1
|
González Altamiranda EA, Arias ME, Kaiser GG, Mucci NC, Odeón AC, Felmer RN. Upregulation of interferon-alpha gene in bovine embryos produced in vitro in response to experimental infection with noncytophatic bovine-viral-diarrhea virus. Mol Biol Rep 2020; 47:9959-9965. [PMID: 33226564 PMCID: PMC7681760 DOI: 10.1007/s11033-020-05958-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 10/29/2020] [Indexed: 12/20/2022]
Abstract
In-vitro fertilization is a routine livestock-breeding technique widely used around the world. Several studies have reported the interaction of bovine viral-diarrhea virus (BVDV) with gametes and in-vitro-produced (IVP) bovine embryos. Since, gene expression in BVDV-infected IVP bovine embryos is scarcely addressed. The aim of this work was to evaluate the differential expression of genes involved in immune and inflammatory response. Groups of 20-25 embryos on Day 6 (morula stage) were exposed (infected) or not (control) to an NCP-BVDV strain in SOF medium. After 24 h, embryos that reached expanded blastocyst stage were washed. Total RNA of each embryo group was extracted to determine the transcription levels of 9 specific transcripts related with antiviral and inflammatory response by SYBR Green real time quantitative (RT-qPCR). Culture media and an aliquot of the last embryos wash on Day 7 were analyzed by titration and virus isolation, respectively. A conventional PCR confirmed BVDV presence in IVP embryos. A significantly higher expression of interferon-α was observed in blastocysts exposed to NCP-BVDV compared to the controls (p < 0.05). In this study, the upregulation of INFα and TLR7 genes involved in inflammatory and immune response in BVDV-infected IVP bovine embryos is a new finding in this field. This differential expression suggest that embryonic cells could function in a manner like immune cells by recognizing and responding early to interaction with viral pathogens. These results provide new insights into the action of BVDV on the complex molecular pathways controlling bovine early embryonic development.
Collapse
Affiliation(s)
- Erika A González Altamiranda
- Consejo Nacional de Investigaciones Científicas y Técnicas CONICET, Buenos Aires, Argentina. .,Laboratorio de Virología Veterinaria, Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible INTA CONICET, Balcarce, Argentina.
| | - María E Arias
- Laboratorio de Reproducción Centro de Biotecnologia Reproductiva CEBIOR-BIOREN Facultad de Ciencias Agrícolas y Forestales, Universidad de La Frontera, Temuco, Chile
| | - Germán G Kaiser
- Laboratorio de Biotecnología de la Reproducción, Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible INTA CONICET, Balcarce, Argentina
| | - Nicolás C Mucci
- Laboratorio de Biotecnología de la Reproducción, Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible INTA CONICET, Balcarce, Argentina
| | - Anselmo C Odeón
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Balcarce, Argentina
| | - Ricardo N Felmer
- Laboratorio de Reproducción Centro de Biotecnologia Reproductiva CEBIOR-BIOREN Facultad de Ciencias Agrícolas y Forestales, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
2
|
Kuca T, Passler T, Newcomer BW, Neill JD, Galik PK, Riddell KP, Zhang Y, Bayles DO, Walz PH. Changes Introduced in the Open Reading Frame of Bovine Viral Diarrhea Virus During Serial Infection of Pregnant Swine. Front Microbiol 2020; 11:1138. [PMID: 32587582 PMCID: PMC7298064 DOI: 10.3389/fmicb.2020.01138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 05/05/2020] [Indexed: 12/27/2022] Open
Abstract
Bovine viral diarrhea virus (BVDV) is one of the most economically important viruses of cattle, but this pathogen is also able to infect pigs, camelids, and a wide range of domestic and wild ruminants. BVDV isolates circulating in animal populations are genetically and antigenically highly diverse. Acute BVDV infections in cattle cause the introduction of many substitutions in the viral genome. Serial infection of pregnant sheep with a BVDV-1b isolate of bovine origin was also associated with great numbers of substitutions. To our knowledge, genomic changes arising during BVDV infections in swine have not been investigated. The purpose of this study was to investigate the changes occurring in the open reading frame (ORF) of BVDV during serial infection of pregnant swine with a BVDV isolate of bovine origin. The BVDV-1b isolate AU526 was serially passaged in six pregnant gilts, two of which gave birth to live piglets congenitally infected with BVDV. The complete ORF sequences of 14 BVDV isolates obtained from pregnant gilts and their piglets were determined. Their analysis revealed that serial transmission of AU526 in pregnant swine resulted in many genomic changes. All isolates of porcine origin shared 32 nucleotide and 12 amino acid differences with the virus inoculum AU526. These changes were detected after a single passage in pregnant swine and were conserved during the subsequent five passages. Amino acid changes occurred primarily in genomic regions encoding the BVDV structural proteins E2 and E rns . These results suggest that BVDV infections in pregnant swine may contribute significantly to the genetic variability of BVDV and lead to the appearance of adaptive changes.
Collapse
Affiliation(s)
- Thibaud Kuca
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Thomas Passler
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Benjamin W Newcomer
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - John D Neill
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
| | - Patricia K Galik
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Kay P Riddell
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Yijing Zhang
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Darrell O Bayles
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
| | - Paul H Walz
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| |
Collapse
|
3
|
Mechanisms linking bovine viral diarrhea virus (BVDV) infection with infertility in cattle. Anim Health Res Rev 2019; 20:72-85. [PMID: 31895016 DOI: 10.1017/s1466252319000057] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Bovine viral diarrhea virus (BVDV) is an important infectious disease agent that causes significant reproductive and economic losses in the cattle industry worldwide. Although BVDV infection is known to cause poor fertility in cattle, a greater part of the underlying mechanisms particularly associated with early reproductive losses are not clearly understood. Previous studies reported viral compromise of reproductive function in infected bulls. In females, BVDV infection is thought to be capable of killing the oocyte, embryo or fetus directly, or to induce lesions that result in fetal abortion or malformation. BVDV infections may also induce immune dysfunction, and predispose cattle to other diseases that cause poor health and fertility. Other reports also suggested BVDV-induced disruption of the reproductive endocrine system, and a disruption of leukocyte and cytokine functions in the reproductive organs. More recent studies have provided evidence of viral-induced suppression of endometrial innate immunity that may predispose to uterine disease. Furthermore, there is new evidence that BVDV may potentially disrupt the maternal recognition of pregnancy or the immune protection of the conceptus. This review brings together the previous reports with the more recent findings, and attempts to explain some of the mechanisms linking this important virus to infertility in cattle.
Collapse
|
4
|
Weng XG, Liu Y, Zhou SH, Zhang YT, Shao YT, Xu QQ, Liu ZH. Evaluation of porcine circovirus type 2 infection in in vitro embryo production using naturally infected oocytes. Theriogenology 2018; 126:75-80. [PMID: 30537656 DOI: 10.1016/j.theriogenology.2018.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 12/02/2018] [Accepted: 12/02/2018] [Indexed: 01/22/2023]
Abstract
In vitro fertilization (IVF) and somatic cell nuclear transfer (SCNT) are important breeding techniques for livestock. High-quality MII oocytes produced from in vitro maturation (IVM) are required for the two techniques listed above. The ovaries used for IVM operations are primarily acquired from commercial abattoirs, and the pathogen status of slaughtered animals becomes an unavoidable issue. Our previous monitoring data showed that porcine circovirus type 2 (PCV-2) is the main pathogen present in ovaries from abattoirs. However, the characteristics and effects of PCV-2 infection in oocyte maturation and in vitro production (IVP) of embryos are unclear, and currently there are no relevant studies. Therefore, the aim of this study was to determine the PCV-2 infection pattern and determine whether it affects oocyte in vitro maturation and IVP embryo development. More than five hundred ovaries and five thousand oocytes were utilized in the present study. Polymerase chain reaction (PCR) was used to detect PCV-2 DNA in ovaries, follicular fluid (FF), oocytes, cumulus cells and IVP embryos. The effects of viral infections on the rate of oocyte maturation and IVP embryo development were evaluated. We also analyzed the number of copies of the virus in the IVM and IVP process by absolute quantitative fluorescence PCR. Our study showed that the prevalent virus subgenotype in ovaries was PCV-2a. PCV-2a infection did not significantly affect ovarian/oocyte morphology and maturation. Moreover, virus infection did not have a significant effect on the development of the IVP embryos except for a reduction in IVF blastocyst cell numbers. Further tests showed that the viral copy numbers fluctuated at different stages between the IVP embryos and culture medium. For the first time, this study identified the infection pattern of naturally sourced PCV-2 in the course of oocyte maturation and embryo development.
