1
|
Zhao D, Wu X, Rapoport TA. Initiation of ERAD by the bifunctional complex of Mnl1 mannosidase and protein disulfide isomerase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.17.618908. [PMID: 39464000 PMCID: PMC11507893 DOI: 10.1101/2024.10.17.618908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Misfolded glycoproteins in the endoplasmic reticulum (ER) lumen are translocated into the cytosol and degraded by the proteasome, a conserved process called ER-associated protein degradation (ERAD). In S. cerevisiae , the glycan of these proteins is trimmed by the luminal mannosidase Mnl1 (Htm1) to generate a signal that triggers degradation. Curiously, Mnl1 is permanently associated with protein disulfide isomerase (Pdi1). Here, we have used cryo- electron microscopy, biochemical, and in vivo experiments to clarify how this complex initiates ERAD. The Mnl1-Pdi1 complex first de-mannosylates misfolded, globular proteins that are recognized through a C-terminal domain (CTD) of Mnl1; Pdi1 causes the CTD to ignore completely unfolded polypeptides. The disulfides of these globular proteins are then reduced by the Pdi1 component of the complex, generating unfolded polypeptides that can be translocated across the membrane. Mnl1 blocks the canonical oxidative function of Pdi1, but allows it to function as the elusive disulfide reductase in ERAD.
Collapse
|
2
|
Simpson MS, De Luca H, Cauthorn S, Luong P, Udeshi ND, Svinkina T, Schmieder SS, Carr SA, Grey MJ, Lencer WI. IRE1α recognizes a structural motif in cholera toxin to activate an unfolded protein response. J Cell Biol 2024; 223:e202402062. [PMID: 38578285 PMCID: PMC10996581 DOI: 10.1083/jcb.202402062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/06/2024] Open
Abstract
IRE1α is an endoplasmic reticulum (ER) sensor that recognizes misfolded proteins to induce the unfolded protein response (UPR). We studied cholera toxin (CTx), which invades the ER and activates IRE1α in host cells, to understand how unfolded proteins are recognized. Proximity labeling colocalized the enzymatic and metastable A1 segment of CTx (CTxA1) with IRE1α in live cells, where we also found that CTx-induced IRE1α activation enhanced toxicity. In vitro, CTxA1 bound the IRE1α lumenal domain (IRE1αLD), but global unfolding was not required. Rather, the IRE1αLD recognized a seven-residue motif within an edge β-strand of CTxA1 that must locally unfold for binding. Binding mapped to a pocket on IRE1αLD normally occupied by a segment of the IRE1α C-terminal flexible loop implicated in IRE1α oligomerization. Mutation of the CTxA1 recognition motif blocked CTx-induced IRE1α activation in live cells, thus linking the binding event with IRE1α signal transduction and induction of the UPR.
Collapse
Affiliation(s)
- Mariska S. Simpson
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Boston MA, USA
- Graduate School of Life Sciences, Utrecht University, Utrecht, Netherlands
| | - Heidi De Luca
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Boston MA, USA
| | - Sarah Cauthorn
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Boston MA, USA
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Phi Luong
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Boston MA, USA
| | | | | | - Stefanie S. Schmieder
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Boston MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | | | - Michael J. Grey
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Boston MA, USA
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Harvard Digestive Disease Center, Boston, MA, USA
| | - Wayne I. Lencer
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Boston MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Harvard Digestive Disease Center, Boston, MA, USA
| |
Collapse
|
3
|
Muraoka T, Okumura M, Saio T. Enzymatic and synthetic regulation of polypeptide folding. Chem Sci 2024; 15:2282-2299. [PMID: 38362427 PMCID: PMC10866363 DOI: 10.1039/d3sc05781j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 01/04/2024] [Indexed: 02/17/2024] Open
Abstract
Proper folding is essential for the biological functions of all proteins. The folding process is intrinsically error-prone, and the misfolding of a polypeptide chain can cause the formation of toxic aggregates related to pathological outcomes such as neurodegenerative disease and diabetes. Chaperones and some enzymes are involved in the cellular proteostasis systems that assist polypeptide folding to diminish the risk of aggregation. Elucidating the molecular mechanisms of chaperones and related enzymes is important for understanding proteostasis systems and protein misfolding- and aggregation-related pathophysiology. Furthermore, mechanistic studies of chaperones and related enzymes provide important clues to designing chemical mimics, or chemical chaperones, that are potentially useful for recovering proteostasis activities as therapeutic approaches for treating and preventing protein misfolding-related diseases. In this Perspective, we provide a comprehensive overview of the latest understanding of the folding-promotion mechanisms by chaperones and oxidoreductases and recent progress in the development of chemical mimics that possess activities comparable to enzymes, followed by a discussion of future directions.
Collapse
Affiliation(s)
- Takahiro Muraoka
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology Koganei Tokyo 184-8588 Japan
- Kanagawa Institute of Industrial Science and Technology (KISTEC) Kanagawa 243-0435 Japan
| | - Masaki Okumura
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University Sendai Miyagi 980-8578 Japan
| | - Tomohide Saio
- Division of Molecular Life Science, Institute of Advanced Medical Sciences, Tokushima University Tokushima 770-8503 Japan
| |
Collapse
|
4
|
Guyette JL, Serrano A, Huhn III GR, Taylor M, Malkòm P, Curtis D, Teter K. Reduction is sufficient for the disassembly of ricin and Shiga toxin 1 but not Escherichia coli heat-labile enterotoxin. Infect Immun 2023; 91:e0033223. [PMID: 37877711 PMCID: PMC10652930 DOI: 10.1128/iai.00332-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/21/2023] [Indexed: 10/26/2023] Open
Abstract
Many AB toxins contain an enzymatic A moiety that is anchored to a cell-binding B moiety by a disulfide bridge. After receptor-mediated endocytosis, some AB toxins undergo retrograde transport to the endoplasmic reticulum (ER) where reduction of the disulfide bond occurs. The reduced A subunit then dissociates from the holotoxin and enters the cytosol to alter its cellular target. Intoxication requires A chain separation from the holotoxin, but, for many toxins, it is unclear if reduction alone is sufficient for toxin disassembly. Here, we examined the link between reduction and disassembly for several ER-translocating toxins. We found disassembly of the reduced Escherichia coli heat-labile enterotoxin (Ltx) required an interaction with one specific ER-localized oxidoreductase: protein disulfide isomerase (PDI). In contrast, the reduction and disassembly of ricin toxin (Rtx) and Shiga toxin 1 (Stx1) were coupled events that did not require PDI and could be triggered by reductant alone. PDI-deficient cells accordingly exhibited high resistance to Ltx with continued sensitivity to Rtx and Stx1. The distinct structural organization of each AB toxin thus appears to determine whether holotoxin disassembly occurs spontaneously upon disulfide reduction or requires the additional input of PDI.
Collapse
Affiliation(s)
- Jessica L. Guyette
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Albert Serrano
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - G. Robb Huhn III
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Michael Taylor
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Pat Malkòm
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - David Curtis
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Ken Teter
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| |
Collapse
|
5
|
Voltà-Durán E, Parladé E, Serna N, Villaverde A, Vazquez E, Unzueta U. Endosomal escape for cell-targeted proteins. Going out after going in. Biotechnol Adv 2023; 63:108103. [PMID: 36702197 DOI: 10.1016/j.biotechadv.2023.108103] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023]
Abstract
Protein-based nanocarriers are versatile and biocompatible drug delivery systems. They are of particular interest in nanomedicine as they can recruit multiple functions in a single modular polypeptide. Many cell-targeting peptides or protein domains can promote cell uptake when included in these nanoparticles through receptor-mediated endocytosis. In that way, targeting drugs to specific cell receptors allows a selective intracellular delivery process, avoiding potential side effects of the payload. However, once internalized, the endo-lysosomal route taken by the engulfed material usually results in full degradation, preventing their adequate subcellular localization, bioavailability and subsequent therapeutic effect. Thus, entrapment into endo-lysosomes is a main bottleneck in the efficacy of protein-drug nanomedicines. Promoting endosomal escape and preventing lysosomal degradation would make this therapeutic approach clinically plausible. In this review, we discuss the mechanisms intended to evade lysosomal degradation of proteins, with the most relevant examples and associated strategies, and the methods available to measure that effect. In addition, based on the increasing catalogue of peptide domains tailored to face this challenge as components of protein nanocarriers, we emphasize how their particular mechanisms of action can potentially alter the functionality of accompanying protein materials, especially in terms of targeting and specificity in the delivery process.
Collapse
Affiliation(s)
- Eric Voltà-Durán
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 08193 Cerdanyola del Vallès, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Eloi Parladé
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 08193 Cerdanyola del Vallès, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Naroa Serna
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 08193 Cerdanyola del Vallès, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 08193 Cerdanyola del Vallès, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.
| | - Esther Vazquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 08193 Cerdanyola del Vallès, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.
| | - Ugutz Unzueta
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 08193 Cerdanyola del Vallès, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain; Josep Carreras Leukaemia Research Institute, 08916 Badalona, Spain.
| |
Collapse
|
6
|
Chaurasia R, Vinetz JM. In silico prediction of molecular mechanisms of toxicity mediated by the leptospiral PF07598 gene family-encoded virulence-modifying proteins. Front Mol Biosci 2023; 9:1092197. [PMID: 36756251 PMCID: PMC9900628 DOI: 10.3389/fmolb.2022.1092197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/20/2022] [Indexed: 01/24/2023] Open
Abstract
Mechanisms of leptospirosis pathogenesis remain unclear despite the identification of a number of potential leptospiral virulence factors. We recently demonstrated potential mechanisms by which the virulence-modifying (VM) proteins-defined as containing a Domain of Unknown function (DUF1561), encoded by the PF07598 gene family-found only in group 1 pathogenic Leptospira-might mediate the clinical pathogenesis of leptospirosis. VM proteins belongs to classical AB toxin paradigm though have a unique AB domain architecture, unlike other AB toxins such as diphtheria toxin, pertussis toxin, shiga toxin, or ricin toxin which are typically encoded by two or more genes and self-assembled into a multi-domain holotoxin. Leptospiral VM proteins are secreted R-type lectin domain-containing exotoxins with discrete N-terminal ricin B-like domains involved in host cell surface binding, and a C-terminal DNase/toxin domain. Here we use the artificial intelligence-based AlphaFold algorithm and other computational tools to predict and elaborate on details of the VM protein structure-function relationship. Comparative AlphaFold and CD-spectroscopy defined the consistent secondary structure (Helix and ß-sheet) content, and the stability of the functional domains were further supported by molecular dynamics simulation. VM proteins comprises distinctive lectic family (QxW)3 motifs, the Mycoplasma CARDS toxin (D3 domain, aromatic patches), C-terminal similarity with mammalian DNase I. In-silico study proposed that Gln412, Gln523, His533, Thr59 are the high binding energy or ligand binding residues plausibly anticipates in the functional activities. Divalent cation (Mg+2-Gln412) and phosphate ion (PO4]-3-Arg615) interaction further supports the functional activities driven by C-terminal domain. Computation-driven structure-function studies of VM proteins will guide experimentation towards mechanistic understandings of leptospirosis pathogenesis, which underlie development of new therapeutic and preventive measures for this devastating disease.
