers as reliable prognostic tools in clinical practice.
Collapse
Affiliation(s)
- Yusuke Takanashi
- First Department of Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo- ku, Hamamatsu, Shizuoka, 431-3192, Japan.
| | - Tomoaki Kahyo
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi Ward, Hamamatsu, Shizuoka, 431-3192, Japan
- International Mass Imaging Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Keigo Sekihara
- First Department of Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo- ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Akikazu Kawase
- First Department of Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo- ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Mitsutoshi Setou
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi Ward, Hamamatsu, Shizuoka, 431-3192, Japan
- International Mass Imaging Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan
- Department of Systems Molecular Anatomy, Institute for Medical Photonics Research, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Kazuhito Funai
- First Department of Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo- ku, Hamamatsu, Shizuoka, 431-3192, Japan
| |
Collapse
|
50
|
Baldarelli RM, Smith CL, Ringwald M, Richardson JE, Bult CJ. Mouse Genome Informatics: an integrated knowledgebase system for the laboratory mouse. Genetics 2024; 227:iyae031. [PMID: 38531069 PMCID: PMC11075557 DOI: 10.1093/genetics/iyae031] [Citation(s) in RCA: 54] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/13/2024] [Indexed: 03/28/2024] Open
Abstract
Mouse Genome Informatics (MGI) is a federation of expertly curated information resources designed to support experimental and computational investigations into genetic and genomic aspects of human biology and disease using the laboratory mouse as a model system. The Mouse Genome Database (MGD) and the Gene Expression Database (GXD) are core MGI databases that share data and system architecture. MGI serves as the central community resource of integrated information about mouse genome features, variation, expression, gene function, phenotype, and human disease models acquired from peer-reviewed publications, author submissions, and major bioinformatics resources. To facilitate integration and standardization of data, biocuration scientists annotate using terms from controlled metadata vocabularies and biological ontologies (e.g. Mammalian Phenotype Ontology, Mouse Developmental Anatomy, Disease Ontology, Gene Ontology, etc.), and by applying international community standards for gene, allele, and mouse strain nomenclature. MGI serves basic scientists, translational researchers, and data scientists by providing access to FAIR-compliant data in both human-readable and compute-ready formats. The MGI resource is accessible at https://informatics.jax.org. Here, we present an overview of the core data types represented in MGI and highlight recent enhancements to the resource with a focus on new data and functionality for MGD and GXD.
Collapse
Affiliation(s)
| | | | | | | | - Carol J Bult
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| |
Collapse
|