Collapse
Affiliation(s)
- Xiao-Gang Weng
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China
| | - Yan Liu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China
| | - Si-Han Zhou
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China
| | - Yu-Ting Zhang
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China
| | - Yu-Tong Shao
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China
| | - Qian-Qian Xu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China
| | - Zhong-Hua Liu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China.
| |
Collapse
|
5
|
Pellerin JL, Oseikria M, Moreno D, Rodolakis A, Vorimore F, Laroucau K, Bruyas JF, Roux C, Michaud S, Larrat M, Fieni F. Risk of Chlamydia abortus transmission via embryo transfer using in vitro produced early bovine embryos. Theriogenology 2018; 126:114-120. [PMID: 30551017 DOI: 10.1016/j.theriogenology.2018.11.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 11/27/2018] [Accepted: 11/30/2018] [Indexed: 10/27/2022]
Abstract
The objectives of this study were to determine (i) whether Chlamydia (C.) abortus would adhere to the intact zona pellucida (ZP-intact) of early in vitro produced bovine embryos; (ii) whether the bacteria would adhere to the embryos (ZP-free) after in vitro infection; and (iii) the efficacy of the International Embryo Transfer Society (IETS) washing protocol. The experimentation was made twice. For each replicate 100 (8-16-cell) bovine embryos produced in vitro were randomly divided into 10 batches. Height batches (4 ZP-intact and 4 ZP-free) of 10 embryos were incubated in a medium containing 4 × 107Chlamydia/ml of AB7 strain. After incubation for 18 h at 37 °C in an atmosphere of 5% CO2, the embryos were washed in accordance with the IETS guidelines. In parallel, two batches (1 ZP-intact and 1 ZP-free) of 10 embryos were subjected to similar procedures but without exposure to C. abortus as a control group. The 10 washing fluids from each batch were collected and centrifuged for 1 h at 13,000×g. Each batch of washed embryos and each wash pellets were tested using PCR. C. abortus DNA was found in all ZP-intact and ZP-free batches of 10 embryos after 10 successive washes. For ZP-intact infected embryos, Chlamydia-DNA was also detected in all 10 wash baths for two batches (2/8) of embryos, whereas for ZP-free infected embryos, Chlamydia-DNA was detected in all 10 wash baths for 6/8 batches of embryos. In contrast, none of the embryos or their washing fluids in the control batches was DNA positive. The bacterial load for batches of 10 embryos after the 10 wash baths was significantly higher for batches of ZP-free embryos (20.7 ± 9 × 103 bacteria/mL) than for batches of ZP-intact embryos (0.47 ± 0.19 × 103 bacteria/mL). These results demonstrate that C. abortus adheres to the ZP as well as the early embryonic cells of in vitro produced bovine embryos after in vitro infection, and that the standard washing protocol recommended by the IETS fails to remove it.
Collapse
Affiliation(s)
- Jean-Louis Pellerin
- LUNAM University, Oniris, Nantes-Atlantic National College of Veterinary Medicine, Food Science and Engineering, Sanitary Security of Reproduction Biotechnology Unit, Nantes, France
| | - Mouhamad Oseikria
- LUNAM University, Oniris, Nantes-Atlantic National College of Veterinary Medicine, Food Science and Engineering, Sanitary Security of Reproduction Biotechnology Unit, Nantes, France
| | - Diego Moreno
- LUNAM University, Oniris, Nantes-Atlantic National College of Veterinary Medicine, Food Science and Engineering, Sanitary Security of Reproduction Biotechnology Unit, Nantes, France
| | - Annie Rodolakis
- INRA, Animal Infectious Diseases and Public Health Tours, France
| | - Fabien Vorimore
- ANSES, Animal Health Laboratory, Bacterial Zoonosis Unit, Maisons-Alfort, France
| | - Karine Laroucau
- ANSES, Animal Health Laboratory, Bacterial Zoonosis Unit, Maisons-Alfort, France
| | - Jean-Fancois Bruyas
- LUNAM University, Oniris, Nantes-Atlantic National College of Veterinary Medicine, Food Science and Engineering, Sanitary Security of Reproduction Biotechnology Unit, Nantes, France
| | - Cécile Roux
- LUNAM University, Oniris, Nantes-Atlantic National College of Veterinary Medicine, Food Science and Engineering, Sanitary Security of Reproduction Biotechnology Unit, Nantes, France
| | - Sandrine Michaud
- LUNAM University, Oniris, Nantes-Atlantic National College of Veterinary Medicine, Food Science and Engineering, Sanitary Security of Reproduction Biotechnology Unit, Nantes, France
| | - Myriam Larrat
- LUNAM University, Oniris, Nantes-Atlantic National College of Veterinary Medicine, Food Science and Engineering, Sanitary Security of Reproduction Biotechnology Unit, Nantes, France
| | - Francis Fieni
- LUNAM University, Oniris, Nantes-Atlantic National College of Veterinary Medicine, Food Science and Engineering, Sanitary Security of Reproduction Biotechnology Unit, Nantes, France.
| |
Collapse
|
6
|
Al-Busadah KA, El-Bahr SM, Khalafalla AI. Serum biochemical profile and molecular detection of pathogens in semen of infertile male dromedary camels (Camelus dromedarius). Anim Reprod Sci 2017; 180:58-65. [PMID: 28341394 DOI: 10.1016/j.anireprosci.2017.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 03/03/2017] [Accepted: 03/05/2017] [Indexed: 02/08/2023]
Abstract
Detection of pathogens in the semen of camels has not been completely elucidated. Therefore, the current study aimed to determine the association of some economically important pathogens with infertility in 94 male infertile camels through molecular detection and estimation of selected biochemical parameters in serum of these animals compared with a control non infected fertile animals (n=40). PCR analysis of semen samples of infertile camels indicated that, four potential pathogens namely Mycoplasma spp., Leptospira spp., Brucella melitensis, and Bovine viral diarrhea virus (BVDV) were detected in 50 semen samples of infertile camels whereas, 44 semen samples of infertile camels were free of pathogens and all tested semen samples were negative for bovine herpes virus 1, Salmonella spp. and Trypanosoma evansi. Single and mixed infection was detected in 88% and 12% of the infected semen samples, respectively. Mycoplasma spp., Leptospira spp., Brucella and Bovine viral diarrhea virus infection represented 66%, 27.2%, 4.5% and 2.3% of the single infected semen samples. Mycoplasma spp.+Leptospira spp. and Mycoplasma spp.+Brucella spp. were detected in 83.3% and 16.7% of mixed infected semen samples, respectively. Testosterone concentration decreased significantly in infertile infected camels compare to both control and infertile non infected animals that remained comparable. The current findings reported the molecular detection of mixed infection in camel semen for the first time. Mycoplasma spp. is the most widely recognized microorganism in the present study and together with Leptospira spp., Brucella spp. and Bovine viral diarrhea virus, might be associated with infertility in dromedary camels.
Collapse
Affiliation(s)
- Khaled A Al-Busadah
- Department of Physiology, Biochemistry and Pharmacology (Physiology), College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Sabry M El-Bahr
- Department of Physiology, Biochemistry and Pharmacology (Biochemistry), College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia; Department of Biochemistry, Faculty of Veterinary Medicine, Alexandria University, Egypt.
| | - Abdelmalik I Khalafalla
- Camel Research Center, King Faisal University, Saudi Arabia; Department of Microbiology, Faculty of Veterinary Medicine, University of Khartoum, P.O. Box 32, Shambat, Khartoum North, Sudan
| |
Collapse
|
7
|
González Altamiranda EA, Kaiser GG, Ríos GL, Leunda MR, Odeón AC. Interaction of bovine viral diarrhea virus with bovine cumulus-oocyte complex during IVM: Detection in permissive cells. Theriogenology 2016; 86:1999-2003. [PMID: 27481815 DOI: 10.1016/j.theriogenology.2016.06.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 06/09/2016] [Accepted: 06/17/2016] [Indexed: 10/21/2022]
Abstract
Structural changes in the zona pellucida (ZP) of bovine oocytes seem to modulate their interaction with various viral agents, facilitating the viral infection in in vitro production systems. To evaluate the susceptibility of bovine oocytes to noncytopathogenic bovine viral diarrhea virus (ncp-BVDV), cumulus-oocyte complexes were exposed to 10(7) tissue culture-infective doses (TCID50)/mL of an ncp-BVDV strain during IVM (in vitro maturation). After that, cumulus cells and the ZP were removed by hyaluronidase and pronase treatment, respectively, and the percentages of oocytes with polar body were analyzed as a sign of nuclear maturation. After passage through cell culture, the virus was isolated from granulosa cells, ZP-free mature oocytes, and ZP-intact mature oocytes. These results were confirmed by reverse transcription-polymerase chain reaction. After consecutive washes, the virus remained associated with ZP-free oocytes, maintaining its replication and infectivity in permissive cells. Based on these findings, it is concluded that the classical viral isolation procedure has a predictive value to detect BVDV associated with ZP-free oocytes and that it was novelty demonstrated that both washing and trypsin treatment of oocytes were ineffective to remove BVDV infection.
Collapse
Affiliation(s)
| | - Germán G Kaiser
- Reproduction Biotechnology Group, Department of Animal Production, INTA EEA Balcarce, Balcarce, Argentina
| | - Glenda L Ríos
- Reproduction Biotechnology Group, Department of Animal Production, INTA EEA Balcarce, Balcarce, Argentina
| | - María R Leunda
- Animal Health Group, Department of Animal Production, INTA EEA Balcarce, Balcarce, Argentina
| | - Anselmo C Odeón
- Animal Health Group, Department of Animal Production, INTA EEA Balcarce, Balcarce, Argentina
| |
Collapse
|
8
|
Newcomer BW, Toohey-Kurth K, Zhang Y, Brodersen BW, Marley MS, Joiner KS, Zhang Y, Galik PK, Riddell KP, Givens MD. Laboratory diagnosis and transmissibility of bovine viral diarrhea virus from a bull with a persistent testicular infection. Vet Microbiol 2014; 170:246-57. [DOI: 10.1016/j.vetmic.2014.02.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 02/12/2014] [Accepted: 02/17/2014] [Indexed: 10/25/2022]
|
9
|
Gard JA, Stringfellow DA. Shaping the norms that regulate international commerce of embryos. Theriogenology 2014; 81:56-66. [PMID: 24274410 DOI: 10.1016/j.theriogenology.2013.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 08/12/2013] [Accepted: 08/14/2013] [Indexed: 10/26/2022]
Abstract
As various embryo technologies in livestock were developed and evolved to a state of usefulness over the past 40 years, scientists with a specific interest in infectious diseases sought to determine the epidemiologic consequences of movement, especially international movement, of increasing numbers of embryos. Many of the foundational studies in this area were reported in Theriogenology, beginning in the 1970s and especially throughout the 1980s and 1990s. Unquestionably, Theriogenology has been a widely used venue for dissemination of basic information on this subject, which ultimately led to the development of the now universally accepted techniques for certification of embryo health. Today it is well-recognized that movement in commerce of embryos, especially in vivo-derived embryos, is a very low-risk method for exchange of animal germ plasm. This paper chronicles the evolution of strategies for health certification of embryos. An overview is provided of the calculated efforts of practitioners, scientists, and regulators to organize, forge necessary partnerships, stimulate needed research, provide purposeful analysis of the results, and, through these processes, guarantee the universal acceptance of efficient protocols for certifying the health of embryos intended for movement in international commerce.
