1
|
Richard MA, Lupo PJ, Ehli EA, Sahin M, Krueger DA, Wu JY, Bebin EM, Au KS, Northrup H, Farach LS. Common epilepsy variants from the general population are not associated with epilepsy among individuals with tuberous sclerosis complex. Am J Med Genet A 2024; 194:e63569. [PMID: 38366765 PMCID: PMC11060940 DOI: 10.1002/ajmg.a.63569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/26/2024] [Accepted: 02/02/2024] [Indexed: 02/18/2024]
Abstract
Common genetic variants identified in the general population have been found to increase phenotypic risks among individuals with certain genetic conditions. Up to 90% of individuals with tuberous sclerosis complex (TSC) are affected by some type of epilepsy, yet the common variants contributing to epilepsy risk in the general population have not been evaluated in the context of TSC-associated epilepsy. Such knowledge is important to help uncover the underlying pathogenesis of epilepsy in TSC which is not fully understood, and critical as uncontrolled epilepsy is a major problem in this population. To evaluate common genetic modifiers of epilepsy, our study pooled phenotypic and genotypic data from 369 individuals with TSC to evaluate known and novel epilepsy common variants. We did not find evidence of enhanced genetic penetrance for known epilepsy variants identified across the largest genome-wide association studies of epilepsy in the general population, but identified support for novel common epilepsy variants in the context of TSC. Specifically, we have identified a novel signal in SLC7A1 that may be functionally involved in pathways relevant to TSC and epilepsy. Our study highlights the need for further evaluation of genetic modifiers in TSC to aid in further understanding of epilepsy in TSC and improve outcomes.
Collapse
Affiliation(s)
- Melissa A Richard
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, Texas, USA
| | - Philip J Lupo
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, Texas, USA
| | - Erik A Ehli
- Avera Institute for Human Genetics, Sioux Falls, South Dakota, USA
| | - Mustafa Sahin
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Darcy A Krueger
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Joyce Y Wu
- Epilepsy Center, Division of Pediatric Neurology, Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
- Department of Pediatrics, Division of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Elizabeth M Bebin
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Kit Sing Au
- Department of Pediatrics, Division of Medical Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Hope Northrup
- Department of Pediatrics, Division of Medical Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Laura S Farach
- Department of Pediatrics, Division of Medical Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
2
|
Rahman M, Nguyen TM, Lee GJ, Kim B, Park MK, Lee CH. Unraveling the Role of Ras Homolog Enriched in Brain (Rheb1 and Rheb2): Bridging Neuronal Dynamics and Cancer Pathogenesis through Mechanistic Target of Rapamycin Signaling. Int J Mol Sci 2024; 25:1489. [PMID: 38338768 PMCID: PMC10855792 DOI: 10.3390/ijms25031489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024] Open
Abstract
Ras homolog enriched in brain (Rheb1 and Rheb2), small GTPases, play a crucial role in regulating neuronal activity and have gained attention for their implications in cancer development, particularly in breast cancer. This study delves into the intricate connection between the multifaceted functions of Rheb1 in neurons and cancer, with a specific focus on the mTOR pathway. It aims to elucidate Rheb1's involvement in pivotal cellular processes such as proliferation, apoptosis resistance, migration, invasion, metastasis, and inflammatory responses while acknowledging that Rheb2 has not been extensively studied. Despite the recognized associations, a comprehensive understanding of the intricate interplay between Rheb1 and Rheb2 and their roles in both nerve and cancer remains elusive. This review consolidates current knowledge regarding the impact of Rheb1 on cancer hallmarks and explores the potential of Rheb1 as a therapeutic target in cancer treatment. It emphasizes the necessity for a deeper comprehension of the molecular mechanisms underlying Rheb1-mediated oncogenic processes, underscoring the existing gaps in our understanding. Additionally, the review highlights the exploration of Rheb1 inhibitors as a promising avenue for cancer therapy. By shedding light on the complicated roles between Rheb1/Rheb2 and cancer, this study provides valuable insights to the scientific community. These insights are instrumental in guiding the identification of novel targets and advancing the development of effective therapeutic strategies for treating cancer.
Collapse
Affiliation(s)
- Mostafizur Rahman
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea; (M.R.); (G.J.L.)
| | - Tuan Minh Nguyen
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea; (M.R.); (G.J.L.)
| | - Gi Jeong Lee
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea; (M.R.); (G.J.L.)
| | - Boram Kim
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea; (M.R.); (G.J.L.)
| | - Mi Kyung Park
- Department of BioHealthcare, Hwasung Medi-Science University, Hwaseong-si 18274, Republic of Korea
| | - Chang Hoon Lee
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea; (M.R.); (G.J.L.)
| |
Collapse
|
3
|
Bacigalupa ZA, Landis MD, Rathmell JC. Nutrient inputs and social metabolic control of T cell fate. Cell Metab 2024; 36:10-20. [PMID: 38118440 PMCID: PMC10872404 DOI: 10.1016/j.cmet.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/25/2023] [Accepted: 12/05/2023] [Indexed: 12/22/2023]
Abstract
Cells in multicellular organisms experience diverse neighbors, signals, and evolving physical environments that drive functional and metabolic demands. To maintain proper development and homeostasis while avoiding inappropriate cell proliferation or death, individual cells interact with their neighbors via "social" cues to share and partition available nutrients. Metabolic signals also contribute to cell fate by providing biochemical links between cell-extrinsic signals and available resources. In addition to metabolic checkpoints that sense nutrients and directly supply molecular intermediates for biosynthetic pathways, many metabolites directly signal or provide the basis for post-translational modifications of target proteins and chromatin. In this review, we survey the landscape of T cell nutrient sensing and metabolic signaling that supports proper immunity while avoiding immunodeficiency or autoimmunity. The integration of cell-extrinsic microenvironmental cues with cell-intrinsic metabolic signaling provides a social metabolic control model to integrate cell signaling, metabolism, and fate.
Collapse
Affiliation(s)
- Zachary A Bacigalupa
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Madelyn D Landis
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jeffrey C Rathmell
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
4
|
Frappaolo A, Giansanti MG. Using Drosophila melanogaster to Dissect the Roles of the mTOR Signaling Pathway in Cell Growth. Cells 2023; 12:2622. [PMID: 37998357 PMCID: PMC10670727 DOI: 10.3390/cells12222622] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/25/2023] Open
Abstract
The evolutionarily conserved target of rapamycin (TOR) serine/threonine kinase controls eukaryotic cell growth, metabolism and survival by integrating signals from the nutritional status and growth factors. TOR is the catalytic subunit of two distinct functional multiprotein complexes termed mTORC1 (mechanistic target of rapamycin complex 1) and mTORC2, which phosphorylate a different set of substrates and display different physiological functions. Dysregulation of TOR signaling has been involved in the development and progression of several disease states including cancer and diabetes. Here, we highlight how genetic and biochemical studies in the model system Drosophila melanogaster have been crucial to identify the mTORC1 and mTORC2 signaling components and to dissect their function in cellular growth, in strict coordination with insulin signaling. In addition, we review new findings that involve Drosophila Golgi phosphoprotein 3 in regulating organ growth via Rheb-mediated activation of mTORC1 in line with an emerging role for the Golgi as a major hub for mTORC1 signaling.
Collapse
Affiliation(s)
- Anna Frappaolo
- Istituto di Biologia e Patologia Molecolari del CNR, c/o Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, 00185 Roma, Italy
| | - Maria Grazia Giansanti
- Istituto di Biologia e Patologia Molecolari del CNR, c/o Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, 00185 Roma, Italy
| |
Collapse
|
5
|
Blasco-Pérez L, Iranzo-Nuez L, López-Ortega R, Martínez-Cruz D, Camprodon-Gómez M, Tenés A, Antolín M, Tizzano EF, García-Arumí E. An Integral Approach to the Molecular Diagnosis of Tuberous Sclerosis Complex: The Role of Mosaicism and Splicing Variants. J Mol Diagn 2023; 25:692-701. [PMID: 37356622 DOI: 10.1016/j.jmoldx.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/11/2023] [Accepted: 06/01/2023] [Indexed: 06/27/2023] Open
Abstract
Tuberous sclerosis complex (TSC) is an autosomal dominant genetic disorder characterized by the presence of hamartomas in multiple organs. At the molecular level, the disease is caused by pathogenic variants in the TSC1 and TSC2 genes, and only 10% to 25% of clinically diagnosed patients remain negative after multiplex ligation-dependent probe amplification and exon sequencing of both genes. Here, to improve the molecular diagnosis of TSC, we developed an integral approach that includes multiplex ligation-dependent probe amplification and deep-coverage next-generation sequencing of the entire TSC1 and TSC2 genes, along with an adapted bioinformatic pipeline to detect variants at low allele frequencies (>1%). Using this workflow, the molecular cause was identified in 29 of 42 patients with TSC, describing here, for the first time, 12 novel pathogenic variants in TSC genes. These variants included seven splicing variants, five of which were studied at the cDNA level, determining their effect on splicing. In addition, 8 of the 29 pathogenic variants were detected in mosaicism, including four patients with previous negative study results who presented extremely low mosaic variants (allele frequency, <16%). We demonstrate that this integral approach allows the molecular diagnosis of patients with TSC and improves the conventional one by adapting the technology to the detection of low-frequency mosaics.
Collapse
Affiliation(s)
- Laura Blasco-Pérez
- Department of Clinical and Molecular Genetics, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain; Medicine Genetics Group, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Leticia Iranzo-Nuez
- Department of Clinical and Molecular Genetics, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain; Medicine Genetics Group, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ricard López-Ortega
- Laboratori Clínic Institut Català de la Salut Lleida, Hospital Universitari Arnau de Vilanova, Lleida, Spain
| | - Desirée Martínez-Cruz
- Department of Clinical and Molecular Genetics, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain; Medicine Genetics Group, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - María Camprodon-Gómez
- Unit of Rare Diseases and Hereditary Metabolic Disorders, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Anna Tenés
- Department of Clinical and Molecular Genetics, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain; Medicine Genetics Group, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - María Antolín
- Department of Clinical and Molecular Genetics, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain; Medicine Genetics Group, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Eduardo F Tizzano
- Department of Clinical and Molecular Genetics, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain; Medicine Genetics Group, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain; Neuromuscular and Mitochondrial Disorders Group, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Elena García-Arumí
- Department of Clinical and Molecular Genetics, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain; Medicine Genetics Group, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain; Neuromuscular and Mitochondrial Disorders Group, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Barcelona, Spain
| |
Collapse
|
6
|
Saavedra P, Dumesic PA, Hu Y, Filine E, Jouandin P, Binari R, Wilensky SE, Rodiger J, Wang H, Chen W, Liu Y, Spiegelman BM, Perrimon N. REPTOR and CREBRF encode key regulators of muscle energy metabolism. Nat Commun 2023; 14:4943. [PMID: 37582831 PMCID: PMC10427696 DOI: 10.1038/s41467-023-40595-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 08/03/2023] [Indexed: 08/17/2023] Open
Abstract
Metabolic flexibility of muscle tissue describes the adaptive capacity to use different energy substrates according to their availability. The disruption of this ability associates with metabolic disease. Here, using a Drosophila model of systemic metabolic dysfunction triggered by yorkie-induced gut tumors, we show that the transcription factor REPTOR is an important regulator of energy metabolism in muscles. We present evidence that REPTOR is activated in muscles of adult flies with gut yorkie-tumors, where it modulates glucose metabolism. Further, in vivo studies indicate that sustained activity of REPTOR is sufficient in wildtype muscles to repress glycolysis and increase tricarboxylic acid (TCA) cycle metabolites. Consistent with the fly studies, higher levels of CREBRF, the mammalian ortholog of REPTOR, reduce glycolysis in mouse myotubes while promoting oxidative metabolism. Altogether, our results define a conserved function for REPTOR and CREBRF as key regulators of muscle energy metabolism.
Collapse
Affiliation(s)
- Pedro Saavedra
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA.
| | - Phillip A Dumesic
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Yanhui Hu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Elizabeth Filine
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Patrick Jouandin
- Institut de Recherche en Cancérologie de Montpellier, INSERM, Montpellier, France
| | - Richard Binari
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Sarah E Wilensky
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
| | - Jonathan Rodiger
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Haiyun Wang
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Weihang Chen
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Ying Liu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Bruce M Spiegelman
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA.
