1
|
Pérez-Gómez A, González-Brusi L, Flores-Borobia I, Galiano-Cogolludo B, Lamas-Toranzo I, Hamze JG, Toledano-Díaz A, Santiago-Moreno J, Ramos-Ibeas P, Bermejo-Álvarez P. The role of TEAD4 in trophectoderm commitment and development is not conserved in non-rodent mammals. Development 2024; 151:dev202993. [PMID: 39171364 PMCID: PMC11463960 DOI: 10.1242/dev.202993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/15/2024] [Indexed: 08/23/2024]
Abstract
The first lineage differentiation in mammals gives rise to the inner cell mass and the trophectoderm (TE). In mice, TEAD4 is a master regulator of TE commitment, as it regulates the expression of other TE-specific genes and its ablation prevents blastocyst formation, but its role in other mammals remains unclear. Herein, we have observed that TEAD4 ablation in two phylogenetically distant species (bovine and rabbit) does not impede TE differentiation, blastocyst formation and the expression of TE markers, such as GATA3 and CDX2, although a reduced number of cells in the inner cell mass was observed in bovine TEAD4 knockout (KO) blastocysts. Transcriptional analysis in bovine blastocysts revealed no major transcriptional effect of the ablation, although the expression of hypoblast and Hippo signalling-related genes tended to be decreased in KO embryos. Experiments were conducted in the bovine model to determine whether TEAD4 was required for post-hatching development. TEAD4 KO spherical conceptuses showed normal development of the embryonic disc and TE, but hypoblast migration rate was reduced. At later stages of development (tubular conceptuses), no differences were observed between KO and wild-type conceptuses.
Collapse
|
2
|
Pérez-Gómez A, González-Brusi L, Flores-Borobia I, Martínez De Los Reyes N, Toledano-Díaz A, López-Sebastián A, Santiago Moreno J, Ramos-Ibeas P, Bermejo-Álvarez P. PPARG is dispensable for bovine embryo development up to tubular stages†. Biol Reprod 2024; 111:557-566. [PMID: 38832705 PMCID: PMC11402522 DOI: 10.1093/biolre/ioae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/25/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024] Open
Abstract
Following blastocyst hatching, ungulate embryos undergo a prolonged preimplantation period termed conceptus elongation. Conceptus elongation constitutes a highly susceptible period for embryonic loss, and the embryonic requirements during this process are largely unknown, but multiple lipid compounds have been identified in the fluid nourishing the elongating conceptuses. Peroxisome proliferator-activated receptors mediate the signaling actions of prostaglandins and other lipids, and, between them, PPARG has been pointed out to play a relevant role in conceptus elongation by a functional study that depleted PPARG in both uterus and conceptus. The objective of this study has been to determine if embryonic PPARG is required for bovine embryo development. To that aim, we have generated bovine PPARG knock-out embryos in vitro using two independent gene ablation strategies and assessed their developmental ability. In vitro development to Day 8 blastocyst was unaffected by PPARG ablation, as total, inner cell mass, and trophectoderm cell numbers were similar between wild-type and knock-out D8 embryos. In vitro post-hatching development to D12 was also comparable between different genotypes, as embryo diameter, epiblast cell number, embryonic disk formation, and hypoblast migration rates were unaffected by the ablation. The development of tubular stages equivalent to E14 was assessed in vivo, following a heterologous embryo transfer experiment, observing that the development of extra-embryonic membranes and of the embryonic disk was not altered by PPARG ablation. In conclusion, PPARG ablation did not impaired bovine embryo development up to tubular stages.