Collapse
|
7
|
White C, Bader C, Teter K. The manipulation of cell signaling and host cell biology by cholera toxin. Cell Signal 2022; 100:110489. [PMID: 36216164 PMCID: PMC10082135 DOI: 10.1016/j.cellsig.2022.110489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 10/01/2022] [Indexed: 11/03/2022]
Abstract
Vibrio cholerae colonizes the small intestine and releases cholera toxin into the extracellular space. The toxin binds to the apical surface of the epithelium, is internalized into the host endomembrane system, and escapes into the cytosol where it activates the stimulatory alpha subunit of the heterotrimeric G protein by ADP-ribosylation. This initiates a cAMP-dependent signaling pathway that stimulates chloride efflux into the gut, with diarrhea resulting from the accompanying osmotic movement of water into the intestinal lumen. G protein signaling is not the only host system manipulated by cholera toxin, however. Other cellular mechanisms and signaling pathways active in the intoxication process include endocytosis through lipid rafts, retrograde transport to the endoplasmic reticulum, the endoplasmic reticulum-associated degradation system for protein delivery to the cytosol, the unfolded protein response, and G protein de-activation through degradation or the function of ADP-ribosyl hydrolases. Although toxin-induced chloride efflux is thought to be an irreversible event, alterations to these processes could facilitate cellular recovery from intoxication. This review will highlight how cholera toxin exploits signaling pathways and other cell biology events to elicit a diarrheal response from the host.
Collapse
Affiliation(s)
- Christopher White
- Burnett School of Biomedical Sciences, 12722 Research Parkway, University of Central Florida, Orlando, FL 32826, USA.
| | - Carly Bader
- Burnett School of Biomedical Sciences, 12722 Research Parkway, University of Central Florida, Orlando, FL 32826, USA.
| | - Ken Teter
- Burnett School of Biomedical Sciences, 12722 Research Parkway, University of Central Florida, Orlando, FL 32826, USA.
| |
Collapse
|
8
|
Integrated energy conversion units in nanoscale frameworks induce sustained generation and amplified lethality of singlet oxygen in oxidative therapy of tumor. VIEW 2022. [DOI: 10.1002/viw.20220051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
9
|
Ahlstedt BA, Ganji R, Raman M. The functional importance of VCP to maintaining cellular protein homeostasis. Biochem Soc Trans 2022; 50:1457-1469. [PMID: 36196920 PMCID: PMC9704522 DOI: 10.1042/bst20220648] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022]
Abstract
The AAA-ATPase (ATPases associated with diverse cellular activities) valosin-containing protein (VCP), is essential for many cellular pathways including but not limited to endoplasmic reticulum-associated degradation (ERAD), DNA damage responses, and cell cycle regulation. VCP primarily identifies ubiquitylated proteins in these pathways and mediates their unfolding and degradation by the 26S proteasome. This review summarizes recent research on VCP that has uncovered surprising new ways that this ATPase is regulated, new aspects of recognition of substrates and novel pathways and substrates that utilize its activity.
Collapse
Affiliation(s)
- Brittany A. Ahlstedt
- Department of Developmental Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, U.S.A
| | - Rakesh Ganji
- Department of Developmental Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, U.S.A
| | - Malavika Raman
- Department of Developmental Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, U.S.A
| |
Collapse
|
10
|
Ernst K. Requirement of Peptidyl-Prolyl Cis/Trans isomerases and chaperones for cellular uptake of bacterial AB-type toxins. Front Cell Infect Microbiol 2022; 12:938015. [PMID: 35992160 PMCID: PMC9387773 DOI: 10.3389/fcimb.2022.938015] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/15/2022] [Indexed: 11/30/2022] Open
Abstract
Bacterial AB-type toxins are proteins released by the producing bacteria and are the causative agents for several severe diseases including cholera, whooping cough, diphtheria or enteric diseases. Their unique AB-type structure enables their uptake into mammalian cells via sophisticated mechanisms exploiting cellular uptake and transport pathways. The binding/translocation B-subunit facilitates binding of the toxin to a specific receptor on the cell surface. This is followed by receptor-mediated endocytosis. Then the enzymatically active A-subunit either escapes from endosomes in a pH-dependent manner or the toxin is further transported through the Golgi to the endoplasmic reticulum from where the A-subunit translocates into the cytosol. In the cytosol, the A-subunits enzymatically modify a specific substrate which leads to cellular reactions resulting in clinical symptoms that can be life-threatening. Both intracellular uptake routes require the A-subunit to unfold to either fit through a pore formed by the B-subunit into the endosomal membrane or to be recognized by the ER-associated degradation pathway. This led to the hypothesis that folding helper enzymes such as chaperones and peptidyl-prolyl cis/trans isomerases are required to assist the translocation of the A-subunit into the cytosol and/or facilitate their refolding into an enzymatically active conformation. This review article gives an overview about the role of heat shock proteins Hsp90 and Hsp70 as well as of peptidyl-prolyl cis/trans isomerases of the cyclophilin and FK506 binding protein families during uptake of bacterial AB-type toxins with a focus on clostridial binary toxins Clostridium botulinum C2 toxin, Clostridium perfringens iota toxin, Clostridioides difficile CDT toxin, as well as diphtheria toxin, pertussis toxin and cholera toxin.
Collapse
|
11
|
Pei D, Dalbey RE. Membrane Translocation of Folded Proteins. J Biol Chem 2022; 298:102107. [PMID: 35671825 PMCID: PMC9251779 DOI: 10.1016/j.jbc.2022.102107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 12/01/2022] Open
Abstract
An ever-increasing number of proteins have been shown to translocate across various membranes of bacterial as well as eukaryotic cells in their folded states as a part of physiological and/or pathophysiological processes. Herein we provide an overview of the systems/processes that are established or likely to involve the membrane translocation of folded proteins, such as protein export by the twin-arginine translocation (TAT) system in bacteria and chloroplasts, unconventional protein secretion (UPS) and protein import into the peroxisome in eukaryotes, and the cytosolic entry of proteins (e.g., bacterial toxins) and viruses into eukaryotes. We also discuss the various mechanistic models that have previously been proposed for the membrane translocation of folded proteins including pore/channel formation, local membrane disruption, membrane thinning, and transport by membrane vesicles. Finally, we introduce a newly discovered vesicular transport mechanism, vesicle budding and collapse (VBC), and present evidence that VBC may represent a unifying mechanism that drives some (and potentially all) of folded protein translocation processes.
Collapse
Affiliation(s)
- Dehua Pei
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12(th) Avenue, Columbus, OH 43210.
| | - Ross E Dalbey
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12(th) Avenue, Columbus, OH 43210.
| |
Collapse
|
12
|
Gansemer ER, Rutkowski DT. Pathways Linking Nicotinamide Adenine Dinucleotide Phosphate Production to Endoplasmic Reticulum Protein Oxidation and Stress. Front Mol Biosci 2022; 9:858142. [PMID: 35601828 PMCID: PMC9114485 DOI: 10.3389/fmolb.2022.858142] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
The endoplasmic reticulum (ER) lumen is highly oxidizing compared to other subcellular compartments, and maintaining the appropriate levels of oxidizing and reducing equivalents is essential to ER function. Both protein oxidation itself and other essential ER processes, such as the degradation of misfolded proteins and the sequestration of cellular calcium, are tuned to the ER redox state. Simultaneously, nutrients are oxidized in the cytosol and mitochondria to power ATP generation, reductive biosynthesis, and defense against reactive oxygen species. These parallel needs for protein oxidation in the ER and nutrient oxidation in the cytosol and mitochondria raise the possibility that the two processes compete for electron acceptors, even though they occur in separate cellular compartments. A key molecule central to both processes is NADPH, which is produced by reduction of NADP+ during nutrient catabolism and which in turn drives the reduction of components such as glutathione and thioredoxin that influence the redox potential in the ER lumen. For this reason, NADPH might serve as a mediator linking metabolic activity to ER homeostasis and stress, and represent a novel form of mitochondria-to-ER communication. In this review, we discuss oxidative protein folding in the ER, NADPH generation by the major pathways that mediate it, and ER-localized systems that can link the two processes to connect ER function to metabolic activity.
Collapse
Affiliation(s)
- Erica R. Gansemer
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - D. Thomas Rutkowski
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
13
|
Maeda K, Zachos NC, Orzalli MH, Schmieder SS, Chang D, Bugda Gwilt K, Doucet M, Baetz NW, Lee S, Crawford SE, Estes MK, Kagan JC, Turner JR, Lencer WI. Depletion of the apical endosome in response to viruses and bacterial toxins provides cell-autonomous host defense at mucosal surfaces. Cell Host Microbe 2022; 30:216-231.e5. [PMID: 35143768 PMCID: PMC8852832 DOI: 10.1016/j.chom.2021.12.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 10/28/2021] [Accepted: 12/17/2021] [Indexed: 11/22/2022]
Abstract
Polarized epithelial cells form an essential barrier against infection at mucosal surfaces. Many pathogens breach this barrier to cause disease, often by co-opting cellular endocytosis mechanisms to enter the cell through the lumenal (apical) cell surface. We recently discovered that the loss of the cell polarity gene PARD6B selectively diminishes apical endosome function. Here, we find that in response to the entry of certain viruses and bacterial toxins into the epithelial cells via the apical membrane, PARD6B and aPKC, two components of the PARD6B-aPKC-Cdc42 apical polarity complex, undergo rapid proteasome-dependent degradation. The perturbation of apical membrane glycosphingolipids by toxin- or virus-binding initiates degradation of PARD6B. The loss of PARD6B causes the depletion of apical endosome function and renders the cell resistant to further infection from the lumenal cell surface, thus enabling a form of cell-autonomous host defense.
Collapse
Affiliation(s)
- Keiko Maeda
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Nicholas C Zachos
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Megan H Orzalli
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Stefanie S Schmieder
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Denis Chang
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Katlynn Bugda Gwilt
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Michele Doucet
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nicholas W Baetz
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sun Lee
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sue E Crawford
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza, MS: BCM-385, Houston, TX 77030, USA
| | - Mary K Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza, MS: BCM-385, Houston, TX 77030, USA; Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Jonathan C Kagan
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; Harvard Digestive Diseases Center, Harvard Medical School, Boston, MA 02115, USA
| | - Jerrold R Turner
- Harvard Digestive Diseases Center, Harvard Medical School, Boston, MA 02115, USA; Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Wayne I Lencer
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; Harvard Digestive Diseases Center, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
14
|
Zhao G, Meng J, Wang C, Wang L, Wang H, Tian M, Ma L, Guo X, Xu B. Roles of the protein disulphide isomerases AccPDIA1 and AccPDIA3 in response to oxidant stress in Apis cerana cerana. INSECT MOLECULAR BIOLOGY 2022; 31:10-23. [PMID: 34453759 DOI: 10.1111/imb.12733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/19/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Protein disulphide isomerase (PDI) plays an important role in a variety of physiological processes through its oxidoreductase activity and molecular chaperone activity. In this study, we cloned two PDI family members, AccPDIA1 and AccPDIA3, from Apis cerana cerana. AccPDIA1 and AccPDIA3 had typical sequence features of PDI family members and were constitutively expressed in A. cerana cerana. The expression levels of AccPDIA1 and AccPDIA3 were generally upregulated after treatment with a variety of environmental stress factors. Inhibition assays showed that E. coli expressing recombinant AccPDIA1 and AccPDIA3 proteins was more resistant to oxidative stress than control E. coli. In addition, silencing AccPDIA1 or AccPDIA3 in A. cerana cerana resulted in significant changes in the expression levels of several antioxidant-related genes as well as the enzymatic activities of peroxidase (POD), superoxide dismutase (SOD) and catalase (CAT) and reduced the survival rate of A. cerana cerana under oxidative stress caused by high temperature. In conclusion, our results suggest that AccPDIA1 and AccPDIA3 may play important roles in the antioxidant activities of A. cerana cerana.