- Howard Hughes Medical Institute, Boston, MA, 02115, USA.
| |
Collapse
|
7
|
Friesen S, Hariharan IK. Coordinated growth of linked epithelia is mediated by the Hippo pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.26.530099. [PMID: 36993542 PMCID: PMC10054945 DOI: 10.1101/2023.02.26.530099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
An epithelium in a living organism seldom develops in isolation. Rather, most epithelia are tethered to other epithelial or non-epithelial tissues, necessitating growth coordination between layers. We investigated how two tethered epithelial layers of the Drosophila larval wing imaginal disc, the disc proper (DP) and the peripodial epithelium (PE), coordinate their growth. DP growth is driven by the morphogens Hedgehog (Hh) and Dpp, but regulation of PE growth is poorly understood. We find that the PE adapts to changes in growth rates of the DP, but not vice versa, suggesting a "leader and follower" mechanism. Moreover, PE growth can occur by cell shape changes, even when proliferation is inhibited. While Hh and Dpp pattern gene expression in both layers, growth of the DP is exquisitely sensitive to Dpp levels, while growth of the PE is not; the PE can achieve an appropriate size even when Dpp signaling is inhibited. Instead, both the growth of the PE and its accompanying cell shape changes require the activity of two components of the mechanosensitive Hippo pathway, the DNA-binding protein Scalloped (Sd) and its co-activator (Yki), which could allow the PE to sense and respond to forces generated by DP growth. Thus, an increased reliance on mechanically-dependent growth mediated by the Hippo pathway, at the expense of morphogen-dependent growth, enables the PE to evade layer-intrinsic growth control mechanisms and coordinate its growth with the DP. This provides a potential paradigm for growth coordination between different components of a developing organ.
Collapse
Affiliation(s)
- Sophia Friesen
- Department of Molecular and Cell Biology, University of California, Berkeley
| | - Iswar K. Hariharan
- Department of Molecular and Cell Biology, University of California, Berkeley
| |
Collapse
|
8
|
Scalia P, Williams SJ, Fujita-Yamaguchi Y, Giordano A. Cell cycle control by the insulin-like growth factor signal: at the crossroad between cell growth and mitotic regulation. Cell Cycle 2023; 22:1-37. [PMID: 36005738 PMCID: PMC9769454 DOI: 10.1080/15384101.2022.2108117] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
In proliferating cells and tissues a number of checkpoints (G1/S and G2/M) preceding cell division (M-phase) require the signal provided by growth factors present in serum. IGFs (I and II) have been demonstrated to constitute key intrinsic components of the peptidic active fraction of mammalian serum. In vivo genetic ablation studies have shown that the cellular signal triggered by the IGFs through their cellular receptors represents a non-replaceable requirement for cell growth and cell cycle progression. Retroactive and current evaluation of published literature sheds light on the intracellular circuitry activated by these factors providing us with a better picture of the pleiotropic mechanistic actions by which IGFs regulate both cell size and mitogenesis under developmental growth as well as in malignant proliferation. The present work aims to summarize the cumulative knowledge learned from the IGF ligands/receptors and their intracellular signaling transducers towards control of cell size and cell-cycle with particular focus to their actionable circuits in human cancer. Furthermore, we bring novel perspectives on key functional discriminants of the IGF growth-mitogenic pathway allowing re-evaluation on some of its signal components based upon established evidences.
Collapse
Affiliation(s)
- Pierluigi Scalia
- ISOPROG-Somatolink EPFP Research Network, Philadelphia, PA, USA, Caltanissetta, Italy,CST, Biology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA, United states,CONTACT Pierluigi Scalia ISOPROG-Somatolink EPFP Research Network, Philadelphia, PA9102, USA
| | - Stephen J Williams
- ISOPROG-Somatolink EPFP Research Network, Philadelphia, PA, USA, Caltanissetta, Italy,CST, Biology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA, United states
| | - Yoko Fujita-Yamaguchi
- Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Antonio Giordano
- ISOPROG-Somatolink EPFP Research Network, Philadelphia, PA, USA, Caltanissetta, Italy,School of Medical Biotechnology, University of Siena, Italy
| |
Collapse
|
9
|
Frappaolo A, Karimpour-Ghahnavieh A, Cesare G, Sechi S, Fraschini R, Vaccari T, Giansanti MG. GOLPH3 protein controls organ growth by interacting with TOR signaling proteins in Drosophila. Cell Death Dis 2022; 13:1003. [PMID: 36435842 PMCID: PMC9701223 DOI: 10.1038/s41419-022-05438-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/28/2022]
Abstract
The oncoprotein GOLPH3 (Golgi phosphoprotein 3) is an evolutionarily conserved phosphatidylinositol 4-phosphate effector, mainly localized to the Golgi apparatus, where it supports organelle architecture and vesicular trafficking. Overexpression of human GOLPH3 correlates with poor prognosis in several cancer types and is associated with enhanced signaling downstream of mTOR (mechanistic target of rapamycin). However, the molecular link between GOLPH3 and mTOR remains elusive. Studies in Drosophila melanogaster have shown that Translationally controlled tumor protein (Tctp) and 14-3-3 proteins are required for organ growth by supporting the function of the small GTPase Ras homolog enriched in the brain (Rheb) during mTORC1 (mTOR complex 1) signaling. Here we demonstrate that Drosophila GOLPH3 (dGOLPH3) physically interacts with Tctp and 14-3-3ζ. RNAi-mediated knockdown of dGOLPH3 reduces wing and eye size and enhances the phenotypes of Tctp RNAi. This phenotype is partially rescued by overexpression of Tctp, 14-3-3ζ, or Rheb. We also show that the Golgi localization of Rheb in Drosophila cells depends on dGOLPH3. Consistent with dGOLPH3 involvement in Rheb-mediated mTORC1 activation, depletion of dGOLPH3 also reduces levels of phosphorylated ribosomal S6 kinase, a downstream target of mTORC1. Finally, the autophagy flux and the expression of autophagic transcription factors of the TFEB family, which anti correlates with mTOR signaling, are compromised upon reduction of dGOLPH3. Overall, our data provide the first in vivo demonstration that GOLPH3 regulates organ growth by directly associating with mTOR signaling proteins.
Collapse
Affiliation(s)
- Anna Frappaolo
- grid.7841.aIstituto di Biologia e Patologia Molecolari del CNR, c/o Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, 00185 Roma, Italy
| | - Angela Karimpour-Ghahnavieh
- grid.7841.aIstituto di Biologia e Patologia Molecolari del CNR, c/o Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, 00185 Roma, Italy
| | - Giuliana Cesare
- grid.4708.b0000 0004 1757 2822Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy
| | - Stefano Sechi
- grid.7841.aIstituto di Biologia e Patologia Molecolari del CNR, c/o Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, 00185 Roma, Italy
| | - Roberta Fraschini
- grid.7563.70000 0001 2174 1754Dipartimento di Biotecnologie e Bioscienze, Università degli studi di Milano Bicocca, 20126 Milano, Italy
| | - Thomas Vaccari
- grid.4708.b0000 0004 1757 2822Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy
| | - Maria Grazia Giansanti
- grid.7841.aIstituto di Biologia e Patologia Molecolari del CNR, c/o Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, 00185 Roma, Italy
| |
Collapse
|
10
|
Ogienko AA, Omelina ES, Bylino OV, Batin MA, Georgiev PG, Pindyurin AV. Drosophila as a Model Organism to Study Basic Mechanisms of Longevity. Int J Mol Sci 2022; 23:11244. [PMID: 36232546 PMCID: PMC9569508 DOI: 10.3390/ijms231911244] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
The spatio-temporal regulation of gene expression determines the fate and function of various cells and tissues and, as a consequence, the correct development and functioning of complex organisms. Certain mechanisms of gene activity regulation provide adequate cell responses to changes in environmental factors. Aside from gene expression disorders that lead to various pathologies, alterations of expression of particular genes were shown to significantly decrease or increase the lifespan in a wide range of organisms from yeast to human. Drosophila fruit fly is an ideal model system to explore mechanisms of longevity and aging due to low cost, easy handling and maintenance, large number of progeny per adult, short life cycle and lifespan, relatively low number of paralogous genes, high evolutionary conservation of epigenetic mechanisms and signalling pathways, and availability of a wide range of tools to modulate gene expression in vivo. Here, we focus on the organization of the evolutionarily conserved signaling pathways whose components significantly influence the aging process and on the interconnections of these pathways with gene expression regulation.
Collapse
Affiliation(s)
- Anna A. Ogienko
- Department of Regulation of Genetic Processes, Institute of Molecular and Cellular Biology SB RAS, 630090 Novosibirsk, Russia
| | - Evgeniya S. Omelina
- Department of Regulation of Genetic Processes, Institute of Molecular and Cellular Biology SB RAS, 630090 Novosibirsk, Russia
- Laboratory of Biotechnology, Novosibirsk State Agrarian University, 630039 Novosibirsk, Russia
| | - Oleg V. Bylino
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology RAS, 119334 Moscow, Russia
| | - Mikhail A. Batin
- Open Longevity, 15260 Ventura Blvd., Sherman Oaks, Los Angeles, CA 91403, USA
| | - Pavel G. Georgiev
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology RAS, 119334 Moscow, Russia
| | - Alexey V. Pindyurin
- Department of Regulation of Genetic Processes, Institute of Molecular and Cellular Biology SB RAS, 630090 Novosibirsk, Russia
| |
Collapse
|
11
|
Pan D. The unfolding of the Hippo signaling pathway. Dev Biol 2022; 487:1-9. [PMID: 35405135 DOI: 10.1016/j.ydbio.2022.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 12/15/2022]
Abstract
The development of a functional organ requires not only patterning mechanisms that confer proper identities to individual cells, but also growth-regulatory mechanisms that specify the final size of the organ. At the turn of the 21st century, comprehensive genetic screens in model organisms had successfully uncovered the major signaling pathways that mediate pattern formation in metazoans. In contrast, signaling pathways dedicated to growth control were less explored. The past two decades has witnessed the emergence of the Hippo signaling pathway as a central mediator of organ size control through coordinated regulation of cell proliferation and apoptosis. Here I reflect on the early discoveries in Drosophila that elucidated the core kinase cascade and transcriptional machinery of the Hippo pathway, highlight its deep evolutionary conservation from humans to unicellular relatives of metazoan, and discuss the complex regulation of Hippo signaling by upstream inputs. This historical perspective underscores the importance of model organisms in uncovering fundamental and universal mechanisms of life processes.
Collapse
Affiliation(s)
- Duojia Pan
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390-9040, USA.
| |
Collapse
|
12
|
Lee WS, Baldassari S, Stephenson SEM, Lockhart PJ, Baulac S, Leventer RJ. Cortical Dysplasia and the mTOR Pathway: How the Study of Human Brain Tissue Has Led to Insights into Epileptogenesis. Int J Mol Sci 2022; 23:1344. [PMID: 35163267 PMCID: PMC8835853 DOI: 10.3390/ijms23031344] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 02/01/2023] Open
Abstract
Type II focal cortical dysplasia (FCD) is a neuropathological entity characterised by cortical dyslamination with the presence of dysmorphic neurons only (FCDIIA) or the presence of both dysmorphic neurons and balloon cells (FCDIIB). The year 2021 marks the 50th anniversary of the recognition of FCD as a cause of drug resistant epilepsy, and it is now the most common reason for epilepsy surgery. The causes of FCD remained unknown until relatively recently. The study of resected human FCD tissue using novel genomic technologies has led to remarkable advances in understanding the genetic basis of FCD. Mechanistic parallels have emerged between these non-neoplastic lesions and neoplastic disorders of cell growth and differentiation, especially through perturbations of the mammalian target of rapamycin (mTOR) signalling pathway. This narrative review presents the advances through which the aetiology of FCDII has been elucidated in chronological order, from recognition of an association between FCD and the mTOR pathway to the identification of somatic mosaicism within FCD tissue. We discuss the role of a two-hit mechanism, highlight current challenges and future directions in detecting somatic mosaicism in brain and discuss how knowledge of FCD may inform novel precision treatments of these focal epileptogenic malformations of human cortical development.
Collapse
Affiliation(s)
- Wei Shern Lee
- Bruce Lefroy Centre, Murdoch Children’s Research Institute, Parkville 3052, Australia; (W.S.L.); (S.E.M.S.); (P.J.L.)
- Department of Paediatrics, The University of Melbourne, Parkville 3052, Australia
| | - Sara Baldassari
- Institut du Cerveau-Paris Brain Institute-ICM, Sorbonne Université, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, F-75013 Paris, France;
| | - Sarah E. M. Stephenson
- Bruce Lefroy Centre, Murdoch Children’s Research Institute, Parkville 3052, Australia; (W.S.L.); (S.E.M.S.); (P.J.L.)
- Department of Paediatrics, The University of Melbourne, Parkville 3052, Australia
| | - Paul J. Lockhart
- Bruce Lefroy Centre, Murdoch Children’s Research Institute, Parkville 3052, Australia; (W.S.L.); (S.E.M.S.); (P.J.L.)
