1
|
Alemu M, Aragaw K, Sheferaw D, Sibhat B, Abebe R, Abera M, Egan S, Asmare K. Incidence of puerperal metritis and associated risk factors in dairy cows in Hawassa, Southern Ethiopia. Res Vet Sci 2024; 181:105447. [PMID: 39541874 DOI: 10.1016/j.rvsc.2024.105447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/27/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
Metritis has considerable economic impact on dairy herd profitability due largely to reduced reproductive performance. Studies in Ethiopia only report prevalence, with no available data on the incidence of metritis. The present prospective cohort study aimed to estimate the incidence of puerperal metritis, identify risk factors, and isolate the causative bacteria in dairy cows in Hawassa. Daily follow-up of 120 dairy cows from parturition to 21 days postpartum was carried out from November 2019 to February 2021. Of these, 21 developed puerperal metritis with an incidence rate of 0.94 cases per 100 cow days at risk (95 % CI: 0.6-1.4). The cumulative incidence was found to be 17.5 % (95 % CI: 11.8-25.6). Over 90 % of the puerperal metritis occurred within the first 10 days of parturition. The mean day of occurrence of puerperal metritis was 7.7 days postpartum and the mean rectal temperature in metritic cows was 40.5 °C. Retained fetal membranes (RFM) (p < 0.001) emerged as the only predisposing factor for metritis in the final Cox regression model. Cows with RFM faced a 14.9 times higher risk of metritis compared to cows without RFM. A total of 52 bacterial isolates, belonging to 4 genera, were recovered from the aerobic culture of 21 uterine swab samples. E. coli and Staphylococcus spp. were the most frequently isolated bacteria, with recovery from 21 (100 %) and 20 (95.2 %) of the metritic uteri, respectively. Results of this study suggested the importance of reducing incidence of RFM to reduce incidence of metritis in dairy cows.
Collapse
Affiliation(s)
- Melese Alemu
- Hawassa Town Department of Agriculture, Hawassa, Ethiopia
| | - Kassaye Aragaw
- Faculty of Veterinary Medicine, Hawassa University, P.O.Box 05, Hawassa, Ethiopia.
| | - Desie Sheferaw
- Faculty of Veterinary Medicine, Hawassa University, P.O.Box 05, Hawassa, Ethiopia
| | - Berhanu Sibhat
- College of Veterinary Medicine, Haramaya University, P.O.Box 138, Dire Dawa, Ethiopia
| | - Rahmeto Abebe
- Faculty of Veterinary Medicine, Hawassa University, P.O.Box 05, Hawassa, Ethiopia
| | - Mesele Abera
- Faculty of Veterinary Medicine, Hawassa University, P.O.Box 05, Hawassa, Ethiopia
| | - Sharon Egan
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| | - Kassahun Asmare
- Faculty of Veterinary Medicine, Hawassa University, P.O.Box 05, Hawassa, Ethiopia
| |
Collapse
|
2
|
Talukder AK, McDonald M, Browne JA, Charpigny G, Rizos D, Lonergan P. Response of bovine endometrium to interferon tau in the presence of lipopolysaccharide. Theriogenology 2024; 229:169-177. [PMID: 39180888 DOI: 10.1016/j.theriogenology.2024.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
We recently demonstrated that conceptus-derived interferon tau (IFNT), responsible for maternal recognition in cattle, acts on the uterus in a dose- and time-dependent manner by upregulating key interferon-stimulated genes (ISGs) in the endometrium. In high producing dairy cows, postpartum uterine infection is a major factor influencing fertility and pregnancy outcome. Lipopolysaccharide (LPS), an endotoxin of Gram-negative bacteria such as Escherichia coli, generates an altered uterine environment by inducing excessive inflammation at the maternal-conceptus interface. Thus, we aimed to investigate whether the endometrial response to IFNT is altered in the presence of LPS. Endometrial explants were isolated from uteri collected at a local abattoir from Holstein Friesian cows (n = 8) during the mid-luteal stage of the estrous cycle, and cultured in RPMI medium for 24 h in 5 % CO2 in humidified air without (control), or with IFNT (100 ng/mL), a single Day 15 conceptus, LPS (1 μg/mL), both IFNT and LPS, or both a Day 15 conceptus and LPS. Incubation with IFNT and a Day 15 conceptus up-regulated (P < 0.05) well-known classical ISGs (ISG15, OAS1, MX1 and MX2) as well as other candidate ISGs (CMPK2, IFI35, TRIM38 and TNFSF10) and down-regulated expression of IL1B in endometrial explants. Incubation with LPS increased (P < 0.05) abundance of NFKB1 (a key transcription factor involved in inflammatory and immune response), TNFA, IL1B and IL6 (pro-inflammatory cytokines), IL10 (anti-inflammatory cytokine), IL8, CXCL1, CXCL3 and CCL2 (chemokines), and, to a lesser extent, classical ISGs in endometrial explants. However, LPS did not alter endometrial response to IFNT, irrespective of IFNT concentration (1, 10 or 100 ng/mL). Results suggest that the expression of ISGs, up-regulated by conceptus-derived IFNT, is not altered in the endometrium in the presence of LPS; however, the increased expression of inflammation-related genes induced by LPS indicate an altered endometrial immune response that may be associated with compromised pregnancy establishment or pregnancy failure.
Collapse
Affiliation(s)
- A K Talukder
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, 4, Ireland; Department of Gynecology, Obstetrics & Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - M McDonald
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, 4, Ireland
| | - J A Browne
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, 4, Ireland
| | - G Charpigny
- INRAE, Biologie du Developpment et Reproduction, Jouy en Josas, France
| | - D Rizos
- Department of Animal Reproduction, INIA-CSIC, Madrid, Spain
| | - P Lonergan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, 4, Ireland.
| |
Collapse
|
3
|
Qin X, Du J, He R, Li Y, Li H, Liang X. Potential mechanisms and therapeutic strategies for LPS-associated female fertility decline. J Assist Reprod Genet 2024; 41:2739-2758. [PMID: 39167249 PMCID: PMC11534943 DOI: 10.1007/s10815-024-03226-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024] Open
Abstract
As a major component of the outer membrane of Gram-negative bacteria, lipopolysaccharide (LPS) can be recognized by toll-like receptors (TLRs) and induce inflammation through MyD88 or the TIR domain-containing adapter-inducing interferon-β (TRIF) pathway. Previous studies have found that LPS-associated inflammatory/immune challenges were associated with ovarian dysfunction and reduced female fertility. However, the etiology and pathogenesis of female fertility decline associated with LPS are currently complex and multifaceted. In this review, PubMed was used to search for references on LPS and fertility decline so as to elucidate the potential mechanisms of LPS-associated female fertility decline and summarize therapeutic strategies that may improve LPS-associated fertility decline.
Collapse
Affiliation(s)
- Xue Qin
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Junhong Du
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Ruifen He
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Yaxi Li
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Hongli Li
- Department of Obstetrics and Gynecology, Key Laboratory for Gynecologic Oncology Gansu Province, The First Hospital of Lanzhou University, No.1, Donggangxi Rd, Chengguan District, Lanzhou, 730000, China
| | - Xiaolei Liang
- Department of Obstetrics and Gynecology, Key Laboratory for Gynecologic Oncology Gansu Province, The First Hospital of Lanzhou University, No.1, Donggangxi Rd, Chengguan District, Lanzhou, 730000, China.
| |
Collapse
|
4
|
Uddin MS, Ortiz Guluarte J, Waldner M, Alexander TW. The respiratory and fecal microbiota of beef calves from birth to weaning. mSystems 2024; 9:e0023824. [PMID: 38899874 PMCID: PMC11264934 DOI: 10.1128/msystems.00238-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024] Open
Abstract
The development and growth of animals coincide with the establishment and maturation of their microbiotas. To evaluate the respiratory and fecal microbiotas of beef calves from birth to weaning, a total of 30 pregnant cows, and their calves at birth, were enrolled in this study. Deep nasal swabs and feces were collected from calves longitudinally, starting on the day of birth and ending on the day of weaning. Nasopharyngeal, vaginal, and fecal samples were also collected from cows, and the microbiotas of all samples were analyzed. The fecal microbiota of calves was enriched with Lactobacillus during the first 8 weeks of life, before being displaced by genera associated with fiber digestion, and then increasing in diversity across time. In contrast, the diversity of calf respiratory microbiota generally decreased with age. At birth, the calf and cow nasal microbiotas were highly similar, indicating colonization from dam contact. This was supported by microbial source-tracking analysis. The structure of the calf nasal microbiota remained similar to that of the cows, until weaning, when it diverged. The changes were driven by a decrease in Lactobacillus and an increase in genera typically associated with bovine respiratory disease, including Mannheimia, Pasteurella, and Mycoplasma. These three genera colonized calves early in life, though Mannheimia was initially transferred from the cow reproductive tract. Path analysis was used to model the interrelationships of calf respiratory and fecal microbiotas. It was observed that respiratory Lactobacillus and fecal Oscillospiraceae UCG-005 negatively affected the abundance of Mannheimia or Pasteurella.IMPORTANCEIn beef cattle production, bovine respiratory disease (BRD) accounts for most of the feedlot morbidities and mortalities. Metaphylaxis is a common management tool to mitigate BRD, however its use has led to increased antimicrobial resistance. Novel methods to mitigate BRD are needed, including microbiota-based strategies. However, information on the respiratory bacteria of beef calves prior to weaning was limited. In this study, it was shown that the microbiota of cows influenced the initial composition of both respiratory and fecal microbiotas in calves. While colonization of the respiratory tract of calves by BRD-associated genera occurred early in life, their relative abundances increased at weaning, and were negatively correlated with respiratory and gut bacteria. Thus, microbiotas of both the respiratory and gastrointestinal tracts have important roles in antagonism of respiratory pathogens and are potential targets for enhancing calf respiratory health. Modulation may be most beneficial, if done prior to weaning, before opportunistic pathogens establish colonization.
Collapse
Affiliation(s)
- Muhammed Salah Uddin
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Jose Ortiz Guluarte
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
| | - Matthew Waldner
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
| | - Trevor W. Alexander
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
| |
Collapse
|
5
|
Cheng YH, Huang CW, Lien HT, Hsiao YY, Weng PL, Chang YC, Cheng JH, Lan KC. A Preliminary Investigation of the Roles of Endometrial Cells in Endometriosis Development via In Vitro and In Vivo Analyses. Int J Mol Sci 2024; 25:3873. [PMID: 38612685 PMCID: PMC11011664 DOI: 10.3390/ijms25073873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/24/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Endometriosis is a complex gynecological disease that affects more than 10% of women in their reproductive years. While surgery can provide temporary relief from women's pain, symptoms often return in as many as 75% of cases within two years. Previous literature has contributed to theories about the development of endometriosis; however, the exact pathogenesis and etiology remain elusive. We conducted a preliminary investigation into the influence of primary endometrial cells (ECs) on the development and progression of endometriosis. In vitro studies, they were involved in inducing Lipopolysaccharide (LPS) in rat-isolated primary endometrial cells, which resulted in increased nuclear factor-kappa B (NF-κB) and vascular endothelial growth factor (VEGF) mRNA gene expression (quantitative polymerase chain reaction analysis, qPCR) and protein expression (western blot analysis). Additionally, in vivo studies utilized autogenic and allogeneic transplantations (rat to rat) to investigate endometriosis-like lesion cyst size, body weight, protein levels (immunohistochemistry), and mRNA gene expression. These studies demonstrated that estrogen upregulates the gene and protein regulation of cytoskeletal (CK)-18, transforming growth factor-β (TGF-β), VEGF, and tumor necrosis factor (TNF)-α, particularly in the peritoneum. These findings may influence cell proliferation, angiogenesis, fibrosis, and inflammation markers. Consequently, this could exacerbate the occurrence and progression of endometriosis.
Collapse
Affiliation(s)
- Yin-Hua Cheng
- Department of Medical Research and Development, Jen-Ai Hospital, Taichung 412, Taiwan;
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan; (H.-T.L.); (Y.-Y.H.); (P.-L.W.); (Y.-C.C.)
| | - Ching-Wei Huang
- Division of Urology, Department of Surgery, Jen-Ai Hospital, Taichung 412, Taiwan;
| | - Hao-Ting Lien
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan; (H.-T.L.); (Y.-Y.H.); (P.-L.W.); (Y.-C.C.)
- Graduate Institute of Clinical Medical Sciences, Chang Gung University College, Kaohsiung 833, Taiwan
| | - Yu-Yang Hsiao
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan; (H.-T.L.); (Y.-Y.H.); (P.-L.W.); (Y.-C.C.)
- Graduate Institute of Clinical Medical Sciences, Chang Gung University College, Kaohsiung 833, Taiwan
| | - Pei-Ling Weng
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan; (H.-T.L.); (Y.-Y.H.); (P.-L.W.); (Y.-C.C.)
| | - Yung-Chiao Chang
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan; (H.-T.L.); (Y.-Y.H.); (P.-L.W.); (Y.-C.C.)
| | - Jai-Hong Cheng
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan;
- Medical Research, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- Department of Leisure and Sports Management, Cheng Shiu University, Kaohsiung 833, Taiwan
| | - Kuo-Chung Lan
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan; (H.-T.L.); (Y.-Y.H.); (P.-L.W.); (Y.-C.C.)