Collapse
Affiliation(s)
- Alba Pérez-Gómez
- Animal Reproduction Department, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Leopoldo González-Brusi
- Animal Reproduction Department, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Inés Flores-Borobia
- Animal Reproduction Department, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Nuria Martínez De Los Reyes
- Animal Reproduction Department, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Adolfo Toledano-Díaz
- Animal Reproduction Department, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Antonio López-Sebastián
- Animal Reproduction Department, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Julián Santiago Moreno
- Animal Reproduction Department, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Priscila Ramos-Ibeas
- Animal Reproduction Department, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Pablo Bermejo-Álvarez
- Animal Reproduction Department, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
3
|
Park J, Lee W, Saadelin IM, Bang S, Lee S, Yi J, Cho J. Improved pregnancy rate and sex ratio in fresh/frozen in vivo derived embryo transfer of Hanwoo ( Bos taurus coreanae) cows. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2023; 65:779-791. [PMID: 37970502 PMCID: PMC10640948 DOI: 10.5187/jast.2023.e69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 06/28/2023] [Accepted: 07/10/2023] [Indexed: 11/17/2023]
Abstract
This study aimed to assess the effects of embryonic developmental stage, quality grade, and fresh or frozen/thawed conditions on the pregnancy rate and sex ratio of live offspring in Hanwoo (Bos taurus coreanae) cows. The quality and developmental stage of in vivo-derived (IVD) transferred embryos were evaluated using the standard criteria of the International Embryo Technology Society. The recipient cows were synchronized using conventional (estradiol benzoate and progesterone) protocols before embryo transfer. Embryos were transferred to 297 cows, and pregnancy was monitored for 60-70 days after embryo transfer. The pregnancy rates of fresh and frozen/thawed embryos were 56.90% and 52.49%, respectively. Pregnancy rates varied according to embryo quality (56.18% for grade 1 vs. 36.67% for grade 2). Pregnancy rates also varied by developmental stage and cryopreservation (67.86% vs. 63.49% for stage 4-1, 64.00% vs. 54.72% for 5-1, and 50.00% vs. 47.83% for 6-1, in fresh embryos vs. frozen/thawed embryos, respectively). For stage 7-1, the pregnancy rates were 72.73% for fresh embryos and 20.00% for frozen/thawed embryos. In 66 fresh embryos, the sex ratio of live offspring was 5:5, whereas it was 4(female):6(male) for frozen/thawed embryos among the 95 frozen/thawed embryos. The miscarriage rate was approximately 3% higher for frozen/thawed embryos than for fresh embryos (18.1% for fresh vs. 21.1% for frozen). Seasonal fertility rates were 33.3% in spring, 55.67% in summer, 52.8% in autumn, 60.0% in winter. The following male-to-female ratios were observed in different seasons: 6.7:3.3 in spring, 4.0:6.0 in summer, 5.5:4.5 in autumn, and 3.3:6.7 in winter. The current data revealed no significant differences in pregnancy rates between fresh and frozen/thawed IVD embryos. However, there was a lower pregnancy rate with advanced-stage frozen/thawed embryos (stage 7-1). The current study provides comprehensive results for the better optimization of embryo transfer in Hanwoo cattle to obtain the desired fertility rate, pregnancy rate, and sex ratio of calves. These results provide important insights into the factors that influence the viability and success of IVD embryo transfer in Hanwoo cows and may have practical applications for improving breeding programs and reducing production costs.