- Department of Paediatrics, The University of Melbourne, Parkville 3052, Australia
| | - Stéphanie Baulac
- Institut du Cerveau-Paris Brain Institute-ICM, Sorbonne Université, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, F-75013 Paris, France;
| | - Richard J. Leventer
- Department of Paediatrics, The University of Melbourne, Parkville 3052, Australia
- Murdoch Children’s Research Institute, Parkville 3052, Australia
- Department of Neurology, The Royal Children’s Hospital, Parkville 3052, Australia
| |
Collapse
|
13
|
Lose B, Myers A, Fondse S, Alberts I, Stamm J, Youngblom JJ, Rele CP, Reed LK. Drosophila yakuba - Tsc1. MICROPUBLICATION BIOLOGY 2021; 2021:10.17912/micropub.biology.000474. [PMID: 34786536 PMCID: PMC8590729 DOI: 10.17912/micropub.biology.000474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 12/02/2022]
Abstract
Gene Model for the ortholog of Tsc1 in the Drosophila yakuba DyakCAF1 assembly (GCA_000005975.1).
Collapse
Affiliation(s)
- Bailey Lose
- The University of Alabama, Tuscaloosa, AL USA
| | | | | | - Ian Alberts
- University of Evansville, Evansville, IN USA
| | - Joyce Stamm
- University of Evansville, Evansville, IN USA
| | | | - Chinmay P. Rele
- The University of Alabama, Tuscaloosa, AL USA,
Correspondence to: Chinmay P. Rele ()
| | | |
Collapse
|
14
|
Cai X, Fan Q, Kang GS, Grolig K, Shen X, Billings EM, Pacheco-Rodriguez G, Darling TN, Moss J. Long-Term Effects of Sirolimus on Human Skin TSC2-Null Fibroblast‒Like Cells. J Invest Dermatol 2021; 141:2291-2299.e2. [PMID: 33773987 PMCID: PMC9942268 DOI: 10.1016/j.jid.2021.02.754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/05/2021] [Accepted: 02/23/2021] [Indexed: 11/26/2022]
Abstract
Tuberous sclerosis complex (TSC) is an autosomal-dominant disorder characterized by hamartomatous tumors of the skin, kidneys, brain, and lungs. TSC is caused by mutations in the TSC1 and TSC2 genes, which result in hyperactivation of the mTOR, leading to dysregulated cell growth and autophagy. Rapamycin (sirolimus) shrinks TSC tumors, but the clinical benefits of sirolimus are not sustained after its withdrawal. In this study, we studied the cellular processes critical for tumor formation and growth, including cell proliferation and cell size. TSC2-/- and TSC2+/- cells were isolated from TSC skin tumors and normal-appearing skin, respectively. Cells were incubated with sirolimus for 72 hours. Withdrawal of sirolimus from TSC2-/- cells resulted in a highly proliferative phenotype and caused cells to enter the S phase of the cell cycle, with persistent phosphorylation of mTOR, p70 S6 kinase, ribosomal protein S6, and 4EB-P1; decreased cyclin D kinase inhibitors; and transient hyperactivation of protein kinase B. Sirolimus modulated the estrogen- and autophagy-dependent volume of TSC2-/- cells. These results suggest that sirolimus may decrease the size of TSC tumors by reducing TSC2-/- cell volume, altering the cell cycle, and reprogramming TSC2-null cells.
Collapse
Affiliation(s)
- Xiong Cai
- Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA,Hunan University of Chinese Medicine, Changsha, China
| | - Qingyuan Fan
- Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA,Department of Neurosciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Gi Soo Kang
- Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA,BNH Investment, Seoul, Republic of Korea
| | - Kelsey Grolig
- Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Xiaoyan Shen
- Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA,School of Pharmacy, Fudan University, Shanghai, China,Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Eric M. Billings
- Bioinformatics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Gustavo Pacheco-Rodriguez
- Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Thomas N. Darling
- Department of Dermatology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Joel Moss
- Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
15
|
Lose B, Myers A, Fondse S, Alberts I, Stamm J, Youngblom JJ, Rele CP, Reed LK. Drosophila yakuba - Tsc1. MICROPUBLICATION BIOLOGY 2021; 2021:10.17912/micropub.biology.000407. [PMID: 34189423 PMCID: PMC8226385 DOI: 10.17912/micropub.biology.000407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Gene Model for Tsc1 in the Drosophila yakuba's DyakCAF1 assembly (GCA_000005975.1).
Collapse
Affiliation(s)
- Bailey Lose
- The University of Alabama, Tuscaloosa, AL USA
| | | | | | - Ian Alberts
- University of Evansville, Evansville, IN USA
| | - Joyce Stamm
- University of Evansville, Evansville, IN USA
| | | | - Chinmay P. Rele
- The University of Alabama, Tuscaloosa, AL USA,
Correspondence to: Chinmay P. Rele ()
| | | |
Collapse
|
16
|
Azuma M, Ogata T, Yamazoe K, Tanaka Y, Inoue YH. Heat shock cognate 70 genes contribute to Drosophila spermatocyte growth progression possibly through the insulin signaling pathway. Dev Growth Differ 2021; 63:231-248. [PMID: 34050930 DOI: 10.1111/dgd.12734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 11/28/2022]
Abstract
Drosophila spermatocytes grow up to 25 times their original volume before the onset of male meiosis. Several insulin-like peptides and their cognate receptors (InR) are essential for the cell growth process in Drosophila. Here, we aimed to identify additional signaling pathways and other regulatory factors required for germline cell growth in Drosophila males. Spermatocyte-specific expression of the dominant-negative form of InR inhibits cell growth. Conversely, constitutively active forms of signaling factors downstream of InR suppress growth inhibition. Furthermore, hypomorphic mutations in the target of rapamycin (Tor) inhibit spermatocyte growth. These data indicate that the insulin/TOR pathway is essential for the growth of premeiotic spermatocytes. RNA interference (RNAi) screening for the identification of other novel genes associated with cell growth showed that the silencing of each of the five members of heat shock cognate 70 (Hsc70) genes significantly inhibited the process. Hsc70-silenced spermatocytes showed Akt inhibition downstream of the insulin signaling pathway. Our pleckstrin homology domain-green fluorescent protein (PH-GFP) reporter studies indicated that PI3K remained activated in Hsc70-4-silenced cells, suggesting that the Hsc70-4 protein possibly targets Akt or Pdk1 acting downstream of PI3K. Moreover, each of the Hsc70 proteins showed different subcellular localizations. Hsc70-2 exhibited cytoplasmic colocalization with Akt in spermatocytes before nuclear entry of the kinase during the growth phase. These results indicated the involvement of Hsc70 proteins in the activation of various steps in the insulin signaling pathway, which is essential for spermatocyte growth. Our findings provide insights into the mechanism(s) that enhance signal transduction to stimulate the growth of Drosophila spermatocytes.
Collapse
Affiliation(s)
- Maho Azuma
- Department of Insect Biomedical Research, Research Center for Insect Advanced Studies, Kyoto Institute of Technology, Kyoto, Japan
| | - Tsubasa Ogata
- Department of Insect Biomedical Research, Research Center for Insect Advanced Studies, Kyoto Institute of Technology, Kyoto, Japan
| | - Kanta Yamazoe
- Department of Insect Biomedical Research, Research Center for Insect Advanced Studies, Kyoto Institute of Technology, Kyoto, Japan
| | - Yuri Tanaka
- Department of Insect Biomedical Research, Research Center for Insect Advanced Studies, Kyoto Institute of Technology, Kyoto, Japan
| | - Yoshihiro H Inoue
- Department of Insect Biomedical Research, Research Center for Insect Advanced Studies, Kyoto Institute of Technology, Kyoto, Japan
| |
Collapse
|
17
|
Afify SM, Oo AKK, Hassan G, Seno A, Seno M. How can we turn the PI3K/AKT/mTOR pathway down? Insights into inhibition and treatment of cancer. Expert Rev Anticancer Ther 2021; 21:605-619. [PMID: 33857392 DOI: 10.1080/14737140.2021.1918001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: The phosphatidylinositol 3-kinase/protein kinase-B/mammalian target of rapamycin (PI3K/AKT/mTOR) pathway is a fundamental regulator of cell proliferation and survival. Dysregulation in this pathway leads to the development of cancer. Accumulating evidence indicates that dysregulation in this pathway is involved in cancer initiation, progression, and recurrence. However, the pathway consists of various signal transducing factors related with cellular events, such as transformation, tumorigenesis, cancer progression, and drug resistance. Therefore, it is very important to determine the targets in this pathway for cancer therapy. Although many drugs inhibiting this signaling pathway are in clinical trials or have been approved for treating solid tumors and hematologic malignancies, further understanding of the signaling mechanism is required to achieve better therapeutic efficacy.Areas covered: In this review, we have describe the PI3K/AKT/mTOR pathway in detail, along with its critical role in cancer stem cells, for identifying potential therapeutic targets. We also summarize the recent developments in different types of signaling inhibitors.Expert opinion: Downregulation of the PI3K/AKT/mTOR pathway is very important for treating all types of cancers. Thus, further studies are required to establish novel prognostic factors to support the current progress in cancer treatment with emphasis on this pathway.
Collapse
Affiliation(s)
- Said M Afify
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan.,Division of Biochemistry, Chemistry Department, Faculty of Science, Menoufia University, Shebin, El Kom-Menoufia, Egypt
| | - Aung Ko Ko Oo
- Department of Biotechnology, Mandalay Technological University, Mandalay, Myanmar
| | - Ghmkin Hassan
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan.,Department of Microbiology and Biochemistry, Faculty of Pharmacy, Damascus University, Damascus, Syria
| | - Akimasa Seno
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Masaharu Seno
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| |
Collapse
|
18
|
Mallela K, Kumar A. Role of TSC1 in physiology and diseases. Mol Cell Biochem 2021; 476:2269-2282. [PMID: 33575875 DOI: 10.1007/s11010-021-04088-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/27/2021] [Indexed: 12/15/2022]
Abstract
Since its initial discovery as the gene altered in Tuberous Sclerosis Complex (TSC), an autosomal dominant disorder, the interest in TSC1 (Tuberous Sclerosis Complex 1) has steadily risen. TSC1, an essential component of the pro-survival PI3K/AKT/MTOR signaling pathway, plays an important role in processes like development, cell growth and proliferation, survival, autophagy and cilia development by co-operating with a variety of regulatory molecules. Recent studies have emphasized the tumor suppressive role of TSC1 in several human cancers including liver, lung, bladder, breast, ovarian, and pancreatic cancers. TSC1 perceives inputs from various signaling pathways, including TNF-α/IKK-β, TGF-β-Smad2/3, AKT/Foxo/Bim, Wnt/β-catenin/Notch, and MTOR/Mdm2/p53 axis, thereby regulating cancer cell proliferation, metabolism, migration, invasion, and immune regulation. This review provides a first comprehensive evaluation of TSC1 and illuminates its diverse functions apart from its involvement in TSC genetic disorder. Further, we have summarized the physiological functions of TSC1 in various cellular events and conditions whose dysregulation may lead to several pathological manifestations including cancer.
Collapse
Affiliation(s)
- Karthik Mallela
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560012, India
| | - Arun Kumar
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
19
|
Prentzell MT, Rehbein U, Cadena Sandoval M, De Meulemeester AS, Baumeister R, Brohée L, Berdel B, Bockwoldt M, Carroll B, Chowdhury SR, von Deimling A, Demetriades C, Figlia G, de Araujo MEG, Heberle AM, Heiland I, Holzwarth B, Huber LA, Jaworski J, Kedra M, Kern K, Kopach A, Korolchuk VI, van 't Land-Kuper I, Macias M, Nellist M, Palm W, Pusch S, Ramos Pittol JM, Reil M, Reintjes A, Reuter F, Sampson JR, Scheldeman C, Siekierska A, Stefan E, Teleman AA, Thomas LE, Torres-Quesada O, Trump S, West HD, de Witte P, Woltering S, Yordanov TE, Zmorzynska J, Opitz CA, Thedieck K. G3BPs tether the TSC complex to lysosomes and suppress mTORC1 signaling. Cell 2021; 184:655-674.e27. [PMID: 33497611 PMCID: PMC7868890 DOI: 10.1016/j.cell.2020.12.024] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 11/03/2020] [Accepted: 12/14/2020] [Indexed: 12/22/2022]
Abstract
Ras GTPase-activating protein-binding proteins 1 and 2 (G3BP1 and G3BP2, respectively) are widely recognized as core components of stress granules (SGs). We report that G3BPs reside at the cytoplasmic surface of lysosomes. They act in a non-redundant manner to anchor the tuberous sclerosis complex (TSC) protein complex to lysosomes and suppress activation of the metabolic master regulator mechanistic target of rapamycin complex 1 (mTORC1) by amino acids and insulin. Like the TSC complex, G3BP1 deficiency elicits phenotypes related to mTORC1 hyperactivity. In the context of tumors, low G3BP1 levels enhance mTORC1-driven breast cancer cell motility and correlate with adverse outcomes in patients. Furthermore, G3bp1 inhibition in zebrafish disturbs neuronal development and function, leading to white matter heterotopia and neuronal hyperactivity. Thus, G3BPs are not only core components of SGs but also a key element of lysosomal TSC-mTORC1 signaling.
