1
|
Ma L, Kasula RK, Ouyang Q, Schmidt M, Morrow EM. GGA1 interacts with the endosomal Na+/H+ exchanger NHE6 governing localization to the endosome compartment. J Biol Chem 2024; 300:107552. [PMID: 39002678 PMCID: PMC11375261 DOI: 10.1016/j.jbc.2024.107552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/15/2024] Open
Abstract
Mutations in the endosomal Na+/H+ exchanger 6 (NHE6) cause Christianson syndrome, an X-linked neurological disorder. NHE6 functions in regulation of endosome acidification and maturation in neurons. Using yeast two-hybrid screening with the NHE6 carboxyl terminus as bait, we identify Golgi-associated, gamma adaptin ear-containing, ADP-ribosylation factor (ARF) binding protein 1 (GGA1) as an interacting partner for NHE6. We corroborated the NHE6-GGA1 interaction using: coimmunoprecipitation; overexpressed constructs in mammalian cells; and coimmunoprecipitation of endogenously expressed GGA1 and NHE6 from neuroblastoma cells, as well as from the mouse brain. We demonstrate that GGA1 interacts with organellar NHEs (NHE6, NHE7, and NHE9) and that there is significantly less interaction with cell-surface localized NHEs (NHE1 and NHE5). By constructing hybrid NHE1/NHE6 exchangers, we demonstrate the cytoplasmic tail of NHE6 interacts most strongly with GGA1. We demonstrate the colocalization of NHE6 and GGA1 in cultured, primary hippocampal neurons, using super-resolution microscopy. We test the hypothesis that the interaction of NHE6 and GGA1 functions in the localization of NHE6 to the endosome compartment. Using subcellular fractionation experiments, we show that NHE6 is mislocalized in GGA1 KO cells, wherein we find less NHE6 in endosomes, but more NHE6 transport to lysosomes, and more Golgi retention of NHE6, with increased exocytosis to the surface plasma membrane. Consistent with NHE6 mislocalization, and Golgi retention, we find the intraluminal pH in Golgi to be alkalinized in GGA1-null cells. Our study demonstrates a new interaction between NHE6 and GGA1 which functions in the localization of this intracellular NHE to the endosome compartment.
Collapse
Affiliation(s)
- Li Ma
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA; Center for Translational Neuroscience, Brown University, Providence, Rhode Island, USA
| | - Ravi Kiran Kasula
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA; Center for Translational Neuroscience, Brown University, Providence, Rhode Island, USA
| | - Qing Ouyang
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA; Center for Translational Neuroscience, Brown University, Providence, Rhode Island, USA
| | - Michael Schmidt
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA; Center for Translational Neuroscience, Brown University, Providence, Rhode Island, USA
| | - Eric M Morrow
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA; Center for Translational Neuroscience, Brown University, Providence, Rhode Island, USA.
| |
Collapse
|
2
|
Hsu HC, Hsu SP, Hsu FY, Chang M, Chen JA. LncRNA Litchi is a regulator for harmonizing maturity and resilient functionality in spinal motor neurons. iScience 2024; 27:109207. [PMID: 38433925 PMCID: PMC10906515 DOI: 10.1016/j.isci.2024.109207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/08/2023] [Accepted: 02/07/2024] [Indexed: 03/05/2024] Open
Abstract
Long noncoding RNAs (lncRNAs) play pivotal roles in modulating gene expression during development and disease. Despite their high expression in the central nervous system (CNS), understanding the precise physiological functions of CNS-associated lncRNAs has been challenging, largely due to the in vitro-centric nature of studies in this field. Here, utilizing mouse embryonic stem cell (ESC)-derived motor neurons (MNs), we identified an unexplored MN-specific lncRNA, Litchi (Long Intergenic RNAs in Chat Intron). By employing an "exon-only" deletion strategy in ESCs and a mouse model, we reveal that Litchi deletion profoundly impacts MN dendritic complexity, axonal growth, and altered action potential patterns. Mechanistically, voltage-gated channels and neurite growth-related genes exhibited heightened sensitivity to Litchi deletion. Our Litchi-knockout mouse model displayed compromised motor behaviors and reduced muscle strength, highlighting Litchi's critical role in motor function. This study unveils an underappreciated function of lncRNAs in orchestrating MN maturation and maintaining robust electrophysiological properties.
Collapse
Affiliation(s)
- Ho-Chiang Hsu
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Cheng Kung University and Academia Sinica, Taipei, Taiwan
| | - Sheng-Ping Hsu
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Fang-Yu Hsu
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei 10617, Taiwan
| | - Mien Chang
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Jun-An Chen
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Cheng Kung University and Academia Sinica, Taipei, Taiwan
- Neuroscience Program of Academia Sinica, Academia Sinica, Taipei, Taiwan
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
3
|
Maroofian R, Zamani M, Kaiyrzhanov R, Liebmann L, Karimiani EG, Vona B, Huebner AK, Calame DG, Misra VK, Sadeghian S, Azizimalamiri R, Mohammadi MH, Zeighami J, Heydaran S, Toosi MB, Akhondian J, Babaei M, Hashemi N, Schnur RE, Suri M, Setzke J, Wagner M, Brunet T, Grochowski CM, Emrick L, Chung WK, Hellmich UA, Schmidts M, Lupski JR, Galehdari H, Severino M, Houlden H, Hübner CA. Biallelic variants in SLC4A10 encoding a sodium-dependent bicarbonate transporter lead to a neurodevelopmental disorder. Genet Med 2024; 26:101034. [PMID: 38054405 PMCID: PMC11157690 DOI: 10.1016/j.gim.2023.101034] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 12/07/2023] Open
Abstract
PURPOSE SLC4A10 encodes a plasma membrane-bound transporter, which mediates Na+-dependent HCO3- import, thus mediating net acid extrusion. Slc4a10 knockout mice show collapsed brain ventricles, an increased seizure threshold, mild behavioral abnormalities, impaired vision, and deafness. METHODS Utilizing exome/genome sequencing in families with undiagnosed neurodevelopmental disorders and international data sharing, 11 patients from 6 independent families with biallelic variants in SLC4A10 were identified. Clinico-radiological and dysmorphology assessments were conducted. A minigene assay, localization studies, intracellular pH recordings, and protein modeling were performed to study the possible functional consequences of the variant alleles. RESULTS The families harbor 8 segregating ultra-rare biallelic SLC4A10 variants (7 missense and 1 splicing). Phenotypically, patients present with global developmental delay/intellectual disability and central hypotonia, accompanied by variable speech delay, microcephaly, cerebellar ataxia, facial dysmorphism, and infrequently, epilepsy. Neuroimaging features range from some non-specific to distinct neuroradiological findings, including slit ventricles and a peculiar form of bilateral curvilinear nodular heterotopia. In silico analyses showed 6 of 7 missense variants affect evolutionarily conserved residues. Functional analyses supported the pathogenicity of 4 of 7 missense variants. CONCLUSION We provide evidence that pathogenic biallelic SLC4A10 variants can lead to neurodevelopmental disorders characterized by variable abnormalities of the central nervous system, including altered brain ventricles, thus resembling several features observed in knockout mice.
Collapse
Affiliation(s)
- Reza Maroofian
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom.
| | - Mina Zamani
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran; Narges Medical Genetics and Prenatal Diagnosis Laboratory, Kianpars, Ahvaz, Iran
| | - Rauan Kaiyrzhanov
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Lutz Liebmann
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller Universität, Am Klinikum 1, Jena, Germany
| | - Ehsan Ghayoor Karimiani
- Molecular and Clinical Sciences Institute, St. George's, University of London, Cranmer Terrace, London, United Kingdom
| | - Barbara Vona
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany; Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Antje K Huebner
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller Universität, Am Klinikum 1, Jena, Germany
| | - Daniel G Calame
- Division of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX; Texas Children's Hospital, Houston, TX; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Vinod K Misra
- Division of Genetic, Genomic & Metabolic Disorders, Discipline of Pediatrics, College of Medicine, Central Michigan University, Mount Pleasant, MI
| | - Saeid Sadeghian
- Department of Pediatric Neurology, Golestan Medical, Educational, and Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Azizimalamiri
- Department of Pediatric Neurology, Golestan Medical, Educational, and Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Jawaher Zeighami
- Narges Medical Genetics and Prenatal Diagnosis Laboratory, Kianpars, Ahvaz, Iran
| | - Sogand Heydaran
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mehran Beiraghi Toosi
- Pediatric Neurology Department, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran; Neuroscience Research Center, Mashhad University of Medical Science, Mashhad, Iran
| | - Javad Akhondian
- Pediatric Neurology Department, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meisam Babaei
- Department of Pediatrics, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Narges Hashemi
- Department of Pediatrics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mohnish Suri
- Clinical Genetics Service, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Jonas Setzke
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany; Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Matias Wagner
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany; Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany; Department of Pediatric Neurology and Developmental Medicine and LMU Center for Children with Medical Complexity, Dr. von Hauner Children's Hospital, LMU Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Theresa Brunet
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany; Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | | | - Lisa Emrick
- Division of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX; Texas Children's Hospital, Houston, TX; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Wendy K Chung
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Ute A Hellmich
- Friedrich Schiller University Jena, Faculty of Chemistry and Earth Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, Jena, Germany; Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University, Frankfurt, Germany; Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| | - Miriam Schmidts
- Pediatrics Genetics Division, Center for Pediatrics and Adolescent Medicine, Faculty of Medicine, Freiburg University, Freiburg, Germany; Genome Research Division, Human Genetics Department, Radboud University Medical Center, Nijmegen, The Netherlands; CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - James R Lupski
- Texas Children's Hospital, Houston, TX; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Hamid Galehdari
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | | | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Christian A Hübner
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller Universität, Am Klinikum 1, Jena, Germany; Center for Rare Diseases, Jena University Hospital, Jena, Germany
| |
Collapse
|
4
|
Ma L, Kasula RK, Ouyang Q, Schmidt M, Morrow EM. GGA1 interacts with the endosomal Na+/H+ Exchanger NHE6 governing localization to the endosome compartment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.08.565997. [PMID: 37986849 PMCID: PMC10659387 DOI: 10.1101/2023.11.08.565997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Mutations in the endosomal Na+/H+ exchanger (NHE6) cause Christianson syndrome (CS), an X-linked neurological disorder. Previous studies have shown that NHE6 functions in regulation of endosome acidification and maturation in neurons. Using yeast two-hybrid screening with the NHE6 carboxyl-terminus as bait, we identify Golgi-associated, Gamma adaptin ear containing, ARF binding protein 1 (GGA1) as an interacting partner for NHE6. We corroborated the NHE6-GGA1 interaction using co-immunoprecipitation (co-IP): using over-expressed constructs in mammalian cells; and co-IP of endogenously-expressed GGA1 and NHE6 from neuroblastoma cells, as well as from mouse brain. We demonstrate that GGA1 interacts with organellar NHEs (NHE6, NHE7 and NHE9) but not with cell-surface localized NHEs (NHE1 and NHE5). By constructing hybrid NHE1/NHE6 exchangers, we demonstrate that the cytoplasmic tail of NHE6 is necessary and sufficient for interactions with GGA1. We demonstrate the co-localization of NHE6 and GGA1 in cultured, primary hippocampal neurons, using super-resolution microscopy. We test the hypothesis that the interaction of NHE6 and GGA1 functions in the localization of NHE6 to the endosome compartment. Using subcellular fractionation experiments, we show that NHE6 is mis-localized in GGA1 knockout cells wherein we find less NHE6 in endosomes but more NHE6 transport to lysosomes, and more Golgi retention of NHE6 with increased exocytosis to the surface plasma membrane. Consistent with NHE6 mis-localization, and Golgi retention, we find the intra-luminal pH in Golgi to be alkalinized. Our study demonstrates a new interaction between NHE6 and GGA1 which functions in the localization of this intra-cellular NHE to the endosome compartment.
Collapse
|
5
|
Solis EM, Good LB, Vázquez RG, Patnaik S, Hernandez-Reynoso AG, Ma Q, Angulo G, Dobariya A, Cogan SF, Pancrazio JJ, Pascual JM, Jakkamsetti V. Isolation of the murine Glut1 deficient thalamocortical circuit: wavelet characterization and reverse glucose dependence of low and gamma frequency oscillations. Front Neurosci 2023; 17:1191492. [PMID: 37829723 PMCID: PMC10565352 DOI: 10.3389/fnins.2023.1191492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/25/2023] [Indexed: 10/14/2023] Open
Abstract
Glucose represents the principal brain energy source. Thus, not unexpectedly, genetic glucose transporter 1 (Glut1) deficiency (G1D) manifests with encephalopathy. G1D seizures, which constitute a prominent disease manifestation, often prove refractory to medications but may respond to therapeutic diets. These seizures are associated with aberrant thalamocortical oscillations as inferred from human electroencephalography and functional imaging. Mouse electrophysiological recordings indicate that inhibitory neuron failure in thalamus and cortex underlies these abnormalities. This provides the motivation to develop a neural circuit testbed to characterize the mechanisms of thalamocortical synchronization and the effects of known or novel interventions. To this end, we used mouse thalamocortical slices on multielectrode arrays and characterized spontaneous low frequency oscillations and less frequent 30-50 Hz or gamma oscillations under near-physiological bath glucose concentration. Using the cortical recordings from layer IV among other regions recorded, we quantified oscillation epochs via an automated wavelet-based algorithm. This method proved analytically superior to power spectral density, short-time Fourier transform or amplitude-threshold detection. As expected from human observations, increased bath glucose reduced the lower frequency oscillations while augmenting the gamma oscillations, likely reflecting strengthened inhibitory neuron activity, and thus decreasing the low:high frequency ratio (LHR). This approach provides an ex vivo method for the evaluation of mechanisms, fuels, and pharmacological agents in a crucial G1D epileptogenic circuit.