Collapse
Affiliation(s)
- G Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, P. R. China
| | - J Meng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, P. R. China
| | - C Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, P. R. China
| | - L Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, P. R. China
| | - H Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, P. R. China
| | - M Tian
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, P. R. China
| | - L Ma
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, P. R. China
| | - X Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, P. R. China
| | - B Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, P. R. China
| |
Collapse
|
15
|
Holotoxin disassembly by protein disulfide isomerase is less efficient for Escherichia coli heat-labile enterotoxin than cholera toxin. Sci Rep 2022; 12:34. [PMID: 34997016 PMCID: PMC8741891 DOI: 10.1038/s41598-021-03939-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 12/13/2021] [Indexed: 11/09/2022] Open
Abstract
Cholera toxin (CT) and Escherichia coli heat-labile enterotoxin (LT) are structurally similar AB5-type protein toxins. They move from the cell surface to the endoplasmic reticulum where the A1 catalytic subunit is separated from its holotoxin by protein disulfide isomerase (PDI), thus allowing the dissociated A1 subunit to enter the cytosol for a toxic effect. Despite similar mechanisms of toxicity, CT is more potent than LT. The difference has been attributed to a more stable domain assembly for CT as compared to LT, but this explanation has not been directly tested and is arguable as toxin disassembly is an indispensable step in the cellular action of these toxins. We show here that PDI disassembles CT more efficiently than LT, which provides a possible explanation for the greater potency of the former toxin. Furthermore, direct examination of CT and LT domain assemblies found no difference in toxin stability. Using novel analytic geometry approaches, we provide a detailed characterization of the positioning of the A subunit with respect to the B pentamer and demonstrate significant differences in the interdomain architecture of CT and LT. Protein docking analysis further suggests that these global structural differences result in distinct modes of PDI-toxin interactions. Our results highlight previously overlooked structural differences between CT and LT that provide a new model for the PDI-assisted disassembly and differential potency of these toxins.
Collapse
|
16
|
Xu X, Chiu J, Chen S, Fang C. Pathophysiological roles of cell surface and extracellular protein disulfide isomerase and their molecular mechanisms. Br J Pharmacol 2021; 178:2911-2930. [PMID: 33837960 DOI: 10.1111/bph.15493] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 03/23/2021] [Accepted: 04/04/2021] [Indexed: 12/21/2022] Open
Abstract
Protein disulfide isomerase (PDI) is the prototypic member of the thiol isomerase family that catalyses disulfide bond rearrangement. Initially identified in the endoplasmic reticulum as folding catalysts, PDI and other members in its family have also been widely reported to reside on the cell surface and in the extracellular matrix. Although how PDI is exported and retained on the cell surface remains a subject of debate, this unique pool of PDI is developing into an important mechanism underlying the redox regulation of protein sulfhydryls that are critical for the cellular activities under various disease conditions. This review aims to provide an overview of the pathophysiological roles of surface and extracellular PDI and their underlying molecular mechanisms. Understanding the involvement of extracellular PDI in these diseases will advance our knowledge in the molecular aetiology to facilitate the development of novel pharmacological strategies by specifically targeting PDI in extracellular compartments.
Collapse
Affiliation(s)
- Xulin Xu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| | - Joyce Chiu
- The Centenary Institute, National Health and Medical Research Council Clinical Trials Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Shuai Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| | - Chao Fang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| |
Collapse
|
17
|
Intracellular Redox-Modulated Pathways as Targets for Effective Approaches in the Treatment of Viral Infection. Int J Mol Sci 2021; 22:ijms22073603. [PMID: 33808471 PMCID: PMC8036776 DOI: 10.3390/ijms22073603] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023] Open
Abstract
Host-directed therapy using drugs that target cellular pathways required for virus lifecycle or its clearance might represent an effective approach for treating infectious diseases. Changes in redox homeostasis, including intracellular glutathione (GSH) depletion, are one of the key events that favor virus replication and contribute to the pathogenesis of virus-induced disease. Redox homeostasis has an important role in maintaining an appropriate Th1/Th2 balance, which is necessary to mount an effective immune response against viral infection and to avoid excessive inflammatory responses. It is known that excessive production of reactive oxygen species (ROS) induced by viral infection activates nuclear factor (NF)-kB, which orchestrates the expression of viral and host genes involved in the viral replication and inflammatory response. Moreover, redox-regulated protein disulfide isomerase (PDI) chaperones have an essential role in catalyzing formation of disulfide bonds in viral proteins. This review aims at describing the role of GSH in modulating redox sensitive pathways, in particular that mediated by NF-kB, and PDI activity. The second part of the review discusses the effectiveness of GSH-boosting molecules as broad-spectrum antivirals acting in a multifaceted way that includes the modulation of immune and inflammatory responses.
Collapse
|
18
|
Victor P, Umapathy D, George L, Juttada U, Ganesh GV, Amin KN, Viswanathan V, Ramkumar KM. Crosstalk between endoplasmic reticulum stress and oxidative stress in the progression of diabetic nephropathy. Cell Stress Chaperones 2021; 26:311-321. [PMID: 33161510 PMCID: PMC7925747 DOI: 10.1007/s12192-020-01176-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 12/14/2022] Open
Abstract
Increasing evidence in substantiating the roles of endoplasmic reticulum stress, oxidative stress, and inflammatory responses and their interplay is evident in various diseases. However, an in-depth mechanistic understanding of the crosstalk between the intracellular stress signaling pathways and inflammatory responses and their participation in disease progression has not yet been explored. Progress has been made in our understanding of the cross talk and integrated stress signaling network between endoplasmic reticulum stress and oxidative stress towards the pathogenesis of diabetic nephropathy. In this present study, we studied the crosstalk between the endoplasmic reticulum stress and oxidative stress by understanding the role of protein disulfide isomerase and endoplasmic reticulum oxidase 1α, a key player in redox protein folding in the endoplasmic reticulum. We had recruited a total of 90 subjects and divided into three groups (control (n = 30), type 2 diabetes mellitus (n = 30), and diabetic nephropathy (n = 30)). We found that endoplasmic reticulum stress markers, activating transcription factor 6, inositol-requiring enzyme 1α, protein kinase RNA-like endoplasmic reticulum kinase, C/EBP homologous protein, and glucose-regulated protein-78; oxidative stress markers, thioredoxin-interacting protein and cytochrome b-245 light chain; and the crosstalk markers, protein disulfide isomerase and endoplasmic reticulum oxidase-1α, were progressively elevated in type 2 diabetes mellitus and diabetic nephropathy subjects. The association between the crosstalk markers showed a positive correlation with endoplasmic reticulum stress and oxidative stress markers. Further, the interplay between endoplasmic reticulum stress and oxidative stress was investigated in vitro using a human leukemic monocytic cell line under a hyperglycemic environment and examined the expression of protein disulfide isomerase and endoplasmic reticulum oxidase-1α. DCFH-DA assay and flow cytometry were performed to detect the production of free radicals. Further, phosphorylation of eIF2α in high glucose-exposed cells was studied using western blot. In conclusion, our results shed light on the crosstalk between endoplasmic reticulum stress and oxidative stress and significantly contribute to the onset and progression of diabetic nephropathy and therefore represent the major therapeutic targets for alleviating micro- and macrovascular complications associated with this metabolic disturbance. Graphical abstract.
Collapse
Affiliation(s)
- Paul Victor
- Department of Biotechnology, School of Bio-engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603 203, India
| | - Dhamodharan Umapathy
- Life Science Division, SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603 203, India
| | - Leema George
- Department of Biochemistry and Molecular Genetics, Prof. M. Viswanathan Diabetes Research Centre and M.V. Hospital for Diabetes (WHO Collaborating Centre for Research, Education & Training in Diabetes), Royapuram, Chennai, Tamil Nadu, 600013, India
| | - Udyama Juttada
- Department of Biochemistry and Molecular Genetics, Prof. M. Viswanathan Diabetes Research Centre and M.V. Hospital for Diabetes (WHO Collaborating Centre for Research, Education & Training in Diabetes), Royapuram, Chennai, Tamil Nadu, 600013, India
| | - Goutham V Ganesh
- Department of Biotechnology, School of Bio-engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603 203, India
| | - Karan Naresh Amin
- Department of Biotechnology, School of Bio-engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603 203, India
| | - Vijay Viswanathan
- Department of Biochemistry and Molecular Genetics, Prof. M. Viswanathan Diabetes Research Centre and M.V. Hospital for Diabetes (WHO Collaborating Centre for Research, Education & Training in Diabetes), Royapuram, Chennai, Tamil Nadu, 600013, India.
| | - Kunka Mohanram Ramkumar
- Department of Biotechnology, School of Bio-engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603 203, India.
- Life Science Division, SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603 203, India.
| |
Collapse
|
19
|
Genetic Evidence for SecY Translocon-Mediated Import of Two Contact-Dependent Growth Inhibition (CDI) Toxins. mBio 2021; 12:mBio.03367-20. [PMID: 33531386 PMCID: PMC7858069 DOI: 10.1128/mbio.03367-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Many bacterial species interact via direct cell-to-cell contact using CDI systems, which provide a mechanism to inject toxins that inhibit bacterial growth into one another. Here, we find that two CDI toxins, one that depolarizes membranes and another that degrades RNA, exploit the universally conserved SecY translocon machinery used to export proteins for target cell entry. The C-terminal (CT) toxin domains of contact-dependent growth inhibition (CDI) CdiA proteins target Gram-negative bacteria and must breach both the outer and inner membranes of target cells to exert growth inhibitory activity. Here, we examine two CdiA-CT toxins that exploit the bacterial general protein secretion machinery after delivery into the periplasm. A Ser281Phe amino acid substitution in transmembrane segment 7 of SecY, the universally conserved channel-forming subunit of the Sec translocon, decreases the cytotoxicity of the membrane depolarizing orphan10 toxin from enterohemorrhagic Escherichia coli EC869. Target cells expressing secYS281F and lacking either PpiD or YfgM, two SecY auxiliary factors, are fully protected from CDI-mediated inhibition either by CdiA-CTo10EC869 or by CdiA-CTGN05224, the latter being an EndoU RNase CdiA toxin from Klebsiella aerogenes GN05224 that has a related cytoplasm entry domain. RNase activity of CdiA-CTGN05224 was reduced in secYS281F target cells and absent in secYS281F ΔppiD or secYS281F ΔyfgM target cells during competition co-cultures. Importantly, an allele-specific mutation in secY (secYG313W) renders ΔppiD or ΔyfgM target cells specifically resistant to CdiA-CTGN05224 but not to CdiA-CTo10EC869, further suggesting a direct interaction between SecY and the CDI toxins. Our results provide genetic evidence of a unique confluence between the primary cellular export route for unfolded polypeptides and the import pathways of two CDI toxins.