Collapse
Affiliation(s)
- Julie A Gard
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA.
| | | |
Collapse
|
10
|
Effect of Bovine Viral Diarrhea Virus on the ovarian functionality and in vitro reproductive performance of persistently infected heifers. Vet Microbiol 2013; 165:326-32. [DOI: 10.1016/j.vetmic.2013.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 03/27/2013] [Accepted: 04/07/2013] [Indexed: 11/21/2022]
|
11
|
Rodning S, Givens M, Marley M, Zhang Y, Riddell K, Galik P, Hathcock T, Gard J, Prevatt J, Owsley W. Reproductive and economic impact following controlled introduction of cattle persistently infected with bovine viral diarrhea virus into a naive group of heifers. Theriogenology 2012; 78:1508-16. [DOI: 10.1016/j.theriogenology.2012.05.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 05/14/2012] [Accepted: 05/30/2012] [Indexed: 10/27/2022]
|
12
|
Givens MD, Marley MSD, Jones CA, Ensley DT, Galik PK, Zhang Y, Riddell KP, Joiner KS, Brodersen BW, Rodning SP. Protective effects against abortion and fetal infection following exposure to bovine viral diarrhea virus and bovine herpesvirus 1 during pregnancy in beef heifers that received two doses of a multivalent modified-live virus vaccine prior to breeding. J Am Vet Med Assoc 2012; 241:484-95. [DOI: 10.2460/javma.241.4.484] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Lalonde A, Bielanski A. Efficacy of the International Embryo Transfer Society (IETS) washing procedure for rendering oocytes matured in vitro free of bovine viral diarrhea virus (BVDV). Theriogenology 2011; 76:261-6. [DOI: 10.1016/j.theriogenology.2011.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 12/22/2010] [Accepted: 02/01/2011] [Indexed: 11/28/2022]
|
14
|
Abutarbush SM, Alqawasmeh DM. Clinical bovine viral diarrhoea virus infection in Jordan. Transbound Emerg Dis 2010; 57:455-7. [PMID: 21117287 DOI: 10.1111/j.1865-1682.2010.01165.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A 1-year-old Holstein Friesian heifer was presented for anorexia and acute diarrhoea. The heifer was born and raised at the farm. Bovine viral diarrhoea virus (BVDV) infection was diagnosed using clinical signs and RT-PCR. Clinical BVDV infection has never been reported in Jordan.
Collapse
Affiliation(s)
- S M Abutarbush
- Department of Veterinary Clinical Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid, Jordan.
| | | |
Collapse
|
15
|
Romero CC, Pellerin J, Poulin N, Cognié Y, Chebloune Y, Pépin M, Fieni F. Maedi-Visna virus was detected in association with virally exposed IVF-produced early ewes embryos. Theriogenology 2010; 74:682-90. [DOI: 10.1016/j.theriogenology.2010.03.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 03/19/2010] [Accepted: 03/25/2010] [Indexed: 10/19/2022]
|
16
|
Intisar KS, Ali YH, Khalafalla AI, Mahasin EAR, Amin AS, Taha KM. The first report on the prevalence of pestivirus infection in camels in Sudan. Trop Anim Health Prod 2010; 42:1203-7. [PMID: 20376559 DOI: 10.1007/s11250-010-9549-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2010] [Indexed: 02/05/2023]
Abstract
The role of pestivirus particularly bovine viral diarrhea virus (BVDV) in causing respiratory infections in camels was studied in four different localities in Sudan. The evaluation was carried out using ELISA, and positive specimens were further tested using direct fluorescent antibody technique (FAT) and reverse transcriptase polymerase chain reaction (RT-PCR) for confirmation. The overall detected seroprevalence of BVD in camel sera was 84.6% with the highest prevalence in Western Sudan (92.5%) and with most of positives showing 2+ and 3+ titer. Out of 186 lung specimens examined for BVDV antigen, 13 were found positive (7%) with the highest prevalence in Central Sudan. All ELISA-positive specimens were positive using FAT and RT-PCR. To our knowledge, this is the first report for the detection of BVDV antigen and antibodies in camels in Sudan.
Collapse
Affiliation(s)
- Kamil Saeed Intisar
- Central Veterinary Research Laboratory, P.O. Box 8067, Al Amarat, Khartoum, Sudan.
| | | | | | | | | | | |
Collapse
|
17
|
Rodning SP, Marley MSD, Zhang Y, Eason AB, Nunley CL, Walz PH, Riddell KP, Galik PK, Brodersen BW, Givens MD. Comparison of three commercial vaccines for preventing persistent infection with bovine viral diarrhea virus. Theriogenology 2010; 73:1154-63. [PMID: 20181385 DOI: 10.1016/j.theriogenology.2010.01.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 12/03/2009] [Accepted: 01/04/2010] [Indexed: 12/01/2022]
Abstract
Eighty crossbred beef heifers were randomly allocated to four groups to evaluate the efficacy of vaccination in preventing development of calves persistently infected with bovine viral diarrhea virus (BVDV). Group 1 (n=11) was non-vaccinated controls, whereas three groups were vaccinated with commercially available multivalent BVDV vaccines at weaning (approximately 7 mo of age), 28 d post-weaning, approximately 1 y of age, and 28 d later. Groups 2 (n=23) and 3 (n=23) were given a modified-live BVDV vaccine, whereas Group 4 was given an inactivated BVDV vaccine. Heifers were bred by AI and subsequently exposed to two bulls. At 61 d after AI, 70 heifers were pregnant (n=10 for Group 1 and n=20/group for Groups 2, 3, and 4). Three cattle persistently infected with BVDV were commingled with the pregnant heifers (in an isolated pasture) from 68 to 126 d after AI. Thereafter, viremias were detected in pregnant heifers from Groups 1, 3, and 4 (10/10, 1/20, and 10/20, respectively), but not in pregnant heifers from Group 2 (0/20). Resulting calves were assessed for persistent infection using serum PCR, ear notch antigen capture-ELISA, and immunohistochemistry. Persistently infected calves were only produced in Group 1 (10/10) and Group 4 (2/18). In conclusion, commercial vaccines provided effective fetal protection despite prolonged natural exposure to BVDV. Given that viremias were detected in 11 vaccinated heifers after BVDV exposure, and two vaccinated heifers gave birth to persistently infected calves, there is continued need for biosecurity and diagnostic surveillance, in addition to vaccination, to ensure effective BVDV control.
Collapse
Affiliation(s)
- Soren P Rodning
- Department of Animal Sciences, Auburn University, Auburn, Alabama, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Gard JA, Givens MD, Marley MSD, Galik PK, Riddell KP, Edmondson MA, Rodning SP. Intrauterine inoculation of seronegative heifers with bovine viral diarrhea virus concurrent with transfer of in vivo-derived bovine embryos. Theriogenology 2010; 73:1009-17. [PMID: 20129656 DOI: 10.1016/j.theriogenology.2009.11.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 11/12/2009] [Accepted: 11/16/2009] [Indexed: 10/19/2022]
Abstract
Bovine viral diarrhea virus (BVDV) has been shown to be associated with single transferable in vivo-derived bovine embryos despite washing and trypsin treatment. Hence, the primary objective was to evaluate the potential of BVDV to be transmitted via the intrauterine route at the time of embryo transfer. In vivo-derived bovine embryos (n=10) were nonsurgically collected from a single Bos tarus donor cow negative for BVDV. After collection and washing, embryos were placed into transfer media containing BVDV (SD-1; Type 1a). Each of the 10 embryos was individually loaded into an 0.25-mL straw, which was then nonsurgically transferred into the uterus of 1 of the 10 seronegative recipients on Day 0. The total quantity of virus transferred into the uterus of each of the 10 Bos tarus recipients was 878 cell culture infective doses to the 50% end point (CCID(50))/mL. Additionally, control heifers received 1.5 x 10(6) CCID(50) BVDV/.5 mL without an embryo (positive) or heat-inactivated BVDV (negative). The positive control heifer and all 10 recipients of virus-exposed embryos exhibited viremia by Day 6 and seroconverted by Day 15 after transfer. The negative control heifer did not exhibit a viremia or seroconvert. At 30 d after embryo transfer, 6 of 10 heifers in the treatment group were pregnant; however, 30 d later, only one was still pregnant. This fetus was nonviable and was positive for BVDV. In conclusion, the quantity of BVDV associated with bovine embryos after in vitro exposure can result in viremia and seroconversion of seronegative recipients after transfer into the uterus during diestrus.