Collapse
Affiliation(s)
- Elysandra M. Solis
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, United States
| | - Levi B. Good
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, United States
- Rare Brain Disorders Program, The University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Neurology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Rafael Granja Vázquez
- Department of Neuroscience and the Center for Advanced Pain Studies, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Sourav Patnaik
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, United States
| | | | - Qian Ma
- Rare Brain Disorders Program, The University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Neurology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Gustavo Angulo
- Rare Brain Disorders Program, The University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Neurology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Aksharkumar Dobariya
- Rare Brain Disorders Program, The University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Neurology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Stuart F. Cogan
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, United States
| | - Joseph J. Pancrazio
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, United States
| | - Juan M. Pascual
- Rare Brain Disorders Program, The University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Neurology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, TX, United States
- Eugene McDermott Center for Human Growth & Development/Center for Human Genetics, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Vikram Jakkamsetti
- Rare Brain Disorders Program, The University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Neurology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
6
|
Holling T, Brylka L, Scholz T, Bierhals T, Herget T, Meinecke P, Schinke T, Oheim R, Kutsche K. TMCO3, a Putative K + :Proton Antiporter at the Golgi Apparatus, Is Important for Longitudinal Growth in Mice and Humans. J Bone Miner Res 2023; 38:1334-1349. [PMID: 37554015 DOI: 10.1002/jbmr.4827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 04/27/2023] [Accepted: 05/07/2023] [Indexed: 08/10/2023]
Abstract
Isolated short stature, defined as short stature without any other abnormalities, is a common heterogeneous condition in children. Exome sequencing identified the homozygous nonsense variant c.1832G>A/p.(Trp611*) in TMCO3 in two sisters with isolated short stature. Radiological studies, biochemical measurements, assessment of the skeletal status, and three-dimensional bone microarchitecture revealed no relevant skeletal and bone abnormalities in both sisters. The homozygous TMCO3 variant segregated with short stature in the family. TMCO3 transcript levels were reduced by ~50% in leukocyte-derived RNA of both sisters compared with controls, likely due to nonsense-mediated mRNA decay. In primary urinary cells of heterozygous family members, we detected significantly reduced TMCO3 protein levels. TMCO3 is functionally uncharacterized. We ectopically expressed wild-type TMCO3 in HeLa and ATDC5 chondrogenic cells and detected TMCO3 predominantly at the Golgi apparatus, whereas the TMCO3W611* mutant did not reach the Golgi. Coordinated co-expression of TMCO3W611* -HA and EGFP in HeLa cells confirmed intrinsic instability and/or degradation of the mutant. Tmco3 is expressed in all relevant mouse skeletal cell types. Highest abundance of Tmco3 was found in chondrocytes of the prehypertrophic zone in mouse and minipig growth plates where it co-localizes with a Golgi marker. Knockdown of Tmco3 in differentiated ATDC5 cells caused reduced and increased expression of Pthlh and Ihh, respectively. Measurement of long bones in Tmco3tm1b(KOMP)Wtsi knockout mice revealed significant shortening of forelimbs and hindlimbs. TMCO3 is a potential member of the monovalent cation:proton antiporter 2 (CPA2) family. By in silico tools and homology modeling, TMCO3 is predicted to have an N-terminal secretory signal peptide, forms a dimer localized to the membrane, and is organized in a dimerization and a core domain. The core domain contains the CPA2 motif essential for K+ binding and selectivity. Collectively, our data demonstrate that loss of TMCO3 causes growth defects in both humans and mice. © 2023 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Tess Holling
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Laura Brylka
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tasja Scholz
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tatjana Bierhals
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Theresia Herget
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Peter Meinecke
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ralf Oheim
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kerstin Kutsche
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
7
|
Solis EM, Good LB, Granja Vázquez R, Patnaik S, Hernandez-Reynoso AG, Ma Q, Angulo G, Dobariya A, Cogan SF, Pancrazio JJ, Pascual JM, Jakkamsetti V. Isolation of the murine Glut1 deficient thalamocortical circuit: wavelet characterization and reverse glucose dependence of low and gamma frequency oscillations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.05.543611. [PMID: 37645928 PMCID: PMC10461930 DOI: 10.1101/2023.06.05.543611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Glucose represents the principal brain energy source. Thus, not unexpectedly, genetic glucose transporter 1 (Glut1) deficiency (G1D) manifests with encephalopathy. G1D seizures, which constitute a prominent disease manifestation, often prove refractory to medications but may respond to therapeutic diets. These seizures are associated with aberrant thalamocortical oscillations as inferred from human electroencephalography and functional imaging. Mouse electrophysiological recordings indicate that inhibitory neuron failure in thalamus and cortex underlies these abnormalities. This provides the motivation to develop a neural circuit testbed to characterize the mechanisms of thalamocortical synchronization and the effects of known or novel interventions. To this end, we used mouse thalamocortical slices on multielectrode arrays and characterized spontaneous low frequency oscillations and less frequent 30-50 Hz or gamma oscillations under near-physiological bath glucose concentration. Using the cortical recordings from layer IV, we quantified oscillation epochs via an automated wavelet-based algorithm. This method proved analytically superior to power spectral density, short-time Fourier transform or amplitude-threshold detection. As expected from human observations, increased bath glucose reduced the lower frequency oscillations while augmenting the gamma oscillations, likely reflecting strengthened inhibitory neuron activity. This approach provides an ex vivo method for the evaluation of mechanisms, fuels, and pharmacological agents in a crucial G1D epileptogenic circuit.
Collapse
Affiliation(s)
- Elysandra M. Solis
- Department of Bioengineering; The University of Texas at Dallas, Richardson, Texas, USA
| | - Levi B. Good
- Department of Bioengineering; The University of Texas at Dallas, Richardson, Texas, USA
- Rare Brain Disorders Program, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Neurology; The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Rafael Granja Vázquez
- Department of Bioengineering; The University of Texas at Dallas, Richardson, Texas, USA
| | - Sourav Patnaik
- Department of Bioengineering; The University of Texas at Dallas, Richardson, Texas, USA
| | | | - Qian Ma
- Rare Brain Disorders Program, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Neurology; The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Gustavo Angulo
- Rare Brain Disorders Program, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Neurology; The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Aksharkumar Dobariya
- Rare Brain Disorders Program, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Neurology; The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Stuart F. Cogan
- Department of Bioengineering; The University of Texas at Dallas, Richardson, Texas, USA
| | - Joseph J. Pancrazio
- Department of Bioengineering; The University of Texas at Dallas, Richardson, Texas, USA
| | - Juan M. Pascual
- Rare Brain Disorders Program, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Neurology; The University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Physiology; The University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Pediatrics; The University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Eugene McDermott Center for Human Growth & Development / Center for Human Genetics; The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Vikram Jakkamsetti
- Department of Bioengineering; The University of Texas at Dallas, Richardson, Texas, USA
- Rare Brain Disorders Program, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
8
|
Yeo XY, Lim YT, Chae WR, Park C, Park H, Jung S. Alterations of presynaptic proteins in autism spectrum disorder. Front Mol Neurosci 2022; 15:1062878. [DOI: 10.3389/fnmol.2022.1062878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 10/31/2022] [Indexed: 11/19/2022] Open
Abstract
The expanded use of hypothesis-free gene analysis methods in autism research has significantly increased the number of genetic risk factors associated with the pathogenesis of autism. A further examination of the implicated genes directly revealed the involvement in processes pertinent to neuronal differentiation, development, and function, with a predominant contribution from the regulators of synaptic function. Despite the importance of presynaptic function in synaptic transmission, the regulation of neuronal network activity, and the final behavioral output, there is a relative lack of understanding of the presynaptic contribution to the pathology of autism. Here, we will review the close association among autism-related mutations, autism spectrum disorders (ASD) phenotypes, and the altered presynaptic protein functions through a systematic examination of the presynaptic risk genes relating to the critical stages of synaptogenesis and neurotransmission.
Collapse
|
9
|
Nikolovska K, Seidler UE, Stock C. The Role of Plasma Membrane Sodium/Hydrogen Exchangers in Gastrointestinal Functions: Proliferation and Differentiation, Fluid/Electrolyte Transport and Barrier Integrity. Front Physiol 2022; 13:899286. [PMID: 35665228 PMCID: PMC9159811 DOI: 10.3389/fphys.2022.899286] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/19/2022] [Indexed: 12/11/2022] Open
Abstract
The five plasma membrane Na+/H+ exchanger (NHE) isoforms in the gastrointestinal tract are characterized by distinct cellular localization, tissue distribution, inhibitor sensitivities, and physiological regulation. NHE1 (Slc9a1) is ubiquitously expressed along the gastrointestinal tract in the basolateral membrane of enterocytes, but so far, an exclusive role for NHE1 in enterocyte physiology has remained elusive. NHE2 (Slc9a2) and NHE8 (Slc9a8) are apically expressed isoforms with ubiquitous distribution along the colonic crypt axis. They are involved in pHi regulation of intestinal epithelial cells. Combined use of a knockout mouse model, intestinal organoid technology, and specific inhibitors revealed previously unrecognized actions of NHE2 and NHE8 in enterocyte proliferation and differentiation. NHE3 (Slc9a3), expressed in the apical membrane of differentiated intestinal epithelial cells, functions as the predominant nutrient-independent Na+ absorptive mechanism in the gut. The new selective NHE3 inhibitor (Tenapanor) allowed discovery of novel pathophysiological and drug-targetable NHE3 functions in cystic-fibrosis associated intestinal obstructions. NHE4, expressed in the basolateral membrane of parietal cells, is essential for parietal cell integrity and acid secretory function, through its role in cell volume regulation. This review focuses on the expression, regulation and activity of the five plasma membrane Na+/H+ exchangers in the gastrointestinal tract, emphasizing their role in maintaining intestinal homeostasis, or their impact on disease pathogenesis. We point to major open questions in identifying NHE interacting partners in central cellular pathways and processes and the necessity of determining their physiological role in a system where their endogenous expression/activity is maintained, such as organoids derived from different parts of the gastrointestinal tract.
Collapse
|
10
|
Gao AYL, Lourdin-De Filippis E, Orlowski J, McKinney RA. Roles of Endomembrane Alkali Cation/Proton Exchangers in Synaptic Function and Neurodevelopmental Disorders. Front Physiol 2022; 13:892196. [PMID: 35547574 PMCID: PMC9081726 DOI: 10.3389/fphys.2022.892196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/30/2022] [Indexed: 12/25/2022] Open
Abstract
Endomembrane alkali cation (Na+, K+)/proton (H+) exchangers (eNHEs) are increasingly associated with neurological disorders. These eNHEs play integral roles in regulating the luminal pH, processing, and trafficking of cargo along the secretory (Golgi and post-Golgi vesicles) and endocytic (early, recycling, and late endosomes) pathways, essential regulatory processes vital for neuronal development and plasticity. Given the complex morphology and compartmentalization of multipolar neurons, the contribution of eNHEs in maintaining optimal pH homeostasis and cargo trafficking is especially significant during periods of structural and functional development and remodeling. While the importance of eNHEs has been demonstrated in a variety of non-neuronal cell types, their involvement in neuronal function is less well understood. In this review, we will discuss their emerging roles in excitatory synaptic function, particularly as it pertains to cellular learning and remodeling. We will also explore their connections to neurodevelopmental conditions, including intellectual disability, autism, and attention deficit hyperactivity disorders.
Collapse
Affiliation(s)
- Andy Y L Gao
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada.,Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada
| | | | - John Orlowski
- Department of Physiology, McGill University, Montreal, QC, Canada
| | - R Anne McKinney
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada
| |
Collapse
|
11
|
Nwia SM, Li XC, Leite APDO, Hassan R, Zhuo JL. The Na +/H + Exchanger 3 in the Intestines and the Proximal Tubule of the Kidney: Localization, Physiological Function, and Key Roles in Angiotensin II-Induced Hypertension. Front Physiol 2022; 13:861659. [PMID: 35514347 PMCID: PMC9062697 DOI: 10.3389/fphys.2022.861659] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/25/2022] [Indexed: 01/29/2023] Open
Abstract
The sodium (Na+)/hydrogen (H+) exchanger 3 (NHE3) is one of the most important Na+/H+ antiporters in the small intestines of the gastrointestinal tract and the proximal tubules of the kidney. The roles of NHE3 in the regulation of intracellular pH and acid-base balance have been well established in cellular physiology using in vitro techniques. Localized primarily on the apical membranes in small intestines and proximal tubules, the key action of NHE3 is to facilitate the entry of luminal Na+ and the extrusion of intracellular H+ from intestinal and proximal tubule tubular epithelial cells. NHE3 is, directly and indirectly, responsible for absorbing the majority of ingested Na+ from small and large intestines and reabsorbing >50% of filtered Na+ in the proximal tubules of the kidney. However, the roles of NHE3 in the regulation of proximal tubular Na+ transport in the integrative physiological settings and its contributions to the basal blood pressure regulation and angiotensin II (Ang II)-induced hypertension have not been well studied previously due to the lack of suitable animal models. Recently, novel genetically modified mouse models with whole-body, kidney-specific, or proximal tubule-specific deletion of NHE3 have been generated by us and others to determine the critical roles and underlying mechanisms of NHE3 in maintaining basal body salt and fluid balance, blood pressure homeostasis, and the development of Ang II-induced hypertension at the whole-body, kidney, or proximal tubule levels. The objective of this invited article is to review, update, and discuss recent findings on the critical roles of intestinal and proximal tubule NHE3 in maintaining basal blood pressure homeostasis and their potential therapeutic implications in the development of angiotensin II (Ang II)-dependent hypertension.
Collapse
Affiliation(s)
- Sarah M. Nwia
- Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA, United States,Department of Physiology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Xiao Chun Li
- Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA, United States,Department of Physiology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Ana Paula de Oliveira Leite
- Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA, United States,Department of Physiology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Rumana Hassan
- Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA, United States,Department of Physiology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Jia Long Zhuo
- Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA, United States,Department of Physiology, Tulane University School of Medicine, New Orleans, LA, United States,*Correspondence: Jia Long Zhuo,
| |
Collapse
|
12
|
Phillips HN, Tormoehlen L. Toxin-Induced Seizures ∗Adapted from “Toxin-Induced Seizures” in Neurologic Clinics, November 2020. Emerg Med Clin North Am 2022; 40:417-430. [DOI: 10.1016/j.emc.2022.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Salvati KA, Souza GMPR, Lu AC, Ritger ML, Guyenet P, Abbott SB, Beenhakker MP. Respiratory alkalosis provokes spike-wave discharges in seizure-prone rats. eLife 2022; 11:e72898. [PMID: 34982032 PMCID: PMC8860449 DOI: 10.7554/elife.72898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 01/03/2022] [Indexed: 12/13/2022] Open
Abstract
Hyperventilation reliably provokes seizures in patients diagnosed with absence epilepsy. Despite this predictable patient response, the mechanisms that enable hyperventilation to powerfully activate absence seizure-generating circuits remain entirely unknown. By utilizing gas exchange manipulations and optogenetics in the WAG/Rij rat, an established rodent model of absence epilepsy, we demonstrate that absence seizures are highly sensitive to arterial carbon dioxide, suggesting that seizure-generating circuits are sensitive to pH. Moreover, hyperventilation consistently activated neurons within the intralaminar nuclei of the thalamus, a structure implicated in seizure generation. We show that intralaminar thalamus also contains pH-sensitive neurons. Collectively, these observations suggest that hyperventilation activates pH-sensitive neurons of the intralaminar nuclei to provoke absence seizures.