Collapse
|
20
|
cAMP-Independent Activation of the Unfolded Protein Response by Cholera Toxin. Infect Immun 2021; 89:IAI.00447-20. [PMID: 33199355 DOI: 10.1128/iai.00447-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 11/10/2020] [Indexed: 12/11/2022] Open
Abstract
Cholera toxin (CT) is an AB5 protein toxin that activates the stimulatory alpha subunit of the heterotrimeric G protein (Gsα) through ADP-ribosylation. Activation of Gsα produces a cytopathic effect by stimulating adenylate cyclase and the production of cAMP. To reach its cytosolic Gsα target, CT binds to the plasma membrane of a host cell and travels by vesicle carriers to the endoplasmic reticulum (ER). The catalytic CTA1 subunit then exploits the quality control mechanism of ER-associated degradation to move from the ER to the cytosol. ER-associated degradation is functionally linked to another quality control system, the unfolded protein response (UPR). However, the role of the UPR in cholera intoxication is unclear. We report here that CT triggers the UPR after 4 h of toxin exposure. A functional toxin was required to induce the UPR, but, surprisingly, activation of the adenylate cyclase signaling pathway was not sufficient to trigger the process. Toxin-induced activation of the UPR coincided with increased toxin accumulation in the cytosol. Chemical activation of the heterotrimeric G protein or the UPR also enhanced the onset of CTA1 delivery to the cytosol, thus producing a toxin-sensitive phenotype. These results indicate there is a cAMP-independent response to CT that activates the UPR and thereby enhances the efficiency of intoxication.
Collapse
|
21
|
Harnessing the Membrane Translocation Properties of AB Toxins for Therapeutic Applications. Toxins (Basel) 2021; 13:toxins13010036. [PMID: 33418946 PMCID: PMC7825107 DOI: 10.3390/toxins13010036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/28/2020] [Accepted: 01/01/2021] [Indexed: 12/31/2022] Open
Abstract
Over the last few decades, proteins and peptides have become increasingly more common as FDA-approved drugs, despite their inefficient delivery due to their inability to cross the plasma membrane. In this context, bacterial two-component systems, termed AB toxins, use various protein-based membrane translocation mechanisms to deliver toxins into cells, and these mechanisms could provide new insights into the development of bio-based drug delivery systems. These toxins have great potential as therapies both because of their intrinsic properties as well as the modular characteristics of both subunits, which make them highly amenable to conjugation with various drug classes. This review focuses on the therapeutical approaches involving the internalization mechanisms of three representative AB toxins: botulinum toxin type A, anthrax toxin, and cholera toxin. We showcase several specific examples of the use of these toxins to develop new therapeutic strategies for numerous diseases and explain what makes these toxins promising tools in the development of drugs and drug delivery systems.
Collapse
|
22
|
PDI-Regulated Disulfide Bond Formation in Protein Folding and Biomolecular Assembly. Molecules 2020; 26:molecules26010171. [PMID: 33396541 PMCID: PMC7794689 DOI: 10.3390/molecules26010171] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/25/2020] [Accepted: 12/28/2020] [Indexed: 02/06/2023] Open
Abstract
Disulfide bonds play a pivotal role in maintaining the natural structures of proteins to ensure their performance of normal biological functions. Moreover, biological molecular assembly, such as the gluten network, is also largely dependent on the intermolecular crosslinking via disulfide bonds. In eukaryotes, the formation and rearrangement of most intra- and intermolecular disulfide bonds in the endoplasmic reticulum (ER) are mediated by protein disulfide isomerases (PDIs), which consist of multiple thioredoxin-like domains. These domains assist correct folding of proteins, as well as effectively prevent the aggregation of misfolded ones. Protein misfolding often leads to the formation of pathological protein aggregations that cause many diseases. On the other hand, glutenin aggregation and subsequent crosslinking are required for the formation of a rheologically dominating gluten network. Herein, the mechanism of PDI-regulated disulfide bond formation is important for understanding not only protein folding and associated diseases, but also the formation of functional biomolecular assembly. This review systematically illustrated the process of human protein disulfide isomerase (hPDI) mediated disulfide bond formation and complemented this with the current mechanism of wheat protein disulfide isomerase (wPDI) catalyzed formation of gluten networks.
Collapse
|
23
|
Kanemura S, Matsusaki M, Inaba K, Okumura M. PDI Family Members as Guides for Client Folding and Assembly. Int J Mol Sci 2020; 21:ijms21249351. [PMID: 33302492 PMCID: PMC7763558 DOI: 10.3390/ijms21249351] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/06/2020] [Accepted: 12/06/2020] [Indexed: 12/27/2022] Open
Abstract
Complicated and sophisticated protein homeostasis (proteostasis) networks in the endoplasmic reticulum (ER), comprising disulfide catalysts, molecular chaperones, and their regulators, help to maintain cell viability. Newly synthesized proteins inserted into the ER need to fold and assemble into unique native structures to fulfill their physiological functions, and this is assisted by protein disulfide isomerase (PDI) family. Herein, we focus on recent advances in understanding the detailed mechanisms of PDI family members as guides for client folding and assembly to ensure the efficient production of secretory proteins.
Collapse
Affiliation(s)
- Shingo Kanemura
- School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan;
| | - Motonori Matsusaki
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan; (M.M.); (K.I.)
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramakiaza Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Kenji Inaba
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan; (M.M.); (K.I.)
| | - Masaki Okumura
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramakiaza Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan
- Correspondence: ; Tel.: +81-22-217-5628
| |
Collapse
|
24
|
Okumura M, Noi K, Inaba K. Visualization of structural dynamics of protein disulfide isomerase enzymes in catalysis of oxidative folding and reductive unfolding. Curr Opin Struct Biol 2020; 66:49-57. [PMID: 33176263 DOI: 10.1016/j.sbi.2020.10.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/18/2020] [Accepted: 10/08/2020] [Indexed: 02/06/2023]
Abstract
Time-resolved single-molecule observations by high-speed atomic force microscopy (HS-AFM), have greatly advanced our understanding of how proteins operate to fulfill their unique functions. Using this device, we succeeded in visualizing two members of the protein disulfide isomerase family (PDIs) that act to catalyze oxidative folding and reductive unfolding in the endoplasmic reticulum (ER). ERdj5, an ER-resident disulfide reductase that promotes ER-associated degradation, reduces nonnative disulfide bonds of misfolded proteins utilizing the dynamics of its N-terminal and C-terminal clusters. With unfolded substrates, canonical PDI assembles to form a face-to-face dimer with a central hydrophobic cavity and multiple redox-active sites to accelerate oxidative folding inside the cavity. Altogether, PDIs exert highly dynamic mechanisms to ensure the protein quality control in the ER.
Collapse
Affiliation(s)
- Masaki Okumura
- Frontier Research Institute for Interdisciplinary Sciences, Aramaki aza Aoba 6-3, Aoba-ku, Sendai 980-8578, Japan
| | - Kentaro Noi
- Institute of Nanoscience Design, Osaka University, Machikaneyamatyou 1-3, Toyonaka 560-8531, Japan
| | - Kenji Inaba
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan.
| |
Collapse
|
25
|
Wang L, Yu J, Wang CC. Protein disulfide isomerase is regulated in multiple ways: Consequences for conformation, activities, and pathophysiological functions. Bioessays 2020; 43:e2000147. [PMID: 33155310 DOI: 10.1002/bies.202000147] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/13/2022]
Abstract
Protein disulfide isomerase (PDI) is one of the most abundant and critical protein folding catalysts in the endoplasmic reticulum of eukaryotic cells. PDI consists of four thioredoxin domains and interacts with a wide range of substrate and partner proteins due to its intrinsic conformational flexibility. PDI plays multifunctional roles in a variety of pathophysiological events, both as an oxidoreductase and a molecular chaperone. Recent studies have revealed that the conformation and activity of PDI can be regulated in multiple ways, including posttranslational modification and substrate/ligand binding. Here, we summarize recent advances in understanding the function and regulation of PDI in different pathological and physiological events. We propose that the multifunctional roles of PDI are regulated by multiple mechanisms. Furthermore, we discuss future directions for the study of PDI, emphasizing how different regulatory modes are linked to the conformational changes and biological functions of PDI in the context of diverse pathophysiologies.
Collapse
Affiliation(s)
- Lei Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jiaojiao Yu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chih-Chen Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
26
|
Podraza-Farhanieh A, Natarajan B, Raj D, Kao G, Naredi P. ENPL-1, the Caenorhabditis elegans homolog of GRP94, promotes insulin secretion via regulation of proinsulin processing and maturation. Development 2020; 147:dev190082. [PMID: 33037039 PMCID: PMC10666919 DOI: 10.1242/dev.190082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 09/28/2020] [Indexed: 12/27/2022]
Abstract
Insulin/IGF signaling in Caenorhabditis elegans is crucial for proper development of the dauer larva and growth control. Mutants disturbing insulin processing, secretion and downstream signaling perturb this process and have helped identify genes that affect progression of type 2 diabetes. Insulin maturation is required for its proper secretion by pancreatic β cells. The role of the endoplasmic reticulum (ER) chaperones in insulin processing and secretion needs further study. We show that the C. elegans ER chaperone ENPL-1/GRP94 (HSP90B1), acts in dauer development by promoting insulin secretion and signaling. Processing of a proinsulin likely involves binding between the two proteins via a specific domain. We show that, in enpl-1 mutants, an unprocessed insulin exits the ER lumen and is found in dense core vesicles, but is not secreted. The high ER stress in enpl-1 mutants does not cause the secretion defect. Importantly, increased ENPL-1 levels result in increased secretion. Taken together, our work indicates that ENPL-1 operates at the level of insulin availability and is an essential modulator of insulin processing and secretion.