- Department of Obstetrics and Gynecology, Jen-Ai Hospital, Taichung 412, Taiwan
- Center for Menopause and Reproductive Medicine Research, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| |
Collapse
|
6
|
Li H, Dong J, Cui L, Liu K, Guo L, Li J, Wang H. The effect and mechanism of selenium supplementation on the proliferation capacity of bovine endometrial epithelial cells exposed to lipopolysaccharide in vitro under high cortisol background. J Anim Sci 2024; 102:skae021. [PMID: 38289713 PMCID: PMC10889726 DOI: 10.1093/jas/skae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/29/2024] [Indexed: 02/01/2024] Open
Abstract
Bovine endometritis severely inhibits uterine repair and causes considerable economic loss. Besides, parturition-induced high cortisol levels inhibit immune function, reduce cell proliferation, and further inhibit tissue repair. Selenium (Se) is an essential trace element for animals to maintain normal physiological function and has powerful antioxidant functions. This study investigated whether Se supplementation reduces endometrial damage and promotes tissue repair in cows with endometritis under stress and explored the underlying mechanism. Primary bovine endometrial epithelial cells were isolated and purified from healthy cows. The cells were treated with different combinations of lipopolysaccharide (LPS), cortisol, and various concentrations of Se. Data showed that LPS stimulation inhibited cell proliferation and increased cell apoptosis. High levels of cortisol further exacerbated these effects. Flow cytometry, scratch wound healing tests, and 5-ethynyl-2'-deoxyuridine (EdU) proliferation assays showed that Se supplementation promoted cell cycle progression, cell migration, and cell proliferation in the presence of LPS and cortisol. The quantitative PCR results showed that the expression of related growth factors was increased after Se supplementation. After administering various inhibitors, we further demonstrated that Se supplementation decreased the activity of glycogen synthetase kinase 3β (GSK-3β) through the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway to reduce the degradation of β-catenin except the Wnt signal to promote cell proliferation. In conclusion, Se supplementation attenuated the cell damage induced by LPS at high cortisol levels and increased cell proliferation to promote uterine repair by elevating the mRNA expression of TGFB3 and VEGFA and activating the PI3K/AKT/GSK-3β/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Hanqing Li
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| | - Junsheng Dong
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| | - Luying Cui
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| | - Kangjun Liu
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| | - Long Guo
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| | - Jianji Li
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| | - Heng Wang
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
7
|
Ateya A, Safhi FA, El-Emam H, Al-Ghadi MQ, Abdo M, Fericean L, Olga R, Mihaela O, Hizam MM, Mamdouh M, Abu El-Naga EM, Raslan WS. DNA Polymorphisms and mRNA Levels of Immune Biomarkers as Candidates for Inflammatory Postpartum Disorders Susceptibility in Italian Buffaloes. Vet Sci 2023; 10:573. [PMID: 37756095 PMCID: PMC10534879 DOI: 10.3390/vetsci10090573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023] Open
Abstract
The immunological genes that may interact with inflammatory postpartum diseases in Italian buffaloes were examined in this study. A total number of 120 female Italian buffaloes (60 normal and 60 with inflammatory reproductive diseases) were employed. Each buffalo's jugular vein was pierced to get five milliliters of blood. To obtain whole blood and extract DNA and RNA, the blood was placed within tubes containing sodium fluoride or EDTA anticoagulants. The immunological (IKBKG, LGALS, IL1B, CCL2, RANTES, MASP2, HMGB1, and S-LZ) genes' nucleotide sequence differences between healthy buffaloes and buffaloes affected by inflammatory reproductive diseases were found by employing PCR-DNA sequencing. According to Fisher's exact test (p ˂ 0.01), there were noticeably different probabilities of all major nucleotide changes spreading among buffalo groups with and without reproductive problems. Buffaloes were significantly more likely to express the examined genes when they had inflammatory reproductive diseases. The outcomes might support the significance of these markers' nucleotide variations and gene expression patterns as indicators of the prevalence of inflammatory reproductive disorders and provide a workable buffalo management policy.
Collapse
Affiliation(s)
- Ahmed Ateya
- Department of Development of Animal Wealth, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Fatmah A. Safhi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Huda El-Emam
- Department of Development of Animal Wealth, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Muath Q. Al-Ghadi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Mohamed Abdo
- Department of Animal Histology and Anatomy, School of Veterinary Medicine, Badr University in Cairo (BUC), Cairo 11829, Egypt;
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Egypt
| | - Liana Fericean
- Department of Biology and Plant Protection, Faculty of Agricultural Sciences, University of Life Sciences King Michael I, 300645 Timisoara, Romania; (L.F.); (O.M.)
| | - Rada Olga
- Department of Biology and Plant Protection, Faculty of Agricultural Sciences, University of Life Sciences King Michael I, 300645 Timisoara, Romania; (L.F.); (O.M.)
| | - Ostan Mihaela
- Department of Biology and Plant Protection, Faculty of Agricultural Sciences, University of Life Sciences King Michael I, 300645 Timisoara, Romania; (L.F.); (O.M.)
| | - Manar M. Hizam
- College of Pharmacy, National University of Science and Technology, Nasiriyah 64001, Iraq;
| | - Maha Mamdouh
- Department of Physiology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt; (M.M.); (W.S.R.)
| | - Eman M. Abu El-Naga
- Department of Theriogenology, Faculty of Veterinary Medicine, Aswan University, Aswan 81528, Egypt;
| | - Walaa S. Raslan
- Department of Physiology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt; (M.M.); (W.S.R.)
| |
Collapse
|
8
|
Silva JCC, Bringhenti L, Siqueira LC, Rodrigues MX, Zinicola M, Pomeroy B, Bicalho RC. Testing the Induction of Metritis in Healthy Postpartum Primiparous Cows Challenged with a Cocktail of Bacteria. Animals (Basel) 2023; 13:2852. [PMID: 37760254 PMCID: PMC10525343 DOI: 10.3390/ani13182852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/02/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Metritis is a postpartum uterine disease with greater incidence in primiparous than in multiparous cows. In primiparous cows, the impact on production and health is lessened, presumably due to a superior immune response. Here, we tested whether an in vivo model of clinical metritis induction developed for postpartum multiparous Holstein cows would produce similar results in primiparous cows. Thirty-six cows were randomly assigned to one of three groups and received intrauterine infusion within 24 h of parturition. The controls were infused with sterile saline; the low-dose group received a bacterial cocktail containing 103 cfu of Escherichia coli, Trueperella pyogenes, and Fusobacterium necrophorum; and the high-dose group were infused with 106 cfu of the same cocktail. Production, health traits, and the vaginal discharge culture were assessed daily, from enrollment until 14 d in milk. Clinical metritis occurred in 64% of high-dose cows, 33% of the controls, and 42% of low-dose cows, with no significant difference of incidence between groups. However, when accounting by time, high-dose cows had a 2.7 times greater hazard of metritis compared with the controls. The bacterial challenge affected milk production and dry matter intake tended to decrease. In the high-dose group, a greater growth of F. necrophorum in the selective medium was also observed, suggesting an association with metritis. Therefore, this study suggests intrauterine inoculation with 106 cfu of this bacterial cocktail elicits physical and clinical outcomes consistent with clinical metritis.
Collapse
Affiliation(s)
- Josiane C. C. Silva
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853, USA
- Zoetis Animal Health, Kalamazoo, MI 49007, USA
| | - Leonardo Bringhenti
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Lucas C. Siqueira
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Marjory X. Rodrigues
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853, USA
- FERA Diagnostics and Biologicals, College Station, TX 77845, USA
| | | | | | - Rodrigo C. Bicalho
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853, USA
- FERA Diagnostics and Biologicals, College Station, TX 77845, USA
| |
Collapse
|
9
|
Al-Sharif M, Abdo M, Shabrawy OE, El-Naga EMA, Fericean L, Banatean-Dunea I, Ateya A. Investigating Polymorphisms and Expression Profile of Immune, Antioxidant, and Erythritol-Related Genes for Limiting Postparturient Endometritis in Holstein Cattle. Vet Sci 2023; 10:370. [PMID: 37368756 DOI: 10.3390/vetsci10060370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
This study looked at genetic polymorphisms and transcript levels of immune, antioxidant, and erythritol-related markers for postparturient endometritis prediction and tracking in Holstein dairy cows. One hundred and thirty female dairy cows (65 endometritis affected and 65 apparently healthy) were used. Nucleotide sequence variations between healthy and endometritis-affected cows were revealed using PCR-DNA sequencing for immune (TLR4, TLR7, TNF-α, IL10, NCF4, and LITAF), antioxidant (ATOX1, GST, and OXSR1), and erythritol-related (TKT, RPIA, and AMPD1) genes. Chi-square investigation exposed a noteworthy variance amongst cow groups with and without endometritis in likelihood of dispersal of all distinguished nucleotide variants (p < 0.05). The IL10, ATOX1, and GST genes were expressed at substantially lower levels in endometritis-affected cows. Gene expression levels were considerably higher in endometritis-affected cows than in resistant ones for the genes TLR4, TLR7, TNF-α, NCF4, LITAF, OXSR1, TKT, RPIA, and AMPD1. The sort of marker and vulnerability or resistance to endometritis had a significant impact on the transcript levels of the studied indicators. The outcomes might confirm the importance of nucleotide variants along with gene expression patterns as markers of postparturient endometritis susceptibility/resistance and provide a workable control plan for Holstein dairy cows.
Collapse
Affiliation(s)
- Mona Al-Sharif
- Department of Biology, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia
| | - Mohamed Abdo
- Department of Animal Histology and Anatomy, School of Veterinary Medicine, Badr University in Cairo (BUC), Cairo 11829, Egypt
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Egypt
| | - Omnia El Shabrawy
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Menofia University, Menofia 32951, Egypt
| | - Eman M Abu El-Naga
- Department of Theriogenology, Faculty of Veterinary Medicine, Aswan University, Aswan 81528, Egypt
| | - Liana Fericean
- Department of Biology and Plant Protection, Faculty of Agricultural Sciences, University of Life Sciences King Michael I, 300645 Timisoara, Romania
| | - Ioan Banatean-Dunea
- Department of Biology and Plant Protection, Faculty of Agricultural Sciences, University of Life Sciences King Michael I, 300645 Timisoara, Romania
| | - Ahmed Ateya
- Department of Development of Animal Wealth, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
10
|
Tasara T, Meier AB, Wambui J, Whiston R, Stevens M, Chapwanya A, Bleul U. Interrogating the Diversity of Vaginal, Endometrial, and Fecal Microbiomes in Healthy and Metritis Dairy Cattle. Animals (Basel) 2023; 13:ani13071221. [PMID: 37048477 PMCID: PMC10093325 DOI: 10.3390/ani13071221] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
The bovine genital tract harbors a dynamic microbiome. Genital tract microbial communities in healthy animals have been characterized using next-generation sequencing methods showing that microbe compositions differ between the vagina and uterus, more so during the postpartum period. Pre-calving fecal and vaginal, and endometrial swabs at the different postpartum intervals were collected from dairy cows. Microbiomes in these samples were determined based on bacterial 16S amplicon sequencing and compared between healthy (H; n = 10) control animals and cows that developed metritis (M; n = 10) within 21 days postpartum (DPP). Compared to healthy animals the pre-calving fecal and vaginal microbiomes of metritis animals were more abundant in sequences from the phylum Fusobacteria and the bacterial genera such as Escherichia-Shigella and Histophilus. In addition, compared to healthy animals, metritis cows harboured low microbial species diversity in the endometrium, as well as decreasing Proteobacteria and increasing Fusobacteria, Firmicutes, Actinobacteria, and Bacteroidetes abundances. The greatest taxonomic compositional deviations in endometrial microbial communities between the metritis and health cows were detected between 7 and 10 DPP. There was high taxonomic similarity detected between postpartum endometrial microbiomes and the prepartum vaginal and fecal microbiomes suggesting that colonization through bacteria ascending from the rectum and vagina to the uterine cavity might play a major role in establishing the endometrial microbiome postpartum. A deeper understanding of the establishment and dynamics of postpartum endometrial microbial communities in cows will thus provide crucial basic knowledge to guide the development of genital microbiome manipulation strategies for preventing uterine disease and improving fertility in dairy cows.
Collapse
|
11
|
Silva J, Siqueira L, Rodrigues M, Zinicola M, Wolkmer P, Pomeroy B, Bicalho R. Intrauterine infusion of a pathogenic bacterial cocktail is associated with the development of clinical metritis in postpartum multiparous Holstein cows. J Dairy Sci 2022; 106:607-623. [DOI: 10.3168/jds.2022-21954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022]
|
12
|
Ault-Seay TB, Payton RR, Moorey SE, Pohler KG, Schrick FN, Shepherd EA, Voy BH, Lamour KH, Mathew DJ, Myer PR, McLean KJ. Endometrial gene expression in response to lipopolysaccharide between estrous cycle phases and uterine horns in cattle. FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2022.939876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Uterine bacterial community abundances shift throughout the estrous cycle, potentially altering the immunological environment of the uterus and impacting subsequent fertility. The objective of the current study was to evaluate the immunological impact of lipopolysaccharide (LPS), as a model for potentially pathogenic bacteria, throughout the uterine endometrium between the luteal and follicular phase of the estrous cycle. Bovine uterine tracts were harvested in mid-luteal (n = 7) or follicular (n = 7) phase. Explants were collected from the contralateral and ipsilateral horn relative to the dominant follicle or corpus luteum, then subjected to one of three treatments: uncultured control, cultured control, or cultured with LPS (1 µg/mL). Explants underwent RNA extraction and targeted RNA sequencing for expression analyses of 40 immune response related genes. Sequencing reads were mapped to Bos taurus genome in CLC Genomics Workbench. Resulting total read counts were normalized by housekeeping gene GAPDH and analyzed for overall expression profile by Orthogonal Projections to Latent Structures Discriminant Analysis (OPLS-DA) and Variable Importance in Projection (VIP) analyses in Metaboanalyst. Individual gene expression differences were determined by GLIMMIX procedure in SAS with fixed effects of treatment, estrous phase, uterine horn, and their interaction, with random effect of individual uterus. Expression of 29 genes were affected among treatment groups, with seven genes increased in LPS treatment compared to other groups (P < 0.05). Multiple genes were affected by estrous phase and uterine horn, independent of treatment (P < 0.05). The OPLS-DA analyses indicated overall gene expression differences due to clustering by estrous cycle and treatment (P < 0.001), with no effect of uterine horn (P > 0.10). Similar clustering was observed between luteal and follicular phase explants of controls, but distinct separate clustering between phases with LPS treatment (P = 0.001). According to VIP analyses, mucins were identified as contributing the most to differences observed between phase and treatment. In conclusion, estrous cycle phase resulted in differing overall endometrial gene expression profiles of immune response to LPS treatment. Therefore, altered immunological environment of the uterus in response to bacteria at different estrous cycle stages may lead to differences in reproductive success.