Collapse
Affiliation(s)
- Kathryn A Salvati
- Department of Pharmacology, University of VirginiaCharlottesvilleUnited States
- Neuroscience Graduate Program, University of VirginiaCharlottesvilleUnited States
| | - George MPR Souza
- Department of Pharmacology, University of VirginiaCharlottesvilleUnited States
| | - Adam C Lu
- Department of Pharmacology, University of VirginiaCharlottesvilleUnited States
- Neuroscience Graduate Program, University of VirginiaCharlottesvilleUnited States
| | - Matthew L Ritger
- Department of Pharmacology, University of VirginiaCharlottesvilleUnited States
- Neuroscience Graduate Program, University of VirginiaCharlottesvilleUnited States
| | - Patrice Guyenet
- Department of Pharmacology, University of VirginiaCharlottesvilleUnited States
| | - Stephen B Abbott
- Department of Pharmacology, University of VirginiaCharlottesvilleUnited States
| | - Mark P Beenhakker
- Department of Pharmacology, University of VirginiaCharlottesvilleUnited States
| |
Collapse
|
14
|
Abdelaal MS, Midorikawa M, Suzuki T, Kobayashi K, Takata N, Miyata M, Mimura M, Tanaka KF. OUP accepted manuscript. Brain Commun 2022; 4:fcac010. [PMID: 35243344 PMCID: PMC8887905 DOI: 10.1093/braincomms/fcac010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/02/2021] [Accepted: 01/25/2022] [Indexed: 11/13/2022] Open
Abstract
Spike-and-wave discharges and an accompanying loss of consciousness are hallmarks of absence seizure, which is a childhood generalized epilepsy disorder. In absence seizure, dysfunction of the cortico-thalamo-cortico circuitry is thought to engage in abnormal cortical rhythms. Previous studies demonstrated that the thalamic reticular nucleus has a critical role in the formation of normal cortical rhythms; however, whether thalamic reticular nucleus dysfunction leads directly to abnormal rhythms, such as epilepsy, is largely unknown. We found that expressing the inhibitory opsin, archaerhodopsin, including in the thalamic reticular nucleus, caused abnormal cortical rhythms in Pvalb-tetracycline transactivator::tetO-ArchT (PV-ArchT) double transgenic mice. We validated the PV-ArchT line as a new mouse model of absence seizure through physiological and pharmacological analyses, as well as through examining their behavioural features. We then discovered that archaerhodopsin expression exclusively in thalamic reticular nucleus parvalbumin-positive neurons was sufficient to induce cortical spike-and-wave discharges using adeno-associated virus-mediated thalamic reticular nucleus targeting. Furthermore, we found that archaerhodopsin expression impaired rebound burst firing and T-current in thalamic reticular nucleus parvalbumin-positive cells by slice physiology. Although T-current in the thalamic reticular nucleus was impaired, the T-current blocker ethosuximide still had a therapeutic effect in PV-ArchT mice, suggesting a gain of function of T-type calcium channels in this absence seizure model. However, we did not find any over- or misexpression of T-type calcium channel genes in the thalamus or the cortex. Thus, we demonstrated that thalamic reticular nucleus dysfunction led to an absence seizure-like phenotype in mice. In a final set of experiments, we showed that the archaerhodopsin-mediated absence seizure-like phenotype disappeared after the removal of archaerhodopsin by using a time-controllable transgenic system. These data may provide a hint as to why many absence seizures naturally regress.
Collapse
Affiliation(s)
- Manal S. Abdelaal
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Mitsuharu Midorikawa
- Division of Neurophysiology, Department of Physiology, School of Medicine, Tokyo Women’s Medical University, Tokyo 162-8666, Japan
| | - Toru Suzuki
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kenta Kobayashi
- Section of Viral Vector Development, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
| | - Norio Takata
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Mariko Miyata
- Division of Neurophysiology, Department of Physiology, School of Medicine, Tokyo Women’s Medical University, Tokyo 162-8666, Japan
| | - Masaru Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kenji F. Tanaka
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo 160-8582, Japan
- Correspondence to: Kenji F. Tanaka, MD, PhD Division of Brain Sciences, Institute for Advanced Medical Research Keio University School of Medicine 35 Shinanomachi Shinjuku-ku Tokyo 160-8582, Japan E-mail:
| |
Collapse
|
15
|
New Insights into the Critical Importance of Intratubular Na +/H + Exchanger 3 and Its Potential Therapeutic Implications in Hypertension. Curr Hypertens Rep 2021; 23:34. [PMID: 34110521 DOI: 10.1007/s11906-021-01152-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2021] [Indexed: 01/08/2023]
Abstract
PURPOSE OF REVIEW The sodium (Na+) and hydrogen (H+) exchanger 3 (NHE3), known as solute carrier family 9 member 3 (SLC9A3), mediates active transcellular Na+ and bicarbonate reabsorption in the small intestine of the gut and proximal tubules of the kidney. The purpose of this article is to review and discuss recent findings on the critical roles of intestinal and proximal tubule NHE3 in maintaining basal blood pressure (BP) homeostasis and their potential therapeutic implications in the development of angiotensin II (Ang II)-dependent hypertension. RECENT FINDINGS Recently, our and other laboratories have generated or used novel genetically modified mouse models with whole-body, kidney-specific, or proximal tubule-specific deletion of NHE3 to determine the critical roles and underlying mechanisms of NHE3 in maintaining basal BP homeostasis and the development of Ang II-induced hypertension at the whole-body, kidney, or proximal tubule levels. The new findings demonstrate that NHE3 contributes to about 10 to 15 mmHg to basal blood pressure levels, and that deletion of NHE3 at the whole-kidney or proximal tubule level, or pharmacological inhibition of NHE3 at the kidney level with an orally absorbable NHE3 inhibitor AVE-0657, attenuates ~ 50% of Ang II-induced hypertension in mice. The results support the proof-of-concept hypothesis that NHE3 plays critical roles in physiologically maintaining normal BP and in the development of Ang II-dependent hypertension. Our results also strongly suggest that NHE3 in the proximal tubules of the kidney may be therapeutically targeted to treat poorly controlled hypertension in humans.
Collapse
|
16
|
Martínez-Rojas VA, Salinas-Abarca AB, Gómez-Víquez NL, Granados-Soto V, Mercado F, Murbartián J. Interaction of NHE1 and TRPA1 Activity in DRG Neurons Isolated from Adult Rats and its Role in Inflammatory Nociception. Neuroscience 2021; 465:154-165. [PMID: 33957206 DOI: 10.1016/j.neuroscience.2021.04.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/01/2021] [Accepted: 04/21/2021] [Indexed: 01/07/2023]
Abstract
Transient receptor potential ankyrin 1 (TRPA1) channel is expressed in a subset of nociceptive neurons. This channel integrates several nociceptive signals. Particularly, it is modulated by intracellular pH (pHi). Na+/H+ exchanger 1 (NHE1) contributes to the maintenance of pHi in nociceptors. However, it is currently unknown whether the interaction between TRPA1 and NHE1 contributes to the nociceptive processing. Thus, the purpose of this study was to assess the functional interaction between NHE1 and TRPA1 in small dorsal root ganglion (DRG) neurons from primary culture obtained from adult rats. Moreover, we also evaluated their possible interaction in acute and inflammatory pain. Zoniporide (selective NHE1 inhibitor) reduced pHi and increased intracellular calcium in a concentration-dependent fashion in DRG neurons. Zoniporide and allyl isothiocyanate (AITC, TRPA1 agonist) increased calcium transients in the same DRG neuron, whereas that A-967079 (TRPA1 antagonist) prevented the effect of zoniporide in DRG neurons. Repeated AITC induced TRPA1 desensitization and this effect was prevented by zoniporide. Both NHE1 and TRPA1 were localized at the membrane surface of DRG neurons in culture. Local peripheral zoniporide enhanced AITC-induced pronociception and this effect was prevented by A-967079. Likewise, zoniporide potentiated Complete Freund's Adjuvant (CFA)-induced hypersensitivity, effect which was prevented by A-967079 in vivo. CFA paw injection increased TRPA1 and decresed NHE1 protein expression in DRG. These results suggest a functional interaction between NHE1 and TRPA1 in DRG neurons in vitro. Moreover, data suggest that this interaction participates in acute and inflamatory pain conditions in vivo.
Collapse
Affiliation(s)
| | - Ana B Salinas-Abarca
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico
| | | | - Vinicio Granados-Soto
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico
| | - Francisco Mercado
- Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Janet Murbartián
- Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico.
| |
Collapse
|
17
|
Role of Genetic Mutations of the Na +/H + Exchanger Isoform 1, in Human Disease and Protein Targeting and Activity. Mol Cell Biochem 2020; 476:1221-1232. [PMID: 33201382 DOI: 10.1007/s11010-020-03984-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/06/2020] [Indexed: 01/22/2023]
Abstract
The mammalian Na+/H+ exchanger isoform one (NHE1) is a plasma membrane protein that is ubiquitously present in human cells. It functions to regulate intracellular pH removing an intracellular proton in exchange for one extracellular sodium and is involved in heart disease and in promoting metastasis in cancer. It is made of a 500 amino acid membrane domain plus a 315 amino acid, regulatory cytosolic tail. The membrane domain is thought to have 12 transmembrane segments and a large membrane-associated extracellular loop. Early studies demonstrated that in mice, disruption of the NHE1 gene results in locomotor ataxia and a phenotype of slow-wave epilepsy. Defects included a progressive neuronal degeneration. Growth and reproductive ability were also reduced. Recent studies have identified human autosomal homozygous recessive mutations in the NHE1 gene (SLC9A1) that result in impaired development, ataxia and other severe defects, and explain the cause of the human disease Lichtenstein-Knorr syndrome. Other human mutations have been identified that are stop codon polymorphisms. These cause short non-functional NHE1 proteins, while other genetic polymorphisms in the NHE1 gene cause impaired expression of the NHE1 protein, reduced activity, enhanced protein degradation or altered kinetic activation of the protein. Since NHE1 plays a key role in many human physiological functions and in human disease, genetic polymorphisms of the protein that significantly alter its function and are likely play significant roles in varying human phenotypes and be involved in disease.
Collapse
|
18
|
Jafarian M, Esmaeil Alipour M, Karimzadeh F. Experimental Models of Absence Epilepsy. Basic Clin Neurosci 2020; 11:715-726. [PMID: 33850609 PMCID: PMC8019851 DOI: 10.32598/bcn.11.6.731.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/10/2019] [Accepted: 11/30/2019] [Indexed: 11/27/2022] Open
Abstract
Introduction: Absence epilepsy is a brief non-convulsive seizure associated with sudden abruptness in consciousness. Because of the unpredictable occurrence of absence seizures and the ethical issues of human investigation on the pathogenesis and drug assessment, researchers tend to study animal models. This paper aims to review the advantages and disadvantages of several animal models of nonconvulsive induced seizure. Methods: The articles that were published since 1990 were assessed. The publications that used genetic animals were analyzed, too. Besides, we reviewed possible application methods of each model, clinical types of seizures induced, purposed mechanism of epileptogenesis, their validity, and relevance to the absence epileptic patients. Results: The number of studies that used genetic models of absence epilepsy from years of 2000 was noticeably more than pharmacological models. Genetic animal models have a close correlation of electroencephalogram features and epileptic behaviors to the human condition. Conclusion: The validity of genetic models of absence epilepsy would motivate the researchers to focus on genetic modes in their studies. As there are some differences in the pathophysiology of absence epilepsy between animal models and humans, the development of new animal models is necessary to understand better the epileptogenic process and, or discover novel therapies for this disorder.
Collapse
Affiliation(s)
- Maryam Jafarian
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Mdical Sciences, Tehran, Iran.,Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Mohammad Esmaeil Alipour
- Department of Neurosciences and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fariba Karimzadeh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Bocker HT, Heinrich T, Liebmann L, Hennings JC, Seemann E, Gerth M, Jakovčevski I, Preobraschenski J, Kessels MM, Westermann M, Isbrandt D, Jahn R, Qualmann B, Hübner CA. The Na+/H+ Exchanger Nhe1 Modulates Network Excitability via GABA Release. Cereb Cortex 2020; 29:4263-4276. [PMID: 30541023 DOI: 10.1093/cercor/bhy308] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 11/12/2018] [Accepted: 11/13/2018] [Indexed: 01/06/2023] Open
Abstract
Brain functions are extremely sensitive to pH changes because of the pH-dependence of proteins involved in neuronal excitability and synaptic transmission. Here, we show that the Na+/H+ exchanger Nhe1, which uses the Na+ gradient to extrude H+, is expressed at both inhibitory and excitatory presynapses. We disrupted Nhe1 specifically in mice either in Emx1-positive glutamatergic neurons or in parvalbumin-positive cells, mainly GABAergic interneurons. While Nhe1 disruption in excitatory neurons had no effect on overall network excitability, mice with disruption of Nhe1 in parvalbumin-positive neurons displayed epileptic activity. From our electrophysiological analyses in the CA1 of the hippocampus, we conclude that the disruption in parvalbumin-positive neurons impairs the release of GABA-loaded vesicles, but increases the size of GABA quanta. The latter is most likely an indirect pH-dependent effect, as Nhe1 was not expressed in purified synaptic vesicles itself. Conclusively, our data provide first evidence that Nhe1 affects network excitability via modulation of inhibitory interneurons.
Collapse
Affiliation(s)
- Hartmut T Bocker
- Institute of Human Genetics, Jena University Hospital, 07747 Jena, Germany
| | - Theresa Heinrich
- Department GMP Cell and Gene Therapy, Fraunhofer Institute for Cell Therapy and Immunology IZI, 04103 Leipzig, Germany
| | - Lutz Liebmann
- Institute of Human Genetics, Jena University Hospital, 07747 Jena, Germany
| | | | - Eric Seemann
- Institute of Biochemistry I, Jena University Hospital, 07743 Jena, Germany
| | - Melanie Gerth
- Institute of Human Genetics, Jena University Hospital, 07747 Jena, Germany
| | - Igor Jakovčevski
- Institute for Molecular and Behavioral Neuroscience, University of Cologne, 50937 Cologne, Germany, and German Center for Neurodegenerative Diseases (DZNE), 53175 Bonn, Germany
| | - Julia Preobraschenski
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Michael M Kessels
- Institute of Biochemistry I, Jena University Hospital, 07743 Jena, Germany
| | - Martin Westermann
- Electron Microscopy Center, Jena University Hospital, 07747 Jena, Germany
| | - Dirk Isbrandt
- Institute for Molecular and Behavioral Neuroscience, University of Cologne, 50937 Cologne, Germany, and German Center for Neurodegenerative Diseases (DZNE), 53175 Bonn, Germany
| | - Reinhard Jahn
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Britta Qualmann
- Institute of Biochemistry I, Jena University Hospital, 07743 Jena, Germany
| | - Christian A Hübner
- Institute of Human Genetics, Jena University Hospital, 07747 Jena, Germany
| |
Collapse
|
20
|
Abstract
New toxins are emerging all the time. In this article, the authors review common toxins that cause seizure, their mechanisms, associated toxidromes, and treatments. Stimulants, cholinergic agents, gamma-aminobutyric acid antagonists, glutamate agonists, histamine and adenosine antagonists, and withdrawal states are highlighted. Understanding current mechanisms for common toxin-induced seizures can promote understanding for future toxins and predicting if seizure may occur as a result of toxicity.
Collapse
Affiliation(s)
- Haley N Phillips
- Department of Neurology, Indiana University, Indiana University Neuroscience Center, 355 West 16th Street, Suite 4700, Indianapolis, IN 46202, USA.
| | - Laura Tormoehlen
- Department of Neurology, Indiana University, Indiana University Neuroscience Center, 355 West 16th Street, Suite 4700, Indianapolis, IN 46202, USA; Department of Emergency Medicine-Toxicology, Indiana University, Indiana University Neuroscience Center, 355 West 16th Street, Suite 4700, Indianapolis, IN 46202, USA
| |
Collapse
|
21
|
Liu CL, Liu X, Wang Y, Deng Z, Liu T, Sukhova GK, Wojtkiewicz GR, Tang R, Zhang JY, Achilefu S, Nahrendorf M, Libby P, Wang X, Shi GP. Reduced Nhe1 (Na +-H + Exchanger-1) Function Protects ApoE-Deficient Mice From Ang II (Angiotensin II)-Induced Abdominal Aortic Aneurysms. Hypertension 2020; 76:87-100. [PMID: 32475310 DOI: 10.1161/hypertensionaha.119.14485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
IgE-mediated activation of Nhe1 (Na+-H+ exchanger-1) induces aortic cell extracellular acidification and promotes cell apoptosis. A pH-sensitive probe pHrodo identified acidic regions at positions of macrophage accumulation, IgE expression, and cell apoptosis in human and mouse abdominal aortic aneurysm (AAA) lesions. Ang II (angiotensin II)-induced AAA in Nhe1-insufficient Apoe-/-Nhe1+/- mice and Apoe-/-Nhe1+/+ littermates tested Nhe1 activity in experimental AAA, because Nhe1-/- mice develop ataxia and epileptic-like seizures and die early. Nhe1 insufficiency reduced AAA incidence and size, lesion macrophage and T-cell accumulation, collagen deposition, elastin fragmentation, cell apoptosis, smooth muscle cell loss, and MMP (matrix metalloproteinase) activity. Nhe1 insufficiency also reduced blood pressure and the plasma apoptosis marker TCTP (translationally controlled tumor protein) but did not affect plasma IgE. While pHrodo localized the acidic regions to macrophage clusters, IgE expression, and cell apoptosis in AAA lesions from Apoe-/-Nhe1+/+ mice, such acidic areas were much smaller in lesions from Apoe-/-Nhe1+/- mice. Nhe1-FcεR1 colocalization in macrophages from AAA lesions support a role of IgE-mediated Nhe1 activation. Gelatin zymography, immunoblot, and real-time polymerase chain reaction analyses demonstrated that Nhe1 insufficiency reduced the MMP activity, cysteinyl cathepsin expression, IgE-induced apoptosis, and NF-κB activation in macrophages and blocked IgE-induced adhesion molecule expression in endothelial cells. A near-infrared fluorescent probe (LS662) together with fluorescence reflectance imaging of intact aortas showed reduced acidity in AAA lesions from Nhe-1-insufficient mice. This study revealed extracellular acidity at regions rich in macrophages, IgE expression, and cell apoptosis in human and mouse AAA lesions and established a direct role of Nhe1 in AAA pathogenesis.