Collapse
Affiliation(s)
- J A Gard
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA.
| | | | | | | | | | | | | |
Collapse
|
19
|
Gregg K, Chen S, Sadeghieh S, Guerra T, Xiang T, Meredith J, Polejaeva I. Experimental risk assessment of bovine viral diarrhea virus transmission via in vitro embryo production using somatic cell nucleus transfer. Theriogenology 2009; 72:99-110. [DOI: 10.1016/j.theriogenology.2009.02.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Revised: 02/04/2009] [Accepted: 02/04/2009] [Indexed: 11/26/2022]
|
20
|
Gard J, Givens M, Marley M, Galik P, Riddell K, Stringfellow D, Zhang Y, Edmondson M. Bovine viral diarrhea virus (BVDV) associated with single in vivo-derived and in vitro-produced preimplantation bovine embryos following artificial exposure. Theriogenology 2009; 71:1238-44. [DOI: 10.1016/j.theriogenology.2009.01.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Revised: 12/31/2008] [Accepted: 01/02/2009] [Indexed: 11/15/2022]
|
21
|
A sensitive and efficient detection method for bovine viral diarrhea virus (BVDV) in single preimplantation bovine embryos. Theriogenology 2009; 71:966-74. [DOI: 10.1016/j.theriogenology.2008.10.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 10/14/2008] [Accepted: 10/18/2008] [Indexed: 11/21/2022]
|
22
|
Givens MD, Riddell KP, Zhang Y, Galik P, Walz PH, Brodersen BW, Johnson JW, Passler T, Widel P, Tremblay R. Safety and efficacy of vaccination of seronegative bulls with modified-live, cytopathic bovine viral diarrhea viruses. Theriogenology 2009; 71:975-83. [PMID: 19144395 DOI: 10.1016/j.theriogenology.2008.10.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 10/11/2008] [Accepted: 10/19/2008] [Indexed: 10/21/2022]
Abstract
The objectives were to vaccinate peri-pubertal bulls with a modified-live vaccine consisting of cytopathic BVDV strains Singer and 296 and evaluate the resulting: (a) transient shed of modified-live, cytopathic BVDV in semen; (b) risk of prolonged testicular infection; and (c) protection against subsequent testicular infection due to viral challenge. Seronegative, peri-pubertal bulls were vaccinated subcutaneously with a standard dose of vaccine (n=11) or were maintained as unvaccinated controls (n=11). Forty-nine days after vaccination, all bulls were intranasally inoculated with a noncytopathic field strain of BVDV. Semen and testicular biopsies collected after vaccination and challenge were assayed for BVDV using virus isolation, reverse transcription-nested PCR, or immunohistochemistry, and the identity of viral strains was determined by nucleotide sequencing of PCR products. Vaccination of peri-pubertal bulls with this vaccine caused a short-term, transient shed of only the type 1a strain of modified-live, cytopathic BVDV in semen for up to 10d after vaccination. The vaccine did not cause prolonged testicular infection. Vaccination with this product prevented development of prolonged testicular infections after subsequent exposure to a field strain of BVDV.
Collapse
Affiliation(s)
- M D Givens
- Departments of Pathobiology and Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Bielanski A, Algire J, Lalonde A, Nadin-Davis S. Transmission of bovine viral diarrhea virus (BVDV) via in vitro-fertilized embryos to recipients, but not to their offspring. Theriogenology 2008; 71:499-508. [PMID: 18834622 DOI: 10.1016/j.theriogenology.2008.08.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Revised: 08/20/2008] [Accepted: 08/25/2008] [Indexed: 10/21/2022]
Abstract
The objective was to assess the potential of Day-7, IVP zona pellucida-intact blastocysts to transmit bovine viral diarrhea virus (BVDV) to embryo recipients. Embryos were exposed (1h) to two non-cytopathic (NCP) biotypes, either NY-1 (type 1) or two concentrations of PA-131 (type 2), washed 10 times, and transferred into recipients (two embryos/recipient) free of BVDV and its antibody. Six (30.0%) of the 20 pregnancies were lost after 30 d following transfer of the embryos exposed to the type 1 strain; none of the recipients or their 18 full term offspring seroconverted. Conversely, following exposure to the type 2 strain, 16 (51.6%) of the 31 pregnancies were lost >30 d after embryo transfer. Furthermore, 18 (51.4%) of 35 recipients receiving embryos exposed to type 2 seroconverted; 11 of those were pregnant at 30 d, but only 2 went to full term and gave birth to noninfected (seronegative) calves. Virus isolation tests were performed on single, virus-exposed, washed embryos (not transferred); 3 of 12 (25%) and 17 of 61 (28%) exposed to type 1 and type 2, respectively, were positive for live BVDV. Embryos exposed to type 2 virus had from 0 to 34 viral copies. In conclusion, a large proportion of recipients that received embryos exposed to BVDV, especially those exposed to a high concentration of type 2 virus, became infected after ET, and their pregnancies failed. However, term pregnancies resulted in calves free of both virus and antibody. Therefore, additional disinfection procedures are recommended prior to transferring potentially infected IVP embryos.
Collapse
Affiliation(s)
- A Bielanski
- Canadian Food Inspection, Animal Diseases Research Institute, Ottawa, ON, Canada.
| | | | | | | |
Collapse
|
24
|
Marley MSD, Givens MD, Galik PK, Riddell KP, Stringfellow DA. Development of a duplex quantitative polymerase chain reaction assay for detection of bovine herpesvirus 1 and bovine viral diarrhea virus in bovine follicular fluid. Theriogenology 2008; 70:153-60. [PMID: 18452983 DOI: 10.1016/j.theriogenology.2008.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Revised: 02/26/2008] [Accepted: 03/12/2008] [Indexed: 10/22/2022]
Abstract
The objective of this study was to develop a duplex quantitative polymerase chain reaction (qPCR) assay for simultaneous detection of bovine herpesvirus 1 (BoHV-1) and bovine viral diarrhea virus (BVDV) type I and type II. Follicular fluid was collected from a BoHV-1 acutely infected heifer, a BVDV I persistently infected heifer, and from 10 ovaries recovered from an abattoir. Both the BoHV-1 and BVDV contaminated follicular fluid were diluted 1:5 to 1:10(7) using the pooled, abattoir-origin follicular fluid. Each dilution sample was analyzed using the duplex qPCR, virus isolation, reverse transcription-nested PCR (RT-nPCR), and BoHV-1 qPCR. The duplex qPCR was able to simultaneously detect BoHV-1 and BVDV I in the fluid diluted to 1:100 and 1:1000, respectively. These results corresponded with the reverse transcription-nested PCR and BoHV-1 qPCR. Therefore, the duplex qPCR might be used for quality assurance testing to identify these two viruses in cells, fluids and tissues collected from donor animals and used in reproductive technologies.
Collapse
Affiliation(s)
- Mylissa S D Marley
- Department of Pathobiology, College of Veterinary Medicine, 127 Sugg Laboratory, Auburn University, Auburn, AL 36849, USA
| | | | | | | | | |
Collapse
|
25
|
Gripshover EM, Givens MD, Ridpath JF, Brock KV, Whitley EM, Sartin EA. Variation in Erns viral glycoprotein associated with failure of immunohistochemistry and commercial antigen capture ELISA to detect a field strain of bovine viral diarrhea virus. Vet Microbiol 2007; 125:11-21. [PMID: 17582710 DOI: 10.1016/j.vetmic.2007.05.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Revised: 05/01/2007] [Accepted: 05/10/2007] [Indexed: 11/17/2022]
Abstract
Bovine viral diarrhea virus (BVDV) affects cattle populations causing clinical signs that range from subclinical immunosuppression to severe reproductive and respiratory problems. Detection and removal of persistently infected (PI) calves is the single most important factor for control and eradication of BVDV. Current testing strategies to detect PI calves rely heavily on immunohistochemistry (IHC) and a commercially available antigen capture ELISA (ACE) assay. These viral assays depend on 1 or 2 monoclonal antibodies which target the E(rns) glycoprotein of BVDV. The sensitivity and specificity of these two tests have been reported previously. The purpose of this research was to characterize a strain of BVDV (AU501) that was undetectable using IHC and ACE based on a single monoclonal antibody, but was consistently detected in samples from a Holstein steer using virus isolation and PCR testing. Sequencing of this AU501 viral isolate revealed a unique mutation in the portion of the genome coding for the E(rns) glycoprotein. This unique field strain of BVDV demonstrates the risk of relying on a single monoclonal antibody for detection of BVDV. Multiple testing strategies, including polyclonal or pooled monoclonal antibodies that detect more than one viral glycoprotein may be necessary to detect all PI calves and facilitate eradication of BVDV.
Collapse
Affiliation(s)
- Ellie M Gripshover
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, AL 36849, USA
| | | | | | | | | | | |
Collapse
|
26
|
Gard JA, Givens MD, Stringfellow DA. Bovine viral diarrhea virus (BVDV): Epidemiologic concerns relative to semen and embryos. Theriogenology 2007; 68:434-42. [PMID: 17588651 DOI: 10.1016/j.theriogenology.2007.04.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Artificial insemination and embryo transfer are used commonly in cattle production and exchange of germplasm between populations of cattle. If properly monitored, assisted reproductive techniques can be used to prevent the spread of infectious agents. However, these techniques potentially represent unnatural routes for transmission of diseases. Bovine viral diarrhea virus (BVDV) is broadly distributed among the world's populations of cattle. Fluids, gametes and somatic cells from infected animals are likely contaminated with the virus. Thus, use of semen or embryos from infected animals could result in spread of BVDV. This paper provides an overview of the risks of transmitting this virus by AI or production and transfer of embryos and summarizes the precautions needed to prevent such transmissions of disease from occurring.