Collapse
|
13
|
Gutiérrez-Reinoso MA, Uquilla JB, Barona FA, Guano ME, Chicaiza GN, García-Herreros M. Effects of Intrauterine Infusion of Micronised Purified Flavonoid Fraction (MPFF) in Metritis-Diagnosed Dairy Cows Naturally Infected by E. coli during the Early Postpartum. Vet Sci 2022; 9:vetsci9070362. [PMID: 35878379 PMCID: PMC9316919 DOI: 10.3390/vetsci9070362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/27/2022] [Accepted: 07/01/2022] [Indexed: 11/30/2022] Open
Abstract
The occurrence of metritis during the postpartum period causes serious economic losses in dairy cattle. The Micronised Purified Flavonoid Fraction (MPFF) is a polyphenolic flavonoid compound which is considered to have many health-related properties such as antibiotic, anti-inflammatory, phlebotonic, and several vascular-protecting activities. The aim was to evaluate the effects of a new strategic therapy for metritis based on MPFF intrauterine infusions during the early postpartum in dairy cows naturally infected by Escherichia coli. The clinical effects on reproductive anatomical structures and chronological involution dynamics were monitored until day 24 postpartum by ultrasonography. Moreover, uterine bacteriological and cytological (polymorphonuclear neutrophils; PMNs) profiles were analysed before and after MPFF infusion. The results showed that the success rate (% cure) at day 24 postpartum was improved significantly when using higher MPFF doses (p < 0.05). Moreover, MPFF treatment acutely diminished the size of the cervix and uterus and improved the involution process during the first 24 days (p < 0.05). The prevalence of pathogenic bacteria found in in vitro cultures was significantly variable (p < 0.01), as were the antibiotic sensitivity patterns. Pathogenic bacteria isolates decreased after MPFF applications in a dose−response fashion (p < 0.01), while isolates obtained from controls and low-dose-MPFF-treated animals were stable and similar (p > 0.05). The sensitivity patterns of pathogenic bacteria isolated in in vitro cultures from MPFF-treated animals were variable, although resistance to E. coli, Staphylococcus aureus, Bacillus spp., and coliforms was shown irrespective of the MPFF doses used. However, MPFF-treated cows showed a dose−response effect regarding PMN rates (p < 0.05). The calving-first service, calving−conception interval, and conception rate improved significantly from using higher MPFF doses (p < 0.05). In conclusion, this study shows that MPFF treatment differentially affects uterine involution, bacteriological profiles, cytological traits, and reproductive performance in metritis-positive dairy cows naturally infected by E. coli.
Collapse
Affiliation(s)
- Miguel A. Gutiérrez-Reinoso
- Facultad de Ciencias Agropecuarias y Recursos Naturales, Carrera de Medicina Veterinaria, Universidad Técnica de Cotopaxi (UTC), Latacunga 050150, Ecuador; (M.E.G.); (G.N.C.)
- Departamento de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad de Concepción (UdeC), Chillán 3780000, Chile
- Correspondence: (M.A.G.-R.); (M.G.-H.); Tel.: +593-03-22-66-164 (M.A.G.-R.); +351-24-37-67 (ext. 330) (M.G.-H.)
| | - José B. Uquilla
- Departamento de Asesoría Ganadera, La Holandesa SAS, Quito 170179, Ecuador;
| | - Francisco A. Barona
- Facultad de Ciencias de la Salud, Universidad de las Américas (UDLA), Quito 170125, Ecuador;
| | - Manuel E. Guano
- Facultad de Ciencias Agropecuarias y Recursos Naturales, Carrera de Medicina Veterinaria, Universidad Técnica de Cotopaxi (UTC), Latacunga 050150, Ecuador; (M.E.G.); (G.N.C.)
| | - Gloria N. Chicaiza
- Facultad de Ciencias Agropecuarias y Recursos Naturales, Carrera de Medicina Veterinaria, Universidad Técnica de Cotopaxi (UTC), Latacunga 050150, Ecuador; (M.E.G.); (G.N.C.)
| | - Manuel García-Herreros
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV), 2005-048 Santarém, Portugal
- Correspondence: (M.A.G.-R.); (M.G.-H.); Tel.: +593-03-22-66-164 (M.A.G.-R.); +351-24-37-67 (ext. 330) (M.G.-H.)
| |
Collapse
|
14
|
Effect of retained placenta and clinical mastitis on reproduction parameters, immune response, and steroidogenic receptors gene expression in postpartum crossbred dairy cows. Trop Anim Health Prod 2022; 54:180. [PMID: 35522378 DOI: 10.1007/s11250-022-03140-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 03/14/2022] [Indexed: 10/18/2022]
Abstract
The purpose of this study was to evaluate the effect of retained placenta (RP) and clinical mastitis (CM) on the reproductive efficiency of crossbred dairy cows during the postpartum period and the effect in some innate immune system indicators. For this, two experiments were carried out. In the first, a total of 232 cows were evaluated and divided as: healthy control (n = 184), RP (n = 22), and CM (n = 26) groups. The RP and CM was evaluated until 30 days postpartum (DPP) and reproductive rates were measured. In experiment 2, cows were divided in control (n = 10), RP (n = 10), and CM (n = 30) groups. Between 40 and 50 DPP, clinical, gynecological examination and endometrial cytobrush were performed to evaluate subclinical endometritis (SE) and gene expression of interleukins 1β (IL-1β) and 6 (IL-6), chemokine ligand 5 (CCL5), estrogen α (ESR1), and progesterone (PGR) receptors by qRT-PCR analysis. In experiment 1, the conception rate at 1st artificial insemination (AI) was lower in RP and CM groups and pregnancy rate at 150 days decreased in CM group. Calving-to-1st AI interval and days open were shorter in healthy cows. In experiment 2, the occurrence of SE was 26.7% and higher in RP and CM groups. The expression of IL-1β increased in RP and CM groups, while IL-6 was less expressed in RP group. The CCL5, ESR1, and PGR were similar between groups. In conclusion, cows with RP and CM had their reproductive efficiency negatively affected and had they initial pro-inflammatory response improved by the increase of IL-β.
Collapse
|
15
|
Wiebe M, Pfarrer C, Martín LG, Schmicke M, Hoedemaker M, Bollwein H, Heppelmann M. Effect of metritis on in-vitro uterine contractility in cows during the puerperium. Anim Reprod Sci 2022; 239:106971. [PMID: 35339982 DOI: 10.1016/j.anireprosci.2022.106971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/15/2022] [Accepted: 03/20/2022] [Indexed: 11/29/2022]
Abstract
Aim of this study was to determine the effect of metritis on in-vitro uterine contractility. Uteri obtained from 16 euthanized Holstein-Friesian cows were divided into two groups depending on whether metritis was absent (M-, n = 6) or present (M+, n = 10). Four longitudinal and four circular myometrial strips of all uteri were incubated in an organ bath. Spontaneous contractility was recorded in five consecutive 30-minute periods (T1-T5). This was followed by stimulation of one longitudinal and one circular strip with increasing concentrations of oxytocin, prostaglandinF2α (PGF2α), and calcium chloride (each during four 30-minute periods [T6-T9]). Strips in group M+ had higher minimum amplitude (minA) values at T1 and higher minA, mean amplitude (meanA), and area under the curve (AUC) values at T2 than strips in group M- (P ≤ 0.05). In the M+ group, the maximum amplitude (maxA), meanA, and AUC values of circular strips were higher than those of longitudinal strips during spontaneous contractility (T1, T4, and T5; P ≤ 0.05). The minA, meanA, and AUC values for strips in group M+ were higher than those in group M- when exposed to the highest concentration of PGF2α (P ≤ 0.05). During stimulation with PGF2α (T9), longitudinal strips had higher maxA values than the circular strips in group M+ (P ≤ 0.05). Spontaneous and stimulated contractility were temporarily increased in uteri with metritis compared to healthy uteri. Both myometrial layers, especially in uteri with metritis, reacted differently during spontaneous contractility and to stimulation with PGF2α.
Collapse
Affiliation(s)
- M Wiebe
- Clinic for Cattle, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173, Germany.
| | - C Pfarrer
- Institute of Anatomy, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173, Germany
| | - L Górriz Martín
- Clinic for Cattle, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173, Germany
| | - M Schmicke
- Institute of Agricultural and Nutritional Science, Martin Luther University Halle-Wittenberg, Karl-Freiherr-von-Fritsch-Str. 4, 06120 Halle, Germany
| | - M Hoedemaker
- Clinic for Cattle, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173, Germany
| | - H Bollwein
- Clinic for Animal Reproduction Medicine, University of Zurich, Winterthurerstrasse 260, CH-8057 Zurich, Switzerland
| | - M Heppelmann
- Clinic for Cattle, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173, Germany
| |
Collapse
|
16
|
Amat S, Dahlen CR, Swanson KC, Ward AK, Reynolds LP, Caton JS. Bovine Animal Model for Studying the Maternal Microbiome, in utero Microbial Colonization and Their Role in Offspring Development and Fetal Programming. Front Microbiol 2022; 13:854453. [PMID: 35283808 PMCID: PMC8916045 DOI: 10.3389/fmicb.2022.854453] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/07/2022] [Indexed: 01/10/2023] Open
Abstract
Recent developments call for further research on the timing and mechanisms involved in the initial colonization of the fetal/infant gut by the maternal microbiome and its role in Developmental Origins of Health and Disease (DOHaD). Although progress has been made using primarily preterm infants, ethical and legal constraints hinder research progress in embryo/fetal-related research and understanding the developmental and mechanistic roles of the maternal microbiome in fetal microbial imprinting and its long-term role in early-life microbiome development. Rodent models have proven very good for studying the role of the maternal microbiome in fetal programming. However, some inherent limitations in these animal models make it challenging to study perinatal microbial colonization from a biomedical standpoint. In this review, we discuss the potential use of bovine animals as a biomedical model to study the maternal microbiome, in utero microbial colonization of the fetal gut, and their impact on offspring development and DOHaD.
Collapse
Affiliation(s)
- Samat Amat
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, United States
| | - Carl R Dahlen
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, United States
| | - Kendall C Swanson
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, United States
| | - Alison K Ward
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, United States
| | - Lawrence P Reynolds
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, United States
| | - Joel S Caton
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, United States
| |
Collapse
|
17
|
Yamamura F, Sugiura T, Munby M, Shiokura Y, Murata R, Nakamura T, Fujiki J, Iwano H. Relationship between Escherichia coli virulence factors, notably kpsMTII, and symptoms of clinical metritis and endometritis in dairy cows. J Vet Med Sci 2022; 84:420-428. [PMID: 35082195 PMCID: PMC8983293 DOI: 10.1292/jvms.21-0586] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although Escherichia coli is a commensal bacterium of the bovine vaginal microbiota, it is an important pathogenic bacterium that causes diseases of the reproductive tract and sub-fertility. Recent studies have focused on virulence factors (VFs) of intrauterine E. coli; however, actual endometrial VFs have not been clearly identified. The purpose of this study was to identify the VFs of E. coli associated with clinical metritis and endometritis. Thirty-two strains of E. coli and four mixed Trueperella pyogenes (TP) strains were detected in the uterus of 19 Holstein dairy cows with obvious clinical signs (between 8 and 66 days postpartum). The presence of six E. coli VFs (fimH, fyuA, kpsMTII, hra1, csgA, and astA) was examined by PCR, and clinical signs and reproductive performance (mixed TP, the percentage of polymorphonuclear neutrophils [PMN%], days to uterine involution, etc.) were evaluated. Four VFs (fimH, hra1, csgA, and astA) were detected in all E. coli strains, whereas fyuA and kpsMTII were detected in 94% and 50% of strains, respectively. Cows with E. coli strains harboring kpsMTII exhibited significantly severe clinical scores (vaginal discharge score, PMN%, uterine involution), suggesting that kpsMTII is a key VF for progression of clinical metritis and endometritis. In the present study, we clearly identified six VFs associated with clinical metritis and endometritis. In addition, E. coli strains with kpsMTII probably play a crucial role in the progression of clinical metritis and endometritis.
Collapse
Affiliation(s)
- Fuminosuke Yamamura
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Rakuno Gakuen University
| | - Tomochika Sugiura
- Laboratory of Theriogenology, School of Veterinary Medicine, Rakuno Gakuen University
| | - Montgomery Munby
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Rakuno Gakuen University
| | - Yusei Shiokura
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Rakuno Gakuen University
| | - Ryo Murata
- Laboratory of Food Microbiology and Food Safety, School of Veterinary Medicine, Rakuno Gakuen University
| | - Tomohiro Nakamura
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Rakuno Gakuen University
| | - Jumpei Fujiki
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Rakuno Gakuen University
| | - Hidetomo Iwano
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Rakuno Gakuen University
| |
Collapse
|
18
|
Li Y, Ma X, Yang J, Wu X, Yan Z, He B. Expression Pattern of Cathelicidins in Dairy Cows During Endometritis and Role of Bovine Endometrial Epithelial Cells in Production of Cathelicidins. Front Vet Sci 2021; 8:675669. [PMID: 34616790 PMCID: PMC8489660 DOI: 10.3389/fvets.2021.675669] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 08/16/2021] [Indexed: 11/13/2022] Open
Abstract
Endometritis is a common bacterial disease of dairy cows. Cathelicidins are host-defense peptides that play important roles in clearance of bacteria. However, the expression pattern of these peptides during endometritis is still unclear. We hypothesize that the levels of bovine cathelicidins increased during endometritis. This study was to investigate the changes of bovine cathelicidins during endometritis. Forty-four post-partum cows (28–35 days after calving) involved in this study were grouped according to the character of vaginal discharge (VD) into three groups. These were (1) cows with clear fluid (n = 8, healthy cows group, N); (2) cows with VD containing <50% off-white mucopurulent material (n = 20, moderate endometritis cows, M); (3) cows with VD containing > 50% yellow or white purulent material (n = 16, severe endometritis cows, S). The blood, VD, and endometrial biopsies samples were collected from each cow to assess the levels of cathelicidin 1–7. Furthermore, bovine endometrial epithelial cells (BEECs) were stimulated with different concentration of Escherichia coli (2 × 106 and 2 × 107 CFU/mL) to detect the cellular source of cathelicidins. Quantitative real-time PCR (RT-qPCR) was used to detect the relative mRNA expression of cathelicidins, and enzyme-linked immune sorbent assay (ELISA) method were used to measure the protein levels. The mRNA and protein levels of cathelicidin 1–7 significantly increased during bovine endometritis (both moderate and severe endometritis), while samples from severe cases showed lower levels of cathelicidins compared to moderate cases. BEECs can express cathelicidin 1–7, and E. coli triggered the release of these proteins. High concentration of E. coli decreased the mRNA and protein levels of cathelicidins. Taken together, our results supported that cathelicidins are released as host defense molecules against the bacteria during bovine endometritis, and BEECs play an active role in expression and production of cathelicidins.