Collapse
Affiliation(s)
- Cong-Lin Liu
- From the Department of Cardiology, Institute of Clinical Medicine, the First Affiliated Hospital of Zhengzhou University, China (C.-L.L., Y.W., J.-Y.Z., X.W., G.-P.S.).,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (C.-L.L., X.L., Y.W., Z.D., T.L., G.K.S., P.L., G.-P.S.)
| | - Xin Liu
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (C.-L.L., X.L., Y.W., Z.D., T.L., G.K.S., P.L., G.-P.S.)
| | - Yunzhe Wang
- From the Department of Cardiology, Institute of Clinical Medicine, the First Affiliated Hospital of Zhengzhou University, China (C.-L.L., Y.W., J.-Y.Z., X.W., G.-P.S.).,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (C.-L.L., X.L., Y.W., Z.D., T.L., G.K.S., P.L., G.-P.S.)
| | - Zhiyong Deng
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (C.-L.L., X.L., Y.W., Z.D., T.L., G.K.S., P.L., G.-P.S.)
| | - Tianxiao Liu
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (C.-L.L., X.L., Y.W., Z.D., T.L., G.K.S., P.L., G.-P.S.)
| | - Galina K Sukhova
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (C.-L.L., X.L., Y.W., Z.D., T.L., G.K.S., P.L., G.-P.S.)
| | - Gregory R Wojtkiewicz
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston (G.R.W., M.N.)
| | - Rui Tang
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO (R.T., S.A.)
| | - Jin-Ying Zhang
- From the Department of Cardiology, Institute of Clinical Medicine, the First Affiliated Hospital of Zhengzhou University, China (C.-L.L., Y.W., J.-Y.Z., X.W., G.-P.S.)
| | - Samuel Achilefu
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO (R.T., S.A.)
| | - Matthias Nahrendorf
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (C.-L.L., X.L., Y.W., Z.D., T.L., G.K.S., P.L., G.-P.S.)
| | - Peter Libby
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (C.-L.L., X.L., Y.W., Z.D., T.L., G.K.S., P.L., G.-P.S.)
| | - Xiaofang Wang
- From the Department of Cardiology, Institute of Clinical Medicine, the First Affiliated Hospital of Zhengzhou University, China (C.-L.L., Y.W., J.-Y.Z., X.W., G.-P.S.)
| | - Guo-Ping Shi
- From the Department of Cardiology, Institute of Clinical Medicine, the First Affiliated Hospital of Zhengzhou University, China (C.-L.L., Y.W., J.-Y.Z., X.W., G.-P.S.).,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (C.-L.L., X.L., Y.W., Z.D., T.L., G.K.S., P.L., G.-P.S.)
| |
Collapse
|
22
|
Pedersen SF, Counillon L. The SLC9A-C Mammalian Na +/H + Exchanger Family: Molecules, Mechanisms, and Physiology. Physiol Rev 2019; 99:2015-2113. [PMID: 31507243 DOI: 10.1152/physrev.00028.2018] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Na+/H+ exchangers play pivotal roles in the control of cell and tissue pH by mediating the electroneutral exchange of Na+ and H+ across cellular membranes. They belong to an ancient family of highly evolutionarily conserved proteins, and they play essential physiological roles in all phyla. In this review, we focus on the mammalian Na+/H+ exchangers (NHEs), the solute carrier (SLC) 9 family. This family of electroneutral transporters constitutes three branches: SLC9A, -B, and -C. Within these, each isoform exhibits distinct tissue expression profiles, regulation, and physiological roles. Some of these transporters are highly studied, with hundreds of original articles, and some are still only rudimentarily understood. In this review, we present and discuss the pioneering original work as well as the current state-of-the-art research on mammalian NHEs. We aim to provide the reader with a comprehensive view of core knowledge and recent insights into each family member, from gene organization over protein structure and regulation to physiological and pathophysiological roles. Particular attention is given to the integrated physiology of NHEs in the main organ systems. We provide several novel analyses and useful overviews, and we pinpoint main remaining enigmas, which we hope will inspire novel research on these highly versatile proteins.
Collapse
Affiliation(s)
- S F Pedersen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark; and Université Côte d'Azur, CNRS, Laboratoire de Physiomédecine Moléculaire, LP2M, France, and Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| | - L Counillon
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark; and Université Côte d'Azur, CNRS, Laboratoire de Physiomédecine Moléculaire, LP2M, France, and Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| |
Collapse
|
23
|
Janzen E, Wolff L, Mendoza-Ferreira N, Hupperich K, Delle Vedove A, Hosseinibarkooie S, Kye MJ, Wirth B. PLS3 Overexpression Delays Ataxia in Chp1 Mutant Mice. Front Neurosci 2019; 13:993. [PMID: 31607845 PMCID: PMC6761326 DOI: 10.3389/fnins.2019.00993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/03/2019] [Indexed: 11/25/2022] Open
Abstract
Many neurodegenerative disorders share common pathogenic pathways such as endocytic defects, Ca2+ misregulation and defects in actin dynamics. Factors acting on these shared pathways are highly interesting as a therapeutic target. Plastin 3 (PLS3), a proven protective modifier of spinal muscular atrophy across species, is a remarkable example of the former, and thereby offers high potential as a cross-disease modifier. Importantly, PLS3 has been linked to numerous proteins associated with various neurodegenerative diseases. Among them, PLS3 directly interacts with calcineurin like EF-hand protein 1 (CHP1), whose loss-of-function results in ataxia. In this study, we aimed to determine whether PLS3 is a cross-disease modifier for ataxia caused by Chp1 mutation in mice. For this purpose, we generated Chp1 mutant mice, named vacillator mice, overexpressing a PLS3 transgene. Here, we show that PLS3 overexpression (OE) delays the ataxic phenotype of the vacillator mice at an early but not later disease stage. Furthermore, we demonstrated that PLS3 OE ameliorates axon hypertrophy and axonal swellings in Purkinje neurons thereby slowing down neurodegeneration. Mechanistically, we found that PLS3 OE in the cerebellum shows a trend of increased membrane targeting and/or expression of Na+/H+ exchanger (NHE1), an important CHP1 binding partner and a causative gene for ataxia, when mutated in humans and mice. This data supports the hypothesis that PLS3 is a cross-disease genetic modifier for CHP1-causing ataxia and spinal muscular atrophy.
Collapse
Affiliation(s)
- Eva Janzen
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, University of Cologne, Cologne, Germany
| | - Lisa Wolff
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, University of Cologne, Cologne, Germany
| | - Natalia Mendoza-Ferreira
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, University of Cologne, Cologne, Germany
| | - Kristina Hupperich
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, University of Cologne, Cologne, Germany
| | - Andrea Delle Vedove
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, University of Cologne, Cologne, Germany
| | - Seyyedmohsen Hosseinibarkooie
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, University of Cologne, Cologne, Germany
| | - Min Jeong Kye
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, University of Cologne, Cologne, Germany
| | - Brunhilde Wirth
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, University of Cologne, Cologne, Germany.,Center for Rare Diseases Cologne, Institute for Genetics, University of Cologne, Cologne, Germany
| |
Collapse
|
24
|
Liu CL, Zhang X, Liu J, Wang Y, Sukhova GK, Wojtkiewicz GR, Liu T, Tang R, Achilefu S, Nahrendorf M, Libby P, Guo J, Zhang JY, Shi GP. Na +-H + exchanger 1 determines atherosclerotic lesion acidification and promotes atherogenesis. Nat Commun 2019; 10:3978. [PMID: 31484936 PMCID: PMC6726618 DOI: 10.1038/s41467-019-11983-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 08/15/2019] [Indexed: 01/25/2023] Open
Abstract
The pH in atherosclerotic lesions varies between individuals. IgE activates macrophage Na+-H+ exchanger (Nhe1) and induces extracellular acidification and cell apoptosis. Here, we show that the pH-sensitive pHrodo probe localizes the acidic regions in atherosclerotic lesions to macrophages, IgE, and cell apoptosis. In Apoe-/- mice, Nhe1-deficiency or anti-IgE antibody reduces atherosclerosis and blocks lesion acidification. Reduced atherosclerosis in Apoe-/- mice receiving bone marrow from Nhe1- or IgE receptor FcεR1-deficient mice, blunted foam cell formation and signaling in IgE-activated macrophages from Nhe1-deficient mice, immunocomplex formation of Nhe1 and FcεR1 in IgE-activated macrophages, and Nhe1-FcεR1 colocalization in atherosclerotic lesion macrophages support a role of IgE-mediated macrophage Nhe1 activation in atherosclerosis. Intravenous administration of a near-infrared fluorescent pH-sensitive probe LS662, followed by coregistered fluorescent molecular tomography-computed tomography imaging, identifies acidic regions in atherosclerotic lesions in live mice, ushering a non-invasive and radiation-free imaging approach to monitor atherosclerotic lesions in live subjects.
Collapse
Affiliation(s)
- Cong-Lin Liu
- Department of Cardiology, Institute of Clinical Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Xian Zhang
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Jing Liu
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Yunzhe Wang
- Department of Cardiology, Institute of Clinical Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Galina K Sukhova
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Gregory R Wojtkiewicz
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Tianxiao Liu
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Rui Tang
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Samuel Achilefu
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Matthias Nahrendorf
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Peter Libby
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Junli Guo
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
- Key Laboratory of Emergency and Trauma of Ministry of Education, Institute of Cardiovascular Research of the First Affiliated Hospital, Hainan Medical University, 571199,, Haikou, China.
| | - Jin-Ying Zhang
- Department of Cardiology, Institute of Clinical Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Guo-Ping Shi
- Department of Cardiology, Institute of Clinical Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
- Key Laboratory of Emergency and Trauma of Ministry of Education, Institute of Cardiovascular Research of the First Affiliated Hospital, Hainan Medical University, 571199,, Haikou, China.
| |
Collapse
|
25
|
Structural and Functional Changes in the Na +/H + Exchanger Isoform 1, Induced by Erk1/2 Phosphorylation. Int J Mol Sci 2019; 20:ijms20102378. [PMID: 31091671 PMCID: PMC6566726 DOI: 10.3390/ijms20102378] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 12/15/2022] Open
Abstract
The human Na+/H+ exchanger isoform 1 (NHE1) is a plasma membrane transport protein that plays an important role in pH regulation in mammalian cells. Because of the generation of protons by intermediary metabolism as well as the negative membrane potential, protons accumulate within the cytosol. Extracellular signal-regulated kinase (ERK)-mediated regulation of NHE1 is important in several human pathologies including in the myocardium in heart disease, as well as in breast cancer as a trigger for growth and metastasis. NHE1 has a N-terminal, a 500 amino acid membrane domain, and a C-terminal 315 amino acid cytosolic domain. The C-terminal domain regulates the membrane domain and its effects on transport are modified by protein binding and phosphorylation. Here, we discuss the physiological regulation of NHE1 by ERK, with an emphasis on the critical effects on structure and function. ERK binds directly to the cytosolic domain at specific binding domains. ERK also phosphorylates NHE1 directly at multiple sites, which enhance NHE1 activity with subsequent downstream physiological effects. The NHE1 cytosolic regulatory tail possesses both ordered and disordered regions, and the disordered regions are stabilized by ERK-mediated phosphorylation at a phosphorylation motif. Overall, ERK pathway mediated phosphorylation modulates the NHE1 tail, and affects the activity, structure, and function of this membrane protein.
Collapse
|
26
|
Wei L, Zhao W, Hu Y, Wang X, Liu X, Zhang P, Han F. Exploration of the optimal dose of HOE-642 for the protection of neuronal mitochondrial function after cardiac arrest in rats. Biomed Pharmacother 2018; 110:818-824. [PMID: 30554120 DOI: 10.1016/j.biopha.2018.12.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/03/2018] [Accepted: 12/07/2018] [Indexed: 11/28/2022] Open
Abstract
INTRODUCTION It has been demonstrated HOE-642 ameliorates ischemic contracture, prevents post-resuscitation diastolic dysfunction, and favors the earlier return of contractile function. This study is the first report to explore the optimal dose of HOE-642 in protecting the neuronal mitochondrial function after cardiac arrest. METHODS Cardiac arrest was induced by 8 min asphyxia in rats. There were Sham (S), Normothermic (NORM), and Hypothermic (HYPO) groups. The NORM or HYPO groups consist of four subgroups: NORM/HYPO + HOE-642 0, 1, 3, and 5 mg/kg. Survival and NDS were evaluated after 24 h of resuscitation. ΔΨm, mitochondrial swelling, ROS production, and mitochondrial complex IIV activity of the hippocampus were detected. RESULTS Survival in the HYPO + 1 mg group was the best and significantly higher than in the NORM + 0 mg and NORM + 1 mg groups. NDS in the HYPO + 0 mg, HYPO + 1 mg, and HYPO + 3 mg groups was significantly lower than in the NORM + 0 mg group. ΔΨm in the NORM + 1 mg (n = 5) group was significantly higher than in the NORM + 0 mg (n = 8), NORM + 3 mg (n = 5), and NORM + 5 mg (n = 5) groups. The ROS production in the NORM + 1 mg and NORM + 3 mg groups were significantly lower than in the NORM + 0 mg and NORM + 5 mg groups. Complex I and III activities in the HYPO + 1 mg (n = 5) group were significantly higher than in the HYPO + 3 mg (n = 5), and HYPO + 5 mg (n = 5) groups. Complex II and IV activities in the NORM + 3 mg and HYPO + 3 mg groups were significantly higher than in the NORM + 0 mg, NORM + 1 mg, and HYPO + 0 mg (n = 4)groups. CONCLUSIONS HOE-642 1 or 3 mg/kg showed benefits compared to HOE-642 5 mg/kg used when initiating resuscitation. When combined with hypothermia after cardiac arrest, HOE-642 1 or 3 mg/kg improved survival and neurological function compared with hypothermia or HOE-642 alone, however, HOE-642 5 mg/kg plus hypothermia did not.