Collapse
Affiliation(s)
- Jihyun Park
- College of Veterinary Medicine, Chungnam
National University, Daejeon 34134, Korea
| | | | - Islam M. Saadelin
- College of Veterinary Medicine, Chungnam
National University, Daejeon 34134, Korea
| | - Seonggyu Bang
- College of Veterinary Medicine, Chungnam
National University, Daejeon 34134, Korea
| | - Sanghoon Lee
- College of Veterinary Medicine, Chungnam
National University, Daejeon 34134, Korea
| | - Junkoo Yi
- School of Animal Life Convergence Science,
Hankyong National University, Anseong 17579, Korea
- Gyeonggi Regional Research Center,
Hankyong National University, Anseong 17579, Korea
| | - Jongki Cho
- College of Veterinary Medicine, Chungnam
National University, Daejeon 34134, Korea
| |
Collapse
|
4
|
Zhao G, Zhang J, Sun W, Xie C, Zhang H, Gao Y, Wen S, Ha Z, Nan F, Zhu X, Feng S, Cao X, Zhang Y, Zhu Y, Jin N, Lu H. Immunological evaluation of recombination PRRSV GP3 and GP5 DNA vaccines in vivo. Front Cell Infect Microbiol 2022; 12:1016897. [PMID: 36275018 PMCID: PMC9582230 DOI: 10.3389/fcimb.2022.1016897] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
The porcine reproductive and respiratory syndrome virus (PRRSV) is a threat to the health of pigs worldwide, but commercially available vaccines offer limited protection against PRRSV infection. It is necessary to develop a more effective DNA vaccine. The immunological effects of DNA vaccines with three adjuvants were examined in pigs (Susscrofa domestica) challenged with PRRSV. These DNA vaccines, which encoded PRRSV GP3 and GP5, were formulated with A1, A2, and A3. Serum specific and neutralizing antibodies, IL-4, IFN-γ, IL-2, IL-10, CD4+ and CD8+T-lymphocytes, health status, histopathology, and viral loads were determined. The results showed that the use of adjuvant A3 led to higher levels of neutralizing antibodies and a lower viral load in pigs compared to the other adjuvants. The neutralizing antibody titers of the pVAX-GP35+A1 and pVAX-GP35+A3 groups reached a peak of 1:19 at 35 dpi. The maximum concentration of IL-4 was 136.77 pg/mL in the pVAX-GP35+A3 group. At 35 dpi, the IFN-γ concentration in the pVAX-GP35+A1 group was 227.4 pg/mL. pVAX-GP35+A3 group shows the highest IL-2 and IL-10 expression to the peak of 597.6 pg/mL and 189.1 pg/mL, respectively. We found a formulation demonstrated beneficial immune outcomes. This study provides an alternative vaccine to protect pigs from PRRSV.
Collapse
Affiliation(s)
- Guanyu Zhao
- College of Veterinary Medicine, College of Animal Science, Jilin University, Changchun, China
| | - Jiaqi Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Wenchao Sun
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Changzhan Xie
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - He Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yan Gao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Shubo Wen
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Zhuo Ha
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Fulong Nan
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Xiangyu Zhu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Sheng Feng
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Xinyu Cao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Ying Zhang
- College of Veterinary Medicine, College of Animal Science, Jilin University, Changchun, China
- *Correspondence: Ying Zhang, ; Yanzhu Zhu, ; Ningyi Jin, ; Huijun Lu,
| | - Yanzhu Zhu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
- Animal Science and Technology College, Jilin Agriculture Science and Technology University, Jilin, China
- *Correspondence: Ying Zhang, ; Yanzhu Zhu, ; Ningyi Jin, ; Huijun Lu,
| | - Ningyi Jin
- College of Veterinary Medicine, College of Animal Science, Jilin University, Changchun, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- *Correspondence: Ying Zhang, ; Yanzhu Zhu, ; Ningyi Jin, ; Huijun Lu,
| | - Huijun Lu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- *Correspondence: Ying Zhang, ; Yanzhu Zhu, ; Ningyi Jin, ; Huijun Lu,
| |
Collapse
|
5
|
Lonergan P, Fair T. The ART of studying early embryo development: progress and challenges in ruminant embryo culture. Theriogenology 2014; 81:49-55. [PMID: 24274409 DOI: 10.1016/j.theriogenology.2013.09.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 09/17/2013] [Accepted: 09/17/2013] [Indexed: 11/25/2022]
Abstract
The study of preimplantation mammalian embryo development is challenging due to difficulties in accessing in vivo-derived embryos in large numbers at the early stages and the inability to culture embryos in vitro much beyond the blastocyst stage. Nonetheless, embryos exhibit an amazing plasticity and tolerance when it comes to adapting to the environment in which they are cultured. They are capable of developing in media ranging in composition from simple balanced salt solutions to complex systems involving serum and somatic cells. At least a proportion of the blastocysts that develop in culture are developmentally competent as evidenced by the fact that live offspring have resulted following transfer. However, several studies using animal models have shown that such embryos are sensitive to environmental conditions that can affect future pre- and post-natal growth and developmental potential. This review summarises some key aspects of early embryo development and the approaches taken to study this important window in early life.