Collapse
Affiliation(s)
- Agnieszka Podraza-Farhanieh
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, SE413 45 Gothenburg, Sweden
| | | | - Dorota Raj
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, SE413 45 Gothenburg, Sweden
| | - Gautam Kao
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, SE413 45 Gothenburg, Sweden
| | - Peter Naredi
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, SE413 45 Gothenburg, Sweden
- Department of Surgery, Sahlgrenska University Hospital, SE413 45 Gothenburg, Sweden
| |
Collapse
|
27
|
Tsutsuki H, Ogura K, Moss J, Yahiro K. Host response to the subtilase cytotoxin produced by locus of enterocyte effacement-negative Shiga-toxigenic Escherichia coli. Microbiol Immunol 2020; 64:657-665. [PMID: 32902863 DOI: 10.1111/1348-0421.12841] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/05/2020] [Accepted: 09/07/2020] [Indexed: 12/26/2022]
Abstract
Shiga-toxigenic Escherichia coli (STEC) is a major bacterium responsible for disease resulting from foodborne infection, including bloody diarrhea and hemolytic uremic syndrome. STEC produces important virulence factors such as Shiga toxin (Stx) 1 and/or 2. In the STEC family, some locus of enterocyte effacement-negative STEC produce two different types of cytotoxins, namely, Stx2 and subtilase cytotoxin (SubAB). The Stx2 and SubAB cytotoxins are structurally similar and composed of one A subunit and pentamer of B subunits. The catalytically active A subunit of SubAB is a subtilase-like serine protease and specifically cleaves an endoplasmic reticulum (ER) chaperone 78-kDa glucose-regulated protein (GRP78/BiP), a monomeric ATPase that is crucial in protein folding and quality control. The B subunit binds to cell surface receptors. SubAB recognizes sialic carbohydrate-modified cell surface proteins as a receptor. After translocation into cells, SubAB is delivered to the ER, where it cleaves GRP78/BiP. SubAB-catalyzed BiP cleavage induces ER stress, which causes various cell events including inhibition of protein synthesis, suppression of nuclear factor-kappa B activation, apoptotic cell death, and stress granules formation. In this review, we describe SubAB, the SubAB receptor, and the mechanism of cell response to the toxin.
Collapse
Affiliation(s)
- Hiroyasu Tsutsuki
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kohei Ogura
- Advanced Health Care Science Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Japan
| | - Joel Moss
- Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Kinnosuke Yahiro
- Department of Molecular Infectiology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
28
|
Helian Y, Gai Y, Fang H, Sun Y, Zhang D. A multistrategy approach for improving the expression of E. coli phytase in Pichia pastoris. J Ind Microbiol Biotechnol 2020; 47:1161-1172. [PMID: 32935229 DOI: 10.1007/s10295-020-02311-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 09/07/2020] [Indexed: 01/26/2023]
Abstract
Phytase is an additive in animal feed that degrades phytic acid in plant material, reducing feeding costs, and pollution from fecal phosphorus excretion. A multistrategy approach was adopted to improve the expression of E. coli phytase in Pichia pastoris. We determined that the most suitable signal peptide for phytase secretion was an α-factor secretion signal with an initial enzyme activity of 153.51 U/mL. Increasing the copy number of this gene to four increased phytase enzyme activity by 234.35%. PDI overexpression and Pep4 gene knockout increased extracellular phytase production by 35.33% and 26.64%, respectively. By combining favorable factors affecting phytase expression and secretion, the enzyme activity of the phytase-engineered strain was amplified 384.60% compared with that of the original strain. We also evaluated the potential for the industrial production of the engineered strain using a 50-L fed-batch fermenter and achieved a total activity of 30,246 U/mL after 180 h of fermentation.
Collapse
Affiliation(s)
- Yuankun Helian
- School of Biological Engineering, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi, Dalian, 116034, Liaoning, People's Republic of China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People's Republic of China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People's Republic of China
| | - Yuanming Gai
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People's Republic of China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People's Republic of China
| | - Huan Fang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People's Republic of China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People's Republic of China
| | - Yumei Sun
- School of Biological Engineering, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi, Dalian, 116034, Liaoning, People's Republic of China.
| | - Dawei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People's Republic of China. .,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People's Republic of China. .,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|
29
|
Thioredoxin-Related Transmembrane Proteins: TMX1 and Little Brothers TMX2, TMX3, TMX4 and TMX5. Cells 2020; 9:cells9092000. [PMID: 32878123 PMCID: PMC7563315 DOI: 10.3390/cells9092000] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023] Open
Abstract
The endoplasmic reticulum (ER) is site of synthesis and maturation of membrane and secretory proteins in eukaryotic cells. The ER contains more than 20 members of the Protein Disulfide Isomerase (PDI) family. These enzymes regulate formation, isomerization and disassembly of covalent bonds between cysteine residues. As such, PDIs ensure protein folding, which is required to attain functional and transport-competent structure, and protein unfolding, which facilitates dislocation of defective gene products across the ER membrane for ER-associated degradation (ERAD). The PDI family includes over a dozen of soluble members and few membrane-bound ones. Among these latter, there are five PDIs grouped in the thioredoxin-related transmembrane (TMX) protein family. In this review, we summarize the current knowledge on TMX1, TMX2, TMX3, TMX4 and TMX5, their structural features, regulation and roles in biogenesis and control of the mammalian cell’s proteome.
Collapse
|
30
|
Serrano A, Qiao X, Matos JO, Farley L, Cilenti L, Chen B, Tatulian SA, Teter K. Reversal of Alpha-Synuclein Fibrillization by Protein Disulfide Isomerase. Front Cell Dev Biol 2020; 8:726. [PMID: 32850841 PMCID: PMC7406567 DOI: 10.3389/fcell.2020.00726] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 07/14/2020] [Indexed: 12/15/2022] Open
Abstract
Aggregates of α-synuclein contribute to the etiology of Parkinson's Disease. Protein disulfide isomerase (PDI), a chaperone and oxidoreductase, blocks the aggregation of α-synuclein. An S-nitrosylated form of PDI that cannot function as a chaperone is associated with elevated levels of aggregated α-synuclein and is found in brains afflicted with Parkinson's Disease. The protective role of PDI in Parkinson's Disease and other neurodegenerative disorders is linked to its chaperone function, yet the mechanism of neuroprotection remains unclear. Using Thioflavin-T fluorescence and transmission electron microscopy, we show here for the first time that PDI can break down nascent fibrils of α-synuclein. Mature fibrils were not affected by PDI. Another PDI family member, ERp57, could prevent but not reverse α-synuclein aggregation. The disaggregase activity of PDI was effective at a 1:50 molar ratio of PDI:α-synuclein and was blocked by S-nitrosylation. PDI could not reverse the aggregation of malate dehydrogenase, which indicated its disaggregase activity does not operate on all substrates. These findings establish a previously unrecognized disaggregase property of PDI that could underlie its neuroprotective function.
Collapse
Affiliation(s)
- Albert Serrano
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Xin Qiao
- Department of Physics, College of Sciences, University of Central Florida, Orlando, FL, United States
| | - Jason O Matos
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Lauren Farley
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Lucia Cilenti
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Bo Chen
- Department of Physics, College of Sciences, University of Central Florida, Orlando, FL, United States
| | - Suren A Tatulian
- Department of Physics, College of Sciences, University of Central Florida, Orlando, FL, United States
| | - Ken Teter
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| |
Collapse
|
31
|
Kanemura S, Sofia EF, Hirai N, Okumura M, Kadokura H, Inaba K. Characterization of the endoplasmic reticulum-resident peroxidases GPx7 and GPx8 shows the higher oxidative activity of GPx7 and its linkage to oxidative protein folding. J Biol Chem 2020; 295:12772-12785. [PMID: 32719007 DOI: 10.1074/jbc.ra120.013607] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/17/2020] [Indexed: 12/13/2022] Open
Abstract
Oxidative protein folding occurs primarily in the mammalian endoplasmic reticulum, enabled by a diverse network comprising more than 20 members of the protein disulfide isomerase (PDI) family and more than five PDI oxidases. Although the canonical disulfide bond formation pathway involving Ero1α and PDI has been well-studied so far, the physiological roles of the newly identified PDI oxidases, glutathione peroxidase-7 (GPx7) and -8 (GPx8), are only poorly understood. We here demonstrated that human GPx7 has much higher reactivity with H2O2 and hence greater PDI oxidation activity than human GPx8. The high reactivity of GPx7 is due to the presence of a catalytic tetrad at the redox-active site, which stabilizes the sulfenylated species generated upon the reaction with H2O2 Although it was previously postulated that GPx7 catalysis involved a highly reactive peroxidatic cysteine that can be sulfenylated by H2O2, we revealed that a resolving cysteine instead regulates the PDI oxidation activity of GPx7. We also determined that GPx7 formed complexes preferentially with PDI and P5 in H2O2-treated cells. Altogether, these results suggest that human GPx7 functions as an H2O2-dependent PDI oxidase in cells, whereas PDI oxidation may not be the central physiological role of human GPx8.
Collapse
Affiliation(s)
- Shingo Kanemura
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira, Aoba-ku, Sendai, Miyagi, Japan.,School of Science and Technology, Kwansei Gakuin University, Gakuen, Sanda, Hyogo, Japan.,Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Aramaki, Aza, Aoba-ku, Sendai, Miyagi, Japan
| | - Elza Firdiani Sofia
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira, Aoba-ku, Sendai, Miyagi, Japan
| | - Naoya Hirai
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira, Aoba-ku, Sendai, Miyagi, Japan
| | - Masaki Okumura
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira, Aoba-ku, Sendai, Miyagi, Japan.,Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Aramaki, Aza, Aoba-ku, Sendai, Miyagi, Japan
| | - Hiroshi Kadokura
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira, Aoba-ku, Sendai, Miyagi, Japan
| | - Kenji Inaba
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira, Aoba-ku, Sendai, Miyagi, Japan
| |
Collapse
|
32
|
Tsutsuki H, Zhang T, Harada A, Rahman A, Ono K, Yahiro K, Niidome T, Sawa T. Involvement of protein disulfide isomerase in subtilase cytotoxin-induced cell death in HeLa cells. Biochem Biophys Res Commun 2020; 525:1068-1073. [DOI: 10.1016/j.bbrc.2020.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 03/03/2020] [Indexed: 12/01/2022]
|
33
|
Kellner A, Taylor M, Banerjee T, Britt CB, Teter K. A binding motif for Hsp90 in the A chains of ADP-ribosylating toxins that move from the endoplasmic reticulum to the cytosol. Cell Microbiol 2019; 21:e13074. [PMID: 31231933 PMCID: PMC6744307 DOI: 10.1111/cmi.13074] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/15/2019] [Accepted: 06/19/2019] [Indexed: 12/29/2022]
Abstract
Cholera toxin (Ctx) is an AB-type protein toxin that acts as an adenosine diphosphate (ADP)-ribosyltransferase to disrupt intracellular signalling in the target cell. It moves by vesicle carriers from the cell surface to the endoplasmic reticulum (ER) of an intoxicated cell. The catalytic CtxA1 subunit then dissociates from the rest of the toxin, unfolds, and activates the ER-associated degradation system for export to the cytosol. Translocation occurs through an unusual ratchet mechanism in which the cytosolic chaperone Hsp90 couples CtxA1 refolding with CtxA1 extraction from the ER. Here, we report that Hsp90 recognises two peptide sequences from CtxA1: an N-terminal RPPDEI sequence (residues 11-16) and an LDIAPA sequence in the C-terminal region (residues 153-158) of the 192 amino acid protein. Peptides containing either sequence effectively blocked Hsp90 binding to full-length CtxA1. Both sequences were necessary for the ER-to-cytosol export of CtxA1. Mutagenesis studies further demonstrated that the RPP residues in the RPPDEI motif are required for CtxA1 translocation to the cytosol. The LDIAPA sequence is unique to CtxA1, but we identified an RPPDEI-like motif at the N- or C-termini of the A chains from four other ER-translocating toxins that act as ADP-ribosyltransferases: pertussis toxin, Escherichia coli heat-labile toxin, Pseudomonas aeruginosa exotoxin A, and Salmonella enterica serovar Typhimurium ADP-ribosylating toxin. Hsp90 plays a functional role in the intoxication process for most, if not all, of these toxins. Our work has established a defined RPPDEI binding motif for Hsp90 that is required for the ER-to-cytosol export of CtxA1 and possibly other toxin A chains as well.