Collapse
Affiliation(s)
- Mirja Tamara Prentzell
- Brain Cancer Metabolism Group, German Consortium of Translational Cancer Research (DKTK) & German Cancer Research Center (DKFZ), Heidelberg 69120, Germany; Department of Pediatrics, Section Systems Medicine of Metabolism and Signaling, University of Groningen, University Medical Center Groningen, Groningen 9700 RB, The Netherlands; Department of Bioinformatics and Molecular Genetics (Faculty of Biology), University of Freiburg, Freiburg 79104, Germany; Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg 79104, Germany
| | - Ulrike Rehbein
- Department of Pediatrics, Section Systems Medicine of Metabolism and Signaling, University of Groningen, University Medical Center Groningen, Groningen 9700 RB, The Netherlands; Department for Neuroscience, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg 26129, Germany; Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck 6020, Austria
| | - Marti Cadena Sandoval
- Department of Pediatrics, Section Systems Medicine of Metabolism and Signaling, University of Groningen, University Medical Center Groningen, Groningen 9700 RB, The Netherlands; Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck 6020, Austria
| | - Ann-Sofie De Meulemeester
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Leuven BE-3000, Belgium
| | - Ralf Baumeister
- Department of Bioinformatics and Molecular Genetics (Faculty of Biology), University of Freiburg, Freiburg 79104, Germany; Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg 79104, Germany; Signalling Research Centres BIOSS and CIBSS & ZBMZ Center for Biochemistry and Molecular Cell Research (Faculty of Medicine), University of Freiburg, Freiburg 79104, Germany
| | - Laura Brohée
- Cell Growth Control in Health and Age-Related Disease Group, Max Planck Institute for Biology of Ageing (MPI-AGE), Cologne 50931, Germany
| | - Bianca Berdel
- Brain Cancer Metabolism Group, German Consortium of Translational Cancer Research (DKTK) & German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Mathias Bockwoldt
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø 9037, Norway
| | - Bernadette Carroll
- School of Biochemistry, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Suvagata Roy Chowdhury
- Cell Signaling and Metabolism Group, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Andreas von Deimling
- German Consortium of Translational Cancer Research (DKTK), Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany; Department of Neuropathology, Institute of Pathology, Heidelberg University, Heidelberg 69120, Germany
| | - Constantinos Demetriades
- Cell Growth Control in Health and Age-Related Disease Group, Max Planck Institute for Biology of Ageing (MPI-AGE), Cologne 50931, Germany; CECAD Cluster of Excellence, University of Cologne, Cologne 50931, Germany
| | - Gianluca Figlia
- Signal Transduction in Cancer and Metabolism, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany; Heidelberg University, Heidelberg 69120, Germany
| | | | - Alexander M Heberle
- Department of Pediatrics, Section Systems Medicine of Metabolism and Signaling, University of Groningen, University Medical Center Groningen, Groningen 9700 RB, The Netherlands; Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck 6020, Austria
| | - Ines Heiland
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø 9037, Norway
| | - Birgit Holzwarth
- Department of Bioinformatics and Molecular Genetics (Faculty of Biology), University of Freiburg, Freiburg 79104, Germany
| | - Lukas A Huber
- Institute of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria; Austrian Drug Screening Institute (ADSI), Innsbruck 6020, Austria
| | - Jacek Jaworski
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology in Warsaw, Warsaw 02-109, Poland
| | - Magdalena Kedra
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology in Warsaw, Warsaw 02-109, Poland
| | - Katharina Kern
- Brain Cancer Metabolism Group, German Consortium of Translational Cancer Research (DKTK) & German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Andrii Kopach
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology in Warsaw, Warsaw 02-109, Poland
| | - Viktor I Korolchuk
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Ineke van 't Land-Kuper
- Department of Pediatrics, Section Systems Medicine of Metabolism and Signaling, University of Groningen, University Medical Center Groningen, Groningen 9700 RB, The Netherlands; Department for Neuroscience, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg 26129, Germany
| | - Matylda Macias
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology in Warsaw, Warsaw 02-109, Poland
| | - Mark Nellist
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam 3015 GD, The Netherlands
| | - Wilhelm Palm
- Cell Signaling and Metabolism Group, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Stefan Pusch
- German Consortium of Translational Cancer Research (DKTK), Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany; Department of Neuropathology, Institute of Pathology, Heidelberg University, Heidelberg 69120, Germany
| | - Jose Miguel Ramos Pittol
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck 6020, Austria
| | - Michèle Reil
- Brain Cancer Metabolism Group, German Consortium of Translational Cancer Research (DKTK) & German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Anja Reintjes
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck 6020, Austria
| | - Friederike Reuter
- Brain Cancer Metabolism Group, German Consortium of Translational Cancer Research (DKTK) & German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Julian R Sampson
- Institute of Medical Genetics, Division of Cancer and Genetics, Cardiff University Medical School, Cardiff CF14 4AY, UK
| | - Chloë Scheldeman
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Leuven BE-3000, Belgium; Neurogenetics Research Group, VUB, Brussels 1090, Belgium
| | - Aleksandra Siekierska
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Leuven BE-3000, Belgium
| | - Eduard Stefan
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck 6020, Austria
| | - Aurelio A Teleman
- Signal Transduction in Cancer and Metabolism, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany; Heidelberg University, Heidelberg 69120, Germany
| | - Laura E Thomas
- Institute of Life Science, Swansea University, Swansea SA2 8PP, UK
| | - Omar Torres-Quesada
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck 6020, Austria
| | - Saskia Trump
- Molecular Epidemiology Unit, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin 13353, Germany
| | - Hannah D West
- Institute of Medical Genetics, Division of Cancer and Genetics, Cardiff University Medical School, Cardiff CF14 4AY, UK
| | - Peter de Witte
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Leuven BE-3000, Belgium
| | - Sandra Woltering
- Brain Cancer Metabolism Group, German Consortium of Translational Cancer Research (DKTK) & German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Teodor E Yordanov
- Institute of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria; Division of Cell and Developmental Biology, Institute for Molecular Bioscience, University of Queensland, St Lucia QLD 4072, Australia
| | - Justyna Zmorzynska
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology in Warsaw, Warsaw 02-109, Poland
| | - Christiane A Opitz
- Brain Cancer Metabolism Group, German Consortium of Translational Cancer Research (DKTK) & German Cancer Research Center (DKFZ), Heidelberg 69120, Germany; Department of Neurology, University Hospital Heidelberg and National Center for Tumor Diseases, Heidelberg 69120, Germany.
| | - Kathrin Thedieck
- Department of Pediatrics, Section Systems Medicine of Metabolism and Signaling, University of Groningen, University Medical Center Groningen, Groningen 9700 RB, The Netherlands; Department for Neuroscience, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg 26129, Germany; Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck 6020, Austria.
| |
Collapse
|
20
|
Li S, Ren C, Stone C, Chandra A, Xu J, Li N, Han C, Ding Y, Ji X, Shao G. Hamartin: An Endogenous Neuroprotective Molecule Induced by Hypoxic Preconditioning. Front Genet 2020; 11:582368. [PMID: 33193709 PMCID: PMC7556298 DOI: 10.3389/fgene.2020.582368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 09/08/2020] [Indexed: 11/23/2022] Open
Abstract
Hypoxic/ischemic preconditioning (HPC/IPC) is an innate neuroprotective mechanism in which a number of endogenous molecules are known to be involved. Tuberous sclerosis complex 1 (TSC1), also known as hamartin, is thought to be one such molecule. It is also known that hamartin is involved as a target in the rapamycin (mTOR) signaling pathway, which functions to integrate a variety of environmental triggers in order to exert control over cellular metabolism and homeostasis. Understanding the role of hamartin in ischemic/hypoxic neuroprotection will provide a novel target for the treatment of hypoxic-ischemic disease. Therefore, the proposed molecular mechanisms of this neuroprotective role and its preconditions are reviewed in this paper, with emphases on the mTOR pathway and the relationship between the expression of hamartin and DNA methylation.
Collapse
Affiliation(s)
- Sijie Li
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou, China
| | - Changhong Ren
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou, China
| | - Christopher Stone
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
| | - Ankush Chandra
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
| | - Jiali Xu
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ning Li
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Cong Han
- Department of Neurosurgery, The Fifth Medical Centre of PLA General Hospital, Beijing, China
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
| | - Xunming Ji
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Guo Shao
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou, China.,Public Health Department, Biomedicine Research Center, Basic Medical College, Baotou, China.,Baotou Medical College of Neuroscience Institute, Baotou Medical College, Baotou, China
| |
Collapse
|
21
|
Texada MJ, Koyama T, Rewitz K. Regulation of Body Size and Growth Control. Genetics 2020; 216:269-313. [PMID: 33023929 PMCID: PMC7536854 DOI: 10.1534/genetics.120.303095] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/29/2020] [Indexed: 12/20/2022] Open
Abstract
The control of body and organ growth is essential for the development of adults with proper size and proportions, which is important for survival and reproduction. In animals, adult body size is determined by the rate and duration of juvenile growth, which are influenced by the environment. In nutrient-scarce environments in which more time is needed for growth, the juvenile growth period can be extended by delaying maturation, whereas juvenile development is rapidly completed in nutrient-rich conditions. This flexibility requires the integration of environmental cues with developmental signals that govern internal checkpoints to ensure that maturation does not begin until sufficient tissue growth has occurred to reach a proper adult size. The Target of Rapamycin (TOR) pathway is the primary cell-autonomous nutrient sensor, while circulating hormones such as steroids and insulin-like growth factors are the main systemic regulators of growth and maturation in animals. We discuss recent findings in Drosophila melanogaster showing that cell-autonomous environment and growth-sensing mechanisms, involving TOR and other growth-regulatory pathways, that converge on insulin and steroid relay centers are responsible for adjusting systemic growth, and development, in response to external and internal conditions. In addition to this, proper organ growth is also monitored and coordinated with whole-body growth and the timing of maturation through modulation of steroid signaling. This coordination involves interorgan communication mediated by Drosophila insulin-like peptide 8 in response to tissue growth status. Together, these multiple nutritional and developmental cues feed into neuroendocrine hubs controlling insulin and steroid signaling, serving as checkpoints at which developmental progression toward maturation can be delayed. This review focuses on these mechanisms by which external and internal conditions can modulate developmental growth and ensure proper adult body size, and highlights the conserved architecture of this system, which has made Drosophila a prime model for understanding the coordination of growth and maturation in animals.
Collapse
Affiliation(s)
| | - Takashi Koyama
- Department of Biology, University of Copenhagen, 2100, Denmark
| | - Kim Rewitz
- Department of Biology, University of Copenhagen, 2100, Denmark
| |
Collapse
|
22
|
Mariano V, Achsel T, Bagni C, Kanellopoulos AK. Modelling Learning and Memory in Drosophila to Understand Intellectual Disabilities. Neuroscience 2020; 445:12-30. [PMID: 32730949 DOI: 10.1016/j.neuroscience.2020.07.034] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 12/24/2022]
Abstract
Neurodevelopmental disorders (NDDs) include a large number of conditions such as Fragile X syndrome, autism spectrum disorders and Down syndrome, among others. They are characterized by limitations in adaptive and social behaviors, as well as intellectual disability (ID). Whole-exome and whole-genome sequencing studies have highlighted a large number of NDD/ID risk genes. To dissect the genetic causes and underlying biological pathways, in vivo experimental validation of the effects of these mutations is needed. The fruit fly, Drosophila melanogaster, is an ideal model to study NDDs, with highly tractable genetics, combined with simple behavioral and circuit assays, permitting rapid medium-throughput screening of NDD/ID risk genes. Here, we review studies where the use of well-established assays to study mechanisms of learning and memory in Drosophila has permitted insights into molecular mechanisms underlying IDs. We discuss how technologies in the fly model, combined with a high degree of molecular and physiological conservation between flies and mammals, highlight the Drosophila system as an ideal model to study neurodevelopmental disorders, from genetics to behavior.