Collapse
Affiliation(s)
- Pat Lonergan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland.
| | | |
Collapse
|
6
|
Viral particles of endogenous betaretroviruses are released in the sheep uterus and infect the conceptus trophectoderm in a transspecies embryo transfer model. J Virol 2010; 84:9078-85. [PMID: 20610723 DOI: 10.1128/jvi.00950-10] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The sheep genome contains multiple copies of endogenous betaretroviruses highly related to the exogenous and oncogenic jaagsiekte sheep retrovirus (JSRV). The endogenous JSRVs (enJSRVs) are abundantly expressed in the uterine luminal and glandular epithelia as well as in the conceptus trophectoderm and are essential for conceptus elongation and trophectoderm growth and development. Of note, enJSRVs are present in sheep and goats but not cattle. At least 5 of the 27 enJSRV loci cloned to date possess an intact genomic organization and are able to produce viral particles in vitro. In this study, we found that enJSRVs form viral particles that are released into the uterine lumen of sheep. In order to test the infectious potential of enJSRV particles in the uterus, we transferred bovine blastocysts into synchronized ovine recipients and allowed them to develop for 13 days. Analysis of microdissected trophectoderm of the bovine conceptuses revealed the presence of enJSRV RNA and, in some cases, DNA. Interestingly, we found that RNAs belonging to only the most recently integrated enJSRV loci were packaged into viral particles and transmitted to the trophectoderm. Collectively, these results support the hypothesis that intact enJSRV loci expressed in the uterine endometrial epithelia are shed into the uterine lumen and could potentially transduce the conceptus trophectoderm. The essential role played by enJSRVs in sheep reproductive biology could also be played by endometrium-derived viral particles that influence development and differentiation of the trophectoderm.
Collapse
|
7
|
Berg DK, van Leeuwen J, Beaumont S, Berg M, Pfeffer PL. Embryo loss in cattle between Days 7 and 16 of pregnancy. Theriogenology 2010; 73:250-60. [PMID: 19880168 DOI: 10.1016/j.theriogenology.2009.09.005] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 08/31/2009] [Accepted: 09/11/2009] [Indexed: 11/15/2022]
Abstract
Embryo loss between embryonic Days 7 and 16 (Day 0=day of IVF) in nonlactating cattle, Bos taurus, was analyzed using transfer of 2449 (in groups of 3 to 30) in vitro-produced (IVP) blastocysts. In 152 transfers, pregnancy losses attributable solely to recipient failings amounted to between 6% (beef heifers) and 16% (parous dairy cows), of which 3% were caused by uterine infections. Neither season, year, nor the age of the embryos on retrieval affected pregnancy rates. The latter observation indicated that the reason that a recipient failed to retain embryos was already present at the time of transfer. Notably, the proportion of embryos recovered decreased (P=0.03) as more embryos were transferred, particularly at later stages (Day 14, P<0.01). The average length of embryos decreased by approximately 5% for every additional embryo transferred (P<0.0001). These effects may be linked to embryonic migration. Embryo mortality inherent to the embryo during the second week of pregnancy was 24%. Additionally, 9% of Day 14 embryos were of inferior quality, as they did not contain an epiblast. Combining embryo and recipient causes but excluding infection effects, embryonic loss of IVP embryos during the second week of pregnancy amounted to 26% (heifers) or 34% (parous dairy cows). The length of embryos doubled every day between Days 9 and 16, with a 4.4-fold range in sizes representing two thirds of the variation in length. Embryos retrieved from heifers were twice the size of those incubated in parous cows (P<0.0001), indicating faster embryonic development/trophoblast proliferation in heifers. Whereas season did not affect embryo recoveries, length was lower (50%) in winter (winter-autumn, P<0.05; winter-spring, P<0.001). Lastly, transuterine migration in cattle, when transferring multiple embryos, commenced at Day 14 (4%) and had occurred in all recipients by Day 16 (38% of embryos found contralaterally).