Collapse
Affiliation(s)
- Lanying Wei
- Department of Anesthesiology, The Third Affiliated Hospital, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Wenshuai Zhao
- Department of Anesthesiology, The Third Affiliated Hospital, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Yanan Hu
- Department of Anesthesiology, The Third Affiliated Hospital, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Xifan Wang
- Department of Anesthesiology, The Third Affiliated Hospital, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Xintong Liu
- Department of Anesthesiology, The Third Affiliated Hospital, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Pengjiao Zhang
- Department of Anesthesiology, The Third Affiliated Hospital, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Fei Han
- Department of Anesthesiology, The Third Affiliated Hospital, Harbin Medical University, Harbin, 150081, Heilongjiang, China.
| |
Collapse
|
27
|
Guo Q, Yin X, Qiao M, Jia Y, Chen D, Shao J, Lebaron TW, Gao Y, Shi H, Jia B. Hydrogen-Rich Water Ameliorates Autistic-Like Behavioral Abnormalities in Valproic Acid-Treated Adolescent Mice Offspring. Front Behav Neurosci 2018; 12:170. [PMID: 30127728 PMCID: PMC6087877 DOI: 10.3389/fnbeh.2018.00170] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 07/18/2018] [Indexed: 12/19/2022] Open
Abstract
Due to its anti-inflammatory and anti-oxidative effects, recent research has demonstrated that molecular hydrogen can serve as a new medical approach for depression, anxiety and traumatic brain injury. However, its potential effects on neurodevelopmental diseases, such as autism are still elusive. The present study aims to investigate the potential effects of hydrogen-rich water (HRW) administration on valproic acid (VPA)-induced autistic-like behavioral deficits, and the associated underlying mechanism in adolescent mice offspring. Pregnant ICR mice were randomly divided into five groups (n = 6). One group was injected with saline (NAV group) and provided hydrogen-free water. The other four groups were injected with VPA (600 mg/kg, intraperitoneally, i.p.) on pregnant day (PND) 12.5. One group was provided with hydrogen-free water (VEH group) and the other three groups were provided HRW at different segments, postnatal day 1 (PND 1) to PND 21 (PHV group), PND 13 to PND 21 (PVS group) or from PND 13 to postnatal day 42 (PVL group). Behavioral tests, including open field, novelty suppressed feeding (NSF), hot plate, social interaction (SI) and contextual fear memory tests were conducted between postnatal day 35–42. We found that HRW administration significantly reversed the autistic-like behaviors induced by maternal VPA exposure in the adolescent offspring of both male and female adolescent offspring. Furthermore, HRW administration significantly reversed the alternation of serum levels of interleukin 6 (IL-6) and tumor necrosis factor-α (TNF-α), but without any effects on the BDNF levels in maternal VPA-exposed mice offspring. These data suggest the need for additional research on HRW as a potential preventive strategy for autism and related disorders. Lay Summary: Maternal VPA injection induces autistic-like behavioral deficits in adolescent mice offspring. HRW administration ameliorates autistic-like behavioral deficits. HRW administration reverses the alternation of serum levels of IL-6 and TNF-α induced by VPA.
Collapse
Affiliation(s)
- Qingjun Guo
- Department of Surgery, Hebei Medical University, Shijiazhuang, China
| | - Xi Yin
- Department of Functional Region of Diagnosis, Hebei Medical University Fourth Hospital, Hebei Medical University, Shijiazhuang, China
| | - Meng Qiao
- College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Yujiao Jia
- College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Dandan Chen
- College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Juan Shao
- Department of Senile Disease, The Third Hospital of Hebei Medical University, Hebei Medical University, Shijiazhuang, China
| | | | - Yuan Gao
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China.,Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
| | - Haishui Shi
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China.,Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China.,Hebei Key Laboratory of Forensic Medicine, Department of Forensic Medicine, Shijiazhuang, China.,Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medicial University, Shijiazhuang, China
| | - Bin Jia
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China.,Lingshui General Hospital, Lingshui, China
| |
Collapse
|
28
|
A novel SLC9A1 mutation causes cerebellar ataxia. J Hum Genet 2018; 63:1049-1054. [DOI: 10.1038/s10038-018-0488-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/08/2018] [Accepted: 07/01/2018] [Indexed: 11/08/2022]
|
29
|
Mendoza-Ferreira N, Coutelier M, Janzen E, Hosseinibarkooie S, Löhr H, Schneider S, Milbradt J, Karakaya M, Riessland M, Pichlo C, Torres-Benito L, Singleton A, Zuchner S, Brice A, Durr A, Hammerschmidt M, Stevanin G, Wirth B. Biallelic CHP1 mutation causes human autosomal recessive ataxia by impairing NHE1 function. NEUROLOGY-GENETICS 2018; 4:e209. [PMID: 29379881 PMCID: PMC5775069 DOI: 10.1212/nxg.0000000000000209] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 08/22/2017] [Indexed: 12/14/2022]
Abstract
Objective: To ascertain the genetic and functional basis of complex autosomal recessive cerebellar ataxia (ARCA) presented by 2 siblings of a consanguineous family characterized by motor neuropathy, cerebellar atrophy, spastic paraparesis, intellectual disability, and slow ocular saccades. Methods: Combined whole-genome linkage analysis, whole-exome sequencing, and focused screening for identification of potential causative genes were performed. Assessment of the functional consequences of the mutation on protein function via subcellular fractionation, size-exclusion chromatography, and fluorescence microscopy were done. A zebrafish model, using Morpholinos, was generated to study the pathogenic effect of the mutation in vivo. Results: We identified a biallelic 3-bp deletion (p.K19del) in CHP1 that cosegregates with the disease. Neither focused screening for CHP1 variants in 2 cohorts (ARCA: N = 319 and NeurOmics: N = 657) nor interrogating GeneMatcher yielded additional variants, thus revealing the scarcity of CHP1 mutations. We show that mutant CHP1 fails to integrate into functional protein complexes and is prone to aggregation, thereby leading to diminished levels of soluble CHP1 and reduced membrane targeting of NHE1, a major Na+/H+ exchanger implicated in syndromic ataxia-deafness. Chp1 deficiency in zebrafish, resembling the affected individuals, led to movement defects, cerebellar hypoplasia, and motor axon abnormalities, which were ameliorated by coinjection with wild-type, but not mutant, human CHP1 messenger RNA. Conclusions: Collectively, our results identified CHP1 as a novel ataxia-causative gene in humans, further expanding the spectrum of ARCA-associated loci, and corroborated the crucial role of NHE1 within the pathogenesis of these disorders.
Collapse
Affiliation(s)
- Natalia Mendoza-Ferreira
- Institute of Human Genetics (N.M.-F., E.J., S.H., S.S., J.M., M.K., M.R., L.T.-B., B.W.), Center for Molecular Medicine Cologne, Institute for Genetics and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany; Institute for Zoology, Developmental Biology (H.L., M.H.), Institute of Biochemistry (C.P.), University of Cologne, Germany; Institut du Cerveau et de la Moelle épinière (M.C., A.B., A.D., G.S.), INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, France; Ecole Pratique des Hautes Etudes (M.C., G.S.), PSL Research University, Paris, France; Laboratory of Molecular and Cellular Neuroscience (M.R.), The Rockefeller University, New York, NY; Laboratory of Neurogenetics (A.S.), National Institute on Aging, National Institutes of Health, Bethesda, MD; John P. Hussman Institute for Human Genomics (S.Z.), University of Miami, Miller School of Medicine, FL; and APHP (A.B., A.D., G.S.), Hôpital de la Pitié-Salpêtrière, Centre de réference de neurogénétique, Paris, France
| | - Marie Coutelier
- Institute of Human Genetics (N.M.-F., E.J., S.H., S.S., J.M., M.K., M.R., L.T.-B., B.W.), Center for Molecular Medicine Cologne, Institute for Genetics and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany; Institute for Zoology, Developmental Biology (H.L., M.H.), Institute of Biochemistry (C.P.), University of Cologne, Germany; Institut du Cerveau et de la Moelle épinière (M.C., A.B., A.D., G.S.), INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, France; Ecole Pratique des Hautes Etudes (M.C., G.S.), PSL Research University, Paris, France; Laboratory of Molecular and Cellular Neuroscience (M.R.), The Rockefeller University, New York, NY; Laboratory of Neurogenetics (A.S.), National Institute on Aging, National Institutes of Health, Bethesda, MD; John P. Hussman Institute for Human Genomics (S.Z.), University of Miami, Miller School of Medicine, FL; and APHP (A.B., A.D., G.S.), Hôpital de la Pitié-Salpêtrière, Centre de réference de neurogénétique, Paris, France
| | - Eva Janzen
- Institute of Human Genetics (N.M.-F., E.J., S.H., S.S., J.M., M.K., M.R., L.T.-B., B.W.), Center for Molecular Medicine Cologne, Institute for Genetics and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany; Institute for Zoology, Developmental Biology (H.L., M.H.), Institute of Biochemistry (C.P.), University of Cologne, Germany; Institut du Cerveau et de la Moelle épinière (M.C., A.B., A.D., G.S.), INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, France; Ecole Pratique des Hautes Etudes (M.C., G.S.), PSL Research University, Paris, France; Laboratory of Molecular and Cellular Neuroscience (M.R.), The Rockefeller University, New York, NY; Laboratory of Neurogenetics (A.S.), National Institute on Aging, National Institutes of Health, Bethesda, MD; John P. Hussman Institute for Human Genomics (S.Z.), University of Miami, Miller School of Medicine, FL; and APHP (A.B., A.D., G.S.), Hôpital de la Pitié-Salpêtrière, Centre de réference de neurogénétique, Paris, France
| | - Seyyedmohsen Hosseinibarkooie
- Institute of Human Genetics (N.M.-F., E.J., S.H., S.S., J.M., M.K., M.R., L.T.-B., B.W.), Center for Molecular Medicine Cologne, Institute for Genetics and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany; Institute for Zoology, Developmental Biology (H.L., M.H.), Institute of Biochemistry (C.P.), University of Cologne, Germany; Institut du Cerveau et de la Moelle épinière (M.C., A.B., A.D., G.S.), INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, France; Ecole Pratique des Hautes Etudes (M.C., G.S.), PSL Research University, Paris, France; Laboratory of Molecular and Cellular Neuroscience (M.R.), The Rockefeller University, New York, NY; Laboratory of Neurogenetics (A.S.), National Institute on Aging, National Institutes of Health, Bethesda, MD; John P. Hussman Institute for Human Genomics (S.Z.), University of Miami, Miller School of Medicine, FL; and APHP (A.B., A.D., G.S.), Hôpital de la Pitié-Salpêtrière, Centre de réference de neurogénétique, Paris, France
| | - Heiko Löhr
- Institute of Human Genetics (N.M.-F., E.J., S.H., S.S., J.M., M.K., M.R., L.T.-B., B.W.), Center for Molecular Medicine Cologne, Institute for Genetics and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany; Institute for Zoology, Developmental Biology (H.L., M.H.), Institute of Biochemistry (C.P.), University of Cologne, Germany; Institut du Cerveau et de la Moelle épinière (M.C., A.B., A.D., G.S.), INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, France; Ecole Pratique des Hautes Etudes (M.C., G.S.), PSL Research University, Paris, France; Laboratory of Molecular and Cellular Neuroscience (M.R.), The Rockefeller University, New York, NY; Laboratory of Neurogenetics (A.S.), National Institute on Aging, National Institutes of Health, Bethesda, MD; John P. Hussman Institute for Human Genomics (S.Z.), University of Miami, Miller School of Medicine, FL; and APHP (A.B., A.D., G.S.), Hôpital de la Pitié-Salpêtrière, Centre de réference de neurogénétique, Paris, France
| | - Svenja Schneider
- Institute of Human Genetics (N.M.-F., E.J., S.H., S.S., J.M., M.K., M.R., L.T.-B., B.W.), Center for Molecular Medicine Cologne, Institute for Genetics and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany; Institute for Zoology, Developmental Biology (H.L., M.H.), Institute of Biochemistry (C.P.), University of Cologne, Germany; Institut du Cerveau et de la Moelle épinière (M.C., A.B., A.D., G.S.), INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, France; Ecole Pratique des Hautes Etudes (M.C., G.S.), PSL Research University, Paris, France; Laboratory of Molecular and Cellular Neuroscience (M.R.), The Rockefeller University, New York, NY; Laboratory of Neurogenetics (A.S.), National Institute on Aging, National Institutes of Health, Bethesda, MD; John P. Hussman Institute for Human Genomics (S.Z.), University of Miami, Miller School of Medicine, FL; and APHP (A.B., A.D., G.S.), Hôpital de la Pitié-Salpêtrière, Centre de réference de neurogénétique, Paris, France
| | - Janine Milbradt
- Institute of Human Genetics (N.M.-F., E.J., S.H., S.S., J.M., M.K., M.R., L.T.-B., B.W.), Center for Molecular Medicine Cologne, Institute for Genetics and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany; Institute for Zoology, Developmental Biology (H.L., M.H.), Institute of Biochemistry (C.P.), University of Cologne, Germany; Institut du Cerveau et de la Moelle épinière (M.C., A.B., A.D., G.S.), INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, France; Ecole Pratique des Hautes Etudes (M.C., G.S.), PSL Research University, Paris, France; Laboratory of Molecular and Cellular Neuroscience (M.R.), The Rockefeller University, New York, NY; Laboratory of Neurogenetics (A.S.), National Institute on Aging, National Institutes of Health, Bethesda, MD; John P. Hussman Institute for Human Genomics (S.Z.), University of Miami, Miller School of Medicine, FL; and APHP (A.B., A.D., G.S.), Hôpital de la Pitié-Salpêtrière, Centre de réference de neurogénétique, Paris, France
| | - Mert Karakaya
- Institute of Human Genetics (N.M.-F., E.J., S.H., S.S., J.M., M.K., M.R., L.T.-B., B.W.), Center for Molecular Medicine Cologne, Institute for Genetics and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany; Institute for Zoology, Developmental Biology (H.L., M.H.), Institute of Biochemistry (C.P.), University of Cologne, Germany; Institut du Cerveau et de la Moelle épinière (M.C., A.B., A.D., G.S.), INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, France; Ecole Pratique des Hautes Etudes (M.C., G.S.), PSL Research University, Paris, France; Laboratory of Molecular and Cellular Neuroscience (M.R.), The Rockefeller University, New York, NY; Laboratory of Neurogenetics (A.S.), National Institute on Aging, National Institutes of Health, Bethesda, MD; John P. Hussman Institute for Human Genomics (S.Z.), University of Miami, Miller School of Medicine, FL; and APHP (A.B., A.D., G.S.), Hôpital de la Pitié-Salpêtrière, Centre de réference de neurogénétique, Paris, France
| | - Markus Riessland