Collapse
Affiliation(s)
- Vittoria Mariano
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne 1005, Switzerland; Department of Human Genetics, KU Leuven, Leuven 3000, Belgium
| | - Tilmann Achsel
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne 1005, Switzerland
| | - Claudia Bagni
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne 1005, Switzerland; Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome 00133, Italy.
| | | |
Collapse
|
23
|
Lyu M, Shalitana A, Luo J, He H, Sun S, Wang P. Overexpression of the Tuberous sclerosis complex 2 (TSC2) gene inhibits goat myoblasts proliferation and differentiation in understanding the underlying mechanism of muscle development. Gene 2020; 757:144943. [PMID: 32652105 DOI: 10.1016/j.gene.2020.144943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 06/26/2020] [Accepted: 07/01/2020] [Indexed: 02/06/2023]
Abstract
The growth of animal skeletal muscle is mainly determined by the synthesis processes of total proteins in skeletal muscle cells, which has a significant impact on the postnatal growth of young animals. An increasing number of studies are focusing on the functions of Tuberous sclerosis complex 2 (TSC2) during the process of cell protein synthesis and growth. However, it is still unclear the effect of whether and how TSC2 on goat myoblasts proliferation and differentiation. Here, we found that TSC2 gene has opposite expression patterns in proliferation and differentiation of myoblasts. An expression vector containing goat TSC2 cDNA sequences linked with pcDNA3.1 plasmid was constructed. Myoblasts proliferation activity was significantly inhibited and cell cycle transition slowed down after the transfection of pcDNA3.1-TSC2 plasmid into goat primary myoblasts by EdU staining, CCK-8 and flow cytometry. Mechanically, we further confirmed that the overexpression TSC2 was able to down-regulate the mRNA and protein expression of mechanistic target of rapamycin (mTOR), p70 ribosomal S6 kinase 1 (p70S6K) and some cell cycle related genes. In addition, the expression of myogenic genes and myotube formation were attenuated. Collectively, all our results of the experiment demonstrate that TSC2 could regulate myoblasts cells proliferation and differentiation via the activation of the mTOR/p70S6K signaling pathway.
Collapse
Affiliation(s)
- Ming Lyu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Alai Shalitana
- Department of Xinjiang Institute for Cancer Research, Xinjiang Cancer Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Jun Luo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huanshan He
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuang Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ping Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
24
|
Qian J, Su S, Liu P. Experimental Approaches in Delineating mTOR Signaling. Genes (Basel) 2020; 11:E738. [PMID: 32630768 PMCID: PMC7397015 DOI: 10.3390/genes11070738] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 06/28/2020] [Accepted: 06/30/2020] [Indexed: 11/16/2022] Open
Abstract
The mTOR signaling controls essential biological functions including proliferation, growth, metabolism, autophagy, ageing, and others. Hyperactivation of mTOR signaling leads to a plethora of human disorders; thus, mTOR is an attractive drug target. The discovery of mTOR signaling started from isolation of rapamycin in 1975 and cloning of TOR genes in 1993. In the past 27 years, numerous research groups have contributed significantly to advancing our understanding of mTOR signaling and mTOR biology. Notably, a variety of experimental approaches have been employed in these studies to identify key mTOR pathway members that shape up the mTOR signaling we know today. Technique development drives mTOR research, while canonical biochemical and yeast genetics lay the foundation for mTOR studies. Here in this review, we summarize major experimental approaches used in the past in delineating mTOR signaling, including biochemical immunoprecipitation approaches, genetic approaches, immunofluorescence microscopic approaches, hypothesis-driven studies, protein sequence or motif search driven approaches, and bioinformatic approaches. We hope that revisiting these distinct types of experimental approaches will provide a blueprint for major techniques driving mTOR research. More importantly, we hope that thinking and reasonings behind these experimental designs will inspire future mTOR research as well as studies of other protein kinases beyond mTOR.
Collapse
Affiliation(s)
- Jiayi Qian
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (J.Q.); (S.S.)
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Siyuan Su
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (J.Q.); (S.S.)
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Pengda Liu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (J.Q.); (S.S.)
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
25
|
Vea IM, Shingleton AW. Network-regulated organ allometry: The developmental regulation of morphological scaling. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2020; 10:e391. [PMID: 32567243 DOI: 10.1002/wdev.391] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 04/30/2020] [Accepted: 05/23/2020] [Indexed: 12/11/2022]
Abstract
Morphological scaling relationships, or allometries, describe how traits grow coordinately and covary among individuals in a population. The developmental regulation of scaling is essential to generate correctly proportioned adults across a range of body sizes, while the mis-regulation of scaling may result in congenital birth defects. Research over several decades has identified the developmental mechanisms that regulate the size of individual traits. Nevertheless, we still have poor understanding of how these mechanisms work together to generate correlated size variation among traits in response to environmental and genetic variation. Conceptually, morphological scaling can be generated by size-regulatory factors that act directly on multiple growing traits (trait-autonomous scaling), or indirectly via hormones produced by central endocrine organs (systemically regulated scaling), and there are a number of well-established examples of such mechanisms. There is much less evidence, however, that genetic and environmental variation actually acts on these mechanisms to generate morphological scaling in natural populations. More recent studies indicate that growing organs can themselves regulate the growth of other organs in the body. This suggests that covariation in trait size can be generated by network-regulated scaling mechanisms that respond to changes in the growth of individual traits. Testing this hypothesis, and one of the main challenges of understanding morphological scaling, requires connecting mechanisms elucidated in the laboratory with patterns of scaling observed in the natural world. This article is categorized under: Establishment of Spatial and Temporal Patterns > Regulation of Size, Proportion, and Timing Comparative Development and Evolution > Organ System Comparisons Between Species.
Collapse
Affiliation(s)
- Isabelle M Vea
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Alexander W Shingleton
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
26
|
Maierbrugger KT, Sousa-Nunes R, Bateman JM. The mTOR pathway component Unkempt regulates neural stem cell and neural progenitor cell cycle in the Drosophila central nervous system. Dev Biol 2020; 461:55-65. [PMID: 31978396 DOI: 10.1016/j.ydbio.2020.01.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 11/21/2022]
Abstract
The formation of a complex nervous system requires the coordinated action of progenitor cell proliferation, differentiation and maturation. The Drosophila postembryonic central nervous system provides a powerful model for dissecting the cellular and molecular mechanisms underpinning neurogenesis. We previously identified the conserved zinc finger/RING protein Unkempt (Unk) as a key temporal regulator of neuronal differentiation in the Drosophila developing eye and showed that Unk acts downstream of the mechanistic target of rapamycin (mTOR) pathway together with its binding partner Headcase (Hdc). Here we investigate the role of Unk in Drosophila postembryonic thoracic neurogenesis. The Drosophila central nervous system contains neural stem cells, called neuroblasts, and neural progenitors, known as ganglion mother cells (GMCs). Unk is highly expressed in the central brain and ventral nerve cord but is not required to maintain neuroblast numbers or for the regulation of temporal series factor expression in neuroblasts. However, loss of Unk increases the number of neuroblasts and GMCs in S-phase of the cell cycle, resulting in the overproduction of neurons. We also show that Unk interacts with Hdc through its zinc finger domain. The zinc finger domain is required for the synergistic activity of Unk with Hdc during eye development but is not necessary for the activity of Unk in thoracic neurogenesis. Overall, this study shows that Unk and Hdc are novel negative regulators of neurogenesis in Drosophila and indicates a conserved role of mTOR signalling in nervous system development.
Collapse
Affiliation(s)
- Katja T Maierbrugger
- Maurice Wohl Clinical Neuroscience Institute, King's College London, 125 Coldharbour lane, London, SE5 9NU, UK
| | - Rita Sousa-Nunes
- Centre for Developmental Neurobiology, King's College London, New Hunts House, Newcomen Street, London, SE1 1UL, UK
| | - Joseph M Bateman
- Maurice Wohl Clinical Neuroscience Institute, King's College London, 125 Coldharbour lane, London, SE5 9NU, UK.
| |
Collapse
|
27
|
Wu YF, Li ZY, Dong LL, Li WJ, Wu YP, Wang J, Chen HP, Liu HW, Li M, Jin CL, Huang HQ, Ying SM, Li W, Shen HH, Chen ZH. Inactivation of MTOR promotes autophagy-mediated epithelial injury in particulate matter-induced airway inflammation. Autophagy 2020; 16:435-450. [PMID: 31203721 PMCID: PMC6999647 DOI: 10.1080/15548627.2019.1628536] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 05/21/2019] [Accepted: 05/30/2019] [Indexed: 12/21/2022] Open
Abstract
Particulate matter (PM) is able to induce airway epithelial injury, while the detailed mechanisms remain unclear. Here we demonstrated that PM exposure inactivated MTOR (mechanistic target of rapamycin kinase), enhanced macroautophagy/autophagy, and impaired lysosomal activity in HBE (human bronchial epithelial) cells and in mouse airway epithelium. Genetic or pharmaceutical inhibition of MTOR significantly enhanced, while inhibition of autophagy attenuated, PM-induced IL6 expression in HBE cells. Consistently, club-cell-specific deletion of Mtor aggravated, whereas loss of Atg5 in bronchial epithelium reduced, PM-induced airway inflammation. Interestingly, the augmented inflammatory responses caused by MTOR deficiency were markedly attenuated by blockage of downstream autophagy both in vitro and in vivo. Mechanistically, the dysregulation of MTOR-autophagy signaling was partially dependent on activation of upstream TSC2, and interacted with the TLR4-MYD88 to orchestrate the downstream NFKB activity and to regulate the production of inflammatory cytokines in airway epithelium. Moreover, inhibition of autophagy reduced the expression of EPS15 and the subsequent endocytosis of PM. Taken together, the present study provides a mechanistic explanation for how airway epithelium localized MTOR-autophagy axis regulates PM-induced airway injury, suggesting that activation of MTOR and/or suppression of autophagy in local airway might be effective therapeutic strategies for PM-related airway disorders.Abbreviations: ACTB: actin beta; AKT: AKT serine/threonine kinase; ALI: air liquid interface; AP2: adaptor related protein complex 2; ATG: autophagy related; BALF: bronchoalveolar lavage fluid; COPD: chronic obstructive pulmonary disease; CXCL: C-X-C motif chemokine ligand; DOX: doxycycline; EGF: epidermal growth factor; EGFR: epidermal growth factor receptor; EPS15: epidermal growth factor receptor pathway substrate 15; HBE: human bronchial epithelial; H&E: hematoxylin & eosin; IKK: IKB kinase; IL: interleukin; LAMP2: lysosomal-associated membrane protein 2; LPS: lipopolysaccharide; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; MTEC: mouse tracheal epithelial cells; MTOR: mechanistic target of rapamycin kinase; MYD88: MYD88 innate immune signal transduction adaptor; NFKB: nuclear factor of kappa B; NFKBIA: NFKB inhibitor alpha; PM: particulate matter; PtdIns3K: phosphatidylinositol 3-kinase; Rapa: rapamycin; RELA: RELA proto-oncogene, NFKB subunit; SCGB1A1: secretoglobin family 1A member 1; siRNA: small interfering RNAs; SQSTM1: sequestosome 1; TEM: transmission electronic microscopy; TLR4: toll like receptor 4; TSC2: TSC complex subunit 2.
Collapse
Affiliation(s)
- Yin-Fang Wu
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhou-Yang Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ling-Ling Dong
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wei-Jie Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yan-Ping Wu
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jing Wang
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hai-Pin Chen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hui-Wen Liu
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Miao Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ci-Liang Jin
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hua-Qiong Huang
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Song-Min Ying
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wen Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hua-Hao Shen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- State Key Lab of Respiratory Disease, Key cite of National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Zhi-Hua Chen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
28
|
Pletcher RC, Hardman SL, Intagliata SF, Lawson RL, Page A, Tennessen JM. A Genetic Screen Using the Drosophila melanogaster TRiP RNAi Collection To Identify Metabolic Enzymes Required for Eye Development. G3 (BETHESDA, MD.) 2019; 9:2061-2070. [PMID: 31036678 PMCID: PMC6643872 DOI: 10.1534/g3.119.400193] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 04/26/2019] [Indexed: 01/05/2023]
Abstract
The metabolic enzymes that compose glycolysis, the citric acid cycle, and other pathways within central carbon metabolism have emerged as key regulators of animal development. These enzymes not only generate the energy and biosynthetic precursors required to support cell proliferation and differentiation, but also moonlight as regulators of transcription, translation, and signal transduction. Many of the genes associated with animal metabolism, however, have never been analyzed in a developmental context, thus highlighting how little is known about the intersection of metabolism and development. Here we address this deficiency by using the Drosophila TRiP RNAi collection to disrupt the expression of over 1,100 metabolism-associated genes within cells of the eye imaginal disc. Our screen not only confirmed previous observations that oxidative phosphorylation serves a critical role in the developing eye, but also implicated a host of other metabolic enzymes in the growth and differentiation of this organ. Notably, our analysis revealed a requirement for glutamine and glutamate metabolic processes in eye development, thereby revealing a role of these amino acids in promoting Drosophila tissue growth. Overall, our analysis highlights how the Drosophila eye can serve as a powerful tool for dissecting the relationship between development and metabolism.