Collapse
Affiliation(s)
- D K Berg
- AgResearch, Ruakura Campus, Hamilton, New Zealand
| | | | | | | | | |
Collapse
|
8
|
Elongation and gene expression in bovine cloned embryos transferred to temporary recipients. ZYGOTE 2009; 17:353-65. [DOI: 10.1017/s0967199409005486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SummaryElongated embryos provide a unique source of information about trophoblastic differentiation, gene expression and maternal-embryonic interactions; however they are difficult and costly to obtain, especially elongated cloned embryos. One alternative is their production in heterologous temporary recipients such as sheep and goats. We aimed to produce elongated bovine cloned embryos using heterologous transfer to temporary recipients. Day-7 cloned cattle blastocysts were transferred to the uteri of ewes and goats and recovered as elongated structures at day 17. We evaluated elongation, length, presence of embryonic disc and expression of several important genes for embryonic development. We also produced homologous (cloned cattle embryos transferred into cattle uteri). Cloned bovine blastocysts were able to proceed with preimplantation development through elongation with high efficiency despite the species to which they were transferred. In qualitative and quantitative RT-PCR experiments we found differences in the pattern of gene expression among embryos recovered from different species. Sox2, Nanog and FGF-4 were markedly deregulated. No previous reports about the expression pattern of the studied genes had been published for elongated bovine cloned embryos produced in intermediate recipients, furthermore, the pattern of expression of Nanog, Oct4, Eomes, Cdx2, IFN-tau, Dicer, FGF-4 and Sox2 shown here are novel for elongated cloned bovine embryos created by hand-made cloning. Our data confirmed that sheep and goats can be used as temporary recipients. This model could serve as a basis for further research on gene expression and cellular changes during bovine peri-implantation development.
Collapse
|
9
|
Rodríguez L, Navarrete FI, Tovar H, Cox JF, Castro FO. High developmental potential in vitro and in vivo of cattle embryos cloned without micromanipulators. J Assist Reprod Genet 2008; 25:13-6. [PMID: 18205035 DOI: 10.1007/s10815-007-9194-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Accepted: 12/04/2007] [Indexed: 01/31/2023] Open
Abstract
PURPOSE In order to simplify cloning, a new method that does not require micromanipulators was used. We aimed to evaluate the developmental potential of two bovine cell lines upon cloning. MATERIALS AND METHODS In vitro matured bovine oocytes, were released from zona pellucida, enucleated, fused to foetal or adult somatic donor cells. The reconstructed embryos were reprogrammed, activated and cultured until blastocyst stage. No micromanipulators were used. Blastocyst rate and quality was scored. Some expanded (d7) blastocysts were transferred to recipient cattle and collected back at d17 to assess elongation. RESULTS High developmental potential in vitro of cloned embryos to expanded (d7) blastocysts was achieved (52.6%). In one cell line, 65.7% of blastocysts was scored. Most blastocysts (87.4%) were graded as excellent. In vivo development to elongation (day-17) in temporary recipient cows also showed a high developmental potential (11/18 transferred blastocysts elongated). CONCLUSIONS Hand-made cloning is an efficient alternative for cloning in cattle.