Collapse
Affiliation(s)
- Alisha Kellner
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32826
| | - Michael Taylor
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32826
| | | | - Christopher B.T. Britt
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32826
| | - Ken Teter
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32826
| |
Collapse
|
34
|
Guyette J, Evangelista B, Tatulian SA, Teter K. Stability and Conformational Resilience of Protein Disulfide Isomerase. Biochemistry 2019; 58:3572-3584. [PMID: 31393106 PMCID: PMC6876119 DOI: 10.1021/acs.biochem.9b00405] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein disulfide isomerase (PDI) is a redox-dependent protein with oxidoreductase and chaperone activities. It is a U-shaped protein with an abb'xa' structural organization in which the a and a' domains have CGHC active sites, the b and b' domains are involved with substrate binding, and x is a flexible linker. PDI exhibits substantial flexibility and undergoes cycles of unfolding and refolding in its interaction with cholera toxin, suggesting PDI can regain a folded, functional conformation after exposure to stress conditions. To determine whether this unfolding-refolding cycle is a substrate-induced process or an intrinsic physical property of PDI, we used circular dichroism to examine the structural properties of PDI subjected to thermal denaturation. PDI exhibited remarkable conformational resilience that is linked to its redox status. In the reduced state, PDI exhibited a 54 °C unfolding transition temperature (Tm) and regained 85% of its native structure after nearly complete thermal denaturation. Oxidized PDI had a lower Tm of 48-50 °C and regained 70% of its native conformation after 75% denaturation. Both reduced PDI and oxidized PDI were functional after refolding from these denatured states. Additional studies documented increased stability of a PDI construct lacking the a' domain and decreased thermal stability of a construct lacking the a domain. Furthermore, oxidation of the a domain limited the ability of PDI to refold. The stability and conformational resilience of PDI are thus linked to both redox-dependent and domain-specific effects. These findings document previously unrecognized properties of PDI and provide insight into the physical foundation of its biological function.
Collapse
Affiliation(s)
- Jessica Guyette
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816 USA
| | - Baggio Evangelista
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816 USA
| | - Suren A. Tatulian
- Department of Physics, University of Central Florida, Orlando, FL 32816 USA
| | - Ken Teter
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816 USA
| |
Collapse
|
35
|
Tian ZL, Wang ZH, Maria M, Qu N, Zheng JW. Meloidogyne graminicola protein disulfide isomerase may be a nematode effector and is involved in protection against oxidative damage. Sci Rep 2019; 9:11949. [PMID: 31420562 PMCID: PMC6697734 DOI: 10.1038/s41598-019-48474-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 08/06/2019] [Indexed: 11/08/2022] Open
Abstract
The rice root-knot nematode, Meloidogyne graminicola, is a serious pest in most rice-growing countries. Usually, nematodes employ antioxidants to counteract the harm of reactive oxygen species (ROS) and facilitate their infection. Here the gene encoding M. graminicola protein disulphide isomerase (MgPDI) was identified. The deduced protein is highly conserved in the putative active-site Cys-Gly-His-Cys. In situ hybridization showed that MgPDI was specifically localized within esophageal glands of pre-parasitic second stage juveniles (J2s). MgPDI was significantly up-regulated in the late parasitic J2s. Characterization of the recombinant protein showed that the purified MgPDI exhibited similar activities to other oxidases/isomerases such as the refolding of the scrambled RNase and insulin disulfide reductase and the protection of plasmid DNA and living cells from ROS damage. In addition, silencing of MgPDI by RNA interference in the pre-parasitic J2s lowered their multiplication factor. MgPDI expression was up-regulated in the presence of exogenous H2O2, whereas MgPDI silencing resulted in an increase in mortality under H2O2 stress. MgPDI is localized in the apoplast when transient expression in Nicotiana benthamiana leaves. The results indicated that MgPDI plays important roles in the reproduction and pathogenicity of M. graminicola and it also contributes to protecting nematodes from exogenous H2O2 stress.
Collapse
Affiliation(s)
- Zhong-Ling Tian
- Laboratory of Plant Nematology, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, Zhejiang, P.R. China
| | - Ze-Hua Wang
- Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, Zhejiang, P.R. China
| | - Munawar Maria
- Laboratory of Plant Nematology, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, Zhejiang, P.R. China
| | - Nan Qu
- Laboratory of Plant Nematology, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, Zhejiang, P.R. China
| | - Jing-Wu Zheng
- Laboratory of Plant Nematology, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, Zhejiang, P.R. China.
- Key Lab of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Hangzhou, 310058, P.R. China.
| |
Collapse
|
36
|
Abstract
This study provides a structure for microsomal triglyceride transfer protein, a key protein in lipid metabolism and transport. Microsomal triglyceride transfer protein is linked to a human disease state, abetalipoproteinemia. The structure helps us to understand how this protein functions and gives a rationale for how previously reported mutations result in loss of function of the protein and hence, cause disease. The structure also provides a means for rational drug design to treat cardiovascular disease, hypercholesterolemia, and obesity. Microsomal triglyceride transfer protein is composed of 2 subunits. The β-subunit, protein disulfide isomerase (PDI), also acts independently as a protein folding catalyst. The structure that we present here gives insights into how PDI functions in protein folding. Microsomal triglyceride transfer protein (MTP) plays an essential role in lipid metabolism, especially in the biogenesis of very low-density lipoproteins and chylomicrons via the transfer of neutral lipids and the assembly of apoB-containing lipoproteins. Our understanding of the molecular mechanisms of MTP has been hindered by a lack of structural information of this heterodimeric complex comprising an MTPα subunit and a protein disulfide isomerase (PDI) β-subunit. The structure of MTP presented here gives important insights into the potential mechanisms of action of this essential lipid transfer molecule, structure-based rationale for previously reported disease-causing mutations, and a means for rational drug design against cardiovascular disease and obesity. In contrast to the previously reported structure of lipovitellin, which has a funnel-like lipid-binding cavity, the lipid-binding site is encompassed in a β-sandwich formed by 2 β-sheets from the C-terminal domain of MTPα. The lipid-binding cavity of MTPα is large enough to accommodate a single lipid. PDI independently has a major role in oxidative protein folding in the endoplasmic reticulum. Comparison of the mechanism of MTPα binding by PDI with previously published structures gives insights into large protein substrate binding by PDI and suggests that the previous structures of human PDI represent the “substrate-bound” and “free” states rather than differences arising from redox state.
Collapse
|
37
|
Guyette J, Cherubin P, Serrano A, Taylor M, Abedin F, O'Donnell M, Burress H, Tatulian SA, Teter K. Quercetin-3-Rutinoside Blocks the Disassembly of Cholera Toxin by Protein Disulfide Isomerase. Toxins (Basel) 2019; 11:E458. [PMID: 31382673 PMCID: PMC6722528 DOI: 10.3390/toxins11080458] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/24/2019] [Accepted: 08/02/2019] [Indexed: 12/11/2022] Open
Abstract
Protein disulfide isomerase (PDI) is mainly located in the endoplasmic reticulum (ER) but is also secreted into the bloodstream where its oxidoreductase activity is involved with thrombus formation. Quercetin-3-rutinoside (Q3R) blocks this activity, but its inhibitory mechanism against PDI is not fully understood. Here, we examined the potential inhibitory effect of Q3R on another process that requires PDI: disassembly of the multimeric cholera toxin (CT). In the ER, PDI physically displaces the reduced CTA1 subunit from its non-covalent assembly in the CT holotoxin. This is followed by CTA1 dislocation from the ER to the cytosol where the toxin interacts with its G protein target for a cytopathic effect. Q3R blocked the conformational change in PDI that accompanies its binding to CTA1, which, in turn, prevented PDI from displacing CTA1 from its holotoxin and generated a toxin-resistant phenotype. Other steps of the CT intoxication process were not affected by Q3R, including PDI binding to CTA1 and CT reduction by PDI. Additional experiments with the B chain of ricin toxin found that Q3R could also disrupt PDI function through the loss of substrate binding. Q3R can thus inhibit PDI function through distinct mechanisms in a substrate-dependent manner.
Collapse
Affiliation(s)
- Jessica Guyette
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| | - Patrick Cherubin
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| | - Albert Serrano
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| | - Michael Taylor
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| | - Faisal Abedin
- Department of Physics, College of Sciences, University of Central Florida, Orlando, FL 32816, USA
| | - Morgan O'Donnell
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| | - Helen Burress
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| | - Suren A Tatulian
- Department of Physics, College of Sciences, University of Central Florida, Orlando, FL 32816, USA
| | - Ken Teter
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA.
| |
Collapse
|
38
|
Zhu R, Li X, Xu J, Barrabi C, Kekulandara D, Woods J, Chen X, Liu M. Defective endoplasmic reticulum export causes proinsulin misfolding in pancreatic β cells. Mol Cell Endocrinol 2019; 493:110470. [PMID: 31158417 PMCID: PMC6613978 DOI: 10.1016/j.mce.2019.110470] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/30/2019] [Accepted: 05/30/2019] [Indexed: 02/06/2023]
Abstract
Endoplasmic reticulum (ER) homeostasis is essential for cell function. Increasing evidence indicates that, efficient protein ER export is important for ER homeostasis. However, the consequence of impaired ER export remains largely unknown. Herein, we found that defective ER protein transport caused by either Sar1 mutants or brefeldin A impaired proinsulin oxidative folding in the ER of β-cells. Misfolded proinsulin formed aberrant disulfide-linked dimers and high molecular weight proinsulin complexes, and induced ER stress. Limiting proinsulin load to the ER alleviated ER stress, indicating that misfolded proinsulin is a direct cause of ER stress. This study revealed significance of efficient ER export in maintaining ER protein homeostasis and native folding of proinsulin. Given the fact that proinsulin misfolding plays an important role in diabetes, this study suggests that enhancing ER export may be a potential therapeutic target to prevent/delay β-cell failure caused by proinsulin misfolding and ER stress.