Collapse
Affiliation(s)
- Rose C Pletcher
- Department of Biology, Indiana University, 1001 East Third Street, Bloomington, IN 47405
| | - Sara L Hardman
- Department of Biology, Indiana University, 1001 East Third Street, Bloomington, IN 47405
| | - Sydney F Intagliata
- Department of Biology, Indiana University, 1001 East Third Street, Bloomington, IN 47405
| | - Rachael L Lawson
- Department of Biology, Indiana University, 1001 East Third Street, Bloomington, IN 47405
| | - Aumunique Page
- Department of Biology, Indiana University, 1001 East Third Street, Bloomington, IN 47405
| | - Jason M Tennessen
- Department of Biology, Indiana University, 1001 East Third Street, Bloomington, IN 47405
| |
Collapse
|
29
|
Shibata Y, Maruyama H, Hayashi T, Ono H, Wada Y, Fujinaga H, Fujino S, Nagasawa J, Amari S, Tsukamoto K, Ito Y. Effect and Complications of Everolimus Use for Giant Cardiac Rhabdomyomas with Neonatal Tuberous Sclerosis. AJP Rep 2019; 9:e213-e217. [PMID: 31304050 PMCID: PMC6624115 DOI: 10.1055/s-0039-1692198] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 03/05/2019] [Indexed: 12/16/2022] Open
Abstract
Most cardiac rhabdomyomas with tuberous sclerosis (TS) are asymptomatic and spontaneously regress. However, some cases require surgical intervention due to arrhythmia and severe obstruction of cardiac inflow or outflow. We report herein a neonatal case of giant cardiac rhabdomyomas with TS and insufficient pulmonary blood flow from the right ventricle. Lipoprostaglandin E1 was necessary to maintain patency of the ductus arteriosus. We used everolimus, a mammalian target of rapamycin inhibitor, to diminish the cardiac rhabdomyomas. After treatment, the rhabdomyomas shrank rapidly, but the serum concentration of everolimus increased sharply (maximum serum trough level: 76.1 ng/mL) and induced complications including pulmonary hemorrhage, liver dysfunction, and acne. After the everolimus level decreased, the complications resolved. Everolimus may be a viable treatment option for rhabdomyomas, but its concentration requires close monitoring to circumvent complications associated with its use.
Collapse
Affiliation(s)
- Yuka Shibata
- Division of Neonatology, Center for Maternal-Fetal, Neonatal and Reproductive Medicine, Setagaya, Tokyo, Japan
| | - Hidehiko Maruyama
- Division of Neonatology, Center for Maternal-Fetal, Neonatal and Reproductive Medicine, Setagaya, Tokyo, Japan
| | - Taiyu Hayashi
- Division of Cardiology, National Center for Child Health and Development, Setagaya, Tokyo, Japan
| | - Hiroshi Ono
- Division of Cardiology, National Center for Child Health and Development, Setagaya, Tokyo, Japan
| | - Yuka Wada
- Division of Neonatology, Center for Maternal-Fetal, Neonatal and Reproductive Medicine, Setagaya, Tokyo, Japan
| | - Hideshi Fujinaga
- Division of Neonatology, Center for Maternal-Fetal, Neonatal and Reproductive Medicine, Setagaya, Tokyo, Japan
| | - Shuhei Fujino
- Division of Neonatology, Center for Maternal-Fetal, Neonatal and Reproductive Medicine, Setagaya, Tokyo, Japan
| | - Junko Nagasawa
- Division of Neonatology, Center for Maternal-Fetal, Neonatal and Reproductive Medicine, Setagaya, Tokyo, Japan
| | - Shoichiro Amari
- Division of Neonatology, Center for Maternal-Fetal, Neonatal and Reproductive Medicine, Setagaya, Tokyo, Japan
| | - Keiko Tsukamoto
- Division of Neonatology, Center for Maternal-Fetal, Neonatal and Reproductive Medicine, Setagaya, Tokyo, Japan
| | - Yushi Ito
- Division of Neonatology, Center for Maternal-Fetal, Neonatal and Reproductive Medicine, Setagaya, Tokyo, Japan
| |
Collapse
|
30
|
The Tuberin and Cyclin B1 complex functions as a novel G2/M sensor of serum conditions and Akt signaling. PLoS One 2019; 14:e0210612. [PMID: 30629673 PMCID: PMC6328093 DOI: 10.1371/journal.pone.0210612] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 12/30/2018] [Indexed: 11/29/2022] Open
Abstract
A great deal of ground breaking work has determined that the Tuberin and Hamartin Complex function as a negative regulator of protein synthesis and cell cycle progression through G1/S. This is largely attributed to the GTPase activity of Tuberin that indirectly inhibits the mammalian target of rapamycin (mTOR). During times of ample nutrition Tuberin is inhibited by growth factor signaling, including direct phosphorylation by Akt/PKB, allowing for activation of mTOR and subsequent protein synthesis. It is well rationalized that maintaining homeostasis requires communication between cell growth (mTOR signaling) and cell division (cell cycle regulation), however how this occurs mechanistically has not been resolved. This work demonstrates that in the presence of high serum, and/or Akt signaling, direct binding between Tuberin and the G2/M cyclin, Cyclin B1, is stabilized and the rate of mitotic entry is decreased. Importantly, we show that this results in an increase in cell size. We propose that this represents a novel cell cycle checkpoint linking mitotic onset with the nutritional status of the cell to control cell growth.
Collapse
|
31
|
Molecular Connection Between Diabetes and Dementia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1128:103-131. [DOI: 10.1007/978-981-13-3540-2_6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
32
|
Liu J, Wu DC, Qu LH, Liao HQ, Li MX. The role of mTOR in ovarian Neoplasms, polycystic ovary syndrome, and ovarian aging. Clin Anat 2018; 31:891-898. [PMID: 29752839 DOI: 10.1002/ca.23211] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/19/2018] [Accepted: 05/08/2018] [Indexed: 12/30/2022]
Abstract
The mammalian target of rapamycin, mTOR, is a serine-threonine protein kinase downstream of the phosphatidylinositol 3-kinase (PI3K)-AKT axis. The pathway can regulate cell growth, proliferation, and survival by activating ribosomal kinases. Recent studies have implicated the mTOR signaling pathway in ovarian neoplasms, polycystic ovary syndrome (PCOS) and premature ovarian failure (POF). Preclinical investigations have demonstrated that the PI3K/AKT/mTOR pathway is frequently activated in the control of various ovarian functions. mTOR allows cancer cells to escape the normal biochemical system and regulates the balance between apoptosis and survival. Some recent studies have suggested that involvement of the mTOR signaling system is an important pathophysiological basis of PCOS. Overexpression of the mTOR pathway can impair the interaction of cumulus cells, lead to insulin resistance, and affect the growth of follicles directly. The roles of mTOR signaling in follicular development have been extensively studied in recent years; abnormalities in this process lead to a series of pathologies such as POF and infertility. To improve understanding of the role of the mTOR signaling pathway in the pathogenesis and development of ovarian diseases, here we review the roles of mTOR signaling in such diseases and discuss the corresponding therapeutic strategies that target this pathway. Clin. Anat. 31:891-898, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jin Liu
- Department of Histology and Embryology, University of South China, Institute of Clinical Anatomy & Reproductive Medicine, Hengyang, Hunan, China
| | - Dai-Chao Wu
- Department of Histology and Embryology, University of South China, Institute of Clinical Anatomy & Reproductive Medicine, Hengyang, Hunan, China
| | | | - Hong-Qing Liao
- The Second Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Mei-Xiang Li
- Department of Histology and Embryology, University of South China, Institute of Clinical Anatomy & Reproductive Medicine, Hengyang, Hunan, China
| |
Collapse
|
33
|
Abstract
One of the first structural changes in diabetic nephropathy (DN) is the renal enlargement. These changes resulted in renal hypertrophy in both glomerular and tubular cells. Shrink in the kidney size, which described as kidney atrophy resulted from the loss of nephrons or abnormal nephron function and lead to loss of the kidney function. On the other hand, increase in kidney size, which described as hypertrophy resulted from increase in proximal tubular epithelial and glomerular cells size. However overtime, tubular atrophy and tubulointerstitial fibrosis occurs as subsequent changes in tubular cell hypertrophy, which is associated with the infiltration of fibroblast cells into the tubulointerstitial space. The rate of deterioration of kidney function shows a strong correlation with the degree of tubulointerstitial fibrosis. A consequence of long-standing diabetes/hyperglycemia may lead to major changes in renal structure that occur but not specific only to nephropathy. Identifying type of cells that involves in renal atrophy and hypertrophy may help to find a therapeutic target to treat diabetic nephropathy. In summary, the early changes in diabetic kidney are mainly includes the increase in tubular basement membrane thickening which lead to renal hypertrophy. On the other hand, only renal tubule is subjected to apoptosis, which is one of the characteristic morphologic changes in diabetic kidney to form tubular atrophy at the late stage of diabetes.
Collapse
Affiliation(s)
- Samy L Habib
- a Department of Geriatric, Geriatric Research, Education, and Clinical Center , South Texas Veterans Healthcare System , San Antonio , TX.,b Department of Cell Systems and Anatomy , University of Texas Health Science Center at San Antonio , San Antonio , TX
| |
Collapse
|
34
|
Ruicci KM, Pinto N, Khan MI, Yoo J, Fung K, MacNeil D, Mymryk JS, Barrett JW, Nichols AC. ERK-TSC2 signalling in constitutively-active HRAS mutant HNSCC cells promotes resistance to PI3K inhibition. Oral Oncol 2018; 84:95-103. [PMID: 30115483 DOI: 10.1016/j.oraloncology.2018.07.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/04/2018] [Accepted: 07/16/2018] [Indexed: 02/07/2023]
Abstract
OBJECTIVES The PI3K/AKT/mTOR pathway is frequently altered in head and neck squamous cell cancer (HNSCC), making this pathway a logical therapeutic target. However, PI3K targeting is not universally effective. Biomarkers of response are needed to stratify patients likely to derive benefit and exclude those unlikely to respond. MATERIALS AND METHODS We examined the sensitivity of cell lines with constitutively-active (G12V mutant) HRAS and wild-type HRAS to PI3K inhibition using flow cytometry and cell viability assays. We then overexpressed and silenced HRAS and measured sensitivity to the PI3K inhibitor BYL719. Immunoblotting was used to determine activation of the PI3K pathway. MEK and mTOR inhibitors were then tested in HRAS mutant cells to determine their efficacy. RESULTS HRAS mutant cell lines were non-responsive to PI3K inhibition. Overexpression of HRAS led to reduced susceptibility to PI3K inhibition, while knockdown improved sensitivity. Immunoblotting revealed suppressed AKT phosphorylation upon PI3K inhibition in both wild-type and HRAS mutant cell lines, however mutant lines maintained phosphorylation of S6, downstream of mTOR. Targeting mTOR effectively reduced viability of HRAS mutant cells and we subsequently examined the ERK-TSC2-mTOR cascade as a mediator of resistance to PI3K inhibition. CONCLUSIONS HRAS mutant cells are resistant to PI3K inhibition and our findings suggest the involvement of a signalling intersection of the MAPK and PI3K pathways at the level of ERK-TSC2, leading to persistent mTOR activity. mTOR inhibition alone or in combination with MAPK pathway inhibition may be a promising therapeutic strategy for this subset of HNSCC tumors.
Collapse
Affiliation(s)
- Kara M Ruicci
- Department of Otolaryngology - Head and Neck Surgery, Schulich School of Medicine & Dentistry, Western University, 1151 Richmond St, London, ON N6A 5C1, Canada; Department of Pathology & Laboratory Medicine, Schulich School of Medicine & Dentistry, Western University, 1151 Richmond St, London, ON N6A 5C1, Canada
| | - Nicole Pinto
- Department of Otolaryngology - Head and Neck Surgery, Schulich School of Medicine & Dentistry, Western University, 1151 Richmond St, London, ON N6A 5C1, Canada
| | - Mohammed I Khan
- Department of Otolaryngology - Head and Neck Surgery, Schulich School of Medicine & Dentistry, Western University, 1151 Richmond St, London, ON N6A 5C1, Canada
| | - John Yoo
- Department of Otolaryngology - Head and Neck Surgery, Schulich School of Medicine & Dentistry, Western University, 1151 Richmond St, London, ON N6A 5C1, Canada; Department of Oncology, Schulich School of Medicine & Dentistry, Western University, 1151 Richmond St, London, ON N6A 5C1, Canada
| | - Kevin Fung
- Department of Otolaryngology - Head and Neck Surgery, Schulich School of Medicine & Dentistry, Western University, 1151 Richmond St, London, ON N6A 5C1, Canada; Department of Oncology, Schulich School of Medicine & Dentistry, Western University, 1151 Richmond St, London, ON N6A 5C1, Canada
| | - Danielle MacNeil
- Department of Otolaryngology - Head and Neck Surgery, Schulich School of Medicine & Dentistry, Western University, 1151 Richmond St, London, ON N6A 5C1, Canada; Department of Oncology, Schulich School of Medicine & Dentistry, Western University, 1151 Richmond St, London, ON N6A 5C1, Canada
| | - Joe S Mymryk
- Department of Otolaryngology - Head and Neck Surgery, Schulich School of Medicine & Dentistry, Western University, 1151 Richmond St, London, ON N6A 5C1, Canada; Department of Oncology, Schulich School of Medicine & Dentistry, Western University, 1151 Richmond St, London, ON N6A 5C1, Canada; Department of Microbiology and Immunology, Schulich School of Medicine & Dentistry, Western University, 1151 Richmond St, London, ON N6A 5C1, Canada
| | - John W Barrett
- Department of Otolaryngology - Head and Neck Surgery, Schulich School of Medicine & Dentistry, Western University, 1151 Richmond St, London, ON N6A 5C1, Canada
| | - Anthony C Nichols
- Department of Otolaryngology - Head and Neck Surgery, Schulich School of Medicine & Dentistry, Western University, 1151 Richmond St, London, ON N6A 5C1, Canada; Department of Pathology & Laboratory Medicine, Schulich School of Medicine & Dentistry, Western University, 1151 Richmond St, London, ON N6A 5C1, Canada; Department of Oncology, Schulich School of Medicine & Dentistry, Western University, 1151 Richmond St, London, ON N6A 5C1, Canada.