Collapse
Affiliation(s)
- Yajuan Li
- College of Animal Science and Technology, Guangxi University, Nanning, China.,Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiaoyu Ma
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jie Yang
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiaohu Wu
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zuoting Yan
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Baoxiang He
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
19
|
Zhang S, Wang D, Yan Z. Increasing of matrix metalloproteinase 3 in bovine endometritis. Theriogenology 2021; 175:83-88. [PMID: 34547631 DOI: 10.1016/j.theriogenology.2021.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/12/2022]
Abstract
Matrix metalloproteinase 3 (MMP3), a key member of the MMPs family, is involved in the modulation of endometrial inflammation and innate immunity. However, the role of MMP3 in bovine endometritis remains unknown. To investigate the role of MMP3 in bovine endometritis, endometrial MMP3 expression were determined in uterine biopsies from twenty 40-60 days postpartum dairy cows, which six were healthy cows and fourteen were endometritic cows. Moreover, MMP3 expression were also detected at different intensity of inflammatory response, which was induced by graded concentrations (0, 1, 5, 10 μg/ml) of LPS in bovine endometrial epithelial cells (BEECs) in vitro. RT-qPCR was used to test the mRNA levels of MMP3 in tissues or cells. Western blot was conducted to measure protein levels, and enzyme-linked immunosorbent assay (ELISA) was used for TNF-α and IL-1β in cell supernatant. Results showed that MMP3 mRNA and protein levels significantly increased and positive correlative with severity of endometritis in vivo. Likewise, MMP3 expression also positive correlative with intensity of LPS inflammatory response in BEECs in vitro. These results indicate that increasing of MMP3 directly correlates with bovine endometritis, and its increasing may contribute to progression of bovine endometritis.
Collapse
Affiliation(s)
- Shidong Zhang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, 730050, PR China.
| | - Dongsheng Wang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, 730050, PR China
| | - Zuoting Yan
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, 730050, PR China; Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou, 730050, PR China
| |
Collapse
|
20
|
Yin B, Umar T, Ma X, Chen Y, Chen N, Wu Z, Deng G. MiR-193a-3p targets LGR4 to promote the inflammatory response in endometritis. Int Immunopharmacol 2021; 98:107718. [PMID: 34139630 DOI: 10.1016/j.intimp.2021.107718] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/17/2021] [Accepted: 04/21/2021] [Indexed: 01/02/2023]
Abstract
Solving the reproductive barriers of dairy cows has become one of the most critical factors determining the dairy industry's development. Clinically, inflammation disease like endometritis is the most crucial cause in reducing dairy production's financial viability. MiR-193 family can induce cell apoptosis and differentiation has been reported in various diseases. LGR4 plays a vital role in reproductive system development and immune system regulation, and it is closely related to animal reproductive function and cytokine regulation. In this study, we observed a negative relationship between miR-193a-3p and LGR4 expression level in both inflammatory tissues and cells. The expression level of miR-193a-3p and LGR4 in bovine endometrial epithelial cells (BENDs) is regulated by lipopolysaccharide (LPS) stimulation time and dose-dependent. Subsequently, miR-193a-3p mimics and inhibitors were used to explore its functions in the inflammation response process, finding that overexpression of miR-193a-3p markedly increases the expression level of pro-inflammatory cytokines induced by LPS, such as IL-1β, IL-6 and TNF-α, while the group in which transfected inhibitor is on the contrary. Of note, immunofluorescence and western blot results showed that miR-193a-3p enhanced LPS-induced NF-κB p65 phosphorylation through targeting LGR4, whereas inhibiting miR-193a-3p could suppress the activation of NF-κB pathway significantly. In conclusion, our study firstly reported the mechanism by which miR-193a-3p targets LGR4 to elevate the inflammatory response in bovine endometrium injury, thereby implying that knockdown miR-193a-3p may lay the theoretical and practical basis for drug development of alleviating endometritis in dairy cows.
Collapse
Affiliation(s)
- Baoyi Yin
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Talha Umar
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xiaofei Ma
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yu Chen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Nuoer Chen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Zhimin Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Ganzhen Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
21
|
Ong CT, Turni C, Blackall PJ, Boe-Hansen G, Hayes BJ, Tabor AE. Interrogating the bovine reproductive tract metagenomes using culture-independent approaches: a systematic review. Anim Microbiome 2021; 3:41. [PMID: 34108039 PMCID: PMC8191003 DOI: 10.1186/s42523-021-00106-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 06/01/2021] [Indexed: 01/18/2023] Open
Abstract
Undesirable microbial infiltration into the female bovine reproductive tracts, for example during calving or mating, is likely to disturb the commensal microflora. Persistent establishment and overgrowth of certain pathogens induce reproductive diseases, render the female bovine reproductive tract unfavourable for pregnancy or can result in transmission to the foetus, leading to death and abortion or birth abnormalities. This review of culture-independent metagenomics studies revealed that normal microflora in the female bovine reproductive tract is reasonably consistently dominated by bacteria from the phyla Bacteroidetes, Firmicutes, Proteobacteria, following by Actinobacteria, Fusobacteria and Tenericutes. Reproductive disease development in the female bovine reproductive tract was demonstrated across multiple studies to be associated with high relative abundances of bacteria from the phyla Bacteroidetes and Fusobacteria. Reduced bacterial diversity in the reproductive tract microbiome in some studies of cows diagnosed with reproductive diseases also indicated an association between dysbiosis and bovine reproductive health. Nonetheless, the bovine genital tract microbiome remains underexplored, and this is especially true for the male genital tract. Future research should focus on the functional aspects of the bovine reproductive tract microbiomes, for example their contributions to cattle fertility and susceptibility towards reproductive diseases.
Collapse
Affiliation(s)
- Chian Teng Ong
- The University of Queensland, Queensland Alliance for Agriculture & Food Innovation, Centre for Animal Science, St Lucia, Brisbane, Queensland Australia
| | - Conny Turni
- The University of Queensland, Queensland Alliance for Agriculture & Food Innovation, Centre for Animal Science, St Lucia, Brisbane, Queensland Australia
| | - Patrick J. Blackall
- The University of Queensland, Queensland Alliance for Agriculture & Food Innovation, Centre for Animal Science, St Lucia, Brisbane, Queensland Australia
| | - Gry Boe-Hansen
- The University of Queensland, School of Veterinary Science, Gatton, Queensland Australia
| | - Ben J. Hayes
- The University of Queensland, Queensland Alliance for Agriculture & Food Innovation, Centre for Animal Science, St Lucia, Brisbane, Queensland Australia
| | - Ala E. Tabor
- The University of Queensland, Queensland Alliance for Agriculture & Food Innovation, Centre for Animal Science, St Lucia, Brisbane, Queensland Australia
- The University of Queensland, School of Chemistry and Molecular Bioscience, St Lucia, Brisbane, Queensland Australia
| |
Collapse
|
22
|
Yang C, Yang C, Zhang J, Guo Y, Chen N, Yin B, Zhou Q, Zhang T, Guo S, Deng G. MicroRNA-211 regulates the expression of TAB1 and inhibits the NF-κB signaling pathway in lipopolysaccharide-induced endometritis. Int Immunopharmacol 2021; 96:107668. [PMID: 33984721 DOI: 10.1016/j.intimp.2021.107668] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022]
Abstract
Endometritis is a common postpartum inflammatory disease that endangers the reproductive health of humans and animals. Emerging evidence shows that microRNA is a new type of therapeutic molecule that plays a vital role in many diseases; however, its mechanism of action in lipopolysaccharide (LPS)-induced endometritis is still unclear. This study aims to investigate the regulatory role of miR-211 in the innate immune response involved in endometritis, and to evaluate its potential therapeutic value. Here, we found that the expression of miR-211 in bovine endometrial epithelial cells (bEECs) stimulated by lipopolysaccharide (LPS) was significantly reduced. Importantly, overexpression of miR-211 can significantly reduce the production of pro-inflammatory cytokines (IL-1β , IL-6 and TNF-α). In addition, we proved that TAB1 is the target gene of miR-211. MiR-211 inhibits TAB1 protein expression by binding to the 3'-UTR of TAB1 mRNA. Subsequently, we verified that the overexpression of miR-211 inhibited the activation of NF-κB p65 by targeting the TAB1-mediated pathway. Therefore, miR-211 has anti-inflammatory effects and mediates the negative regulation of the NF-κB signaling pathway in LPS-induced endometritis by targeting TAB1.
Collapse
Affiliation(s)
- Cheng Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Chao Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Jinxin Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Yingfang Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Nuoer Chen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Baoyi Yin
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Qingqing Zhou
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Tao Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Shuai Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Ganzhen Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| |
Collapse
|
23
|
MicroRNA: Could It Play a Role in Bovine Endometritis? Inflammation 2021; 44:1683-1695. [PMID: 33907916 DOI: 10.1007/s10753-021-01458-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/15/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
Endometritis in dairy cows is a major economic problem worldwide; without advances in lifestyle management and drug treatment, it causes high morbidity and death. Micro ribonucleic acid (miRNAs) these days is seen as an important part of gene control networks. It is a class of small nucleotides 20-25, single-stranded RNA molecules. In endometritis, the inflammatory response caused by the gram-negative bacteria Escherichia coli (E. coli) alters the expression of miRNA which can regulate the innate immune system. This manuscript reviews (1) the interaction of miRNAs with the signaling of NF-κB and dysregulation of miRNAs and NF-κB activity in endometritis and (2) the activity of miR-let-7c, miR-148a, and miR-488 in NF-κB activation and their effect on endometritis. Cows with reduced immunity are more vulnerable to transition diseases, such as endometritis. During post-partum, cows undergo stress, metabolic disorders, hormonal imbalance, negative energy balance, and changes in diet. One of the many categories of regulatory molecules, which explain its natural function and pathological impact on NF-κB dysregulation, is important to inform the complexity of the immune system and to develop treatments for endometritis. It shows that miRNAs could have multiple applications in veterinary medicine. Nevertheless, a comprehensive study of is essential which should be aimed at exploring the role of microRNA at physiological level and its effect due to dysfunction and dysregulation.
Collapse
|
24
|
Elesh IF, Marey MA, Zinnah MA, Akthar I, Kawai T, Naim F, Goda W, Rawash ARA, Sasaki M, Shimada M, Miyamoto A. Peptidoglycan Switches Off the TLR2-Mediated Sperm Recognition and Triggers Sperm Localization in the Bovine Endometrium. Front Immunol 2021; 11:619408. [PMID: 33643300 PMCID: PMC7905083 DOI: 10.3389/fimmu.2020.619408] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/29/2020] [Indexed: 12/14/2022] Open
Abstract
In mammals, the uterine mucosal immune system simultaneously recognizes and reacts to most bacteria as well as allogenic sperm mainly through the Toll-like receptors (TLR)2/4 signaling pathway. Here, we characterized the impact of pathogen-derived TLR2/4 ligands (peptidoglycan (PGN)/lipopolysaccharide (LPS)) on the immune crosstalk of sperm with the bovine endometrial epithelium. The real-time PCR analysis showed that the presence of low levels of PGN, but not LPS, blocked the sperm-induced inflammatory responses in bovine endometrial epithelial cells (BEECs) in vitro. Immunoblotting analysis revealed that PGN prevented the sperm-induced phosphorylation of JNK in BEECs. Activation or blockade of the TLR2 system in the endometrial epithelium verified that TLR2 signaling acts as a commonly-shared pathway for PGN and sperm recognition. The impairment of endometrial sperm recognition, induced by PGN, subsequently inhibited sperm phagocytosis by polymorphonuclear neutrophils (PMNs). Moreover, using an ex vivo endometrial explant that more closely resembles those in vivo conditions, showed that sperm provoked a mild and reversible endometrial tissue injury and triggered PMN recruitment into uterine glands, while PGN inhibited these events. Of note, PGN markedly increased the sperm attachment to uterine glands, and relatively so in the surface epithelium. However, addition of the anti-CD44 antibody into a PGN-sperm-explant co-culture completely blocked sperm attachment into glands and surface epithelia, indicating that the CD44 adhesion molecule is involved in the PGN-triggered sperm attachment to the endometrial epithelium. Together, these findings demonstrate that, the presence of PGN residues disrupts sperm immune recognition and prevents the physiological inflammation induced by sperm in the endometrial epithelium via the MyD88-dependent pathway of TLR2 signaling, possibly leading to impairment of uterine clearance and subsequent embryo receptivity.
Collapse
Affiliation(s)
- Ibrahim Fouad Elesh
- Global Agromedicine Research Center (GAMRC), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan.,Department of Pathology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Mohamed Ali Marey
- Global Agromedicine Research Center (GAMRC), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan.,Department of Theriogenology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Mohammed Ali Zinnah
- Global Agromedicine Research Center (GAMRC), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan.,Department of Microbiology and Public Health, Faculty of Veterinary Medicine and Animal Science, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Ihshan Akthar
- Global Agromedicine Research Center (GAMRC), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Tomoko Kawai
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
| | - Fayrouz Naim
- Department of Microbiology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Wael Goda
- Department of Pathology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Abdel Rahman A Rawash
- Department of Pathology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Motoki Sasaki
- Department of Basic Veterinary Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Masayuki Shimada
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
| | - Akio Miyamoto
- Global Agromedicine Research Center (GAMRC), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| |
Collapse
|
25
|
Retained bovine placenta - various treatments and their effects. VETERINARSKI GLASNIK 2021. [DOI: 10.2298/vetgl201205003m] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Given the influence of retentio secundinarum (RS) on the reproductive
performance of cows, the current work aimed to assess the effect of various
approaches to the treatment of retained placenta on the main reproductive
parameters, primarily on the interval from parturition to the first service,
and the insemination index. The trial involved 120 dairy cows in which the
placenta was not expelled within 24 h postpartum. The first group (G1, n=60)
contained cows in which the retained placenta was not extirpated, but they
were administered antibiotics. The second group (G2, n=60) comprised cows in
which the placenta was removed manually, and were also administered
antibiotics. At the end of the study, 53 cows remained in G1 and 54 cows in
G2. According to medicament therapy, both groups were divided into three
sub-groups treated with: procaine benzylpenicillin, chlortetracycline
hydrochloride or ceftiofur. Comparison of the performance of G1 and G2 cows
showed significantly better fertility parameters occurred in the animals
from which the retained placenta was extracted manually. The pregnancy rate
in the G2 group was remarkably higher than in the G1 group. The average
service interval was significantly lower (p<0.05) in the G2 group compared
to the G1 group. The best results were obtained with the i.m. administration
of ceftiofur after the removal of the placenta.
Collapse
|
26
|
Purba FY, Suzuki N, Isobe N. Association of endometritis and ovarian follicular cyst with mastitis in dairy cows. J Vet Med Sci 2020; 83:338-343. [PMID: 33342970 PMCID: PMC7972888 DOI: 10.1292/jvms.20-0652] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The occurrence of multiple metabolic and inflammatory diseases in dairy cows is higher
during the periparturient period, which may be triggered by bacterial components, but not
a viable bacterium. This study aimed to determine the association of endometritis and
ovarian follicular cyst (OFC) with mastitis in dairy cows. Ninety-eight Holstein dairy
cows were clinically examined for endometritis and OFC approximately 30–50 days after
calving. Blood and milk samples were collected for the determination of milk somatic cell
count (SCC); milk interleukin-1β (IL-1β), tumor necrosis factor-α (TNFα), and
interleukin-8 (IL-8) concentrations; and plasma haptoglobin (Hp) and
lipopolysaccharide-binding protein (LBP) concentrations. Of the 98 dairy cows included in
this study, 12 were diagnosed with endometritis and 37 cows were identified as
OFC-positive, whereas the remaining 49 cows were healthy (without endometritis or OFC).