Collapse
Affiliation(s)
- Lleretny Rodríguez
- Animal Science, University of Concepcion, Avenida Vicente Méndez 595, Chillán, 537, Chile
| | | | | | | | | |
Collapse
|
10
|
Lewis SK, Farmer JL, Burghardt RC, Newton GR, Johnson GA, Adelson DL, Bazer FW, Spencer TE. Galectin 15 (LGALS15): A Gene Uniquely Expressed in the Uteri of Sheep and Goats that Functions in Trophoblast Attachment1. Biol Reprod 2007; 77:1027-36. [PMID: 17855730 DOI: 10.1095/biolreprod.107.063594] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Galectins are a family of secreted animal lectins with biological roles in cell adhesion and migration. In sheep, galectin 15 (LGALS15) is expressed specifically in the endometrial luminal (LE) and superficial glandular (sGE) epithelia of the uterus in concert with blastocyst elongation during the peri-implantation period. The present study examined LGALS15 expression in the uterus of cattle, goats, and pigs. Although the bovine genome contains an LGALS15-like gene, expressed sequence tags encoding LGALS15 mRNA were found only for sheep, and full-length LGALS15 cDNAs were cloned only from endometrial total RNA isolated from pregnant sheep and goats, but not pregnant cattle or pigs. Ovine and caprine LGALS15 were highly homologous at the mRNA (95%) and protein (91%) levels, and all contained a conserved carbohydrate recognition domain and RGD recognition sequence for integrin binding. Endometrial LGALS15 mRNA levels increased after Day 11 of both the estrous cycle and pregnancy, and were considerably increased after Day 15 of pregnancy in goats. In situ hybridization detected abundant LGALS15 mRNA in endometrial LE and sGE of early pregnant goats, but not in cattle or pigs. Immunoreactive LGALS15 protein was present in endometrial epithelia and conceptus trophectoderm of goat uteri and detected within intracellular crystal structures in trophectoderm and LE. Recombinant ovine and caprine LGALS15 proteins elicited a dose-dependent increase in ovine trophectoderm cell attachment in vitro that was comparable to bovine fibronectin. These results support the hypothesis that LGALS15 is uniquely expressed in Caprinae endometria and functions as an attachment factor important for peri-implantation blastocyst elongation.
Collapse
Affiliation(s)
- Shaye K Lewis
- Center for Animal Biotechnology and Genomics, Department of Animal Science, Texas A&M University, College Station, Texas 77843, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Bovine in vitro embryo production is an inefficient process; while maturation and fertilization proceed apparently normally, the proportion of embryos reaching the transferable (blastocyst) stage is rarely over 40% and those that do reach this stage are often compromised in quality and competence. There is considerable evidence of a significant influence of follicular origin on oocyte developmental potential and it appears that once the oocyte is removed from the follicle its developmental capacity is capped. Evidence suggests that while culture conditions during bovine in vitro embryo production can impact somewhat the developmental potential of the early embryo, the intrinsic quality of the oocyte is the key factor determining the proportion of oocytes developing to the blastocyst stage. This paper highlights some of the problems associated with in vitro production of embryos and discusses some of the ways of overcoming these problems.
Collapse
|
12
|
Fischer-Brown AE, Lindsey BR, Ireland FA, Northey DL, Monson RL, Clark SG, Wheeler MB, Kesler DJ, Lane SJ, Weigel KA, Rutledge JJ. Embryonic disc development and subsequent viability of cattle embryos following culture in two media under two oxygen concentrations. Reprod Fertil Dev 2007; 16:787-93. [PMID: 15740702 DOI: 10.1071/rd04026] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2004] [Accepted: 11/14/2004] [Indexed: 11/23/2022] Open
Abstract
Bovine embryos were produced in vitro using a 2 x 2 design of modified medium (KSOM or SOF) and oxygen concentration (5% or 20%). Day 7 blastocysts were transferred in bulk (n = 11, on average) to recipient heifers and recovered non-surgically at Day 14. In two replications of a Latin square, eight heifers received embryos from each combination of factors. Recovered embryos were evaluated for trophoblast length and width, as well as the presence and diameter of an embryonic disc (ED). An ED was detected in a higher percentage of embryos that had been cultured in KSOM than SOF (72% v. 46%, respectively; P < 0.05). The aim of a second series of experiments was to associate Day 14 morphology with subsequent developmental capacity. In vitro-produced blastocysts were transferred (n = 17-20) on Day 7 to each of eight heifers and recovered at Day 14. Thirty-eight blastocysts were retransferred to heifers following morphological evaluation. Embryos in which an ED with no signs of degeneration had been detected maintained more pregnancies than other embryos in which an ED had either shown signs of degeneration or had not been detected (5/8 v. 2/30, respectively; P < 0.01). Further investigation into ED integrity at the elongating stage may contribute to our understanding of pregnancy establishment and maintenance.