Collapse
Affiliation(s)
- J A Gard
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, AL 36849, USA.
| | | | | |
Collapse
|
27
|
Perry GH. Risk assessment of transmission of bovine viral diarrhea virus (BVDV) in abattoir-derived in vitro produced embryos. Theriogenology 2007; 68:38-55. [PMID: 17462725 DOI: 10.1016/j.theriogenology.2007.03.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Accepted: 03/24/2007] [Indexed: 11/28/2022]
Abstract
Bovine virus diarrhea virus (BVDV) is a pathogen of the bovine reproductive system causing reduced conception rates, abortions and persistently infected calves. Most if not all strains of BVDV are transmissible by natural mating and AI. For international trade, it is recommended that in vitro fertilized embryos be washed according to the IETS Manual. However, BVDV may not be entirely washed out, resulting in possible transmission risks to recipients. Donor cows, donor bulls and biological agents are all possible sources of contamination. The process for producing in vitro produced (IVP) embryos is complex and non-standard, and some procedures can contribute to spread of BVDV to uninfected embryos. The structure of the zone pellucida (ZP) of IVP embryos permits adherence of BVDV to the ZP. To estimate the risk of producing infected recipients and persistently infected calves from abattoir-derived IVP embryos, a quantitative risk assessment model using Microsoft Excel and Palisade @Risk was developed. Assumptions simplified some of the complexities of the IVP process. Uncertainties due to incomplete or variable data were addressed by incorporating probability distributions in the model. Model variables included: disease prevalence; the number of donor cows slaughtered for ovaries; the number of oocytes collected, selected and cultured; the BVDV status of ovaries, semen, biological compounds and its behavior in the IVP embryo process. The model used the Monte Carlo method to simulate the IVP process. When co-culture cells derived from donor cows of unknown health status were used for in vitro culture (IVC), the probability of a recipient cow at risk of infection to BVDV per oocyte selected for IVP processing averaged 0.0006. However, when co-culture free from BVDV was used, the probability was 1.2 x 10(-5). Thus, for safe international trade in bovine IVP embryos (i.e. negligible risks of transmission of BVDV), co-culture cells, if used during IVC for producing IVP embryos, should be disease-free.
Collapse
Affiliation(s)
- G H Perry
- Animal Biosecurity, Biosecurity Australia, Canberra, ACT 2601, Australia.
| |
Collapse
|
28
|
Bielanski A. Disinfection procedures for controlling microorganisms in the semen and embryos of humans and farm animals. Theriogenology 2007; 68:1-22. [PMID: 17512578 DOI: 10.1016/j.theriogenology.2007.03.025] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Accepted: 03/14/2007] [Indexed: 11/23/2022]
Abstract
Semen and embryos generated by assisted reproductive techniques (ARTs) may be contaminated with numerous microorganisms. Contamination may arise from systemic or local reproductive tract infections in donors or the inadvertent introduction of microorganisms during ARTs, and may lead to disease transmission. This review describes sanitary procedures which have been investigated to ascertain whether they are effective in rendering semen and embryos free of pathogenic microorganisms, including internationally adopted washing procedures, which can be supplemented by antibiotics and enzymatic treatments. Other methods include treatment with antibodies or ozone, photoinactivation, acidification, and the use of novel antiviral compounds. In conclusion, despite the wide range of antimicrobial procedures available, none can be recommended as a universal disinfection method for rendering semen and embryos free from all potentially pathogenic microorganisms. However, some procedures are unsuitable, as they can compromise the viability of semen or embryos. In humans, washing by the gradient centrifugation method appears to be effective for reducing the microbial population in semen and is harmless to the spermatozoa. A useful procedure for embryos involving multiple washes in sterile medium has much to commend it for the prevention of disease transmission; furthermore, it is recommended by the International Embryo Transfer Society (IETS).
Collapse
Affiliation(s)
- A Bielanski
- Canadian Food Inspection Agency, Animal Diseases Research Institute, Germplasm Centre of Expertise, Ottawa, Ontario, Canada K2H 8P9.
| |
Collapse
|
29
|
Gard JA, Givens MD, Riddell KP, Galik PK, Zhang Y, Stringfellow DA, Marley MSD. Detection of bovine viral diarrhea virus (BVDV) in single or small groups of preimplantation bovine embryos. Theriogenology 2007; 67:1415-23. [PMID: 17420041 DOI: 10.1016/j.theriogenology.2007.01.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Accepted: 01/12/2007] [Indexed: 11/15/2022]
Abstract
The objectives of this study were to develop techniques to detect BVDV associated with single or small groups of bovine embryos contained in small aliquots of medium using either virus isolation (VI) or real time quantitative polymerase chain reaction (RT-QPCR) assays. In vivo-derived and in vitro-produced bovine embryos at 7 d post-fertilization were exposed to SD-1, a high affinity strain of BVDV, for 2 h and then processed according to the International Embryo Transfer Society (IETS) guidelines prior to testing. Groups of five or two in vivo-derived embryos, and single in vivo-derived embryos, were VI positive for BVDV 100, 50, and 33% of the time, and were RT-QPCR positive 100, 75, and 42% of the time, respectively. The virus was detected by the VI technique in all of the groups of five or two in vitro-produced embryos and in all of the single in vitro-produced embryos, and it was detected in 100, 80, and 50%, using RT-QPCR. Techniques for RT-QPCR were sufficiently sensitive to detect 10 copies of viral RNA in a sample and to detect BVDV associated with single embryos. Application of this new technology, RT-QPCR, will facilitate additional studies to further assess the risk of transmission of BVDV through embryo transfer.
Collapse
Affiliation(s)
- J A Gard
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, AL 36849, USA.
| | | | | | | | | | | | | |
Collapse
|
30
|
Orsi NM, Reischl JB. Mammalian embryo co-culture: Trials and tribulations of a misunderstood method. Theriogenology 2007; 67:441-58. [PMID: 17118433 DOI: 10.1016/j.theriogenology.2006.10.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2006] [Revised: 10/17/2006] [Accepted: 10/19/2006] [Indexed: 11/17/2022]
Abstract
Embryo-somatic cell co-culture was devised over 40 years ago in an attempt to improve the development and viability of mammalian preimplantation embryos generated and cultured in vitro. While initial endeavours were successful in this respect, other studies soon highlighted a number of significant long-term detrimental impacts of this approach. Surprisingly little is known about the mechanisms underlying the beneficial effects of co-culture, although the production of embryotrophic compounds, modulation of nutrient profile, protection against culture-induced stress and/or toxin clearance are all contenders. The extent to which the inadvertent exposure of embryos to serum accounts for many of these effects remains open to question. Although the popularity of somatic cell co-culture has recently declined in favour of the use of sequential media due to concerns associated with its risk of disease transmission and long-term sequelae, we argue that complete dismissal of this technique is ill advised, given that our limited understanding of basic somatic cell interactions has prevented us from fully exploiting its potential. In this respect, there is some merit in focussing future research strategies based on reconstructed maternal tract tissue. Although the use of co-culture in clinical practice is unacceptable and its implementation in domestic species for commercial purposes should be viewed with diffidence, this technique can still provide a wealth of information on the development of novel, more physiological embryo in vitro culture systems. The proviso for acquiring such information is to gain a fuller understanding of the culture requirements/biochemistry of somatic cells and their interaction with the early conceptus.
Collapse
Affiliation(s)
- Nicolas M Orsi
- Perinatal Research Group, Section of Pathology & Tumour Biology, Leeds Institute of Molecular Medicine, Level 4 Wellcome Trust Brenner Building, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK.
| | | |
Collapse
|
31
|
Mahabir E, Bulian D, Needham J, Mayer A, Mateusen B, Van Soom A, Nauwynck H, Schmidt J. Transmission of mouse minute virus (MMV) but not mouse hepatitis virus (MHV) following embryo transfer with experimentally exposed in vivo-derived embryos. Biol Reprod 2006; 76:189-97. [PMID: 17021342 PMCID: PMC7109837 DOI: 10.1095/biolreprod.106.056135] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The present study investigated the presence and location of fluorescent microspheres having the size of mouse hepatitis virus (MHV) and of mouse minute virus (MMV) in the zona pellucida (ZP) of in vivo-produced murine embryos, the transmission of these viruses by embryos during embryo transfer, and the time of seroconversion of recipients and pups. To this end, fertilized oocytes and morulae were exposed to different concentrations of MMVp for 16 h, while 2-cell embryos and blastocysts were coincubated for 1 h. In addition, morulae were exposed to MHV-A59 for 16 h. One group of embryos was washed, and the remaining embryos remained unwashed before embryo transfer. Serological analyses were performed by means of ELISA to detect antibodies to MHV or MMV in recipients and in progeny on Days 14, 21, 28, 42, and 63 and on Days 42, 63, 84, 112, 133, and 154, respectively, after embryo transfer. Coincubation with a minimum of 105/ml of fluorescent microspheres showed that particles with a diameter of 20 nm but not 100 nm crossed the ZP of murine blastocysts. Washing generally led to a 10-fold to 100-fold reduction of MMVp. Washed MMV-exposed but not MHV-exposed embryos led to the production of antibodies independent of embryonic stage and time of virus exposure. Recipients receiving embryos exposed to a minimum of 107 mean tissue culture infective dose (TCID50)/ml of MHV-A59 and 102 TCID50/ml of MMVp seroconverted by Day 42 after embryo transfer. The results indicate that MMV but not MHV can be transmitted to recipients even after washing embryos 10 times before embryo transfer.