- Institute of Human Genetics (N.M.-F., E.J., S.H., S.S., J.M., M.K., M.R., L.T.-B., B.W.), Center for Molecular Medicine Cologne, Institute for Genetics and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany; Institute for Zoology, Developmental Biology (H.L., M.H.), Institute of Biochemistry (C.P.), University of Cologne, Germany; Institut du Cerveau et de la Moelle épinière (M.C., A.B., A.D., G.S.), INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, France; Ecole Pratique des Hautes Etudes (M.C., G.S.), PSL Research University, Paris, France; Laboratory of Molecular and Cellular Neuroscience (M.R.), The Rockefeller University, New York, NY; Laboratory of Neurogenetics (A.S.), National Institute on Aging, National Institutes of Health, Bethesda, MD; John P. Hussman Institute for Human Genomics (S.Z.), University of Miami, Miller School of Medicine, FL; and APHP (A.B., A.D., G.S.), Hôpital de la Pitié-Salpêtrière, Centre de réference de neurogénétique, Paris, France
| | - Christian Pichlo
- Institute of Human Genetics (N.M.-F., E.J., S.H., S.S., J.M., M.K., M.R., L.T.-B., B.W.), Center for Molecular Medicine Cologne, Institute for Genetics and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany; Institute for Zoology, Developmental Biology (H.L., M.H.), Institute of Biochemistry (C.P.), University of Cologne, Germany; Institut du Cerveau et de la Moelle épinière (M.C., A.B., A.D., G.S.), INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, France; Ecole Pratique des Hautes Etudes (M.C., G.S.), PSL Research University, Paris, France; Laboratory of Molecular and Cellular Neuroscience (M.R.), The Rockefeller University, New York, NY; Laboratory of Neurogenetics (A.S.), National Institute on Aging, National Institutes of Health, Bethesda, MD; John P. Hussman Institute for Human Genomics (S.Z.), University of Miami, Miller School of Medicine, FL; and APHP (A.B., A.D., G.S.), Hôpital de la Pitié-Salpêtrière, Centre de réference de neurogénétique, Paris, France
| | - Laura Torres-Benito
- Institute of Human Genetics (N.M.-F., E.J., S.H., S.S., J.M., M.K., M.R., L.T.-B., B.W.), Center for Molecular Medicine Cologne, Institute for Genetics and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany; Institute for Zoology, Developmental Biology (H.L., M.H.), Institute of Biochemistry (C.P.), University of Cologne, Germany; Institut du Cerveau et de la Moelle épinière (M.C., A.B., A.D., G.S.), INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, France; Ecole Pratique des Hautes Etudes (M.C., G.S.), PSL Research University, Paris, France; Laboratory of Molecular and Cellular Neuroscience (M.R.), The Rockefeller University, New York, NY; Laboratory of Neurogenetics (A.S.), National Institute on Aging, National Institutes of Health, Bethesda, MD; John P. Hussman Institute for Human Genomics (S.Z.), University of Miami, Miller School of Medicine, FL; and APHP (A.B., A.D., G.S.), Hôpital de la Pitié-Salpêtrière, Centre de réference de neurogénétique, Paris, France
| | - Andrew Singleton
- Institute of Human Genetics (N.M.-F., E.J., S.H., S.S., J.M., M.K., M.R., L.T.-B., B.W.), Center for Molecular Medicine Cologne, Institute for Genetics and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany; Institute for Zoology, Developmental Biology (H.L., M.H.), Institute of Biochemistry (C.P.), University of Cologne, Germany; Institut du Cerveau et de la Moelle épinière (M.C., A.B., A.D., G.S.), INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, France; Ecole Pratique des Hautes Etudes (M.C., G.S.), PSL Research University, Paris, France; Laboratory of Molecular and Cellular Neuroscience (M.R.), The Rockefeller University, New York, NY; Laboratory of Neurogenetics (A.S.), National Institute on Aging, National Institutes of Health, Bethesda, MD; John P. Hussman Institute for Human Genomics (S.Z.), University of Miami, Miller School of Medicine, FL; and APHP (A.B., A.D., G.S.), Hôpital de la Pitié-Salpêtrière, Centre de réference de neurogénétique, Paris, France
| | - Stephan Zuchner
- Institute of Human Genetics (N.M.-F., E.J., S.H., S.S., J.M., M.K., M.R., L.T.-B., B.W.), Center for Molecular Medicine Cologne, Institute for Genetics and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany; Institute for Zoology, Developmental Biology (H.L., M.H.), Institute of Biochemistry (C.P.), University of Cologne, Germany; Institut du Cerveau et de la Moelle épinière (M.C., A.B., A.D., G.S.), INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, France; Ecole Pratique des Hautes Etudes (M.C., G.S.), PSL Research University, Paris, France; Laboratory of Molecular and Cellular Neuroscience (M.R.), The Rockefeller University, New York, NY; Laboratory of Neurogenetics (A.S.), National Institute on Aging, National Institutes of Health, Bethesda, MD; John P. Hussman Institute for Human Genomics (S.Z.), University of Miami, Miller School of Medicine, FL; and APHP (A.B., A.D., G.S.), Hôpital de la Pitié-Salpêtrière, Centre de réference de neurogénétique, Paris, France
| | - Alexis Brice
- Institute of Human Genetics (N.M.-F., E.J., S.H., S.S., J.M., M.K., M.R., L.T.-B., B.W.), Center for Molecular Medicine Cologne, Institute for Genetics and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany; Institute for Zoology, Developmental Biology (H.L., M.H.), Institute of Biochemistry (C.P.), University of Cologne, Germany; Institut du Cerveau et de la Moelle épinière (M.C., A.B., A.D., G.S.), INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, France; Ecole Pratique des Hautes Etudes (M.C., G.S.), PSL Research University, Paris, France; Laboratory of Molecular and Cellular Neuroscience (M.R.), The Rockefeller University, New York, NY; Laboratory of Neurogenetics (A.S.), National Institute on Aging, National Institutes of Health, Bethesda, MD; John P. Hussman Institute for Human Genomics (S.Z.), University of Miami, Miller School of Medicine, FL; and APHP (A.B., A.D., G.S.), Hôpital de la Pitié-Salpêtrière, Centre de réference de neurogénétique, Paris, France
| | - Alexandra Durr
- Institute of Human Genetics (N.M.-F., E.J., S.H., S.S., J.M., M.K., M.R., L.T.-B., B.W.), Center for Molecular Medicine Cologne, Institute for Genetics and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany; Institute for Zoology, Developmental Biology (H.L., M.H.), Institute of Biochemistry (C.P.), University of Cologne, Germany; Institut du Cerveau et de la Moelle épinière (M.C., A.B., A.D., G.S.), INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, France; Ecole Pratique des Hautes Etudes (M.C., G.S.), PSL Research University, Paris, France; Laboratory of Molecular and Cellular Neuroscience (M.R.), The Rockefeller University, New York, NY; Laboratory of Neurogenetics (A.S.), National Institute on Aging, National Institutes of Health, Bethesda, MD; John P. Hussman Institute for Human Genomics (S.Z.), University of Miami, Miller School of Medicine, FL; and APHP (A.B., A.D., G.S.), Hôpital de la Pitié-Salpêtrière, Centre de réference de neurogénétique, Paris, France
| | - Matthias Hammerschmidt
- Institute of Human Genetics (N.M.-F., E.J., S.H., S.S., J.M., M.K., M.R., L.T.-B., B.W.), Center for Molecular Medicine Cologne, Institute for Genetics and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany; Institute for Zoology, Developmental Biology (H.L., M.H.), Institute of Biochemistry (C.P.), University of Cologne, Germany; Institut du Cerveau et de la Moelle épinière (M.C., A.B., A.D., G.S.), INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, France; Ecole Pratique des Hautes Etudes (M.C., G.S.), PSL Research University, Paris, France; Laboratory of Molecular and Cellular Neuroscience (M.R.), The Rockefeller University, New York, NY; Laboratory of Neurogenetics (A.S.), National Institute on Aging, National Institutes of Health, Bethesda, MD; John P. Hussman Institute for Human Genomics (S.Z.), University of Miami, Miller School of Medicine, FL; and APHP (A.B., A.D., G.S.), Hôpital de la Pitié-Salpêtrière, Centre de réference de neurogénétique, Paris, France
| | - Giovanni Stevanin
- Institute of Human Genetics (N.M.-F., E.J., S.H., S.S., J.M., M.K., M.R., L.T.-B., B.W.), Center for Molecular Medicine Cologne, Institute for Genetics and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany; Institute for Zoology, Developmental Biology (H.L., M.H.), Institute of Biochemistry (C.P.), University of Cologne, Germany; Institut du Cerveau et de la Moelle épinière (M.C., A.B., A.D., G.S.), INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, France; Ecole Pratique des Hautes Etudes (M.C., G.S.), PSL Research University, Paris, France; Laboratory of Molecular and Cellular Neuroscience (M.R.), The Rockefeller University, New York, NY; Laboratory of Neurogenetics (A.S.), National Institute on Aging, National Institutes of Health, Bethesda, MD; John P. Hussman Institute for Human Genomics (S.Z.), University of Miami, Miller School of Medicine, FL; and APHP (A.B., A.D., G.S.), Hôpital de la Pitié-Salpêtrière, Centre de réference de neurogénétique, Paris, France
| | - Brunhilde Wirth
- Institute of Human Genetics (N.M.-F., E.J., S.H., S.S., J.M., M.K., M.R., L.T.-B., B.W.), Center for Molecular Medicine Cologne, Institute for Genetics and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany; Institute for Zoology, Developmental Biology (H.L., M.H.), Institute of Biochemistry (C.P.), University of Cologne, Germany; Institut du Cerveau et de la Moelle épinière (M.C., A.B., A.D., G.S.), INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, France; Ecole Pratique des Hautes Etudes (M.C., G.S.), PSL Research University, Paris, France; Laboratory of Molecular and Cellular Neuroscience (M.R.), The Rockefeller University, New York, NY; Laboratory of Neurogenetics (A.S.), National Institute on Aging, National Institutes of Health, Bethesda, MD; John P. Hussman Institute for Human Genomics (S.Z.), University of Miami, Miller School of Medicine, FL; and APHP (A.B., A.D., G.S.), Hôpital de la Pitié-Salpêtrière, Centre de réference de neurogénétique, Paris, France
| |
Collapse
|
30
|
Prasad H, Osei-Owusu J, Rao R. Functional analysis of Na +/H + exchanger 9 variants identified in patients with autism and epilepsy. ACTA ACUST UNITED AC 2017; 2017. [PMID: 28815171 PMCID: PMC5555647 DOI: 10.19185/matters.201704000009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Na+/H+ exchanger isoform 9, NHE9, finely tunes the pH within the endosomal lumen to regulate cargo trafficking and turnover. In patients with autism, genetic approaches have revealed deletions, truncations and missense mutations in the gene encoding NHE9 (SLC9A9). To help establish causality, functional evaluation is needed to distinguish pathogenic mutations from harmless polymorphisms. Here, we evaluated three previously uncharacterized NHE9 variants, P117T, D496N, and Q609K reported in patients with autism and epilepsy. We show that NHE9-DsRed localizes to recycling endosomes in HEK293 cells where it significantly alkalinizes luminal pH, and elevates accumulation of transferrin. All three NHE9 variants were expressed and localized to endosomal compartments, similar to wild-type NHE9. In contrast to previously characterized NHE9 variants, we observed no loss-of-function with respect to endosomal pH homeostasis and transferrin endocytosis. These findings suggest that the three NHE9 substitutions analyzed in our study are either benign polymorphisms or may have a cell-type specific or regulatory function not detected in our cell culture model. Our findings highlight the importance of combining the use of cellular studies of function with sequencing technologies that capture genomic variation in patients.
Collapse
Affiliation(s)
- Hari Prasad
- Department of Physiology, The Johns Hopkins University School of Medicine 725 N. Wolfe Street Baltimore MD 21205
| | - James Osei-Owusu
- Department of Physiology, The Johns Hopkins University School of Medicine 725 N. Wolfe Street Baltimore MD 21205
| | - Rajini Rao
- Department of Physiology, The Johns Hopkins University School of Medicine 725 N. Wolfe Street Baltimore MD 21205
| |
Collapse
|
31
|
Oberheide K, Puchkov D, Jentsch TJ. Loss of the Na +/H + exchanger NHE8 causes male infertility in mice by disrupting acrosome formation. J Biol Chem 2017; 292:10845-10854. [PMID: 28476888 DOI: 10.1074/jbc.m117.784108] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/04/2017] [Indexed: 01/02/2023] Open
Abstract
Mammalian sperm feature a specialized secretory organelle on the anterior part of the sperm nucleus, the acrosome, which is essential for male fertility. It is formed by a fusion of Golgi-derived vesicles. We show here that the predominantly Golgi-resident Na+/H+ exchanger NHE8 localizes to the developing acrosome of spermatids. Similar to wild-type mice, Nhe8-/- mice generated Golgi-derived vesicles positive for acrosomal markers and attached to nuclei, but these vesicles failed to form large acrosomal granules and the acrosomal cap. Spermatozoa from Nhe8-/- mice completely lacked acrosomes, were round-headed, exhibited abnormal mitochondrial distribution, and displayed decreased motility, resulting in selective male infertility. Of note, similar features are also found in globozoospermia, one of the causes of male infertility in humans. Germ cell-specific, but not Sertoli cell-specific Nhe8 disruption recapitulated the globozoospermia phenotype, demonstrating that NHE8's role in spermiogenesis is germ cell-intrinsic. Our work has uncovered a crucial role of NHE8 in acrosome biogenesis and suggests that some forms of human globozoospermia might be caused by a loss of function of this Na+/H+ exchanger. It points to NHE8 as a candidate gene for human globozoospermia and a possible drug target for male contraception.
Collapse
Affiliation(s)
- Karina Oberheide
- From the Leibniz-Forschungsinstitut für Molekulare Pharmakologie, D-13125 Berlin and.,Max-Delbrück-Centrum für Molekulare Medizin, D-13125 Berlin, Germany
| | - Dmytro Puchkov
- From the Leibniz-Forschungsinstitut für Molekulare Pharmakologie, D-13125 Berlin and
| | - Thomas J Jentsch
- From the Leibniz-Forschungsinstitut für Molekulare Pharmakologie, D-13125 Berlin and .,Max-Delbrück-Centrum für Molekulare Medizin, D-13125 Berlin, Germany
| |
Collapse
|
32
|
Chiacchiaretta M, Latifi S, Bramini M, Fadda M, Fassio A, Benfenati F, Cesca F. Neuronal hyperactivity causes Na +/H + exchanger-induced extracellular acidification at active synapses. J Cell Sci 2017; 130:1435-1449. [PMID: 28254883 DOI: 10.1242/jcs.198564] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 02/28/2017] [Indexed: 12/12/2022] Open
Abstract
Extracellular pH impacts on neuronal activity, which is in turn an important determinant of extracellular H+ concentration. The aim of this study was to describe the spatio-temporal dynamics of extracellular pH at synaptic sites during neuronal hyperexcitability. To address this issue we created ex.E2GFP, a membrane-targeted extracellular ratiometric pH indicator that is exquisitely sensitive to acidic shifts. By monitoring ex.E2GFP fluorescence in real time in primary cortical neurons, we were able to quantify pH fluctuations during network hyperexcitability induced by convulsant drugs or high-frequency electrical stimulation. Sustained hyperactivity caused a pH decrease that was reversible upon silencing of neuronal activity and located at active synapses. This acidic shift was not attributable to the outflow of synaptic vesicle H+ into the cleft nor to the activity of membrane-exposed H+ V-ATPase, but rather to the activity of the Na+/H+-exchanger. Our data demonstrate that extracellular synaptic pH shifts take place during epileptic-like activity of neural cultures, emphasizing the strict links existing between synaptic activity and synaptic pH. This evidence may contribute to the understanding of the physio-pathological mechanisms associated with hyperexcitability in the epileptic brain.