The average and maximum SCCs and plasma Hp and LBP concentrations were not significantly
different between the healthy cows and those with endometritis or OFC. However, when the
maximum SCC was classified as <300, 300–1,000, or >1,000 × 103 cells/ml,
the percentage of cows with the maximum SCC <300 × 103 cells/ml was
significantly lower in the endometritis and OFC-positive groups than in the healthy group.
These results suggested that cows with endometritis and OFC during the postpartum period
exhibit high SCC, indicating that some bacterial components can be transferred between
organs.
Collapse
Affiliation(s)
- Fika Yuliza Purba
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8528, Japan.,Veterinary Medicine Study Program, Faculty of Medicine, Hasanuddin University, Makassar 90245, Indonesia
| | - Naoki Suzuki
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| | - Naoki Isobe
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| |
Collapse
|
27
|
Wiebe M, Pfarrer C, Górriz Martín L, Schmicke M, Hoedemaker M, Bollwein H, Heppelmann M. In vitro effects of lipopolysaccharides on bovine uterine contractility. Reprod Domest Anim 2020; 56:172-182. [PMID: 33170981 DOI: 10.1111/rda.13862] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 11/08/2020] [Indexed: 01/05/2023]
Abstract
Metritis is an important disorder in dairy cows during the early postpartum period. Myometrial contractility is a prerequisite for uterine involution; however, very scanty literature is available about the effect of metritis on this process and endocrine responsiveness. This study was aimed to evaluate the effect of inflammation on uterine contractility in vitro, and the inflammation was induced by incubating myometrial strips with lipopolysaccharides (LPS). Myometrial samples were collected from 17 healthy Holstein Friesian cows during caesarean section. Eight longitudinal strips from each cow were incubated in organ baths with LPS concentrations of 0 (LPS0 ), 0.1 (LPS0.1 ), 1 (LPS1 ) and 10 µg/ml (LPS10 ). Spontaneous contractility and contractility induced by increasing concentrations of oxytocin (10-10 - 10-7 mol/L) were recorded during nine 30-min intervals (T1 to T9). The minimum amplitude (minA), maximum amplitude (maxA), mean amplitude (meanA) and area under the curve (AUC) were calculated for each time interval. LPS had an effect (p ≤ .05) on maxA, meanA and AUC. In T1, myometrial strips incubated with LPS0.1 and LPS1 had higher (p ≤ .05) maxA, meanA and AUC than the strips incubated with LPS0 . In T9 without oxytocin, LPS0 led to higher (p ≤ .05) maxA, meanA and AUC than LPS0.1 and LPS1 . In T8 and T9 with oxytocin, LPS1 had lower (p ≤ .05) maxA, meanA and AUC than the other LPS concentrations. Interestingly, the results show that LPS has a transient positive effect on myometrial contractility in vitro and that this effect is dependent on LPS concentration and duration of incubation.
Collapse
Affiliation(s)
- Maraike Wiebe
- Clinic for Cattle, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
| | - Christiane Pfarrer
- Institute of Anatomy, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
| | - Lara Górriz Martín
- Clinic for Cattle, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
| | - Marion Schmicke
- Clinic for Cattle, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
| | - Martina Hoedemaker
- Clinic for Cattle, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
| | - Heiner Bollwein
- Clinic for Animal Reproduction Medicine, University of Zurich, Zurich, Switzerland
| | - Maike Heppelmann
- Clinic for Cattle, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
| |
Collapse
|
28
|
Alhussien MN, Panda BSK, Kamboj A, Dang AK. Peripartum changes in the activity and expression of neutrophils may predispose to the postpartum occurrence of metritis in dairy cows. Res Vet Sci 2020; 135:456-468. [PMID: 33229058 DOI: 10.1016/j.rvsc.2020.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 10/24/2020] [Accepted: 11/06/2020] [Indexed: 11/25/2022]
Abstract
Metritis is a postpartum uterine pathology that causes a huge economic loss due to increased culling risk and impaired milk yield and reproduction in cows. The present study was carried out to study the changes in the activity and expression of blood neutrophils in crossbred dairy cows with and without metritis. Collection of blood samples was done at -3, -2 and - 1 weeks before calving, at calving and during the first day of metritis diagnosis in metritis group (n = 8) or at day 8-10 post calving in healthy group (n = 8). Neutrophils were studied for its percentage (microscopically), respiratory burst (nitro blue tetrazolium assay), myeloperoxidase (MPO) concentrations (sandwich ELISA) and expression of CXCR1, CXCR2, TLR2, TLR4, GRα, CD11b, CD14, CD25, CD44, CD47 and CD62L (RT-PCR). Immunocytochemistry was used to investigate MPO concentration and CD14 activity, and western blotting was used for estimating MPO. Although most of these parameters changed in the cows that developed metritis one week before calving, MPO and CD14 got altered much earlier. Myeloperoxidase concentrations and expression of CD14 were considerably lower starting from -2 weeks before calving in cows that developed metritis compared to healthy cows. Further studies are warranted to study the possible use of MPO and CD14 to identify transition cows more vulnerable to develop metritis several weeks before disease occurrence.
Collapse
Affiliation(s)
- Mohanned Naif Alhussien
- Lactation and Immuno-Physiology Laboratory, ICAR-National Dairy Research Institute, Karnal, Haryana 132001, India.
| | - Bibhudatta S K Panda
- Lactation and Immuno-Physiology Laboratory, ICAR-National Dairy Research Institute, Karnal, Haryana 132001, India
| | - Aarti Kamboj
- Lactation and Immuno-Physiology Laboratory, ICAR-National Dairy Research Institute, Karnal, Haryana 132001, India
| | - Ajay Kumar Dang
- Lactation and Immuno-Physiology Laboratory, ICAR-National Dairy Research Institute, Karnal, Haryana 132001, India
| |
Collapse
|
29
|
Sakai S, Hatabu T, Yamamoto Y, Kimura K. Alteration of chemokine production in bovine endometrial epithelial and stromal cells under heat stress conditions. Physiol Rep 2020; 8:e14640. [PMID: 33230953 PMCID: PMC7683879 DOI: 10.14814/phy2.14640] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/08/2020] [Accepted: 10/16/2020] [Indexed: 12/15/2022] Open
Abstract
After parturition, cows frequently develop uterine bacterial infections, resulting in the onset of endometritis. To eliminate the bacteria, bovine endometrial cells secrete chemokines, such as IL-6 and MCP1, which attract macrophages (MΦs) to the subepithelial stroma. These attracted MΦs are not only involved in bacterial elimination but also the orchestration of inflammation and tissue repair. These immune responses aid in the recovery from endometritis; however, the recovery from endometritis takes longer in summer than in any other season. Based on these findings, we hypothesized that heat stress (HS) affects the chemokine production in endometrial cells. To confirm this hypothesis, we compared IL-6 and MCP1 production induced by lipopolysaccharide (LPS) in bovine endometrial epithelial and stromal cells under normal (38.5°C) and HS conditions (40.5°C). In the endometrial epithelial cells, IL-6 production stimulated by LPS was significantly (p < .05) suppressed under HS conditions. MCP1 production in endometrial epithelial cells was not detected under both the control and HS conditions regardless of the presence of LPS. Moreover, LPS significantly (p < .05) stimulated IL-6 and MCP1 production in endometrial stromal cells. Moreover, HS significantly (p < .05) enhanced their production compared to that under the control conditions. In addition, HS did not affect the migration ability of MΦs; however, the supernatant of the endometrial stromal cells cultured under the HS condition significantly (p < .05) attracted the MΦs when compared to the control condition. These results suggest that HS disrupts chemokine production in two types of endometrial cells and alters the distribution of MΦs in the endometrium during the summer.
Collapse
Affiliation(s)
- Shunsuke Sakai
- Laboratory of Reproductive PhysiologyGraduate School of Environmental and Life ScienceOkayama UniversityOkayamaJapan
| | - Toshimitsu Hatabu
- Laboratory of Animal PhysiologyGraduate School of Environmental and Life ScienceOkayama UniversityOkayamaJapan
| | - Yuki Yamamoto
- Laboratory of Reproductive PhysiologyGraduate School of Environmental and Life ScienceOkayama UniversityOkayamaJapan
| | - Koji Kimura
- Laboratory of Reproductive PhysiologyGraduate School of Environmental and Life ScienceOkayama UniversityOkayamaJapan
| |
Collapse
|
30
|
Protective Effect of Hydroxytyrosol on LPS-Induced Inflammation and Oxidative Stress in Bovine Endometrial Epithelial Cell Line. Vet Sci 2020; 7:vetsci7040161. [PMID: 33114084 PMCID: PMC7712648 DOI: 10.3390/vetsci7040161] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/13/2020] [Accepted: 10/22/2020] [Indexed: 12/13/2022] Open
Abstract
Bovine endometritis is a serious pathogen-induced infectious disease that affects the physiological processes of estrus, pregnancy and the postpartum condition. The inflamed endometrium responds by activating an inflammatory intracellular signaling cascade that leads to increased expression of proinflammatory cytokines and reactive oxygen species (ROS). Oxidative stress is closely related to several pathological conditions in perinatal dairy cows and play a key role in tissue damage. Hydroxytyrosol (HT), a natural phenolic alcohol with a strong antioxidant activity, displayed a wide range of biological effect. The aim of this study was to evaluate the protective effects of HT in an in vitro model of lipopolysaccharide (LPS)-induced inflammation in bovine uterine endometrial cells. Our results showed that HT had a significant protective effect in LPS-induced inflammation and oxidative stress. HT was also able to increase the capacity of endogenous antioxidant systems through the up-regulation of the NRF2 pathway. Furthermore, HT restored the tight junction protein expressions. In conclusion, our results showed the protective effects of HT in LPS-stimulated BEND cells. Therefore, the results of this study suggest an important protective role of HT in the treatment and prevention of uterine pathologies in dairy cows.
Collapse
|
31
|
Neubrand L, Wagener K, Drillich M. [Bovine uterine diseases: Aspects of microbiology, molecular biology, and immunology]. Tierarztl Prax Ausg G Grosstiere Nutztiere 2020; 48:253-261. [PMID: 32823330 DOI: 10.1055/a-1197-5720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Postpartum uterine diseases, such as puerperal metritis and clinical endometritis may affect over 40 % of cows in dairy farms. Regardless of their severity, these diseases are one of the main reasons for impaired fertility, causing declines in dairy cow productivity and hence, resulting in economic losses. Although uterine diseases have been the topic of scientific discussion for many years, until now it was not possible to agree on uniform definitions for the different kinds of manifestation. By including technical innovations and testing procedures, enormous scientific progress and a deeper knowledge of the physiology as well as the pathologic mechanisms have been achieved. Bovine metritis and endometritis may be regarded as multifactorial diseases caused by a combination of microbial infection, the dysregulation of the immune system, and additional risk factors. These interactions have been analyzed on microbial and molecular biological levels as well as by the use of bioinformatics and molecular genetics. As a result, new species of bacteria and inflammatory mediators possibly contributing to the development of uterine diseases have recently been described. Additionally, metabolic and genetic risk factors and their roles in leading to fertility impairment have been evaluated. In conclusion, it was possible to identify new approaches for possible therapeutic and preventive methods, a subset of which may already be implemented into daily practical routine. This article provides an overview of recent scientific results concerning bovine metritis and endometritis with a focus on microbial, microbiological and immunological studies.
Collapse
Affiliation(s)
- Lisa Neubrand
- Universitätsklinik für Wiederkäuer, Abteilung Bestandsbetreuung, Veterinärmedizinische Universität Wien
| | - Karen Wagener
- Universitätsklinik für Wiederkäuer, Abteilung Bestandsbetreuung, Veterinärmedizinische Universität Wien
| | - Marc Drillich
- Universitätsklinik für Wiederkäuer, Abteilung Bestandsbetreuung, Veterinärmedizinische Universität Wien
| |
Collapse
|
32
|
Meira EBS, Ellington-Lawrence RD, Silva JCC, Higgins CH, Linwood R, Rodrigues MX, Bringhenti L, Korzec H, Yang Y, Zinicola M, Bicalho RC. Recombinant protein subunit vaccine reduces puerperal metritis incidence and modulates the genital tract microbiome. J Dairy Sci 2020; 103:7364-7376. [PMID: 32505392 DOI: 10.3168/jds.2019-17006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 03/31/2020] [Indexed: 12/23/2022]
Abstract
The objective of this study was to evaluate the efficacy of 3 vaccine formulations containing proteins (FimH, leukotoxin, and pyolysin), inactivated whole cells (Escherichia coli, Fusobacterium necrophorum, and Trueperella pyogenes), or both, in the prevention of postpartum uterine diseases. A randomized clinical trial was conducted at a commercial dairy farm; 800 heifers were assigned into 1 of 4 different treatment groups: control, vaccine 1 (bacterin and subunit proteins), vaccine 2 (bacterin), and vaccine 3 (recombinant subunit proteins), and each heifer received a subcutaneous injection of its respective treatment at 240 ± 3 and 270 ± 3 d of gestation. Vaccination significantly reduced the incidence of puerperal metritis when compared with control (9.1% vs. 14.9%, respectively; odds ratio 0.51). Additionally, vaccine 3 was found to reduce the incidence of puerperal metritis when compared with the control (8.0% vs. 14.9%, respectively; odds ratio 0.46). Reproduction was improved for metritic cows that were vaccinated, and the effect was stronger for cows that were treated with vaccine 3. In general, vaccination decreased the total vaginal bacterial load and decreased the vaginal load of F. necrophorum by 9 d in milk. Vaccination reduced the prevalence of puerperal metritis in the first lactation of dairy cows, leading to less metritic disease and improved reproduction.