Collapse
Affiliation(s)
- Esther Mahabir
- Department of Comparative Medicine, GSF-National Research Center for Environment and Health, D-85764 Neuherberg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Ye F, Yue Y, Li S, Chen T, Bai G, Liu M, Zhang S. Presence of HBsAg, HBcAg, and HBVDNA in ovary and ovum of the patients with chronic hepatitis B virus infection. Am J Obstet Gynecol 2006; 194:387-92. [PMID: 16458634 DOI: 10.1016/j.ajog.2005.07.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2005] [Revised: 06/12/2005] [Accepted: 07/05/2005] [Indexed: 12/09/2022]
Abstract
OBJECTIVE The purpose of this study was to investigate the presence and distribution of Hepatitis B virus antigen (HBVAg) and Hepatitis B virus deoxyribonucleic acid (HBVDNA) in ovary with chronic hepatitis B virus. STUDY DESIGN The immunohistochemistry method and in situ hybridization method were used to detect the hepatitis B surface antigen (HBsAg), anti-hepatitis B core antibody (HBcAg), and HBVDNA in ovary of patients with chronic hepatitis B infection. RESULTS HBsAg presented in the ovum-granular cell and interstitial cell of ovary. HBsAg located in the cytomembrane and cytoplasm. HBcAg presented in the ovum-granular cell-interstitial cell and endothelium cell of interstitial blood vessel of ovary, and the HBcAg may present in the ovum at different stage. HBcAg was situated at the cytomembrane, cytoplasm, and nucleus. HBVDNA was detected in the ovum at different stage as HBcAg and in granular cell, interstitial cell of ovary. In the same ovary tissue, HBVDNA was positive in some ova, but it was weakly positive or negative in other ova. HBVDNA distributed mainly in nucleus, but also can be detected in the cytoplasm. CONCLUSION HBV could infect the ovum at different stage and replicate in it. This may be an important mechanism of HBV vertical transmission.
Collapse
Affiliation(s)
- Feng Ye
- Department of Infectious Disease, The First Hospital of Xi'an Jiaotong University, Xi'an, China.
| | | | | | | | | | | | | |
Collapse
|
33
|
Givens MD, Stringfellow DA, Riddell KP, Galik PK, Carson RL, Riddell MG, Navarre CB. Normal calves produced after transfer of in vitro fertilized embryos cultured with an antiviral compound. Theriogenology 2006; 65:344-55. [PMID: 15955552 DOI: 10.1016/j.theriogenology.2005.04.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2005] [Accepted: 04/13/2005] [Indexed: 10/25/2022]
Abstract
Bovine viral diarrhea virus (BVDV) replicates in embryo co-culture systems and remains associated with developing IVF bovine embryos, despite washing and trypsin treatment. Previous research demonstrated that 2-(4-[2-imidazolinyl]phenyl)-5-(4-methoxyphenyl)furan (DB606) inhibits replication of BVDV in cultured cells. The objective of this study was to evaluate the capability of IVF embryos to develop into normal, weaned calves after exposure to antiviral concentrations of DB606 during IVC. Oocytes were obtained from cows via transvaginal, ultrasound-guided follicular aspiration. Presumptive zygotes (n = 849) that resulted from fertilization of these oocytes were cultured for 7 d in medium supplemented with 0.4 microM DB606 or medium lacking antiviral agent. All blastocysts (n = 110) were transferred individually into the uterus of a synchronized recipient. The pregnancy status of recipients was determined using transrectal ultrasonography at 21-23 d after embryo transfer. Additional pregnancies as controls (n = 21) were initiated by natural breeding. Developing fetuses and resulting calves were evaluated every 27-34 d. Blastocyst development, pregnancies per transferred embryo, pregnancies maintained per pregnancies established, gestation length, gender ratio, birth weights, viability of neonates, complete blood counts, and serum chemistry profiles at 3 mo of age and adjusted 205 d weaning weights were compared for research treatments. Development to weaning after exposure to DB606 did not differ significantly from controls. In conclusion, bovine embryo cultures can be safely supplemented with antiviral concentrations of DB606; addition of DB606 agent might prevent viral transmission if BVDV were inadvertently introduced into the embryo culture system.
Collapse
Affiliation(s)
- M D Givens
- 127 Sugg Laboratory, College of Veterinary Medicine, Auburn University, AL 36849-5516, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
Ye F, Yue YF, Li SH, Chen TY, Zhang SL, Bai GQ, Liu M. Expression of HBsAg and HBcAg in the ovaries and ova of patients with chronic hepatitis B. World J Gastroenterol 2005; 11:5718-20. [PMID: 16237773 PMCID: PMC4481496 DOI: 10.3748/wjg.v11.i36.5718] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the expression and distribution of HBV in the ovaries and ova.
METHODS: The immunohistochemistry method was used to detect the HBsAg and HBcAg in the ovaries of patients with chronic hepatitis B.
RESULTS: Expression of HBsAg in the ova, granular and interstitial cells of the ovaries was located in the cytomembrane and cytoplasm. Expression of HBcAg in the ova, granular, interstitial and endothelial cells of interstitial blood vessels of the ovaries was found in the cytomembrane, cytoplasm, and nuclei.
CONCLUSION: HBV can infect the ova at different stages of development and replicate in it.
Collapse
Affiliation(s)
- Feng Ye
- Department of Infectious Disease, First Hospital of Xi'an Jiaotong University, Jiankang Road 1#, Xi'an 710061, Shaanxi Province, China.
| | | | | | | | | | | | | |
Collapse
|
35
|
Givens MD, Galik PK, Riddell KP, Dykstra CC, Brock KV, Stringfellow DA. Effects of aromatic cationic molecules on bovine viral diarrhea virus and embryonic development. Theriogenology 2005; 63:1984-94. [PMID: 15823354 DOI: 10.1016/j.theriogenology.2004.09.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2004] [Indexed: 11/24/2022]
Abstract
Bovine viral diarrhea virus (BVDV) has been shown to replicate in embryo culture systems and remain associated with bovine embryos developing in vitro. In this study, novel antiviral agents were evaluated for capability to inhibit replication of BVDV without affecting embryonic development. Serial concentrations of 2-[5(6)-{2-imidazolinyl}-2-benzimidazolyl]-5-(4-aminophenyl)furan (DB456) or 2-(4-[2-imidazolinyl]phenyl)-5-(4-methoxyphenyl)furan (DB606) were prepared in IVC medium. Then, bovine uterine tubal epithelial cells (UTC) were placed in IVC media with varying concentrations of DB456 or DB606. Within 1h, a genotype I or II strain of BVDV was added to the cultures. Cultures were maintained for 7 days. Infectious virus was quantitated in IVC media collected on days 3 and 7 and in UTC lysates harvested on day 7. The effective antiviral concentrations of DB606 were much lower than effective antiviral concentrations of DB456. In subsequent experiments, IVF presumptive zygotes were cultured in IVC medium with or without DB456 or DB606 at multiple concentrations for 7 days to evaluate effect of the compound on conceptus development. On day 7, stage of embryonic development was observed, and blastocysts were harvested and stained using Hoechst 33342 to enumerate embryonic cells. While DB456 inhibited blastocyst development, DB606 at 20 times the effective antiviral concentration did not hinder blastocyst development or reduce the mean number of cells per blastocyst. These preliminary results indicated that bovine embryo cultures might be safely supplemented with effective concentrations of an antiviral agent.
Collapse
Affiliation(s)
- M D Givens
- Department of Pathobiology, Clinical Sciences, College of Veterinary Medicine, Auburn University, 127 Sugg Laboratory Building, Auburn, AL 36849-5516, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Stringfellow DA, Riddell KP, Givens MD, Galik PK, Sullivan E, Dykstra CC, Robl J, Kasinathan P. Bovine viral diarrhea virus (BVDV) in cell lines used for somatic cell cloning. Theriogenology 2005; 63:1004-13. [PMID: 15710188 DOI: 10.1016/j.theriogenology.2004.05.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2004] [Accepted: 05/08/2004] [Indexed: 11/26/2022]
Abstract
Culture of cell lines from fetuses or postnatal animals is an essential part of somatic cell cloning. Fetal bovine serum (FBS) is commonly used in media for propagation of these cells. Unfortunately, bovine fetuses and postnatal animals as well as FBS are all possible sources of non-cytopathic bovine viral diarrhea virus (BVDV) which is widely distributed among cattle. This study was prompted when screening of samples sent to veterinary diagnostic labs revealed that 15 of 39 fetal fibroblast cell lines used in cloning research were positive for BVDV as determined by various assays including reverse transcription-polymerase chain reaction (RT-PCR). Goals of the research were to use both virus isolation and reverse transcription-nested polymerase chain reaction (RT-nPCR) to confirm which of the cell lines were actually infected with BVDV and to assay samples of media, FBS and the earliest available passages of each cell line in an attempt to determine the source of the viral infections. Sequence analysis of amplified cDNA from all isolates was performed to provide a definitive link between possible sources of virus and infected cell lines. Only 5 of the 39 cell lines were actually infected with BVDV. Three of these five lines were not infected at the earliest cryopreserved passage, leading to the conclusion that they likely became infected after culture in media containing contaminated FBS. In fact, sequence comparison of the amplified cDNA from one lot of FBS confirmed that it was the source of infection for one of these cell lines. Since BVDV was isolated from the remaining two cell lines at the earliest available passage, the fetuses from which they were established could not be ruled out as the source of the virus.