Collapse
Affiliation(s)
- Ruimin Zhu
- Department of Physiology, School of Medicine, Wayne State University, Detroit, MI, USA; Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xin Li
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jialu Xu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Cesar Barrabi
- Department of Physiology, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Dilini Kekulandara
- Department of Physiology, School of Medicine, Wayne State University, Detroit, MI, USA
| | - James Woods
- Department of Physiology, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Xuequn Chen
- Department of Physiology, School of Medicine, Wayne State University, Detroit, MI, USA.
| | - Ming Liu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China.
| |
Collapse
|
39
|
A small molecule inhibitor of ER-to-cytosol protein dislocation exhibits anti-dengue and anti-Zika virus activity. Sci Rep 2019; 9:10901. [PMID: 31358863 PMCID: PMC6662757 DOI: 10.1038/s41598-019-47532-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 07/18/2019] [Indexed: 02/08/2023] Open
Abstract
Infection with flaviviruses, such as dengue virus (DENV) and the recently re-emerging Zika virus (ZIKV), represents an increasing global risk. Targeting essential host elements required for flavivirus replication represents an attractive approach for the discovery of antiviral agents. Previous studies have identified several components of the Hrd1 ubiquitin ligase-mediated endoplasmic reticulum (ER)-associated degradation (ERAD) pathway, a cellular protein quality control process, as host factors crucial for DENV and ZIKV replication. Here, we report that CP26, a small molecule inhibitor of protein dislocation from the ER lumen to the cytosol, which is an essential step for ERAD, has broad-spectrum anti-flavivirus activity. CP26 targets the Hrd1 complex, inhibits ERAD, and induces ER stress. Ricin and cholera toxins are known to hijack the protein dislocation machinery to reach the cytosol, where they exert their cytotoxic effects. CP26 selectively inhibits the activity of cholera toxin but not that of ricin. CP26 exhibits a significant inhibitory activity against both DENV and ZIKV, providing substantial protection to the host cells against virus-induced cell death. This study identified a novel dislocation inhibitor, CP26, that shows potent anti-DENV and anti-ZIKV activity in cells. Furthermore, this study provides the first example of the targeting of host ER dislocation with small molecules to combat flavivirus infection.
Collapse
|
40
|
Burress H, Kellner A, Guyette J, Tatulian SA, Teter K. HSC70 and HSP90 chaperones perform complementary roles in translocation of the cholera toxin A1 subunit from the endoplasmic reticulum to the cytosol. J Biol Chem 2019; 294:12122-12131. [PMID: 31221799 DOI: 10.1074/jbc.ra119.008568] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/15/2019] [Indexed: 11/06/2022] Open
Abstract
Cholera toxin (CT) travels by vesicle carriers from the cell surface to the endoplasmic reticulum (ER) where the catalytic A1 subunit of CT (CTA1) dissociates from the rest of the toxin, unfolds, and moves through a membrane-spanning translocon pore to reach the cytosol. Heat shock protein 90 (HSP90) binds to the N-terminal region of CTA1 and facilitates its ER-to-cytosol export by refolding the toxin as it emerges at the cytosolic face of the ER membrane. HSP90 also refolds some endogenous cytosolic proteins as part of a foldosome complex containing heat shock cognate 71-kDa protein (HSC70) and the HSC70/HSP90-organizing protein (HOP) linker that anchors HSP90 to HSC70. We accordingly predicted that HSC70 and HOP also function in CTA1 translocation. Inactivation of HSC70 by drug treatment disrupted CTA1 translocation to the cytosol and generated a toxin-resistant phenotype. In contrast, the depletion of HOP did not disrupt CT activity against cultured cells. HSC70 and HSP90 could bind independently to disordered CTA1, even in the absence of HOP. This indicated HSP90 and HSC70 recognize distinct regions of CTA1, which was confirmed by the identification of a YYIYVI-binding motif for HSC70 that spans residues 83-88 of the 192-amino acid CTA1 polypeptide. Refolding of disordered CTA1 occurred in the presence of HSC70 alone, indicating that HSC70 and HSP90 can each independently refold CTA1. Our work suggests a novel translocation mechanism in which sequential interactions with HSP90 and HSC70 drive the N- to C-terminal extraction of CTA1 from the ER.
Collapse
Affiliation(s)
- Helen Burress
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32826
| | - Alisha Kellner
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32826
| | - Jessica Guyette
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32826
| | - Suren A Tatulian
- Department of Physics, University of Central Florida, Orlando, Florida 32816
| | - Ken Teter
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32826.
| |
Collapse
|
41
|
Jang I, Pottekat A, Poothong J, Yong J, Lagunas-Acosta J, Charbono A, Chen Z, Scheuner DL, Liu M, Itkin-Ansari P, Arvan P, Kaufman RJ. PDIA1/P4HB is required for efficient proinsulin maturation and ß cell health in response to diet induced obesity. eLife 2019; 8:e44528. [PMID: 31184304 PMCID: PMC6559792 DOI: 10.7554/elife.44528] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 05/15/2019] [Indexed: 02/06/2023] Open
Abstract
Regulated proinsulin biosynthesis, disulfide bond formation and ER redox homeostasis are essential to prevent Type two diabetes. In ß cells, protein disulfide isomerase A1 (PDIA1/P4HB), the most abundant ER oxidoreductase of over 17 members, can interact with proinsulin to influence disulfide maturation. Here we find Pdia1 is required for optimal insulin production under metabolic stress in vivo. ß cell-specific Pdia1 deletion in young high-fat diet fed mice or aged mice exacerbated glucose intolerance with inadequate insulinemia and increased the proinsulin/insulin ratio in both serum and islets compared to wildtype mice. Ultrastructural abnormalities in Pdia1-null ß cells include diminished insulin granule content, ER vesiculation and distention, mitochondrial swelling and nuclear condensation. Furthermore, Pdia1 deletion increased accumulation of disulfide-linked high molecular weight proinsulin complexes and islet vulnerability to oxidative stress. These findings demonstrate that PDIA1 contributes to oxidative maturation of proinsulin in the ER to support insulin production and ß cell health.
Collapse
Affiliation(s)
- Insook Jang
- Degenerative Diseases ProgramSBP Medical Discovery InstituteLa JollaUnited States
| | - Anita Pottekat
- Degenerative Diseases ProgramSBP Medical Discovery InstituteLa JollaUnited States
| | - Juthakorn Poothong
- Degenerative Diseases ProgramSBP Medical Discovery InstituteLa JollaUnited States
| | - Jing Yong
- Degenerative Diseases ProgramSBP Medical Discovery InstituteLa JollaUnited States
| | | | - Adriana Charbono
- Degenerative Diseases ProgramSBP Medical Discovery InstituteLa JollaUnited States
| | - Zhouji Chen
- Degenerative Diseases ProgramSBP Medical Discovery InstituteLa JollaUnited States
| | | | - Ming Liu
- Division of Metabolism Endocrinology and DiabetesUniversity of Michigan Medical SchoolAnn ArborUnited States
| | - Pamela Itkin-Ansari
- Department of PediatricsUniversity of California, San DiegoSan DiegoUnited States
| | - Peter Arvan
- Division of Metabolism Endocrinology and DiabetesUniversity of Michigan Medical SchoolAnn ArborUnited States
| | - Randal J Kaufman
- Degenerative Diseases ProgramSBP Medical Discovery InstituteLa JollaUnited States
| |
Collapse
|
42
|
Balasubramanian S, Pandranki L, Maupin S, Ramasamy K, Taylor AB, Hart PJ, Baseman JB, Kannan TR. Disulfide bond of Mycoplasma pneumoniae community-acquired respiratory distress syndrome toxin is essential to maintain the ADP-ribosylating and vacuolating activities. Cell Microbiol 2019; 21:e13032. [PMID: 30977272 DOI: 10.1111/cmi.13032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/19/2019] [Accepted: 04/03/2019] [Indexed: 01/13/2023]
Abstract
Mycoplasma pneumoniae is the leading cause of bacterial community-acquired pneumonia among hospitalised children in United States and worldwide. Community-acquired respiratory distress syndrome (CARDS) toxin is a key virulence determinant of M. pneumoniae. The N-terminus of CARDS toxin exhibits ADP-ribosyltransferase (ADPRT) activity, and the C-terminus possesses binding and vacuolating activities. Thiol-trapping experiments of wild-type (WT) and cysteine-to-serine-mutated CARDS toxins with alkylating agents identified disulfide bond formation at the amino terminal cysteine residues C230 and C247. Compared with WT and other mutant toxins, C247S was unstable and unusable for comparative studies. Although there were no significant variations in binding, entry, and retrograde trafficking patterns of WT and mutated toxins, C230S did not elicit vacuole formation in intoxicated cells. In addition, the ADPRT domain of C230S was more sensitive to all tested proteases when compared with WT toxin. Despite its in vitro ADPRT activity, the reduction of C230S CARDS toxin-mediated ADPRT activity-associated IL-1β production in U937 cells and the recovery of vacuolating activity in the protease-released carboxy region of C230S indicated that the disulfide bond was essential not only to maintain the conformational stability of CARDS toxin but also to properly execute its cytopathic effects.
Collapse
Affiliation(s)
- Sowmya Balasubramanian
- Department of Microbiology, Immunology and Molecular Genetics, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Lavanya Pandranki
- Department of Microbiology, Immunology and Molecular Genetics, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Suzanna Maupin
- Department of Microbiology, Immunology and Molecular Genetics, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Kumaraguruparan Ramasamy
- Department of Microbiology, Immunology and Molecular Genetics, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Alexander B Taylor
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX.,X-ray Crystallography Core Laboratory, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Peter John Hart
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX.,X-ray Crystallography Core Laboratory, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Joel B Baseman
- Department of Microbiology, Immunology and Molecular Genetics, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Thirumalai R Kannan
- Department of Microbiology, Immunology and Molecular Genetics, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| |
Collapse
|
43
|
Dynamic assembly of protein disulfide isomerase in catalysis of oxidative folding. Nat Chem Biol 2019; 15:499-509. [PMID: 30992562 DOI: 10.1038/s41589-019-0268-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 03/07/2019] [Indexed: 11/08/2022]
Abstract
Time-resolved direct observations of proteins in action provide essential mechanistic insights into biological processes. Here, we present mechanisms of action of protein disulfide isomerase (PDI)-the most versatile disulfide-introducing enzyme in the endoplasmic reticulum-during the catalysis of oxidative protein folding. Single-molecule analysis by high-speed atomic force microscopy revealed that oxidized PDI is in rapid equilibrium between open and closed conformations, whereas reduced PDI is maintained in the closed state. In the presence of unfolded substrates, oxidized PDI, but not reduced PDI, assembles to form a face-to-face dimer, creating a central hydrophobic cavity with multiple redox-active sites, where substrates are likely accommodated to undergo accelerated oxidative folding. Such PDI dimers are diverse in shape and have different lifetimes depending on substrates. To effectively guide proper oxidative protein folding, PDI regulates conformational dynamics and oligomeric states in accordance with its own redox state and the configurations or folding states of substrates.
Collapse
|
44
|
Matsusaki M, Kanemura S, Kinoshita M, Lee YH, Inaba K, Okumura M. The Protein Disulfide Isomerase Family: from proteostasis to pathogenesis. Biochim Biophys Acta Gen Subj 2019; 1864:129338. [PMID: 30986509 DOI: 10.1016/j.bbagen.2019.04.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 03/08/2019] [Accepted: 04/02/2019] [Indexed: 12/13/2022]
Abstract
In mammalian cells, nearly one-third of proteins are inserted into the endoplasmic reticulum (ER), where they undergo oxidative folding and chaperoning assisted by approximately 20 members of the protein disulfide isomerase family (PDIs). PDIs consist of multiple thioredoxin-like domains and recognize a wide variety of proteins via highly conserved interdomain flexibility. Although PDIs have been studied intensely for almost 50 years, exactly how they maintain protein homeostasis in the ER remains unknown, and is important not only for fundamental biological understanding but also for protein misfolding- and aggregation-related pathophysiology. Herein, we review recent advances in structural biology and biophysical approaches that explore the underlying mechanism by which PDIs fulfil their distinct functions to promote productive protein folding and scavenge misfolded proteins in the ER, the primary factory for efficient production of the secretome.