Collapse
Affiliation(s)
- Martina Chiacchiaretta
- Center for Synaptic Neuroscience and Technology, Fondazione Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, Genova 16132, Italy.,Department of Experimental Medicine, University of Genova, Viale Benedetto XV 3, Genova 16132, Italy
| | - Shahrzad Latifi
- Center for Synaptic Neuroscience and Technology, Fondazione Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, Genova 16132, Italy
| | - Mattia Bramini
- Center for Synaptic Neuroscience and Technology, Fondazione Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, Genova 16132, Italy
| | - Manuela Fadda
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV 3, Genova 16132, Italy
| | - Anna Fassio
- Center for Synaptic Neuroscience and Technology, Fondazione Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, Genova 16132, Italy.,Department of Experimental Medicine, University of Genova, Viale Benedetto XV 3, Genova 16132, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Fondazione Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, Genova 16132, Italy.,Department of Experimental Medicine, University of Genova, Viale Benedetto XV 3, Genova 16132, Italy
| | - Fabrizia Cesca
- Center for Synaptic Neuroscience and Technology, Fondazione Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, Genova 16132, Italy
| |
Collapse
|
33
|
Walker J, Undem C, Yun X, Lade J, Jiang H, Shimoda LA. Role of Rho kinase and Na+/H+ exchange in hypoxia-induced pulmonary arterial smooth muscle cell proliferation and migration. Physiol Rep 2016; 4:4/6/e12702. [PMID: 27009277 PMCID: PMC4814889 DOI: 10.14814/phy2.12702] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 01/17/2016] [Indexed: 12/21/2022] Open
Abstract
Abnormal proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs) are hallmark characteristics of vascular remodeling in pulmonary hypertension induced by chronic hypoxia. In this study, we investigated the role of the Na+/H+ exchanger (NHE) and alterations in intracellular pH (pHi) homeostasis in meditating increased proliferation and migration in PASMCs isolated from resistance‐sized pulmonary arteries from chronically hypoxic rats or from normoxic rats that were exposed to hypoxia ex vivo (1% or 4% O2, 24–96 h). We found that PASMCs exposed to either in vivo or ex vivo hypoxia exhibited greater proliferative and migratory capacity, elevated pHi, and enhanced NHE activity. The NHE inhibitor, ethyl isopropyl amiloride (EIPA), normalized pHi in hypoxic PASMCs and reduced migration by 73% and 45% in cells exposed to in vivo and in vitro hypoxia, respectively. Similarly, EIPA reduced proliferation by 97% and 78% in cells exposed to in vivo and in vitro hypoxia, respectively. We previously demonstrated that NHE isoform 1 (NHE1) is the predominant isoform expressed in PASMCs. The development of hypoxia‐induced pulmonary hypertension and alterations in PASMC pHi homeostasis were prevented in mice deficient for NHE1. We found that short‐term (24 h) ex vivo hypoxic exposure did not alter the expression of NHE1, so we tested the role of Rho kinase (ROCK) as a possible means of increasing NHE activity. In the presence of the ROCK inhibitor, Y‐27632, we found that pHi and NHE activity were normalized and migration and proliferation were reduced in PASMCs exposed to either in vivo (by 68% for migration and 22% for proliferation) or ex vivo (by 43% for migration and 17% for proliferation) hypoxia. From these results, we conclude that during hypoxia, activation of ROCK enhances NHE activity and promotes PASMC migration and proliferation.
Collapse
Affiliation(s)
- Jasmine Walker
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Clark Undem
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Xin Yun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Julie Lade
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Haiyang Jiang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Larissa A Shimoda
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| |
Collapse
|
34
|
Li X, Augustine A, Chen S, Fliegel L. Stop Codon Polymorphisms in the Human SLC9A1 Gene Disrupt or Compromise Na+/H+ Exchanger Function. PLoS One 2016; 11:e0162902. [PMID: 27636896 PMCID: PMC5026351 DOI: 10.1371/journal.pone.0162902] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 08/30/2016] [Indexed: 11/18/2022] Open
Abstract
The NHE1 isoform of the mammalian Na+/H+ exchanger is a ubiquitous plasma membrane protein that regulates intracellular pH in mammalian cells by removing one intracellular proton in exchange for one extracellular sodium. Deletion of the NHE1 gene (SLC9A1) affects the growth and motor ability of mice and humans but mutations and polymorphisms of the gene are only beginning to be characterized. NHE1 has a cytosolic C-terminal regulatory tail of approximately 315 amino acids and a 500 amino acid membrane domain. We examined the functional effects of three human stop codon mutations at amino acids 321, 449 and 735 in comparison with a mutant that had a shortened tail region (543 stop codon). The short mutants, 321, 449 and 543 stop codon mutant proteins, lost NHE1 activity and expression, and did not target to the plasma membrane. Protein for these short mutants was more rapidly degraded than the wild type and 735 ending proteins. The 735 terminating mutant, with the membrane domain and much of the cytosolic tail, had reduced protein expression and activity. The results demonstrate that early stop codon polymorphisms have significant and deleterious effects on the activity of the SLC9A1 protein product. The 735-NHE1 mutant, without the last 80 amino acids, had more minor defects. Surprisingly, retention of a proximal 43 amino acids adjacent to the membrane domain did little to maintain NHE1 expression, targeting and activity.
Collapse
Affiliation(s)
- Xiuju Li
- Department of Biochemistry, University Alberta, Edmonton, AB T6G 2H7, Canada
| | - Aruna Augustine
- Department of Biochemistry, University Alberta, Edmonton, AB T6G 2H7, Canada
| | - Shuo Chen
- Department of Biochemistry, University Alberta, Edmonton, AB T6G 2H7, Canada
| | - Larry Fliegel
- Department of Biochemistry, University Alberta, Edmonton, AB T6G 2H7, Canada
- * E-mail:
| |
Collapse
|
35
|
Abstract
Molecular genetics has led to major advances in the study of neurological disease over the last 2 decades. Initial advances were made in understanding specific mutations that were associated with disease, such as epilepsy and other neurological conditions. In addition to specific mutations, recent research has focused on long-lasting or permanent changes in genetic expression as an underlying substrate of acquired diseases such as epilepsy. In symptomatic epilepsy, normal brain tissue is permanently altered and develops spon taneous recurrent seizures. Evidence indicates that long-lasting changes in gene expression at both tran scriptional and post-transcriptional levels are associated with epileptogenesis. The expression of transcription factors and other regulatory proteins represent a molecular mechanism for mediating these changes. Understanding the effects of severe environmental stresses on the multiple sites of transcriptional and post-transcriptional regulation of gene expression is likely to provide important insights into the devel opment of altered neuronal function in a number of important disease states, including epilepsy. NEURO SCIENTIST 5:86-99, 1999
Collapse
Affiliation(s)
- Robert J. Delorenzo
- Departments of Neurology, Pharmacology and Toxicology,
and Biochemistry and Molecular Biophysics Virginia Commonwealth University
Richmond, Virginia
| | - T. Allen Morris
- Departments of Neurology, Pharmacology and Toxicology,
and Biochemistry and Molecular Biophysics Virginia Commonwealth University
Richmond, Virginia
| |
Collapse
|
36
|
Zhao H, Carney KE, Falgoust L, Pan JW, Sun D, Zhang Z. Emerging roles of Na⁺/H⁺ exchangers in epilepsy and developmental brain disorders. Prog Neurobiol 2016; 138-140:19-35. [PMID: 26965387 DOI: 10.1016/j.pneurobio.2016.02.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 02/03/2016] [Accepted: 02/27/2016] [Indexed: 12/15/2022]
Abstract
Epilepsy is a common central nervous system (CNS) disease characterized by recurrent transient neurological events occurring due to abnormally excessive or synchronous neuronal activity in the brain. The CNS is affected by systemic acid-base disorders, and epileptic seizures are sensitive indicators of underlying imbalances in cellular pH regulation. Na(+)/H(+) exchangers (NHEs) are a family of membrane transporter proteins actively involved in regulating intracellular and organellar pH by extruding H(+) in exchange for Na(+) influx. Altering NHE function significantly influences neuronal excitability and plays a role in epilepsy. This review gives an overview of pH regulatory mechanisms in the brain with a special focus on the NHE family and the relationship between epilepsy and dysfunction of NHE isoforms. We first discuss how cells translocate acids and bases across the membrane and establish pH homeostasis as a result of the concerted effort of enzymes and ion transporters. We focus on the specific roles of the NHE family by detailing how the loss of NHE1 in two NHE mutant mice results in enhanced neuronal excitability in these animals. Furthermore, we highlight new findings on the link between mutations of NHE6 and NHE9 and developmental brain disorders including epilepsy, autism, and attention deficit hyperactivity disorder (ADHD). These studies demonstrate the importance of NHE proteins in maintaining H(+) homeostasis and their intricate roles in the regulation of neuronal function. A better understanding of the mechanisms underlying NHE1, 6, and 9 dysfunctions in epilepsy formation may advance the development of new epilepsy treatment strategies.
Collapse
Affiliation(s)
- Hanshu Zhao
- Department of Neurology, The First Affiliated Hospital of the Harbin Medical University, Harbin, China.,Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Karen E Carney
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Lindsay Falgoust
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jullie W Pan
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA.,Veterans Affairs Pittsburgh Health Care System, Geriatric Research, Educational and Clinical Center, Pittsburgh, PA 15213, USA
| | - Zhongling Zhang
- Department of Neurology, The First Affiliated Hospital of the Harbin Medical University, Harbin, China
| |
Collapse
|
37
|
Sodium-Proton (Na+/H+) Antiporters: Properties and Roles in Health and Disease. Met Ions Life Sci 2016; 16:391-458. [DOI: 10.1007/978-3-319-21756-7_12] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
38
|
Jadeja S, Barnard AR, McKie L, Cross SH, White JK, Robertson M, Budd PS, MacLaren RE, Jackson IJ. Mouse slc9a8 mutants exhibit retinal defects due to retinal pigmented epithelium dysfunction. Invest Ophthalmol Vis Sci 2015; 56:3015-26. [PMID: 25736793 DOI: 10.1167/iovs.14-15735] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
PURPOSE As part of a large scale systematic screen to determine the effects of gene knockout mutations in mice, a retinal phenotype was found in mice lacking the Slc9a8 gene, encoding the sodium/hydrogen ion exchange protein NHE8. We aimed to characterize the mutant phenotype and the role of sodium/hydrogen ion exchange in retinal function. METHODS Detailed histology characterized the pathological consequences of Slc9a8 mutation, and retinal function was assessed by electroretinography (ERG). A conditional allele was used to identify the cells in which NHE8 function is critical for retinal function, and mutant cells analyzed for the effect of the mutation on endosomes. RESULTS Histology of mutant retinas reveals a separation of photoreceptors from the RPE and infiltration by macrophages. There is a small reduction in photoreceptor length and a mislocalization of visual pigments. The ERG testing reveals a deficit in rod and cone pathway function. The RPE shows abnormal morphology, and mutation of Slc9a8 in only RPE cells recapitulates the mutant phenotype. The NHE8 protein localizes to endosomes, and mutant cells have much smaller recycling endosomes. CONCLUSIONS The NHE8 protein is required in the RPE to maintain correct regulation of endosomal volume and/or pH which is essential for the cellular integrity and subsequent function of RPE.
Collapse
Affiliation(s)
- Shalini Jadeja
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Alun R Barnard
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, The John Radcliffe Hospital, Oxford, United Kingdom
| | - Lisa McKie
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Sally H Cross
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Jacqueline K White
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | | | - Morag Robertson
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Peter S Budd
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, The John Radcliffe Hospital, Oxford, United Kingdom
| | - Ian J Jackson
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom 4Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
39
|
Liu Y, Basu A, Li X, Fliegel L. Topological analysis of the Na+/H+ exchanger. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015. [DOI: 10.1016/j.bbamem.2015.07.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
40
|
Rose KL, Watson AJ, Drysdale TA, Cepinskas G, Chan M, Rupar CA, Fraser DD. Simulated diabetic ketoacidosis therapy in vitro elicits brain cell swelling via sodium-hydrogen exchange and anion transport. Am J Physiol Endocrinol Metab 2015; 309:E370-9. [PMID: 26081282 DOI: 10.1152/ajpendo.00107.2015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 06/11/2015] [Indexed: 01/08/2023]
Abstract
A common complication of type 1 diabetes mellitus is diabetic ketoacidosis (DKA), a state of severe insulin deficiency. A potentially harmful consequence of DKA therapy in children is cerebral edema (DKA-CE); however, the mechanisms of therapy-induced DKA-CE are unknown. Our aims were to identify the DKA treatment factors and membrane mechanisms that might contribute specifically to brain cell swelling. To this end, DKA was induced in juvenile mice with the administration of the pancreatic toxins streptozocin and alloxan. Brain slices were prepared and exposed to DKA-like conditions in vitro. Cell volume changes were imaged in response to simulated DKA therapy. Our experiments showed that cell swelling was elicited with isolated DKA treatment components, including alkalinization, insulin/alkalinization, and rapid reductions in osmolality. Methyl-isobutyl-amiloride, a nonselective inhibitor of sodium-hydrogen exchangers (NHEs), reduced cell swelling in brain slices elicited with simulated DKA therapy (in vitro) and decreased brain water content in juvenile DKA mice administered insulin and rehydration therapy (in vivo). Specific pharmacological inhibition of the NHE1 isoform with cariporide also inhibited cell swelling, but only in the presence of the anion transport (AT) inhibitor 4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid. DKA did not alter brain NHE1 isoform expression, suggesting that the cell swelling attributed to the NHE1 was activity dependent. In conclusion, our data raise the possibility that brain cell swelling can be elicited by DKA treatment factors and that it is mediated by NHEs and/or coactivation of NHE1 and AT.
Collapse
Affiliation(s)
- Keeley L Rose
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada; Children's Health Research Institute, London, Ontario, Canada
| | - Andrew J Watson
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada; Children's Health Research Institute, London, Ontario, Canada
| | - Thomas A Drysdale
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada; Children's Health Research Institute, London, Ontario, Canada; Department of Paediatrics, Western University, London, Ontario, Canada
| | | | - Melissa Chan
- Children's Health Research Institute, London, Ontario, Canada
| | - C Anthony Rupar
- Children's Health Research Institute, London, Ontario, Canada; Department of Paediatrics, Western University, London, Ontario, Canada
| | - Douglas D Fraser
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada; Children's Health Research Institute, London, Ontario, Canada; Centre for Critical Illness Research, London, Ontario, Canada; Department of Paediatrics, Western University, London, Ontario, Canada; Department of Clinical Neurological Sciences, Western University, London, Ontario, Canada; and Translational Research Centre, London, Ontario, Canada
| |
Collapse
|
41
|
Huetsch J, Shimoda LA. Na(+)/H(+) exchange and hypoxic pulmonary hypertension. Pulm Circ 2015; 5:228-43. [PMID: 26064449 DOI: 10.1086/680213] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 07/22/2014] [Indexed: 12/24/2022] Open
Abstract
Intracellular pH (pHi) homeostasis is key to the functioning of vascular smooth muscle cells, including pulmonary artery smooth muscle cells (PASMCs). Sodium-hydrogen exchange (NHE) is an important contributor to pHi control in PASMCs. In this review, we examine the role of NHE in PASMC function, in both physiologic and pathologic conditions. In particular, we focus on the contribution of NHE to the PASMC response to hypoxia, considering both acute hypoxic pulmonary vasoconstriction and the development of pulmonary vascular remodeling and pulmonary hypertension in response to chronic hypoxia. Hypoxic pulmonary hypertension remains a disease with limited therapeutic options. Thus, this review explores past efforts at disrupting NHE signaling and discusses the therapeutic potential that such efforts may have in the field of pulmonary hypertension.