Collapse
Affiliation(s)
- E B S Meira
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853-6401
| | - R D Ellington-Lawrence
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853-6401
| | - J C C Silva
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853-6401
| | - C H Higgins
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853-6401
| | - R Linwood
- Merck Animal Health, De Soto, KS 66018
| | - M X Rodrigues
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853-6401
| | - L Bringhenti
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853-6401
| | - H Korzec
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853-6401
| | - Y Yang
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853-6401
| | - M Zinicola
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853-6401
| | - R C Bicalho
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853-6401.
| |
Collapse
|
33
|
Jhamat N, Niazi A, Guo Y, Chanrot M, Ivanova E, Kelsey G, Bongcam-Rudloff E, Andersson G, Humblot P. LPS-treatment of bovine endometrial epithelial cells causes differential DNA methylation of genes associated with inflammation and endometrial function. BMC Genomics 2020; 21:385. [PMID: 32493210 PMCID: PMC7268755 DOI: 10.1186/s12864-020-06777-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 05/10/2020] [Indexed: 12/18/2022] Open
Abstract
Background Lipopolysaccharide (LPS) endotoxin stimulates pro-inflammatory pathways and is a key player in the pathological mechanisms involved in the development of endometritis. This study aimed to investigate LPS-induced DNA methylation changes in bovine endometrial epithelial cells (bEECs), which may affect endometrial function. Following in vitro culture, bEECs from three cows were either untreated (0) or exposed to 2 and 8 μg/mL LPS for 24 h. Results DNA samples extracted at 0 h and 24 h were sequenced using reduced representation bisulfite sequencing (RRBS). When comparing DNA methylation results at 24 h to time 0 h, a larger proportion of hypomethylated regions were identified in the LPS-treated groups, whereas the trend was opposite in controls. When comparing LPS groups to controls at 24 h, a total of 1291 differentially methylated regions (DMRs) were identified (55% hypomethylated and 45% hypermethylated). Integration of DNA methylation data obtained here with our previously published gene expression data obtained from the same samples showed a negative correlation (r = − 0.41 for gene promoter, r = − 0.22 for gene body regions, p < 0.05). Differential methylation analysis revealed that effects of LPS treatment were associated with methylation changes for genes involved in regulation of immune and inflammatory responses, cell adhesion, and external stimuli. Gene ontology and pathway analyses showed that most of the differentially methylated genes (DMGs) were associated with cell proliferation and apoptotic processes; and pathways such as calcium-, oxytocin- and MAPK-signaling pathways with recognized roles in innate immunity. Several DMGs were related to systemic inflammation and tissue re-modelling including HDAC4, IRAK1, AKT1, MAP3K6, Wnt7A and ADAMTS17. Conclusions The present results show that LPS altered the DNA methylation patterns of bovine endometrial epithelial cells. This information, combined with our previously reported changes in gene expression related to endometrial function, confirm that LPS activates pro-inflammatory mechanisms leading to perturbed immune balance and cell adhesion processes in the endometrium.
Collapse
Affiliation(s)
- Naveed Jhamat
- Department of Animal Breeding and Genetics, Section of Molecular Genetics, Swedish University of Agricultural Sciences, Uppsala, 750 07, Sweden.,SLU-Global Bioinformatics Centre, Swedish University of Agricultural Sciences, Uppsala, 750 07, Sweden.,Department of Information Technology, University of the Punjab, Gujranwala Campus, Gujranwala, Pakistan
| | - Adnan Niazi
- Department of Animal Breeding and Genetics, Section of Molecular Genetics, Swedish University of Agricultural Sciences, Uppsala, 750 07, Sweden. .,SLU-Global Bioinformatics Centre, Swedish University of Agricultural Sciences, Uppsala, 750 07, Sweden.
| | - Yongzhi Guo
- Department of Clinical Sciences, Division of Reproduction, Swedish University of Agricultural Sciences, Uppsala, 750 07, Sweden
| | - Metasu Chanrot
- Department of Clinical Sciences, Division of Reproduction, Swedish University of Agricultural Sciences, Uppsala, 750 07, Sweden.,Faculty of Veterinary Science, Rajamangala University of Technology Srivijaya, Nakhon Si Thammarat, 802 40, Thailand
| | - Elena Ivanova
- Epigenetics Programme, The Babraham Institute, Cambridge, UK
| | - Gavin Kelsey
- Epigenetics Programme, The Babraham Institute, Cambridge, UK.,Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Erik Bongcam-Rudloff
- Department of Animal Breeding and Genetics, Section of Molecular Genetics, Swedish University of Agricultural Sciences, Uppsala, 750 07, Sweden.,SLU-Global Bioinformatics Centre, Swedish University of Agricultural Sciences, Uppsala, 750 07, Sweden
| | - Göran Andersson
- Department of Animal Breeding and Genetics, Section of Molecular Genetics, Swedish University of Agricultural Sciences, Uppsala, 750 07, Sweden.,Centre for Reproductive Biology in Uppsala, CRU, P.O. Box 7054, 750 07, Uppsala, Sweden
| | - Patrice Humblot
- Department of Clinical Sciences, Division of Reproduction, Swedish University of Agricultural Sciences, Uppsala, 750 07, Sweden
| |
Collapse
|
34
|
Bacterial Endotoxins and Their Role in Periparturient Diseases of Dairy Cows: Mucosal Vaccine Perspectives. DAIRY 2020. [DOI: 10.3390/dairy1010006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
During the periparturient period there is a significant increase in the incidence of multiple metabolic and infectious diseases in dairy cows. Dairy cows are fed high-grain diets immediately after calving to support production of large amounts of milk. Mounting evidence indicates these types of diets are associated with the release of high amounts of endotoxins in the rumen fluid. If infected, the udder and uterus additionally become important sources of endotoxins during the postpartum period. There is increasing evidence that endotoxins translocate from rumen, uterus, or udder into the systemic circulation and trigger chronic low-grade inflammatory conditions associated with multiple diseases including fatty liver, mastitis, retained placenta, metritis, laminitis, displaced abomasum, milk fever, and downer cow syndrome. Interestingly, endotoxin-related diseases are triggered by a bacterial component and not by a specific bacterium. This makes prevention of these type of diseases different from classical infectious diseases. Prevention of translocation of endotoxins into the host systemic circulation needs to take priority and this could be achieved with a new approach: mucosal vaccination. In this review article, we discuss all the aforementioned issues in detail and also report some of our trials with regards to mucosal vaccination of periparturient dairy cows.
Collapse
|
35
|
Dickson MJ, Piersanti RL, Ramirez-Hernandez R, de Oliveira EB, Bishop JV, Hansen TR, Ma Z, Jeong KCC, Santos JEP, Sheldon MI, Block J, Bromfield JJ. Experimentally Induced Endometritis Impairs the Developmental Capacity of Bovine Oocytes†. Biol Reprod 2020; 103:508-520. [PMID: 32401311 DOI: 10.1093/biolre/ioaa069] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/01/2020] [Accepted: 05/11/2020] [Indexed: 01/17/2023] Open
Abstract
Uterine infection is associated with infertility in women and dairy cows, even after the resolution of infection. However, the mechanisms causing this persistent infertility are unclear. Here, we hypothesized that induced endometritis in non-lactating dairy cows would reduce the developmental competence of oocytes. Non-lactating Holstein cows received an intrauterine infusion of endometrial pathogenic bacteria (Escherichia coli and Trueperella pyogenes; n = 12) or vehicle control (n = 11) on day 2 of the estrous cycle. Bacterial infusion increased expression of endometrial inflammatory mediators, and a mucopurulent discharge in the vagina confirmed the establishment of endometritis. Oocytes were collected by transvaginal ultrasound-guided ovum pickup on days 2, 24, 45, and 66 following infusion and subjected to in vitro fertilization and embryo culture. Bacterial infusion resulted in fewer cleaved oocytes developing to morulae compared to vehicle-infused controls (30.7 versus 45.0%), with the greatest effect observed in oocytes collected on day 24. Development to morula was inversely correlated with endometrial expression of IL6 on day 6. The expression of genes associated with embryo quality did not differ significantly between morulae from bacteria-infused and control cows. Artificial insemination 130 days after intrauterine infusion resulted in normal, filamentous embryos that produced interferon tau 16 days after conception in both infusion groups. This model of experimentally induced uterine infection successfully resulted in endometritis and a reduction in the proportion of oocytes that developed to morulae following in vitro fertilization. In conclusion, endometritis reduced the capacity of oocytes to develop to morulae.
Collapse
Affiliation(s)
- Mackenzie J Dickson
- Department of Large Animal Clinical Sciences, University of Florida, Gainesville FL, USA
| | - Rachel L Piersanti
- Department of Large Animal Clinical Sciences, University of Florida, Gainesville FL, USA
| | | | | | - Jeanette V Bishop
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Thomas R Hansen
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Zhengxin Ma
- Department of Large Animal Clinical Sciences, University of Florida, Gainesville FL, USA
| | - Kwang Cheol C Jeong
- Department of Large Animal Clinical Sciences, University of Florida, Gainesville FL, USA
| | - Jose E P Santos
- Department of Large Animal Clinical Sciences, University of Florida, Gainesville FL, USA
| | - Martin I Sheldon
- Institute of Life Science, Swansea University Medical School, Swansea University, Swansea, UK
| | | | - John J Bromfield
- Department of Large Animal Clinical Sciences, University of Florida, Gainesville FL, USA
| |
Collapse
|
36
|
Magata F. Lipopolysaccharide-induced mechanisms of ovarian dysfunction in cows with uterine inflammatory diseases. J Reprod Dev 2020; 66:311-317. [PMID: 32281546 PMCID: PMC7470909 DOI: 10.1262/jrd.2020-021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Uterine inflammatory diseases commonly occur in postpartum dairy cows, resulting in reduced reproductive performance due to aberrant uterine and ovarian activity. Infection of the uterus with gram-negative bacteria results in the detection of lipopolysaccharide (LPS) in the plasma and follicular fluid of cows along with uterine inflammation. LPS acts on follicular components such as theca cells, granulosa cells, and follicle-enclosed oocytes, leading to impaired follicular activity. Follicles with a high LPS environment exhibit reduced follicular steroidogenesis due to the inhibition of steroidogenic enzyme transcription. Primary cell cultures of bovine granulosa and theca cells have shown that LPS acts on follicular cells to impair steroid production, which may disturb follicle growth and/or reduce their ability to ovulate. Even if ovulation occurs, cows with uterine inflammation are less likely to conceive because in addition to uterine damage, LPS also impairs the developmental competence of oocytes. LPS perturbs the nuclear and cytoplasmic maturation of bovine oocytes. Moreover, oocytes matured using LPS treatment are less likely to develop into the blastocyst stage. Such oocytes also have a reduced number of trophoblast cells in blastocysts. Therefore, the detrimental effects of LPS on ovarian activity may be partly responsible for infertility in cows with uterine inflammation. Novel treatment and prevention strategies for uterine inflammatory diseases can be developed by advancing our knowledge of the pathophysiology underlying ovarian dysfunction, and this can only be achieved by further research. The present review outlines the molecular pathogenesis of LPS-induced ovarian dysfunction.
Collapse
Affiliation(s)
- Fumie Magata
- Department of Veterinary Medical Science, The University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
37
|
Machado VS, Silva TH. Adaptive immunity in the postpartum uterus: Potential use of vaccines to control metritis. Theriogenology 2020; 150:201-209. [PMID: 31983466 DOI: 10.1016/j.theriogenology.2020.01.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 01/18/2020] [Indexed: 12/21/2022]
Abstract
After parturition, dairy cows rely on an effective innate immune response, through the actions of neutrophils, macrophages, and antimicrobial peptides, to clear the uterus from pathogenic bacteria, such as E. coli, Bacteroides spp, F. necrophorum and T. pyogenes. However, the role of adaptive immunity in the postpartum uterus is less understood. In this review, we explore concepts of mucosal adaptive immunity and discuss recent findings regarding the efficacy of vaccines to reduce metritis in dairy cows. Areas of lymphocytic aggregates are seen throughout the bovine reproductive tract after parturition, but it is unknown if their development is influenced by previous exposure to pathogens or other intrinsic factors. Through the actions of Treg cells and γδ T cells, the uterus is an immune-tolerant environment during pregnancy. After parturition, the dynamics in the endometrial and circulating lymphocytic populations differ among cows that develop uterine diseases and healthy counterparts. However, the functionality of those cells has not yet been determined. It has been hypothesized that cows that fail to switch their uterine environment from an anti-inflammatory state prior to parturition to a pro-inflammatory state after calving are more susceptible to uterine infections. Given the nature of metritis related pathogens and the importance of innate immunity to uterine defense mechanisms, we speculate that an adaptive immunity biased towards a Th1/Th17 cellular response will provide best protection against uterine infections. Few studies have evaluated the efficacy of immunization in reducing the incidence of metritis in dairy cows revealing inconsistent findings.
Collapse
Affiliation(s)
- V S Machado
- Department of Veterinary Sciences, College of Agricultural Sciences and Natural Resources, Texas Tech University, Lubbock, TX, 79409, United States.
| | - T H Silva
- Department of Veterinary Sciences, College of Agricultural Sciences and Natural Resources, Texas Tech University, Lubbock, TX, 79409, United States; Department of Animal Science, School of Animal Science and Food Engineering, University of Sao Paulo, Pirassununga, SP, 13635-900, Brazil
| |
Collapse
|
38
|
Jiang K, Yang J, Yang C, Zhang T, Shaukat A, Yang X, Dai A, Wu H, Deng G. miR-148a suppresses inflammation in lipopolysaccharide-induced endometritis. J Cell Mol Med 2019; 24:405-417. [PMID: 31756048 PMCID: PMC6933404 DOI: 10.1111/jcmm.14744] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 09/12/2019] [Accepted: 09/16/2019] [Indexed: 12/12/2022] Open
Abstract
Endometritis is a postnatal reproductive disorder disease, which leads to great economic losses for the modern dairy industry. Emerging evidence indicates that microRNAs (miRNAs) play a pivotal role in a variety of diseases and have been identified as critical regulators of the innate immune response. Recent miRNome profile analysis revealed an altered expression level of miR‐148a in cows with endometritis. Therefore, the present study aims to investigate the regulatory role of miR‐148a in the innate immune response involved in endometritis and estimate its potential therapeutic value. Here, we found that miR‐148a expression in lipopolysaccharide (LPS)‐stimulated endometrial epithelial cells was significantly decreased. Our results also showed that overexpression of miR‐148a using agomiR markedly reduced the production of pro‐inflammatory cytokines, such as IL‐1β and TNF‐α. Moreover, overexpression of miR‐148a also suppressed NF‐κB p65 activation by targeting the TLR4‐mediated pathway. Subsequently, we further verified that miR‐148a repressed TLR4 expression by binding to the 3′‐UTR of TLR4 mRNA. Additionally, an experimental mouse endometritis model was employed to evaluate the therapeutic value of miR‐148a. In vivo studies suggested that up‐regulation of miR‐148a alleviated the inflammatory conditions in the uterus as evidenced by H&E staining, qPCR and Western blot assays, while inhibition of miR‐148a had inverse effects. Collectively, pharmacologic stabilization of miR‐148a represents a novel therapy for endometritis and other inflammation‐related diseases.