Collapse
Affiliation(s)
- A E Fischer-Brown
- Department of Animal Sciences, University of Wisconsin, Madison, WI 53706, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Block J, Fischer-Brown AE, Rodina TM, Ealy AD, Hansen PJ. The effect of in vitro treatment of bovine embryos with IGF-1 on subsequent development in utero to Day 14 of gestation. Theriogenology 2007; 68:153-61. [PMID: 17532038 DOI: 10.1016/j.theriogenology.2007.04.045] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Accepted: 04/23/2007] [Indexed: 11/27/2022]
Abstract
Culture of bovine embryos with insulin-like growth factor-1 (IGF-1) can improve development to the blastocyst stage and embryo survival following transfer to heat-stressed, lactating dairy cows. Two experiments were conducted to determine whether IGF-1 could improve embryo survival and development at Day 14 after ovulation. In Experiment 1, non-lactating Holstein cows (n=58) were selected as recipients following synchronization for timed-embryo transfer. Embryos were produced in vitro and cultured with or without 100ng/mL IGF-1. At Day 7 after expected ovulation (Day 0), groups of 7-12 embryos were randomly transferred to each recipient. Embryos were recovered at Day 14. Embryo length and the presence or absence of an embryonic disc was recorded. Recovered embryos were cultured individually for 24h to determine interferon-tau (IFN-tau) secretion. There was no effect of IGF-1 on embryo recovery rate, embryo length or IFN-tau secretion. In Experiment 2, non-lactating (n=56) and lactating (n=35) Holstein cows were selected as recipients following synchronization for timed-embryo transfer. Embryos were produced as described in Experiment 1. At Day 7 after expected ovulation (Day 0), a single embryo was randomly transferred to each recipient. Embryos were recovered at Day 14. Embryo length and IFN-tau secretion were determined as in Experiment 1. Recovery rate at Day 14 tended (P=0.1) to be higher for recipients that received IGF-1 treated embryos compared to control embryos (43.2% versus 26.1%, respectively). There was no effect of IGF-1 on embryo length or IFN-tau secretion. In conclusion, results suggest that exposure to IGF-1 through Days 7-8 of development does not enhance capacity of embryos to prevent luteolysis. Results of the single embryo-transfer experiment suggested that IGF-1 treatment might affect embryo survival post-transfer as early as Day 14 after ovulation. Further experimentation is warranted to verify this finding.
Collapse
Affiliation(s)
- J Block
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611-0910, USA
| | | | | | | | | |
Collapse
|
14
|
Block J, Hansen PJ. Interaction between season and culture with insulin-like growth factor-1 on survival of in vitro produced embryos following transfer to lactating dairy cows. Theriogenology 2007; 67:1518-29. [PMID: 17452048 DOI: 10.1016/j.theriogenology.2007.03.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2006] [Accepted: 03/14/2007] [Indexed: 11/25/2022]
Abstract
Culture of bovine embryos in the presence of insulin-like growth factor-1 (IGF-1) can increase pregnancy rates following transfer to heat-stressed, lactating dairy cows. The objective of the present experiment was to determine whether the effect of IGF-1 on post-transfer embryo survival was a general effect or one specific to heat stress. Lactating recipients (n=311) were synchronized for timed-embryo transfer at four locations. Embryos were produced in vitro and cultured with or without 100 ng/mL IGF-1. At Day 7 after anticipated ovulation (Day 0), a single embryo was randomly transferred to each recipient. Pregnancy was diagnosed at Day 21 by elevated plasma progesterone concentrations, at Days 27-32 by ultrasonography, and at Days 41-49 by transrectal palpation. Transfers were categorized into two seasons, hot or cool (based on the month of transfer). There was a tendency (P<0.09) for an interaction between embryo treatment and season for pregnancy rate at Day 21; this interaction was significant at Days 30 and 45 (P<0.02). Recipients receiving IGF-1 treated embryos had higher pregnancy rates in the hot season but not in the cool season. There was a similar interaction between embryo treatment and season for overall calving rate (P<0.05). There was also an interaction between season and treatment affecting pregnancy loss between Days 21 and 30; recipients that received IGF-1 treated embryos had less pregnancy loss during this time period in the hot season but not in the cool season. The overall proportion of male calves born was 77.5%. In conclusion, treatment of embryos with IGF-1 improved pregnancy and calving rates following the transfer of in vitro produced embryos into lactating recipients, but only under heat-stress conditions.