Collapse
Affiliation(s)
- John Huetsch
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21224, USA
| | - Larissa A Shimoda
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21224, USA
| |
Collapse
|
42
|
Li X, Fliegel L. A novel human mutation in the SLC9A1 gene results in abolition of Na+/H+ exchanger activity. PLoS One 2015; 10:e0119453. [PMID: 25760855 PMCID: PMC4356549 DOI: 10.1371/journal.pone.0119453] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 01/06/2015] [Indexed: 11/19/2022] Open
Abstract
The SLC9A1 gene, the Na+/H+ exchanger isoform 1 is the principal plasma membrane Na+/H+ exchanger of mammalian cells and functions by exchanging one intracellular proton for one extracellular sodium. The human protein is 815 amino acids in length. Five hundred N-terminal amino acids make up the transport domain of the protein and are believed to form 12 transmembrane segments. Recently, a genetic mutation of the Na+/H+ exchanger isoform 1, N266H, was discovered in a human patient through exome sequencing. We examined the effect of this mutation on expression, targeting and activity of the Na+/H+ exchanger. Mutant N266H protein was expressed in AP-1 cells, which lack their endogenous Na+/H+ exchanger protein. Targeting of the mutant protein to the cell surface was normal and expression levels were only slightly reduced relative to the wild type protein. However, the N266H mutant protein had no detectable Na+/H+ exchanger activity. A histidine residue at this location may disrupt the cation binding site or the pore of the Na+/H+ exchanger protein.
Collapse
Affiliation(s)
- Xiuju Li
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Larry Fliegel
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
43
|
Na+-H+ exchanger-1 (NHE1) regulation in kidney proximal tubule. Cell Mol Life Sci 2015; 72:2061-74. [PMID: 25680790 DOI: 10.1007/s00018-015-1848-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 01/28/2015] [Accepted: 01/29/2015] [Indexed: 01/17/2023]
Abstract
The ubiquitously expressed plasma membrane Na(+)-H(+) exchanger NHE1 is a 12 transmembrane-spanning protein that directs important cell functions such as homeostatic intracellular volume and pH control. The 315 amino acid cytosolic tail of NHE1 binds plasma membrane phospholipids and multiple proteins that regulate additional, ion-translocation independent functions. This review focuses on NHE1 structure/function relationships, as well as the role of NHE1 in kidney proximal tubule functions, including pH regulation, vectorial Na(+) transport, cell volume control and cell survival. The implications of these functions are particularly critical in the setting of progressive, albuminuric kidney diseases, where the accumulation of reabsorbed fatty acids leads to disruption of NHE1-membrane phospholipid interactions and tubular atrophy, which is a poor prognostic factor for progression to end stage renal disease. This review amplifies the vital role of the proximal tubule NHE1 Na(+)-H(+) exchanger as a kidney cell survival factor.
Collapse
|
44
|
Jinadasa T, Szabó EZ, Numat M, Orlowski J. Activation of AMP-activated protein kinase regulates hippocampal neuronal pH by recruiting Na(+)/H(+) exchanger NHE5 to the cell surface. J Biol Chem 2015; 289:20879-97. [PMID: 24936055 DOI: 10.1074/jbc.m114.555284] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Strict regulation of intra- and extracellular pH is an important determinant of nervous system function as many voltage-, ligand-, and H(+)-gated cationic channels are exquisitely sensitive to transient fluctuations in pH elicited by neural activity and pathophysiologic events such as hypoxia-ischemia and seizures. Multiple Na(+)/H(+) exchangers (NHEs) are implicated in maintenance of neural pH homeostasis. However, aside from the ubiquitous NHE1 isoform, their relative contributions are poorly understood. NHE5 is of particular interest as it is preferentially expressed in brain relative to other tissues. In hippocampal neurons, NHE5 regulates steady-state cytoplasmic pH, but intriguingly the bulk of the transporter is stored in intracellular vesicles. Here, we show that NHE5 is a direct target for phosphorylation by the AMP-activated protein kinase (AMPK), a key sensor and regulator of cellular energy homeostasis in response to metabolic stresses. In NHE5-transfected non-neuronal cells, activation of AMPK by the AMP mimetic AICAR or by antimycin A, which blocks aerobic respiration and causes acidification, increased cell surface accumulation and activity of NHE5, and elevated intracellular pH. These effects were effectively blocked by the AMPK antagonist compound C, the NHE inhibitor HOE694, and mutation of a predicted AMPK recognition motif in the NHE5 C terminus. This regulatory pathway was also functional in primary hippocampal neurons, where AMPK activation of NHE5 protected the cells from sustained antimycin A-induced acidification. These data reveal a unique role for AMPK and NHE5 in regulating the pH homeostasis of hippocampal neurons during metabolic stress.
Collapse
|
45
|
Pescosolido MF, Stein DM, Schmidt M, El Achkar CM, Sabbagh M, Rogg JM, Tantravahi U, McLean RL, Liu JS, Poduri A, Morrow EM. Genetic and phenotypic diversity of NHE6 mutations in Christianson syndrome. Ann Neurol 2014; 76:581-93. [PMID: 25044251 DOI: 10.1002/ana.24225] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 06/30/2014] [Accepted: 07/10/2014] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Recently, Christianson syndrome (CS) has been determined to be caused by mutations in the X-linked Na(+) /H(+) exchanger 6 (NHE6). We aimed to determine the diagnostic criteria and mutational spectrum for CS. METHODS Twelve independent pedigrees (14 boys, age = 4-19 years) with mutations in NHE6 were administered standardized research assessments, and mutations were characterized. RESULTS The mutational spectrum was composed of 9 single nucleotide variants, 2 indels, and 1 copy number variation deletion. All mutations were protein-truncating or splicing mutations. We identified 2 recurrent mutations (c.1498 c>t, p.R500X; and c.1710 g>a, p.W570X). Otherwise, all mutations were unique. In our study, 7 of 12 mutations (58%) were de novo, in contrast to prior literature wherein mutations were largely inherited. We also report prominent neurological, medical, and behavioral symptoms. All CS participants were nonverbal and had intellectual disability, epilepsy, and ataxia. Many had prior diagnoses of autism and/or Angelman syndrome. Other neurologic symptoms included eye movement abnormalities (79%), postnatal microcephaly (92%), and magnetic resonance imaging evidence of cerebellar atrophy (33%). Regression was noted in 50%, with recurrent presentations involving loss of words and/or the ability to walk. Medical symptoms, particularly gastrointestinal symptoms, were common. Height and body mass index measures were below normal ranges in most participants. Behavioral symptoms included hyperkinetic behavior (100%), and a majority exhibited high pain threshold. INTERPRETATION This is the largest cohort of independent CS pedigrees reported. We propose diagnostic criteria for CS. CS represents a novel neurogenetic disorder with general relevance to autism, intellectual disability, Angelman syndrome, epilepsy, and regression.
Collapse
Affiliation(s)
- Matthew F Pescosolido
- Department of Molecular Biology, Cell Biology, and Biochemistry and Laboratory for Molecular Medicine, Institute for Brain Science, Brown University, Providence, RI; Developmental Disorders Genetics Research Program, Emma Pendleton Bradley Hospital and Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, East Providence, RI
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Guissart C, Li X, Leheup B, Drouot N, Montaut-Verient B, Raffo E, Jonveaux P, Roux AF, Claustres M, Fliegel L, Koenig M. Mutation of SLC9A1, encoding the major Na+/H+ exchanger, causes ataxia-deafness Lichtenstein-Knorr syndrome. Hum Mol Genet 2014; 24:463-70. [DOI: 10.1093/hmg/ddu461] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
47
|
Coaxum SD, Blanton MG, Joyner A, Akter T, Bell PD, Luttrell LM, Raymond JR, Lee MH, Blichmann PA, Garnovskaya MN, Saigusa T. Epidermal growth factor-induced proliferation of collecting duct cells from Oak Ridge polycystic kidney mice involves activation of Na+/H+ exchanger. Am J Physiol Cell Physiol 2014; 307:C554-60. [PMID: 25055824 DOI: 10.1152/ajpcell.00188.2014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Epidermal growth factor (EGF) is linked to the pathogenesis of polycystic kidney disease (PKD). We explored signaling pathways activated by EGF in orpk cilia (-) collecting duct cell line derived from a mouse model of PKD (hypomorph of the Tg737/Ift88 gene) with severely stunted cilia, and in a control orpk cilia (+) cell line with normal cilia. RT-PCR demonstrated mRNAs for EGF receptor subunits ErbB1, ErbB2, ErbB3, ErbB4, and mRNAs for Na(+)/H(+) exchangers (NHE), NHE-1, NHE-2, NHE-3, NHE-4, and NHE-5 in both cell lines. EGF stimulated proton efflux in both cell lines. This effect was significantly attenuated by MIA, 5-(n-methyl-N-isobutyl) amiloride, a selective inhibitor of NHE-1 and NHE-2, and orpk cilia (-) cells were more sensitive to MIA than control cells (P < 0.01). EGF significantly induced extracellular signal-regulated kinase (ERK) phosphorylation in both cilia (+) and cilia (-) cells (63.3 and 123.6%, respectively), but the effect was more pronounced in orpk cilia (-) cells (P < 0.01). MIA significantly attenuated EGF-induced ERK phosphorylation only in orpk cilia (-) cells (P < 0.01). EGF increased proliferation of orpk cilia (+) cells and orpk cilia (-) cells, respectively, and MIA at 1-5 μM attenuated EGF-induced proliferation in orpk cilia (-) cells without affecting proliferation of orpk cilia (+) cells. EGF-induced proliferation of both cell lines was significantly decreased by the EGFR tyrosine kinase inhibitor AG1478 and MEK inhibitor PD98059. These results suggest that EGF exerts mitogenic effects in the orpk cilia (-) cells via activation of growth-associated amiloride-sensitive NHEs and ERK.
Collapse
Affiliation(s)
- Sonya D Coaxum
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, South Carolina
| | - Mary G Blanton
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, South Carolina
| | - Alisha Joyner
- College of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Tanjina Akter
- Department of Medicine, Division of Rheumatology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - P Darwin Bell
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, South Carolina; Medical and Research Services of the Ralph H. Johnson VAMC, Charleston, Carolina
| | - Louis M Luttrell
- Department of Medicine, Division of Endocrinology, Medical University of South Carolina, Charleston, South Carolina; and
| | - John R Raymond
- Department of Medicine, Division of Nephrology, Medical College of Wisconsin and the Medical Service of the Clement J. Zablocki VA Medical Center, Milwaukee, Wisconsin
| | - Mi-Hye Lee
- Department of Medicine, Division of Endocrinology, Medical University of South Carolina, Charleston, South Carolina; and
| | - Paul A Blichmann
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, South Carolina
| | - Maria N Garnovskaya
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, South Carolina
| | - Takamitsu Saigusa
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, South Carolina;
| |
Collapse
|
48
|
Alves C, Ma Y, Li X, Fliegel L. Characterization of human mutations in phosphorylatable amino acids of the cytosolic regulatory tail of SLC9A1. Biochem Cell Biol 2014; 92:524-9. [PMID: 25162926 DOI: 10.1139/bcb-2014-0071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The NHE1 isoform of the mammalian Na(+)/H(+) exchanger is a ubiquitous plasma membrane protein that regulates intracellular pH in cells by removing one intracellular proton in exchange for one extracellular sodium. Genetic defects in NHE1 have been shown to affect the growth and motor ability of mice, but mutations in humans have not been studied. NHE1 has a cytosolic C-terminal regulatory domain of approximately 300 amino acids. We investigated the functional effects of two human mutations found in the regulatory phosphorylatable amino acids Ser(703) and Ser(771). A Ser703Pro mutant protein had essentially the same activity, expression, and targeting as the wild type NHE1 protein. In contrast, the Ser771Pro protein had reduced activity and expression of NHE1 protein, though cell surface targeting was normal. In dual pulse assays the Ser771Pro mutant was not further activated by sustained intracellular acidosis but displayed an unusual activation by brief pulses of acidosis. The results demonstrate that the Ser771Pro human genetic mutation has significant and detrimental physiological effects on the activity of the NHE1 protein, SLC9A1.
Collapse
Affiliation(s)
- Claudia Alves
- Department of Biochemistry, University Alberta, Edmonton, AB T6G 2H7, Canada
| | | | | | | |
Collapse
|
49
|
Frankel WN, Mahaffey CL, McGarr TC, Beyer BJ, Letts VA. Unraveling genetic modifiers in the gria4 mouse model of absence epilepsy. PLoS Genet 2014; 10:e1004454. [PMID: 25010494 PMCID: PMC4091709 DOI: 10.1371/journal.pgen.1004454] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 05/07/2014] [Indexed: 12/24/2022] Open
Abstract
Absence epilepsy (AE) is a common type of genetic generalized epilepsy (GGE), particularly in children. AE and GGE are complex genetic diseases with few causal variants identified to date. Gria4 deficient mice provide a model of AE, one for which the common laboratory inbred strain C3H/HeJ (HeJ) harbors a natural IAP retrotransposon insertion in Gria4 that reduces its expression 8-fold. Between C3H and non-seizing strains such as C57BL/6, genetic modifiers alter disease severity. Even C3H substrains have surprising variation in the duration and incidence of spike-wave discharges (SWD), the characteristic electroencephalographic feature of absence seizures. Here we discovered extensive IAP retrotransposition in the C3H substrain, and identified a HeJ-private IAP in the Pcnxl2 gene, which encodes a putative multi-transmembrane protein of unknown function, resulting in decreased expression. By creating new Pcnxl2 frameshift alleles using TALEN mutagenesis, we show that Pcnxl2 deficiency is responsible for mitigating the seizure phenotype – making Pcnxl2 the first known modifier gene for absence seizures in any species. This finding gave us a handle on genetic complexity between strains, directing us to use another C3H substrain to map additional modifiers including validation of a Chr 15 locus that profoundly affects the severity of SWD episodes. Together these new findings expand our knowledge of how natural variation modulates seizures, and highlights the feasibility of characterizing and validating modifiers in mouse strains and substrains in the post-genome sequence era. Absence seizures - also known as “petit-mal” - define a common form of epilepsy most prevalent in children, but also seen at other ages, and in related diseases such as juvenile myoclonic epilepsy. Absence seizures cause brief periods of unconsciousness, and are accompanied by characteristic abnormal brain waves called “spike-wave discharges” (SWD) due to their appearance in the electroencephalogram (EEG). Although few genes are known for human absence seizures, perhaps because the underlying genetics are complex, several laboratory rodent models exist, including one caused by mutation of a gene called Gria4. While studying Gria4, we noticed that a mouse strain called C3H can suppress or enhance the frequency and severity of Gria4-associated SWD in a perplexing manner; such effects are generally attributed to “modifier” genes. Here we identify a novel modifier – called “pecanex-like 2”, or Pcnxl2 for short – that reduces the severity of SWD in the C3H substrain in which the Gria4 mutation originally arose. This finding directed us to use of related substrains to locate additional modifiers, one of which has an even more profound effect on SWD episodes. Modifier genes, nature's way of controlling seizure severity, are promising targets for better understanding seizure mechanisms and potential new therapies in the future.
Collapse
Affiliation(s)
- Wayne N. Frankel
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- * E-mail:
| | | | - Tracy C. McGarr
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Barbara J. Beyer
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Verity A. Letts
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| |
Collapse
|
50
|
|