Collapse
Affiliation(s)
- Kangfeng Jiang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan, China
| | - Jing Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Chao Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Tao Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Aftab Shaukat
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiaoyan Yang
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan, China.,College of Life Sciences of Longyan University, Longyan, China
| | - Ailing Dai
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan, China.,College of Life Sciences of Longyan University, Longyan, China
| | - Haichong Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ganzhen Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
39
|
Purba FY, Ueda J, Nii T, Yoshimura Y, Isobe N. Effects of intrauterine infusion of bacterial lipopolysaccharides on the mammary gland inflammatory response in goats. Vet Immunol Immunopathol 2019; 219:109972. [PMID: 31733501 DOI: 10.1016/j.vetimm.2019.109972] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 10/09/2019] [Accepted: 10/29/2019] [Indexed: 12/27/2022]
Abstract
This study aimed to determine if intrauterine-infused lipopolysaccharides (LPS) can be translocated to the mammary glands and induce an inflammatory response. Thirty-seven goats were divided into two experiments. Nineteen goats (control group, n = 9; LPS group, n = 10) were subjected to intravenous injection of LPS, and eighteen goats (control group, n = 8; LPS group, n = 10) were subjected to intrauterine infusion of LPS. Milk and blood samples were collected before and after the LPS challenge, to measure the blood leukocyte count (BLC), plasma LPS-binding protein (LBP), milk yield, milk somatic cell count (SCC), lactoferrin (LF), milk lactoperoxidase (LPO) activity, and pro- and anti-inflammatory cytokines in plasma and milk. Mammary gland tissues were collected from the parenchyma before and after the LPS challenge, for immunohistochemistry of LPS. In the intravenous injection experiment, the BLC (P < 0.001) and milk yield (P = 0.009) were lower, whereas the LF concentration (P < 0.001) and milk LPO activity (P < 0.001) were higher in the LPS group compared to that in the control group. LPS was detected in the mammary gland 3 and 24 h after intravenous injection of LPS. In the intrauterine infusion experiment, the mean concentrations of IL-1β and IL-6 in milk were higher in the LPS group compared to that in the control group (P = 0.004 and P = 0.017, respectively), whereas there were no changes in milk yield or SCC. LPS was detected in the connective tissues and interepithelial spaces of the alveoli of the mammary glands 24 h after intrauterine infusion of LPS. We conclude that intrauterine-infused LPS can be translocated to the mammary glands from the uterus, however, the amount of translocated LPS might not be enough to induce symptoms of clinical or subclinical mastitis.
Collapse
Affiliation(s)
- Fika Yuliza Purba
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan; Veterinary Medicine Study Program, Faculty of Medicine, Hasanuddin University, Makassar, 90245, Indonesia
| | - Jo Ueda
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan
| | - Takahiro Nii
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan
| | - Yukinori Yoshimura
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan
| | - Naoki Isobe
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan.
| |
Collapse
|
40
|
Galvão KN, Bicalho RC, Jeon SJ. Symposium review: The uterine microbiome associated with the development of uterine disease in dairy cows. J Dairy Sci 2019; 102:11786-11797. [PMID: 31587913 DOI: 10.3168/jds.2019-17106] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/22/2019] [Indexed: 01/12/2023]
Abstract
Until 2010, our knowledge of the uterine microbiome in cows that developed uterine disease relied almost exclusively on culture-dependent studies and mostly included cows with clinical endometritis (i.e., with purulent uterine discharge). Those studies consistently found a strong positive correlation between Trueperella pyogenes and clinical endometritis, whereas other pathogens such as Escherichia coli, Fusobacterium necrophorum, Prevotella melaninogenica, and Bacteroides spp. were also commonly cocultured. In contrast, Streptococcus spp., Staphylococcus spp., and Bacillus spp. were usually isolated from healthy cows. Starting in 2010, culture-independent studies using PCR explored the microbiome of cows with metritis and clinical endometritis, and observed that E. coli was a pioneer pathogen that predisposed cows to infection with F. necrophorum, which was strongly associated with metritis, and to infection with T. pyogenes, which was strongly associated with clinical endometritis. Starting in 2011, culture-independent studies using metagenomic sequencing expanded our knowledge of the uterine microbiome. It has been shown that cows have bacteria in the uterus even before calving, they have an established uterine microbiome within 20 min of calving, and that the microbiome structure is identical between cows that develop metritis and healthy cows until 2 d postpartum, after which the bacterial structure of cows that developed metritis deviates in favor of greater relative abundance of Bacteroidetes and Fusobacteria and lesser relative abundance of Proteobacteria and Tenericutes. The shift in the uterine microbiome in cows that develop metritis is characterized by a loss of heterogeneity and a decrease in bacterial richness. At the genus level, Bacteroides, Porphyromonas, and Fusobacterium have the strongest association with metritis. At the species level, we observed that Bacteroides pyogenes, Porphyromonas levii, and Helcococcus ovis were potential emerging uterine pathogens. Finally, we have shown that the hematogenous route is a viable route of uterine infection with uterine pathogens. Herein, we propose that metritis is associated with a dysbiosis of the uterine microbiota characterized by decreased richness, and an increase in Bacteroidetes and Fusobacteria, particularly Bacteroides, Porphyromonas, and Fusobacterium.
Collapse
Affiliation(s)
- Klibs N Galvão
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville 32610; D. H. Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville 32610.
| | - Rodrigo C Bicalho
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853
| | - Soo Jin Jeon
- Department of Biomedical Veterinary Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY 11548
| |
Collapse
|
41
|
Zinicola M, Batista CP, Bringhenti L, Meira EBS, Lima FS, McDonough SP, Bicalho RC. Effects of recombinant bovine interleukin-8 (rbIL-8) treatment on health, metabolism, and lactation performance in Holstein cattle IV: Insulin resistance, dry matter intake, and blood parameters. J Dairy Sci 2019; 102:10340-10359. [PMID: 31495618 DOI: 10.3168/jds.2019-16337] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 05/05/2019] [Indexed: 12/22/2022]
Abstract
We have shown in 2 independent studies that cows who received recombinant bovine interleukin-8 (rbIL-8) administered intrauterinely shortly after parturition have a significant and long-lasting increase in milk yield. In the present study, we hypothesized that the increased milk production associated with rbIL-8 treatment is a consequence of increased postpartum dry matter intake (DMI) and orchestrated homeorhetic changes that prioritize milk production. Cows were enrolled into 1 of 3 treatment groups: those assigned to the control group (CTR; n = 70) received an intrauterine (IU) administration of 500 mL of Dulbecco's phosphate-buffered saline (DPBS) solution and 1 mL of DPBS solution intravenously (IV; jugular vein), those assigned to the rbIL-8 IV group (rbIL8-IV, n = 70) received an IV injection of 167 μg of rbIL-8 and 500 mL of DPBS solution IU, and cows assigned to the rbIL-8 IU group (rbIL8-IU, n = 70) received an IU administration with 1,195 μg of rbIL-8 diluted in 499.5 mL of DPBS solution and 1 mL of DPBS solution IV. Animals were housed in a tiestall from calving to 30 d in milk (DIM) to measure DMI. Blood samples were collected daily from calving to 7 DIM and weekly until 28 DIM. Insulin resistance was evaluated using an intravenous glucose tolerance test and intravenous insulin challenge test (IVICT) in a subgroup of cows (n = 20/treatment) at 10 and 11 DIM, respectively. Additionally, liver biopsy samples were taken at 14 DIM from the same subgroup of cows to measure triglyceride levels and cell proliferation and apoptosis. Cows treated with rbIL8-IU produced more milk (CTR = 36.9 ± 1.5; rbIL8-IU = 38.5 ± 1.5; rbIL8-IV = 36.6 ± 1.5 kg/d), energy-corrected milk (CTR = 42.9 ± 0.9; rbIL8-IU = 46.1 ± 0.8; rbIL8-IV = 43.7 ± 0.9 kg/d), and fat-corrected milk (CTR = 44.3 ± 0.9; rbIL8-IU = 47.8 ± 0.9; rbIL8-IV = 45.2 ± 0.9 kg/d) yields when compared with CTR cows, and no differences were observed between rbIL8-IV and CTR cows. The administration of rbIL8-IU significantly increased DMI compared with CTR (CTR = 18.8 ± 0.3; rbIL8-IU = 19.9 ± 0.3; rbIL8-IV = 19.3 ± 0.3 kg/d). Recombinant bIL-8 treatment did not affect glucose, insulin, or fatty acids (i.e., IVICT only) concentrations or their area under the curve in response to an intravenous glucose tolerance test and IVICT when compared with CTR. Moreover, rbIL-8 treatment administered IU or IV increased liver triglyceride levels. Additionally, cows treated with rbIL8-IU tended to have lower odds of developing hyperketonemia (odds ratio = 0.46, 95% confidence interval: 0.19 to 1.10), lower odds of clinical ketosis and displaced abomasum combined (odds ratio = 0.17, 95% confidence interval: 0.03 to 0.89), and lower odds of diseases combined (odds ratio = 0.43, 95% confidence interval: 0.21 to 0.86) when compared with CTR. We conclude that the administration of rbIL8-IU increases DMI, milk production, fat-corrected milk, and energy-corrected milk while improving overall health during the postpartum period. This study supports the use of rbIL-8 administered IU shortly after calving to improve health and production responses in lactating cows.
Collapse
Affiliation(s)
- M Zinicola
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853-6401
| | - C P Batista
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853-6401
| | - L Bringhenti
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853-6401
| | - E B S Meira
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853-6401
| | - F S Lima
- Department of Veterinary Clinical Medicine, University of Illinois, Urbana-Champaign 61802
| | - S P McDonough
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853-6401
| | - R C Bicalho
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853-6401.
| |
Collapse
|
42
|
Maoduo Z, Hao Y, Wei W, Feng W, Dagan M. Effects of LPS on the accumulation of lipid droplets, proliferation, and steroidogenesis in goat luteinized granulosa cells. J Biochem Mol Toxicol 2019; 33:e22329. [PMID: 30934154 DOI: 10.1002/jbt.22329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/25/2019] [Accepted: 03/15/2019] [Indexed: 12/26/2022]
Abstract
Lipopolysaccharide (LPS) can cause ovarian dysfunction and infertility in mammals. The purpose of this study was to investigate the effects of LPS on the accumulation of lipid droplets (LDs), proliferation, and steroidogenesis in goat luteinized granulosa cells (LGCs). GCs isolated from the ovarian follicles were spontaneously luteinized under media with fetal bovine serum, resulting in increased progesterone and shifted shape from spherical to star with multiple prolongations. Then, LGCs were treated with LPS (0-10 μg/mL) for 0-48 hours. Oil Red O staining was performed to observe LDs accumulation and commercial kit was applied to detect intracellular triglyceride (TG) content. The cell proliferation were detected by cell counting kit-8. Expressions of cell-cycle-related genes were determined by real-time polymerase chain reaction. Estradiol (E 2 ) and progesterone (P 4 ) from cell supernatants were determined by enzyme-linked immunosorbent assay, and expressions of STAR, P450scc, 3β-hydroxysteroid dehydrogenase (3β-HSD) and CYP19A1 were detected by Western blot. Results showed that LPS treatment significantly increased LDs accumulation after 24 hours, and 5 μg/mL LPS increased TG content ( P < 0.05). LPS treatment for 24 hours stimulated the LGCs activities ( P<0.05), which was confirmed by the increases in the expressions of proliferating cell nuclear antigen (PCNA), cyclinB1 and cyclinD1, while 48 hours treatment had no effect. LPS treatment suppressed E 2 and P 4 output of LGCs ( P < 0.05). Western blot results showed that 10 μg/mL LPS decreased the protein expression of 3β-HSD in LGCs ( P < 0.05). In conclusion, LPS increased LDs accumulation and cell proliferation, and LPS-mediated P 4 reduction could be attributed to the decreased 3β-HSD protein expression, which provide new information for the regulation of ovarian function in goats.
Collapse
Affiliation(s)
- Zhang Maoduo
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Yu Hao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Wang Wei
- Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Wang Feng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Mao Dagan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
43
|
Lima SF, Bicalho MLDS, Bicalho RC. The Bos taurus maternal microbiome: Role in determining the progeny early-life upper respiratory tract microbiome and health. PLoS One 2019; 14:e0208014. [PMID: 30840624 PMCID: PMC6402649 DOI: 10.1371/journal.pone.0208014] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 11/10/2018] [Indexed: 12/28/2022] Open
Abstract
Natural transference of maternal microbes to the neonate, especially at birth via the vaginal canal, has recently been recognized in humans and cows; however, its microbial influence on calf health has not yet been documented. We compared the bacterial communities in vaginal and fecal samples from 81 pregnant dairy cows versus those in nasopharyngeal and fecal samples collected at 3, 14 and 35 days of life from their respective progeny. The microbiota of the calf upper respiratory tract (URT), regardless of calf age, was found to be highly similar to the maternal vaginal microbiota. Calf fecal microbiota clustered closely to the maternal fecal microbiota, progressing toward an adult-like state over the first 35 days when relative abundances of taxa were considered. Sixty-four, 65 and 87% of the detected OTUs were shared between cow and calf fecal microbiota at days 3, 14 and 35 respectively, whereas 73, 76 and 87% were shared between maternal vaginal microbiome and calf URT microbiota at days 3, 14 and 35, respectively. Bacteroidetes, Ruminococcus, Clostridium, and Blautia were the top four genera identified in maternal and calf fecal samples. Mannheimia, Moraxella, Bacteroides, Streptococcus and Pseudomonas were the top five genera identified in maternal vaginal and calf URT samples. Mannheimia was relatively more abundant in the vaginal microbiota of cows whose progeny were diagnosed with respiratory and middle ear disease. Our results indicate that maternal vaginal microbiota potentially influences the initial bacterial colonization of the calf URT, and that might have an important impact on the health of the calf respiratory tract and middle ear.