| |
Collapse
|
35
|
Abstract
Background The protein kinase Target Of Rapamycin (TOR) is a nexus for the regulation of eukaryotic cell growth. TOR assembles into one of two distinct signalling complexes, TOR complex 1 (TORC1) and TORC2 (mTORC1/2 in mammals), with a set of largely non-overlapping protein partners. (m)TORC1 activation occurs in response to a series of stimuli relevant to cell growth, including nutrient availability, growth factor signals and stress, and regulates much of the cell's biosynthetic activity, from proteins to lipids, and recycling through autophagy. mTORC1 regulation is of great therapeutic significance, since in humans many of these signalling complexes, alongside subunits of mTORC1 itself, are implicated in a wide variety of pathophysiologies, including multiple types of cancer, neurological disorders, neurodegenerative diseases and metabolic disorders including diabetes. Methodology Recent years have seen numerous structures determined of (m)TOR, which have provided mechanistic insight into (m)TORC1 activation in particular, however the integration of cellular signals occurs upstream of the kinase and remains incompletely understood. Here we have collected and analysed in detail as many as possible of the molecular and structural studies which have shed light on (m)TORC1 repression, activation and signal integration. Conclusions A molecular understanding of this signal integration pathway is required to understand how (m)TORC1 activation is reconciled with the many diverse and contradictory stimuli affecting cell growth. We discuss the current level of molecular understanding of the upstream components of the (m)TORC1 signalling pathway, recent progress on this key biochemical frontier, and the future studies necessary to establish a mechanistic understanding of this master-switch for eukaryotic cell growth.
Collapse
Affiliation(s)
- Kailash Ramlaul
- Section of Structural Biology, Department of Medicine, Imperial College London, SW7 2AZ, UK
| | - Christopher H S Aylett
- Section of Structural Biology, Department of Medicine, Imperial College London, SW7 2AZ, UK
| |
Collapse
|
36
|
mTORC1 accelerates retinal development via the immunoproteasome. Nat Commun 2018; 9:2502. [PMID: 29950673 PMCID: PMC6021445 DOI: 10.1038/s41467-018-04774-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 04/26/2018] [Indexed: 11/26/2022] Open
Abstract
The numbers and types of cells constituting vertebrate neural tissues are determined by cellular mechanisms that couple neurogenesis to the proliferation of neural progenitor cells. Here we identified a role of mammalian target of rapamycin complex 1 (mTORC1) in the development of neural tissue, showing that it accelerates progenitor cell cycle progression and neurogenesis in mTORC1-hyperactive tuberous sclerosis complex 1 (Tsc1)-deficient mouse retina. We also show that concomitant loss of immunoproteasome subunit Psmb9, which is induced by Stat1 (signal transducer and activator of transcription factor 1), decelerates cell cycle progression of Tsc1-deficient mouse retinal progenitor cells and normalizes retinal developmental schedule. Collectively, our results establish a developmental role for mTORC1, showing that it promotes neural development through activation of protein turnover via a mechanism involving the immunoproteasome. One of the determinants of the neuronal subtype produced from retinal progenitor cells is their proliferative potential. Here the authors show that mTORC1 promotes progenitor cell cycle progression and hence accelerated development in mouse retina through induction of the immunoproteasome which enhances the degradation of cyclins.
Collapse
|
37
|
Delarue M, Brittingham GP, Pfeffer S, Surovtsev IV, Pinglay S, Kennedy KJ, Schaffer M, Gutierrez JI, Sang D, Poterewicz G, Chung JK, Plitzko JM, Groves JT, Jacobs-Wagner C, Engel BD, Holt LJ. mTORC1 Controls Phase Separation and the Biophysical Properties of the Cytoplasm by Tuning Crowding. Cell 2018; 174:338-349.e20. [PMID: 29937223 PMCID: PMC10080728 DOI: 10.1016/j.cell.2018.05.042] [Citation(s) in RCA: 264] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/26/2018] [Accepted: 05/17/2018] [Indexed: 12/14/2022]
Abstract
Macromolecular crowding has a profound impact on reaction rates and the physical properties of the cell interior, but the mechanisms that regulate crowding are poorly understood. We developed genetically encoded multimeric nanoparticles (GEMs) to dissect these mechanisms. GEMs are homomultimeric scaffolds fused to a fluorescent protein that self-assemble into bright, stable particles of defined size and shape. By combining tracking of GEMs with genetic and pharmacological approaches, we discovered that the mTORC1 pathway can modulate the effective diffusion coefficient of particles ≥20 nm in diameter more than 2-fold by tuning ribosome concentration, without any discernable effect on the motion of molecules ≤5 nm. This change in ribosome concentration affected phase separation both in vitro and in vivo. Together, these results establish a role for mTORC1 in controlling both the mesoscale biophysical properties of the cytoplasm and biomolecular condensation.
Collapse
Affiliation(s)
- M Delarue
- Institute for Systems Genetics, New York University Langone Health, New York, NY 10016, USA
| | - G P Brittingham
- Institute for Systems Genetics, New York University Langone Health, New York, NY 10016, USA
| | - S Pfeffer
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - I V Surovtsev
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Microbial Sciences Institute, Yale West Campus, West Haven, CT 06516, USA
| | - S Pinglay
- Institute for Systems Genetics, New York University Langone Health, New York, NY 10016, USA
| | - K J Kennedy
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 95720, USA
| | - M Schaffer
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - J I Gutierrez
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 95720, USA
| | - D Sang
- Institute for Systems Genetics, New York University Langone Health, New York, NY 10016, USA
| | - G Poterewicz
- Institute for Systems Genetics, New York University Langone Health, New York, NY 10016, USA
| | - J K Chung
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 95720, USA
| | - J M Plitzko
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - J T Groves
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 95720, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - C Jacobs-Wagner
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Microbial Sciences Institute, Yale West Campus, West Haven, CT 06516, USA; Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06511, USA
| | - B D Engel
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany.
| | - L J Holt
- Institute for Systems Genetics, New York University Langone Health, New York, NY 10016, USA.
| |
Collapse
|
38
|
Insulin signaling acts in adult adipocytes via GSK-3β and independently of FOXO to control Drosophila female germline stem cell numbers. Dev Biol 2018; 440:31-39. [PMID: 29729259 DOI: 10.1016/j.ydbio.2018.04.028] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/30/2018] [Accepted: 04/30/2018] [Indexed: 12/14/2022]
Abstract
Tissue-specific stem cells are tied to the nutritional and physiological environment of adult organisms. Adipocytes have key endocrine and nutrient-sensing roles and have emerged as major players in relaying dietary information to regulate other organs. For example, previous studies in Drosophila melanogaster revealed that amino acid sensing as well as diet-dependent metabolic pathways function in adipocytes to influence the maintenance of female germline stem cells (GSCs). How nutrient-sensing pathways acting within adipocytes influence adult stem cell lineages, however, is just beginning to be elucidated. Here, we report that insulin/insulin-like growth factor signaling in adipocytes promotes GSC maintenance, early germline cyst survival, and vitellogenesis. Further, adipocytes use distinct mechanisms downstream of insulin receptor activation to control these aspects of oogenesis, all of which are independent of FOXO. We find that GSC maintenance is modulated by Akt1 through GSK-3β, early germline cyst survival is downstream of adipocyte Akt1 but independent of GSK-3β, and vitellogenesis is regulated through an Akt1-independent pathway in adipocytes. These results indicate that, in addition to employing different types of nutrient sensing, adipocytes can use distinct axes of a single nutrient-sensing pathway to regulate multiple stages of the GSC lineage in the ovary.
Collapse
|
39
|
Tang HW, Hu Y, Chen CL, Xia B, Zirin J, Yuan M, Asara JM, Rabinow L, Perrimon N. The TORC1-Regulated CPA Complex Rewires an RNA Processing Network to Drive Autophagy and Metabolic Reprogramming. Cell Metab 2018; 27:1040-1054.e8. [PMID: 29606597 PMCID: PMC6100782 DOI: 10.1016/j.cmet.2018.02.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 12/22/2017] [Accepted: 02/23/2018] [Indexed: 12/25/2022]
Abstract
Nutrient deprivation induces autophagy through inhibiting TORC1 activity. We describe a novel mechanism in Drosophila by which TORC1 regulates RNA processing of Atg transcripts and alters ATG protein levels and activities via the cleavage and polyadenylation (CPA) complex. We show that TORC1 signaling inhibits CDK8 and DOA kinases, which directly phosphorylate CPSF6, a component of the CPA complex. These phosphorylation events regulate CPSF6 localization, RNA binding, and starvation-induced alternative RNA processing of transcripts involved in autophagy, nutrient, and energy metabolism, thereby controlling autophagosome formation and metabolism. Similarly, we find that mammalian CDK8 and CLK2, a DOA ortholog, phosphorylate CPSF6 to regulate autophagy and metabolic changes upon starvation, revealing an evolutionarily conserved mechanism linking TORC1 signaling with RNA processing, autophagy, and metabolism.
Collapse
Affiliation(s)
- Hong-Wen Tang
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| | - Yanhui Hu
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Chiao-Lin Chen
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Baolong Xia
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Jonathan Zirin
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Min Yuan
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - John M Asara
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Leonard Rabinow
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA; Howard Hughes Medical Institute, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| |
Collapse
|
40
|
Nowak K, Gupta A, Stocker H. FoxO restricts growth and differentiation of cells with elevated TORC1 activity under nutrient restriction. PLoS Genet 2018; 14:e1007347. [PMID: 29677182 PMCID: PMC5931687 DOI: 10.1371/journal.pgen.1007347] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 05/02/2018] [Accepted: 03/30/2018] [Indexed: 11/19/2022] Open
Abstract
TORC1, a central regulator of cell survival, growth, and metabolism, is activated in a variety of cancers. Loss of the tumor suppressors PTEN and Tsc1/2 results in hyperactivation of TORC1. Tumors caused by the loss of PTEN, but not Tsc1/2, are often malignant and have been shown to be insensitive to nutrient restriction (NR). In Drosophila, loss of PTEN or Tsc1 results in hypertrophic overgrowth of epithelial tissues under normal nutritional conditions, and an enhanced TORC1-dependent hyperplastic overgrowth of PTEN mutant tissue under NR. Here we demonstrate that epithelial cells lacking Tsc1 or Tsc2 also acquire a growth advantage under NR. The overgrowth correlates with high TORC1 activity, and activating TORC1 downstream of Tsc1 by overexpression of Rheb is sufficient to enhance tissue growth. In contrast to cells lacking PTEN, Tsc1 mutant cells show decreased PKB activity, and the extent of Tsc1 mutant overgrowth is dependent on the loss of PKB-mediated inhibition of the transcription factor FoxO. Removal of FoxO function from Tsc1 mutant tissue induces massive hyperplasia, precocious differentiation, and morphological defects specifically under NR, demonstrating that FoxO activation is responsible for restricting overgrowth of Tsc1 mutant tissue. The activation status of FoxO may thus explain why tumors caused by the loss of Tsc1-in contrast to PTEN-rarely become malignant.
Collapse
Affiliation(s)
- Katarzyna Nowak
- Institute of Molecular Systems Biology, ETH Zürich, Auguste-Piccard-Hof 1, Zürich, Switzerland
| | - Avantika Gupta
- Institute of Molecular Systems Biology, ETH Zürich, Auguste-Piccard-Hof 1, Zürich, Switzerland
| | - Hugo Stocker
- Institute of Molecular Systems Biology, ETH Zürich, Auguste-Piccard-Hof 1, Zürich, Switzerland
- * E-mail:
| |
Collapse
|
41
|
Tee AR. The Target of Rapamycin and Mechanisms of Cell Growth. Int J Mol Sci 2018; 19:ijms19030880. [PMID: 29547541 PMCID: PMC5877741 DOI: 10.3390/ijms19030880] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/12/2018] [Accepted: 03/13/2018] [Indexed: 01/09/2023] Open
Abstract
Mammalian target of rapamycin (mTOR, now referred to as mechanistic target of rapamycin) is considered as the master regulator of cell growth. A definition of cell growth is a build-up of cellular mass through the biosynthesis of macromolecules. mTOR regulation of cell growth and cell size is complex, involving tight regulation of both anabolic and catabolic processes. Upon a growth signal input, mTOR enhances a range of anabolic processes that coordinate the biosynthesis of macromolecules to build cellular biomass, while restricting catabolic processes such as autophagy. mTOR is highly dependent on the supply of nutrients and energy to promote cell growth, where the network of signalling pathways that influence mTOR activity ensures that energy and nutrient homeostasis are retained within the cell as they grow. As well as maintaining cell size, mTOR is fundamental in the regulation of organismal growth. This review examines the complexities of how mTOR complex 1 (mTORC1) enhances the cell’s capacity to synthesis de novo proteins required for cell growth. It also describes the discovery of mTORC1, the complexities of cell growth signalling involving nutrients and energy supply, as well as the multifaceted regulation of mTORC1 to orchestrate ribosomal biogenesis and protein translation.