Collapse
Affiliation(s)
- Motonori Matsusaki
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Aramaki aza Aoba 6-3, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Shingo Kanemura
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Aramaki aza Aoba 6-3, Aoba-ku, Sendai, Miyagi 980-8578, Japan; School of Science and Technology, Kwansei Gakuin University, Gakuen 2-1, Sanda, Hyogo 669-1337, Japan
| | - Misaki Kinoshita
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Aramaki aza Aoba 6-3, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Young-Ho Lee
- Protein Structure Group, Korea Basic Science Institute, Ochang, Chungbuk 28199, South Korea; Bio-Analytical Science, University of Science and Technology, Daejeon 34113, South Korea
| | - Kenji Inaba
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, Miyagi 980-8577, Japan.
| | - Masaki Okumura
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Aramaki aza Aoba 6-3, Aoba-ku, Sendai, Miyagi 980-8578, Japan.
| |
Collapse
|
45
|
Cholera Toxin Encapsulated within Several Vibrio cholerae O1 Serotype Inaba Outer Membrane Vesicles Lacks a Functional B-Subunit. Toxins (Basel) 2019; 11:toxins11040207. [PMID: 30959895 PMCID: PMC6521164 DOI: 10.3390/toxins11040207] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 03/29/2019] [Accepted: 04/04/2019] [Indexed: 01/01/2023] Open
Abstract
Cholera toxin (CT), the major virulence factor of Vibrio cholerae, is an AB5 toxin secreted through the type II secretion system (T2SS). Upon secretion, the toxin initiates endocytosis through the interaction of the B pentamer with the GM1 ganglioside receptor on small intestinal cells. In addition to the release of CT in the free form, the bacteria secrete CT in association with outer membrane vesicles (OMVs). Previously, we demonstrated that strain 569B releases OMVs that encapsulate CT and which interact with host cells in a GM1-independent mechanism. Here, we have demonstrated that OMV-encapsulated CT, while biologically active, does not exist in an AB5 form; rather, the OMVs encapsulate two enzymatic A-subunit (CTA) polypeptides. We further investigated the assembly and secretion of the periplasmic CT and found that a major fraction of periplasmic CTA does not participate in the CT assembly process and instead is continuously encapsulated within the OMVs. Additionally, we found that the encapsulation of CTA fragments in OMVs is conserved among several Inaba O1 strains. We further found that under conditions in which the amount of extracellularly secreted CT increases, the concentration of OMV-encapsulated likewise CTA increases. These results point to a secondary mechanism for the secretion of biologically active CT that does not depend on the CTB-GM1 interaction for endocytosis.
Collapse
|
46
|
Nowakowska-Gołacka J, Sominka H, Sowa-Rogozińska N, Słomińska-Wojewódzka M. Toxins Utilize the Endoplasmic Reticulum-Associated Protein Degradation Pathway in Their Intoxication Process. Int J Mol Sci 2019; 20:E1307. [PMID: 30875878 PMCID: PMC6471375 DOI: 10.3390/ijms20061307] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 03/08/2019] [Accepted: 03/10/2019] [Indexed: 12/25/2022] Open
Abstract
Several bacterial and plant AB-toxins are delivered by retrograde vesicular transport to the endoplasmic reticulum (ER), where the enzymatically active A subunit is disassembled from the holotoxin and transported to the cytosol. In this process, toxins subvert the ER-associated degradation (ERAD) pathway. ERAD is an important part of cellular regulatory mechanism that targets misfolded proteins to the ER channels, prior to their retrotranslocation to the cytosol, ubiquitination and subsequent degradation by a protein-degrading complex, the proteasome. In this article, we present an overview of current understanding of the ERAD-dependent transport of AB-toxins to the cytosol. We describe important components of ERAD and discuss their significance for toxin transport. Toxin recognition and disassembly in the ER, transport through ER translocons and finally cytosolic events that instead of overall proteasomal degradation provide proper folding and cytotoxic activity of AB-toxins are discussed as well. We also comment on recent reports presenting medical applications for toxin transport through the ER channels.
Collapse
Affiliation(s)
- Jowita Nowakowska-Gołacka
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland.
| | - Hanna Sominka
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland.
| | - Natalia Sowa-Rogozińska
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland.
| | - Monika Słomińska-Wojewódzka
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland.
| |
Collapse
|
47
|
Pobre KFR, Poet GJ, Hendershot LM. The endoplasmic reticulum (ER) chaperone BiP is a master regulator of ER functions: Getting by with a little help from ERdj friends. J Biol Chem 2018; 294:2098-2108. [PMID: 30563838 DOI: 10.1074/jbc.rev118.002804] [Citation(s) in RCA: 250] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The endoplasmic reticulum (ER) represents the entry point into the secretory pathway where nascent proteins encounter a specialized environment for their folding and maturation. Inherent to these processes is a dedicated quality-control system that detects proteins that fail to mature properly and targets them for cytosolic degradation. An imbalance in protein folding and degradation can result in the accumulation of unfolded proteins in the ER, resulting in the activation of a signaling cascade that restores proper homeostasis in this organelle. The ER heat shock protein 70 (Hsp70) family member BiP is an ATP-dependent chaperone that plays a critical role in these processes. BiP interacts with specific ER-localized DnaJ family members (ERdjs), which stimulate BiP's ATP-dependent substrate interactions, with several ERdjs also binding directly to unfolded protein clients. Recent structural and biochemical studies have provided detailed insights into the allosteric regulation of client binding by BiP and have enhanced our understanding of how specific ERdjs enable BiP to perform its many functions in the ER. In this review, we discuss how BiP's functional cycle and interactions with ERdjs enable it to regulate protein homeostasis in the ER and ensure protein quality control.
Collapse
Affiliation(s)
- Kristine Faye R Pobre
- From the Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Greg J Poet
- From the Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Linda M Hendershot
- From the Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| |
Collapse
|
48
|
Protein disulfide isomerase does not act as an unfoldase in the disassembly of cholera toxin. Biosci Rep 2018; 38:BSR20181320. [PMID: 30135140 PMCID: PMC6127674 DOI: 10.1042/bsr20181320] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 08/18/2018] [Accepted: 08/21/2018] [Indexed: 12/17/2022] Open
Abstract
Cholera toxin (CT) is composed of a disulfide-linked A1/A2 heterodimer and a ring-like, cell-binding B homopentamer. The catalytic A1 subunit must dissociate from CTA2/CTB5 to manifest its cellular activity. Reduction of the A1/A2 disulfide bond is required for holotoxin disassembly, but reduced CTA1 does not spontaneously separate from CTA2/CTB5: protein disulfide isomerase (PDI) is responsible for displacing CTA1 from its non-covalent assembly in the CT holotoxin. Contact with PDI shifts CTA1 from a protease-resistant conformation to a protease-sensitive conformation, which is thought to represent the PDI-mediated unfolding of CTA1. Based solely on this finding, PDI is widely viewed as an ‘unfoldase’ that triggers toxin disassembly by unfolding the holotoxin-associated A1 subunit. In contrast with this unfoldase model of PDI function, we report the ability of PDI to render CTA1 protease-sensitive is unrelated to its role in toxin disassembly. Multiple conditions that promoted PDI-induced protease sensitivity in CTA1 did not support PDI-mediated disassembly of the CT holotoxin. Moreover, preventing the PDI-induced shift in CTA1 protease sensitivity did not affect PDI-mediated disassembly of the CT holotoxin. Denatured PDI could still convert CTA1 into a protease-sensitive state, and equal or excess molar fractions of PDI were required for both efficient conversion of CTA1 into a protease-sensitive state and efficient disassembly of the CT holotoxin. These observations indicate the ‘unfoldase’ property of PDI does not play a functional role in CT disassembly and does not represent an enzymatic activity.
Collapse
|
49
|
ADP-ribosylating enterotoxins as vaccine adjuvants. Curr Opin Pharmacol 2018; 41:42-51. [PMID: 29702466 DOI: 10.1016/j.coph.2018.03.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 03/30/2018] [Indexed: 01/18/2023]
Abstract
Most infections are caused by pathogens that access the body at mucosal sites. Hence, development of mucosal vaccines to prevent local infection or invasion of pathogens appears highly warranted, especially since only mucosal immunization will stimulate strong local IgA responses and tissue resident memory CD4 and CD8 T cells. The most significant obstacle to developing such vaccines is the lack of approved adjuvants that can effectively and safely enhance relevant mucosal and systemic immune responses. The most potent mucosal adjuvants known today are the adenosine diphosphate (ADP)-ribosylating bacterial enterotoxins cholera toxin (CT) and Escherichia coli heat-labile toxins (LTs). Unfortunately, these molecules are also very toxic, which precludes their clinical use. However, much effort has been devoted to developing derivatives of these enterotoxins with low or no toxicity and retained adjuvant activity. Although it is fair to say that we know more about how these toxins affect the immune system than ever before, we still lack a detailed understanding of how and why these toxins are effective adjuvants. In the present review, we provide a state-of-the-art overview of the mechanism of action of the holotoxins and the strategies used for improving the toxin-based adjuvants.
Collapse
|
50
|
Zuverink M, Barbieri JT. Protein Toxins That Utilize Gangliosides as Host Receptors. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 156:325-354. [PMID: 29747819 DOI: 10.1016/bs.pmbts.2017.11.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Subsets of protein toxins utilize gangliosides as host receptors. Gangliosides are preferred receptors due to their extracellular localization on the eukaryotic cell and due to their essential nature in host physiology. Glycosphingolipids, including gangliosides, are mediators of signal transduction within and between eukaryotic cells. Protein toxins possess AB structure-function organization, where the A domain encodes a catalytic function for the posttranslational modification of a host macromolecule, including proteins and nucleic acids, and a B domain, which encodes host receptor recognition, including proteins and glycosphingolipids, alone or in combination. Protein toxins use similar strategies to bind glycans by pockets and loops, generally employing hydrogen bonding and aromatic stacking to stabilize interactions with sugars. In some cases, glycan binding facilitates uptake, while in other cases, cross-linking or a second receptor is necessary to stimulate entry. The affinity that protein toxins have for host glycans is necessary for tissue targeting, but not always sufficient to cause disease. In addition to affinity for binding the glycan, the lipid moiety also plays an important role in productive uptake and tissue tropism. Upon endocytosis, the protein toxin must escape to another intracellular compartment or into cytosol to modify a host substrate, modulating host signaling, often resulting in cytotoxic or apoptotic events in the cell, and a unique morbidity for the organism. The study of protein toxins that utilize gangliosides as host receptors has illuminated numerous eukaryotic cellular processes, identified the basis for developing interventions to prevent disease through vaccines and control bacterial diseases through therapies. In addition, subsets of these protein toxins have been utilized as therapeutic agents to treat numerous human inflictions.
Collapse
|