Collapse
Affiliation(s)
- David A Stringfellow
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, AL 36849, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Waldrop JG, Stringfellow DA, Galik PK, Riddell KP, Riddell MG, Givens MD, Carson RL. Infectivity of bovine viral diarrhea virus associated with in vivo-derived bovine embryos. Theriogenology 2004; 62:387-97. [PMID: 15225995 DOI: 10.1016/j.theriogenology.2003.07.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2003] [Accepted: 07/31/2003] [Indexed: 10/26/2022]
Abstract
Early research indicated that bovine viral diarrhea virus (BVDV) would not adhere to zona pellucida-intact (ZP-I), in vivo-derived bovine embryos. However, in a recent study, viral association of BVDV and in vivo-derived embryos was demonstrated. These findings raised questions regarding the infectivity of the embryo-associated virus. The objectives of this study were to evaluate the infectivity of BVDV associated with in vivo-derived bovine embryos through utilization of primary cultures of uterine tubal cells (UTC) as an in vitro model of the uterine environment and to determine if washing procedures, including trypsin treatment, were adequate to remove virus from in vivo-derived embryos. One hundred and nine ZP-I morulae and blastocysts (MB) and 77 non-fertile and degenerated (NFD) ova were collected on day 7 from 34, BVDV-negative, superovulated cows. After collection, all MB and NFD ova were washed according to International Embryo Transfer Society (IETS) standards and exposed for 2h to approximately 10(6) cell culture infective doses (50% endpoint) per milliliter of viral strain SD-1. Following exposure, some groups of <10 MB or NFD ova were washed in accordance with IETS standards. In addition, an equivalent number of MB and NFD ova were subjected to IETS standards for trypsin treatment. Subsequently, NFD ova were immediately sonicated and sonicate fluids were assayed for presence of virus, while individual and groups of MB were placed in microdrops containing primary cultures of UTCs and incubated. After 3 days, embryos, media, and UTCs were harvested from each microdrop and assayed for BVDV. Virus was detected in the sonicate fluids of 56 and 43% of the groups of NFD ova that were washed and trypsin-treated, respectively. After 3 days of microdrop culture, virus was not detected in media or sonicate fluids from any individual or groups of MB, regardless of treatment. However, virus was detected in a proportion of UTC that were co-cultured with washed groups of MB (30%), washed individual MB (9%) and trypsin treated individual MB (9%), but no virus was detected in the UTC associated with groups of trypsin-treated embryos. In conclusion, virus associated with developing embryos was infective for permissive cells. Further, the quantity of virus associated with a proportion of individual embryos (both washed and trypsin treated) was sufficient to infect the UTC. In light of these results, an attempt should be made to determine if the quantity of a high-affinity isolate of BVDV associated with an individual embryo would infect recipients via the intrauterine route.
Collapse
Affiliation(s)
- Julie G Waldrop
- College of Veterinary Medicine, Auburn University, 100 McAdory Hall, Auburn, AL 36849-5519, USA.
| | | | | | | | | | | | | |
Collapse
|
38
|
Waldrop JG, Stringfellow DA, Riddell KP, Galik PK, Riddell MG, Givens MD, Carson RL, Brock KV. Different strains of noncytopathic bovine viral diarrhea virus (BVDV) vary in their affinity for in vivo-derived bovine embryos. Theriogenology 2004; 62:45-55. [PMID: 15159100 DOI: 10.1016/j.theriogenology.2003.06.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2003] [Accepted: 06/02/2003] [Indexed: 11/17/2022]
Abstract
Washing procedures (without trypsin treatment) recommended by the International Embryo Transfer Society (IETS) for use on in vivo-derived embryos effectively removed a cytopathic strain (NADL) of bovine viral diarrhea virus (BVDV) after artificial exposure. However, these washing procedures have not been evaluated using other isolates of BVDV, including representative non-cytopathic strains. Thus, the objective of this study was to evaluate the efficacy of the IETS procedures following artificial exposure of in vivo-derived bovine embryos to two different strains and biotypes of BVDV. One hundred and twenty-nine zona pellucida-intact (ZP-I) morulae and blastocysts (MB) and 56 non-fertile and degenerated (NFD) ova were collected 7 days following exposure to bulls from 32, BVDV-negative, superovulated cows. After collection, all MB and NFD ova were washed according to IETS standards. Subsequently, half of the MB and NFD ova were exposed for 1h to approximately 10(6)-cell culture infective doses (50% endpoint) per milliliter of viral strain SD-1, and the other half were exposed to the same concentration of CD-87. After exposure, groups of > or =3 and < or = 10 MB or NFD ova were washed using methods that met or exceeded IETS standards. Then, the washed groups were sonicated, and sonicate fluids were assayed for presence of virus using virus isolation and a reverse transcription nested polymerase chain reaction. No virus was detected in any group of MB or NFD ova that had been exposed to the CD-87 isolate. However, virus was detected in association with 50% of the groups of MB and 33% of the groups of NFD ova that had been exposed to the SD-1 isolate. Therefore, standard embryo-washing procedures recommended by the IETS are more effective for removal of some isolates of BVDV than for others. It remains to be determined if the quantity of a high-affinity isolate of BVDV associated with individual washed embryos would infect recipients via the intrauterine route. Further, it should be determined if an alternative embryo processing procedure, washing and trypsin treatment, would be more effective for removal of high-affinity isolates.
Collapse
Affiliation(s)
- Julie G Waldrop
- College of Veterinary Medicine, Auburn University, 100 McAdory Hall, Auburn, AL 36849, USA.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Givens MD, Waldrop JG. Bovine viral diarrhea virus in embryo and semen production systems. Vet Clin North Am Food Anim Pract 2004; 20:21-38. [PMID: 15062472 DOI: 10.1016/j.cvfa.2003.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Although BVDV-free offspring have been produced from persistently infected bulls and heifers via advanced reproductive techniques, embryos and semen can potentially transmit the virus. Due to this potential for transmission, appropriate testing is necessary to ensure freedom of semen and embryos from BVDV. In the future, less constraining quality control measures may ensure freedom of embryos and semen from BVDV. These quality control measures require additional research to be validated.
Collapse
Affiliation(s)
- M Daniel Givens
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, 129 Sugg Laboratory, Auburn, AL 36849-5516, USA.
| | | |
Collapse
|
40
|
Givens MD, Heath AM, Carson RL, Brock KV, Edens MSD, Wenzel JGW, Stringfellow DA. Analytical sensitivity of assays used for detection of bovine viral diarrhea virus in semen samples from the Southeastern United States. Vet Microbiol 2004; 96:145-55. [PMID: 14519332 DOI: 10.1016/s0378-1135(03)00213-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Bovine viral diarrhea virus (BVDV) is a significant pathogen that can be shed in the semen of infected bulls. Thus, screening for BVDV in semen of bulls is recommended prior to their entry into an artificial insemination center. No previous research has compared the analytical sensitivity of reverse transcription-nested polymerase chain reaction (RT-nPCR) and virus isolation assays for detection of BVDV in semen from an infected bull. Therefore, the goals of this research were to compare the analytical sensitivity of RT-nPCR and virus isolation assays for BVDV in semen and to apply these assays to determine the prevalence in the Southeastern United States of bulls that lack viremia yet shed BVDV in semen. Semen collected from a bull that was persistently infected with BVDV was serially diluted (1/10) in semen from uninfected bulls and frozen in liquid nitrogen as raw, partially extended or fully extended semen. Subsequently, samples of semen were assayed by virus isolation and RT-nPCR. Viral detection was more sensitive in extended semen samples than in raw semen samples and more sensitive by RT-nPCR than virus isolation. After this evaluation of analytical sensitivity, serum and semen were collected from 558 post-pubertal bulls in our region. These samples were tested for BVDV by virus isolation. Partially extended semen was also assayed for BVDV by RT-nPCR. All samples were negative by all assays for BVDV. The application of analytically sensitive assays reveals a very low prevalence (</=0.54%) of BVDV in semen from bulls in the Southeastern United States.
Collapse
Affiliation(s)
- M D Givens
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849-5512, USA.
| | | | | | | | | | | | | |
Collapse
|
41
|
Stringfellow DA, Givens MD, Waldrop JG. Biosecurity issues associated with current and emerging embryo technologies. Reprod Fertil Dev 2004. [DOI: 10.1071/rd03082] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
A variety of procedures associated with in vivo and in vitro embryo production, as well as cloning and transgenics, are in current use by both researchers and practitioners. Biohazards associated with these procedures could influence clinical proficiency and the outcome of basic research or result in unusual distribution of pathogens in populations of animals. By their nature, embryo technologies are vulnerable to contamination from numerous sources. Although pathogens can originate in the physical environments in which embryo technologies are applied, they are more likely to be introduced via animals or materials of animal origin. However, it is important to note that both the occurrence and consequences of contamination are heavily influenced by environmental circumstances. This paper represents a philosophical description of biohazards associated with three generations of embryo technologies using the cow as a model species. Emphasis is placed on sources of contamination, current or suggested preventive actions and the issue of environmental changes as they relate to the emergence of biohazards and the implementation of biosecurity measures. Some specific pathogens are discussed for illustration. In addition, details of the risks associated with introducing bovine viral diarrhoea virus in each of three generations of embryo technologies are described.
Collapse
|
42
|
Abstract
Bovine viral diarrhoea virus (BVDV) has a unique capacity to cause persistent infections of foetuses exposed within the first 150 days of gestation. Preventing foetal BVDV infection will aid in improved control. This unique ability gives BVDV a selective advantage allowing continual mutation and antigenic variation within cattle populations. Therefore, BVDV has become widespread and causes economic losses due to respiratory, reproductive and enteric disease. Vaccination (modified-live or killed) can provide some protection from acute disease and the development of persistently infected foetuses. However, vaccination programmes alone cannot control or eliminate BVDV. In naturally exposed and vaccinated herds, BVDV infections are not self-limiting and may persistent over time. This underscores the ability of the BVDV genome to remain fluid and adapt under selective pressures. Factors influencing persistence of BVDV infections in cattle populations include: non-lytic infections; evasion of host immune responses; foetal infections; acute infections; management practices; contaminated biologics; secondary hosts; defective replicated intermediates; antigenic variation; and replication in privileged anatomical sites.