Collapse
Affiliation(s)
- Andrew R Tee
- Division of Cancer and Genetics, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| |
Collapse
|
42
|
Kang D, Wang D, Xu J, Quan C, Guo X, Wang H, Luo J, Yang Z, Chen S, Chen J. The InR/Akt/TORC1 Growth-Promoting Signaling Negatively Regulates JAK/STAT Activity and Migratory Cell Fate during Morphogenesis. Dev Cell 2018; 44:524-531.e5. [DOI: 10.1016/j.devcel.2018.01.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 10/06/2017] [Accepted: 01/16/2018] [Indexed: 10/18/2022]
|
43
|
|
44
|
Abstract
Lymphangioleiomyomatosis (LAM) is a rare, low-grade, metastasizing neoplasm that arises from an unknown source, spreads via the lymphatics, and targets the lungs. All pulmonary structures become infiltrated with benign-appearing spindle and epithelioid cells (LAM cells) that express smooth-muscle and melanocyte-lineage markers, harbor mTOR-activating mutations in tuberous sclerosis complex (TSC) genes, and recruit abundant stromal cells. Elaboration of lymphangiogenic growth factors and matrix remodeling enzymes by LAM cells enables their access to lymphatic channels and likely drives the cystic lung remodeling that often culminates in respiratory failure. Dysregulated cellular signaling results in a shift from oxidative phosphorylation to glycolysis as the preferred mode of energy generation, to allow for the accumulation of biomass required for cell growth and tolerance of nutrient-poor, anaerobic environments. Symptomatic LAM occurs almost exclusively in females after menarche, highlighting the central but as yet poorly understood role for sex-restricted anatomical structures and/or hormones in disease pathogenesis. LAM is an elegant model of malignancy because biallelic mutations at a single genetic locus confer all features that define cancer upon the LAM cell-metabolic reprogramming and proliferative signals that drive uncontrolled growth and inappropriate migration and invasion, the capacity to exploit the lymphatic circulation as a vehicle for metastasis and access to the lungs, and destruction of remote tissues. The direct benefit of the study of this rare disease has been the rapid identification of an effective FDA-approved therapy, and the collateral benefits have included elucidation of the pivotal roles of mTOR signaling in the regulation of cellular metabolism and the pathogenesis of cancer.
Collapse
Affiliation(s)
- Vera P Krymskaya
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Francis X McCormack
- Department of Internal Medicine, University of Cincinnati School of Medicine, Cincinnati, Ohio 45267;
| |
Collapse
|
45
|
Ren S, Huang Z, Jiang Y, Wang T. dTBC1D7 regulates systemic growth independently of TSC through insulin signaling. J Cell Biol 2017; 217:517-526. [PMID: 29187524 PMCID: PMC5800808 DOI: 10.1083/jcb.201706027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 10/10/2017] [Accepted: 11/08/2017] [Indexed: 12/31/2022] Open
Abstract
The insulin signaling pathway plays key roles in systemic growth. TBC1D7 has recently been identified as the third subunit of the tuberous sclerosis complex (TSC), a negative regulator of cell growth. Here, we used Drosophila as a model system to dissect the physiological function of TBC1D7 in vivo. In mutants lacking TBC1D7, cell and organ growth were promoted, and TBC1D7 limited cell growth in a cell-nonautonomous and TSC-independent manner. TBC1D7 is specifically expressed in insulin-producing cells in the fly brain and regulated biosynthesis and release of insulin-like peptide 2, leading to systemic growth. Furthermore, animals carrying the dTBC1D7 mutation were hypoglycemic, short-lived, and sensitive to oxidative stress. Our findings provide new insights into the physiological function of TBC1D7 in the systemic control of growth, as well as insights into human disorders caused by TBC1D7 mutation.
Collapse
Affiliation(s)
- Suxia Ren
- College of Biological Sciences, China Agricultural University, Beijing, China.,National Institute of Biological Sciences, Beijing, China
| | - Zengyi Huang
- National Institute of Biological Sciences, Beijing, China.,State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuqiang Jiang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Tao Wang
- National Institute of Biological Sciences, Beijing, China
| |
Collapse
|
46
|
Ehrlichia Activation of Wnt-PI3K-mTOR Signaling Inhibits Autolysosome Generation and Autophagic Destruction by the Mononuclear Phagocyte. Infect Immun 2017; 85:IAI.00690-17. [PMID: 28993455 DOI: 10.1128/iai.00690-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 09/29/2017] [Indexed: 01/07/2023] Open
Abstract
In multicellular organisms, autophagy is induced as an innate defense mechanism. Notably, the obligate intracellular bacterium Ehrlichia chaffeensis resides in early endosome-like vacuoles and circumvents lysosomal fusion through an unknown mechanism, thereby avoiding destruction in the autophagolysosome. In this report, we reveal that Wnt signaling plays a crucial role in inhibition of lysosomal fusion and autolysosomal destruction of ehrlichiae. During early infection, autophagosomes fuse with ehrlichial vacuoles to form an amphisome indicated by the presence of autophagy markers such as LC3 (microtubule-associated protein 1 light chain 3), Beclin-1, and p62. LC3 colocalized with ehrlichial morulae on days 1, 2, and 3 postinfection, and increased LC3II levels were detected during infection, reaching a maximal level on day 3. Ehrlichial vacuoles did not colocalize with the lysosomal marker LAMP2, and lysosomes were redistributed and dramatically reduced in level in the infected cells. An inhibitor specific for the Wnt receptor signaling component Dishevelled induced lysosomal fusion with ehrlichial inclusions corresponding to p62 degradation and promoted transcription factor EB (TFEB) nuclear localization. E. chaffeensis infection activated the phosphatidylinositol 3-kinase (PI3K)-Akt-mTOR (mechanistic target of rapamycin) pathway, and activation was induced by three ehrlichial tandem repeat protein (TRP) effectors, with TRP120 inducing the strongest activation. Moreover, induction of glycogen synthase kinase-3 (GSK3) performed using a Wnt inhibitor and small interfering RNA (siRNA) knockdown of critical components of PI3K-GSK3-mTOR signaling decreased ehrlichial survival. This report reveals Ehrlichia exploitation of the evolutionarily conserved Wnt pathway to inhibit autolysosome generation, thereby leading to evasion of this important innate immune defense mechanism.
Collapse
|
47
|
Ercan S, Şahin P, Kencebay C, Derin N, Çelik Özenci Ç. Evaluation of mTOR signaling pathway proteins in rat gastric mucosa exposed to sulfite and ghrelin. TURKISH JOURNAL OF GASTROENTEROLOGY 2017; 29:94-100. [PMID: 29082888 DOI: 10.5152/tjg.2017.17294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND/AIMS Mammalian target of rapamycin (mTOR) signaling serves as a central regulator of cell growth, proliferation, and survival. In this study, we planned to evaluate the expressions of mTOR signaling constituents (p-p70S6K, p-mTOR, and p-Tuberin) in rat gastric mucosa and to compare the results in sulfite- and sulfite+ghrelin-exposed groups. MATERIALS AND METHODS Rats were divided into three groups: the control group (C), the sodium metabisulfite (Na2S2O5) (S) group, and sulfite+ghrelin (SG) group. Sodium metabisulfite at 100 mg/kg/day was administered via gavage, and ghrelin at 20 μg/kg/day was administered intraperitoneally for 35 days. We have used immunohistochemistry for mTOR signaling pathway components. RESULTS There were no significant differences for p-p70S6K and p-mTOR expression among the C, S, and SG groups. Tuberin expression was significantly increased in the S group compared to the C group. Furthermore, tuberin expression was found to be significantly decreased in the SG group. CONCLUSION This study is the first one in the literature that shows the expression of mTOR signaling proteins in gastric mucosa of rats exposed to sulfite and ghrelin. Furthermore, it demonstrates that ghrelin treatment reduces p-Tuberin expression induced by ingested sulfite.
Collapse
Affiliation(s)
- Sevim Ercan
- Department of Medical Services and Techniques, Akdeniz University Vocational School of Health Services, Antalya, Turkey
| | - Pınar Şahin
- Department of Histology and Embryology, Akdeniz University School of Medicine, Antalya, Turkey
| | - Ceren Kencebay
- Department of Biophysics, Akdeniz University School of Medicine, Antalya, Turkey
| | - Narin Derin
- Department of Biophysics, Akdeniz University School of Medicine, Antalya, Turkey
| | - Çiler Çelik Özenci
- Department of Histology and Embryology, Akdeniz University School of Medicine, Antalya, Turkey
| |
Collapse
|
48
|
Potheraveedu VN, Schöpel M, Stoll R, Heumann R. Rheb in neuronal degeneration, regeneration, and connectivity. Biol Chem 2017; 398:589-606. [PMID: 28212107 DOI: 10.1515/hsz-2016-0312] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 02/02/2017] [Indexed: 01/31/2023]
Abstract
The small GTPase Rheb was originally detected as an immediate early response protein whose expression was induced by NMDA-dependent synaptic activity in the brain. Rheb's activity is highly regulated by its GTPase activating protein (GAP), the tuberous sclerosis complex protein, which stimulates the conversion from the active, GTP-loaded into the inactive, GDP-loaded conformation. Rheb has been established as an evolutionarily conserved molecular switch protein regulating cellular growth, cell volume, cell cycle, autophagy, and amino acid uptake. The subcellular localization of Rheb and its interacting proteins critically regulate its activity and function. In stem cells, constitutive activation of Rheb enhances differentiation at the expense of self-renewal partially explaining the adverse effects of deregulated Rheb in the mammalian brain. In the context of various cellular stress conditions such as oxidative stress, ER-stress, death factor signaling, and cellular aging, Rheb activation surprisingly enhances rather than prevents cellular degeneration. This review addresses cell type- and cell state-specific function(s) of Rheb and mainly focuses on neurons and their surrounding glial cells. Mechanisms will be discussed in the context of therapy that interferes with Rheb's activity using the antibiotic rapamycin or low molecular weight compounds.
Collapse
Affiliation(s)
- Veena Nambiar Potheraveedu
- Molecular Neurobiochemistry, Faculty of Chemistry and Biochemistry, Ruhr University of Bochum, Universitätstr. 150, D-44780 Bochum
| | - Miriam Schöpel
- Biomolecular NMR, Ruhr University of Bochum, D-44780 Bochum
| | - Raphael Stoll
- Biomolecular NMR, Ruhr University of Bochum, D-44780 Bochum
| | - Rolf Heumann
- Molecular Neurobiochemistry, Faculty of Chemistry and Biochemistry, Ruhr University of Bochum, Universitätstr. 150, D-44780 Bochum
| |
Collapse
|
49
|
Nagel R, Semenova EA, Berns A. Drugging the addict: non-oncogene addiction as a target for cancer therapy. EMBO Rep 2016; 17:1516-1531. [PMID: 27702988 PMCID: PMC5090709 DOI: 10.15252/embr.201643030] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 08/24/2016] [Indexed: 12/13/2022] Open
Abstract
Historically, cancers have been treated with chemotherapeutics aimed to have profound effects on tumor cells with only limited effects on normal tissue. This approach was followed by the development of small‐molecule inhibitors that can target oncogenic pathways critical for the survival of tumor cells. The clinical targeting of these so‐called oncogene addictions, however, is in many instances hampered by the outgrowth of resistant clones. More recently, the proper functioning of non‐mutated genes has been shown to enhance the survival of many cancers, a phenomenon called non‐oncogene addiction. In the current review, we will focus on the distinct non‐oncogenic addictions found in cancer cells, including synthetic lethal interactions, the underlying stress phenotypes, and arising therapeutic opportunities.
Collapse
Affiliation(s)
- Remco Nagel
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ekaterina A Semenova
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Anton Berns
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
50
|
Otero-Moreno D, Peña-Rangel MT, Riesgo-Escovar JR. CRECIMIENTO Y METABOLISMO: LA REGULACIÓN Y LA VÍA DE LA INSULINA DESDE LA MOSCA DE LA FRUTA, Drosophila melanogaster. TIP REVISTA ESPECIALIZADA EN CIENCIAS QUÍMICO-BIOLÓGICAS 2016. [DOI: 10.1016/j.recqb.2016.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|