Collapse
Affiliation(s)
- Svetlana Ferreira Lima
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Marcela Lucas de Souza Bicalho
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Rodrigo Carvalho Bicalho
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
44
|
Dickson MJ, Kvidera SK, Horst EA, Wiley CE, Mayorga EJ, Ydstie J, Perry GA, Baumgard LH, Keating AF. Impacts of chronic and increasing lipopolysaccharide exposure on production and reproductive parameters in lactating Holstein dairy cows. J Dairy Sci 2019; 102:3569-3583. [PMID: 30738665 DOI: 10.3168/jds.2018-15631] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/05/2018] [Indexed: 01/25/2023]
Abstract
Lipopolysaccharide (LPS) administration causes immunoactivation, which negatively affects production and fertility, but experimental exposure via an acute bolus is unlikely to resemble natural infections. Thus, the objectives were to characterize effects of chronic endotoxemia on production parameters and follicular development in estrous-synchronized lactating cows. Eleven Holstein cows (169 ± 20 d in milk; 681 ± 16 kg of body weight) were acclimated to their environmental surroundings for 3 d and then enrolled in 2 experimental periods (P). During P1 (3 d) cows consumed feed ad libitum and baseline samples were obtained. During P2 (7 d), cows were assigned to continuous infusion of either (1) saline-infused and pair-fed (CON-PF; 40 mL/h of saline i.v.; n = 5) or (2) LPS infused and ad libitum fed (LPS-AL; Escherichia coli O55:B5; 0.017, 0.020, 0.026, 0.036, 0.055, 0.088, and 0.148 μg/kg of body weight/h i.v. on d 1 to 7, respectively; n = 6). Controls were pair-fed to the LPS-AL group to eliminate confounding effects of dissimilar nutrient intake. Infusing LPS temporally caused mild hyperthermia on d 1 to 3 (+0.49°C) relative to baseline. Dry matter intake of LPS-AL cows decreased (28%) on d 1 of P2, then progressively returned to baseline. Relative to baseline, milk yield from LPS-AL cows was decreased on d 1 of P2 (12%). No treatment differences were observed in milk yield during P2. Follicular growth, dominant follicle size, serum progesterone (P4), and follicular P4 and 17β-estradiol concentrations were similar between treatments. Serum 17β-estradiol tended to increase (115%) and serum amyloid A and LPS-binding protein were increased (118 and 40%, respectively) in LPS-AL relative to CON-PF cows. Compared with CON-PF, neutrophils in LPS-AL cows were initially increased (45%), then gradually decreased. In contrast, monocytes were initially decreased (40%) and progressively increased with time in the LPS-AL cows. Hepatic mRNA abundance of cytochrome P450 family 2 subfamily C (CYP2C) or CYP3A was not affected by LPS, nor was there a treatment effect on toll-like receptor 4 or LBP; however, acyloxyacyl hydrolase and RELA subunit of nuclear factor kappa B tended to be increased in LPS-AL cows. These data suggest lactating dairy cows become tolerant to chronic and exponentially increasing LPS infusion in terms of production and reproductive parameters.
Collapse
Affiliation(s)
- M J Dickson
- Department of Animal Science, Iowa State University, Ames 50011
| | - S K Kvidera
- Department of Animal Science, Iowa State University, Ames 50011
| | - E A Horst
- Department of Animal Science, Iowa State University, Ames 50011
| | - C E Wiley
- Department of Animal Science, Iowa State University, Ames 50011
| | - E J Mayorga
- Department of Animal Science, Iowa State University, Ames 50011
| | - J Ydstie
- Department of Animal Science, Iowa State University, Ames 50011
| | - G A Perry
- Department of Animal Science, South Dakota State University, Brookings 57006
| | - L H Baumgard
- Department of Animal Science, Iowa State University, Ames 50011
| | - A F Keating
- Department of Animal Science, Iowa State University, Ames 50011.
| |
Collapse
|
45
|
Piersanti RL, Zimpel R, Molinari PCC, Dickson MJ, Ma Z, Jeong KC, Santos JEP, Sheldon IM, Bromfield JJ. A model of clinical endometritis in Holstein heifers using pathogenic Escherichia coli and Trueperella pyogenes. J Dairy Sci 2019; 102:2686-2697. [PMID: 30692014 DOI: 10.3168/jds.2018-15595] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 12/04/2018] [Indexed: 11/19/2022]
Abstract
Bacterial infection of the uterus causes clinical endometritis in 15 to 20% of postpartum dairy cows and reduces fertility, even after the resolution of disease. However, it is difficult to disentangle the mechanisms linking reduced fertility with endometritis because cows have multiple confounding postpartum conditions. The aim of the present experiment was to develop an in vivo model of clinical endometritis in Holstein heifers using pathogenic Escherichia coli and Trueperella pyogenes. Estrous cycles of heifers were synchronized using a 5-d Co-Synch protocol, and subsequently received exogenous progesterone to elevate circulating progesterone at the time of uterine infusion. Endometrial scarification was performed before uterine infusion of live pathogenic Escherichia coli and Trueperella pyogenes, or sterile vehicle. Effects of infusion were evaluated by measuring rectal temperature, plasma haptoglobin, hematology, grading pus in the vaginal mucus, quantifying 16S rRNA in vaginal mucus, and transrectal ultrasonography. Bacterial infusion increased the median vaginal mucus to grade 2 by d 3 postinfusion, and to grade 3 from d 4 to 6 postinfusion. Control heifers maintained a median vaginal mucus grade ≤1 from d 1 to 6. Transrectal ultrasound revealed the accumulation of echogenic fluid in the uterus of heifers following bacterial infusion, which was absent in control heifers. Total 16S rRNA in vaginal mucus was elevated in bacteria-infused heifers compared with control heifers at d 5. Rectal temperature was increased in bacteria-infused heifers. Plasma haptoglobin, general health, and appetite did not differ between groups. As indicated by increased vaginal mucus grade after bacterial infusion and absence of systemic signs of illness, this model successfully induced symptoms resembling clinical endometritis in virgin Holstein heifers. The model allows the isolation of effects of uterine disease on fertility from confounding factors that can occur during the postpartum period in dairy cows.
Collapse
Affiliation(s)
| | - Roney Zimpel
- Department of Animal Sciences, University of Florida, Gainesville 32611
| | | | | | - Zhengxin Ma
- Department of Animal Sciences, University of Florida, Gainesville 32611
| | | | - José E P Santos
- Department of Animal Sciences, University of Florida, Gainesville 32611
| | - I Martin Sheldon
- Institute of Life Science, Swansea University Medical School, Swansea, SA2 8PP, United Kingdom
| | - John J Bromfield
- Department of Animal Sciences, University of Florida, Gainesville 32611.
| |
Collapse
|
46
|
de Cássia Bicudo L, Oba E, Bicudo SD, da Silva Leite D, Siqueira AK, de Souza Monobe MM, Nogueira M, de Figueiredo Pantoja JC, Listoni FJP, Ribeiro MG. Virulence factors and phylogenetic group profile of uterine Escherichia coli in early postpartum of high-producing dairy cows. ANIMAL PRODUCTION SCIENCE 2019. [DOI: 10.1071/an17729] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Escherichia coli is the most common contaminant of the bovine uterus in the first few weeks postpartum, and one of the most important pathogens involved in uterine infections. This bacterium is characterised by diverse virulence factors (VF); however, the profile of E. coli VF in physiologic postpartum uterine contamination is not well established. Therefore, the present study aimed to investigate the prevalence of intrauterine bacteria, a set of virulence factors and phylogroups of E. coli isolates, leukogram and uterine cytology in 75 Holstein cows at 24 h (Sampling time 1) and 14 days (Sampling time 2) postpartum. Escherichia coli, α-haemolytic Streptococcus, Trueperella pyogenes, and Pasteurella multocida were the most common microorganisms isolated in pure culture, whereas E. coli and Clostridium perfringens Type A, E. coli and α-haemolytic Streptococcus, and E. coli and Proteus mirabilis were the most frequent microorganisms in mixed colonies at both studied sampling times. In the 59 E. coli isolates after 24 h (n = 35) and 14 days (n = 24) postpartum, the genes detected for VF were fimH, iucD/aer, kps, hlyA, usp, vt1 and vt2. Most E. coli strains detected in both moments of study belonged to Commensal phylogenetic groups A and B1, whereas Pathogenic groups D and B2 were identified at 24 h and 14 days postpartum respectively. All cows presented suitable immune response against the presence of bacteria in uterine lumen, observed by leukocytosis, neutrophilia, lymphocytosis and monocytosis at leukogram and a high number of polymorphonuclear leukocytes in uterine cytology, in both studied moments. Thus, a complex diversity of aerobic and anaerobic bacteria is involved in uterine contamination in the early postpartum of cows, besides the predominance of E. coli. Moreover, the genes fimH, iucD/aer, hlyA, kps, usp, vt1 and vt2 play a key role in the virulence of E. coli in this period.
Collapse
|
47
|
Nehru DA, Dhaliwal GS, Jan MH, Cheema RS, Kumar S. Clinical efficacy of intrauterine cephapirin benzathine administration on clearance of uterine bacteria and subclinical endometritis in postpartum buffaloes. Reprod Domest Anim 2018; 54:317-324. [DOI: 10.1111/rda.13362] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 10/09/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Dawoud A. Nehru
- Guru Angad Dev veterinary and Animal Sciences University; Ludhiana Punjab India
| | | | - Mustafa. H. Jan
- ICAR-Central Institute for Research on Buffaloes, sub-Campus Nabha; Patiala Punjab India
| | - Ranjna S. Cheema
- Guru Angad Dev veterinary and Animal Sciences University; Ludhiana Punjab India
| | - Sanjay Kumar
- ICAR-Central Institute for Research on Buffaloes, sub-Campus Nabha; Patiala Punjab India
| |
Collapse
|
48
|
Eicosanoid pathway expression in bovine endometrial epithelial and stromal cells in response to lipopolysaccharide, interleukin 1 beta, and tumor necrosis factor alpha. Reprod Biol 2018; 18:390-396. [PMID: 30344089 DOI: 10.1016/j.repbio.2018.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/04/2018] [Accepted: 10/05/2018] [Indexed: 02/07/2023]
Abstract
During endometrial inflammation, bovine endometrium responds by increasing the production of pro-inflammatory mediators, such as interleukin 1 beta (IL-1β), tumor necrosis factor alpha (TNFα), and eicosanoids. The purpose of this study was to establish and characterize an in vitro model of endometrial inflammation using bovine endometrial epithelial (bEEL) and stromal (bCSC) cell lines. We evaluated the effects of the infectious agent (bacterial lipopolysaccharide; LPS) and pro-inflammatory mediators (IL-1β and TNFα) on eicosanoid biosynthesis pathway gene expression and production by bEEL and bCSC cells. Based on concentration-response experiments, the optimal concentrations for responses were 1 μg/mL LPS, 10 ng/mL IL-1β and 50 ng/mL TNFα. Real-time PCR results show that there was an upregulation of relative mRNA expression of PTGS2 when bEEL and bCSC were treated with LPS, IL-1β and TNFα. An increase in PTGES3 expression was observed when bEEL cells were treated with LPS and IL-1β and PTGES2 when treated with IL-1β. In bCSC cells, FAAH relative mRNA was decreased upon treatments. Rate of production of PGE2, PGF2α, PGE2-EA and PGF2α-EA were also determined using liquid chromatography tandem mass spectrometry. Our results show that eicosanoid production was increased in both cell lines in response to LPS, IL-1β, and TNFα. We suggest that the characteristics of bEEL and bCSC cell lines mimic the physiological responses found in mammals with endometrial infection, making them excellent in vitro models for intrauterine environment studies.
Collapse
|
49
|
Van Schyndel SJ, Bogado Pascottini O, LeBlanc SJ. Comparison of cow-side diagnostic techniques for subclinical endometritis in dairy cows. Theriogenology 2018; 120:117-122. [PMID: 30114545 DOI: 10.1016/j.theriogenology.2018.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 12/23/2022]
Abstract
A limited number of cow-side diagnostic techniques exist for the diagnosis of subclinical endometritis (SCE) in dairy cattle. The objectives of this study were to compare results of endometrial cytology from samples collected by cytobrush (CB) and low-volume lavage (LVL) and to assess leukocyte esterase (LE) test strips and Brix refractometry as surrogate cow-side tests for SCE. Two samples were consecutively collected from 248 Holstein cows between 29 and 35 days postpartum, using CB and LVL techniques. Each sample was analyzed using cytology with a cut-point of ≥5% polymorphonuclear (PMN) cells, LE strips using cut-points of ≥1 and ≥ 2, and a Brix refractometer. Each diagnostic technique was compared intra-sample using the respective cytology as a gold standard and inter-sample using CB samples as the referent. The concordance correlation coefficient (CCC, ρc) for PMN% between CB and LVL was ρc = 0.59 [95% confidence interval (CI): 0.50 to 0.67] and the Kappa (κ) for agreement was κ = 0.35 [sensitivity (Se) = 0.88, specificity (Sp) = 0.45]. The optimal cut-point of LE ≥ 2 resulted in moderate agreement between CB and LVL samples, κ = 0.56 (Se = 0.89, Sp = 0.65). Agreement between LE and cytology using CB (κ = 0.49; Se = 0.89, Sp = 0.57) and LVL (κ = 0.44; Se = 0.77, Sp = 0.67) were similar. The correlation between Brix values from CB and LVL was ρc = 0.12 (CI -0.01 to 0.26). The correlation between CB cytology and Brix was ρc = 0.33 (CI 0.20 to 0.45) but ρc = -0.07 (CI -0.21 to 0.06) between LVL cytology and Brix. While LE strips with a cut-point of LE ≥ 2 had moderate agreement with cytology, Brix refractometry had poor performance for the diagnosis of SCE. Samples taken by CB and LVL produced comparable cow-side diagnostic results and either is a viable method for the diagnosis of SCE.
Collapse
Affiliation(s)
- S J Van Schyndel
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Ont., N1G 2W1, Canada.
| | - O Bogado Pascottini
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Ont., N1G 2W1, Canada
| | - S J LeBlanc
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Ont., N1G 2W1, Canada
| |
Collapse
|
50
|
Bafor EE, Onwukpa I, Itemire AO, Omoruyi O, Eferoba-Idio E, Odega K, Eghianruwa OJ. Amelioration ofEscherichia coli-induced endometritis with ascorbic acid in non-pregnant mouse models. Am J Reprod Immunol 2018; 80:e12976. [DOI: 10.1111/aji.12976] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 04/16/2018] [Indexed: 12/01/2022] Open
Affiliation(s)
- Enitome Evi Bafor
- Department of Pharmacology & Toxicology; University of Benin; Benin City Edo State Nigeria
| | - Ikechukwu Onwukpa
- Department of Pharmacology & Toxicology; University of Benin; Benin City Edo State Nigeria
| | - Anne Oghenekevwe Itemire
- Department of Pharmaceutical Microbiology; Faculty of Pharmacy; University of Benin; Benin City Edo State Nigeria
| | - Osemelomen Omoruyi
- Department of Pharmacology & Toxicology; University of Benin; Benin City Edo State Nigeria
| | | | - Kevin Odega
- Department of Histopathology and Morbid Anatomy; University of Benin Teaching Hospital; Benin City Nigeria
| | - Osas Jim Eghianruwa
- Department of Anatomy; School of Basic Medical Sciences; University of Benin; Benin City Nigeria
| |
Collapse
|