Collapse
Affiliation(s)
- Kenny V Brock
- Department of Pathobiology, Auburn University, 264 Greene Hall, Auburn, AL 36849-5519, USA.
| |
Collapse
|
43
|
Givens MD, Heath AM, Brock KV, Brodersen BW, Carson RL, Stringfellow DA. Detection of bovine viral diarrhea virus in semen obtained after inoculation of seronegative postpubertal bulls. Am J Vet Res 2003; 64:428-34. [PMID: 12693532 DOI: 10.2460/ajvr.2003.64.428] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To evaluate persistence of bovine viral diarrhea virus (BVDV) in semen after inoculation of postpubertal bulls. ANIMALS Three 2-year-old bulls and five 6-month-old calves. PROCEDURE 3 seronegative 2-year-old bulls were inoculated intranasally with BVDV. Serum and semen samples were obtained at regular intervals until 7 months after inoculation. Serum samples were tested for BVDV by use of virus isolation (VI) and reverse transcription-nested polymerase chain reaction (RT-nPCR) tests. Semen samples were tested for virus by use of VI and RT-nPCR tests. Testicular biopsy specimens were obtained 7 months after inoculation and tested for BVDV by use of immunohistochemical analysis and VI and RT-nPCR tests. Semen samples collected from 1 bull immediately before and 5 and 7 months after inoculation were administered IV to seronegative calves, which were monitored for subsequent viremia and seroconversion. RESULTS Use of VI and RT-nPCR tests detected transient virus in serum of all bulls. The VI test detected BVDV in semen of 2 bulls for < 21 days after inoculation, whereas RT-nPCR assay detected BVDV until 7 months after inoculation. Virus was detected in testicular biopsy specimens of these 2 bulls by use of immunohistochemical analysis and RT-nPCR assay but could only be isolated from the biopsy specimen of 1 bull. Of the calves administered semen IV to detect infectious virus, only the recipient of semen collected 5 months after inoculation of the adult bull was viremic and seroconverted. CONCLUSIONS AND CLINICAL RELEVANCE Bovine viral diarrhea virus can persist in semen of acutely infected bulls for several months after exposure.
Collapse
Affiliation(s)
- M Daniel Givens
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn University, AL 36849, USA
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
Infections with bovine viral diarrhoea virus continue to plague the cattle industry worldwide. The wish to control the negative effects of the virus has lead to the development of numerous vaccines, but also of eradication schemes. In this paper, a comprehensive overview on BVDV is given: the virus and its clinical manifestations, its occurrence and economic impact, the different routes of transmission, as well as diagnostic methods and objectives. Furthermore, the two major options for BVDV control--eradication and vaccination--are discussed as well as the risk for reintroduction of BVDV after eradication.
Collapse
|
45
|
Given MD, Riddell KP, Galik PK, Stringfellow DA, Brock KV, Loskutoff NM. Diagnostic dilemma encountered when detecting bovine viral diarrhea virus in IVF embryo production. Theriogenology 2002; 58:1399-407. [PMID: 12387352 DOI: 10.1016/s0093-691x(02)01033-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Routine quality controls in production of bovine embryos by in vitro fertilization (IVF) should include screening all materials of animal origin for the presence of bovine viral diarrhea virus (BVDV). Using a reverse transcription nested polymerase chain reaction (RT-nPCR) assay, we detected BVDV in primary cultures of uterine tubal cells (UTC) that had been used during IVF procedures. The goal of our ensuing investigation was to determine its source and assess risks associated with the identified contaminant. Sequencing of the amplified 5' nontranslated region (NTR) of the viral genome confirmed a Genotype I BVDV contaminant. This viral contaminant was also identified by RT-nPCR in multiple samples of the same lot of fetal bovine serum (FBS) that was used in transport media by the laboratory that harvested the UTC. Both routine and enhanced roller bottle methods for virus isolation failed to detect BVDV in the FBS. Furthermore, virus neutralization assays did identify antibodies to Genotype I strains of BVDV in the FBS. After 7 days of co-incubation, neither cultured, washed UTC nor exposed, washed embryos were RT-nPCR positive for BVDV. Eight embryos produced in the contaminated system were nonsurgically transferred into eight seronegative cows. None of the embryo recipients seroconverted to BVDV. Thus, contamination of cell culture medium with BVDV did not result in transmission of the virus when IVF embryos were transferred. Failure to transmit disease was likely aided by serendipitous control from anti-BVDV antibodies in the FBS. However, a diagnostic dilemma was created when the RT-nPCR assays used to screen for BVDV were positive, yet attempts to isolate the virus were negative. This case study illustrates that if molecular assays are to be used to confirm the pathogen-free status of IVF embryo production systems, media components of animal origin (e.g. FBS) should be screened with molecular assays for BVDV as well as traditional virus isolation techniques.
Collapse
Affiliation(s)
- M Daniel Given
- Sugg Laboratory, College of Veterinary Medicine, Auburn University, AL 36849-5519, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Galik PK, Givens MD, Stringfellow DA, Crichton EG, Bishop MD, Eilertsen KJ. Bovine viral diarrhea virus (BVDV) and anti-BVDV antibodies in pooled samples of follicular fluid. Theriogenology 2002; 57:1219-27. [PMID: 12013443 DOI: 10.1016/s0093-691x(02)00633-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Bovine viral diarrhea virus (BVDV) can be found in cells and fluids from ovaries collected at the abattoir. On the other hand, immunoglobulins are also found in the fluid of ovarian follicles. Anti-BVDV antibodies in follicular fluid might reduce cross-contamination of COCs at the time of collection or hinder the use of virus isolation to test for the presence of virus. One objective of this study was to determine the frequency with which BVDV could be found in pooled follicular fluid collected during the periodic aspiration of COCs from abattoir-origin ovaries. A second objective was to determine the prevalence and neutralizing activity of anti-BVDV antibodies in these blended samples. We collected samples of pooled follicular fluid (n = 55) over a 20-month period as part of our routine oocyte collection activities. We assayed each sample for BVDV using virus isolation as well as reverse transcription nested polymerase chain reaction (RT-nPCR) procedures. We also tested follicular fluid for antibody that would neutralize four representative strains of BVDV (SD-1, a genotype 1a strain; NY-1, a genotype lb strain; CD-87, a genotype 2 strain, and PA-131, a divergent genotype 2 strain). We detected no BVDV by virus isolation, but we did identify the virus by RT-nPCR in one of the 55 samples of follicular fluid. Automated dye terminator nucleotide sequencing of the amplified portion of the viral genome indicated a genotype 1 strain that was distinct from any of our laboratory strains. In addition, each of the samples of follicular fluid contained sufficient antibody to neutralize large quantities of each of the four laboratory strains that were used. Finding BVDV in just 1 of 55 samples was consistent with reports of similar studies in which the occurrence of BVDV in abattoir-origin materials ranged from 0.9 to 12%. We presumed that failure to isolate the virus was due to neutralizing antibody in the sample. Thus, the incidence of BVDV contamination of our IVF system at the level of pooling of follicular fluid was low for the 20-month period. The presence of anti-BVDV antibody in pooled follicular fluid provided a coincidental means of neutralizing BVDV when it was introduced in fluid aspirated from infected ovaries.
Collapse
Affiliation(s)
- Patricia K Galik
- College of Veterinary Medicine, Auburn University, AL 36849, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Givens MD, Galik PK, Riddell KP, Stringfellow DA, Brock KV, Bishop MD, Eilertsen KJ, Loskutoff NM. Validation of a reverse transcription nested polymerase chain reaction (RT-nPCR) to detect bovine viral diarrhea virus (BVDV) associated with in vitro-derived bovine embryos and co-cultured cells. Theriogenology 2001; 56:787-99. [PMID: 11665882 DOI: 10.1016/s0093-691x(01)00608-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Sensitive RT-nPCR assays can be used for the rapid detection of viruses. The objective of this research was to validate an RT-nPCR assay for detection of BVDV associated with various samples collected from an IVF system. In 12 research replicates, we maintained matured COCs as negative controls or exposed them to 1 of 4 noncytopathic strains (SD-1, NY-1, CD-87, or PA-131) of BVDV for 1 h immediately before IVF. After 4 d of IVC, we harvested groups of 5 nonfertile ova or degenerated embryos (NFD) and some associated cumulus cells and transferred developing embryos and the remaining cumulus cells into secondary IVC drops. On the seventh d of IVC, cumulus cells, groups of 5 washed NFD and groups of 5 developed, washed embryos were harvested. We also collected single developed embryos after washing, washing with trypsin, washing and cryopreservation in ethylene glycol, or washing with trypsin and cryopreservation in ethylene glycol. All washes were performed according to International Embryo Transfer Society standards. Developed embryos and NFD were sonicated prior to assay. All samples were assayed for BVDV using virus isolation and RT-nPCR. The virus isolation and RT-nPCR assays determined that all negative control samples were BVDV-free. Virus was detected in association with all exposed cumulus cells and groups of developed embryos using both virus isolation and RT-nPCR. Results from viral assays of other exposed samples indicate enhanced sensitivity of the RT-nPCR assay. The RT-nPCR assay used in this research exhibited acceptable sensitivity, specificity, predictive value and repeatability for rapid detection of BVDV associated with the various samples obtained from an IVF system.
Collapse
|