Collapse
Affiliation(s)
- J Block
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611-0910, USA
| | | |
Collapse
|
15
|
Talbot NC, Powell AM, Camp M, Ealy AD. Establishment of a bovine blastocyst-derived cell line collection for the comparative analysis of embryos created in vivo and by in vitro fertilization, somatic cell nuclear transfer, or parthenogenetic activation. In Vitro Cell Dev Biol Anim 2007; 43:59-71. [PMID: 17570020 DOI: 10.1007/s11626-007-9013-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2006] [Accepted: 02/09/2007] [Indexed: 01/14/2023]
Abstract
Tools and methods for analyzing differences in embryos resulting from somatic cell nuclear transfer (NT) in comparison to those derived from normal fertilization are needed to define better the nature of the nuclear reprogramming that occurs after NT. To this end, a collection of bovine blastocyst-derived cell lines was created. In vitro expanded or hatched blastocysts, used as primary culture tissue, were from NT; in vitro maturation, fertilization, and culture (IVF); or parthenogenetic (P) activation. Also, five in vivo-fertilized and developed blastocysts were collected by uterine flushing on the eighth d postfertilization. Whole blastocysts were physically attached to STO feeder layers to initiate all of the cell lines generated. The majority of the cell lines in the collection are trophectoderm, 38 NT-derived, 6 in vivo-derived, 20 IVF-derived, and 13 P-derived. Trophectoderm identity was ascertained by morphology and, in many cases, interferon-tau production. Several visceral endoderm cell lines and putative parietal endoderm cell lines were also established. At approximately 5% efficiency, epiblast masses from NT and IVF blastocysts survived and were isolated in culture. Two epiblast masses were also isolated from P blastocysts. Spontaneous differentiation from the epiblast outgrowths resulted in the establishment of fibroblast cell lines. The use of the trophectoderm cell lines as a comparative in vitro model of bovine trophectoderm and placental function is discussed in relation to NT reprogramming.
Collapse
Affiliation(s)
- Neil C Talbot
- USDA, ARS, ANRI, Biotechnology and Germplasm Laboratory, Beltsville, MD 20705, USA.
| | | | | | | |
Collapse
|
16
|
Tesfaye D, Lonergan P, Hoelker M, Rings F, Nganvongpanit K, Havlicek V, Besenfelder U, Jennen D, Tholen E, Schellander K. Suppression of connexin 43 and E-cadherin transcripts in in vitro derived bovine embryos following culture in vitro or in vivo in the homologous bovine oviduct. Mol Reprod Dev 2007; 74:978-88. [PMID: 17219420 DOI: 10.1002/mrd.20678] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In this study, a combination of RNAi and endoscopic transfer to the oviduct of synchronized heifers has been used to investigate the effect of suppression of Cx43 and E-cadherin on the development, mRNA and protein expression of bovine blastocysts cultured in vitro or in vivo. In vitro matured and fertilized bovine zygotes were randomly assigned to one of four groups namely: Connexin43 dsRNA-injected (n = 790), E-cadherin dsRNA-injected (n = 775), water-injected (n = 774), and noninjected controls (n = 652). Following 2 days in vitro culture, 4- and 8-cell stage embryos from each treatment group were used for culture in vitro or in vivo. About half of the 4-8-cell stage embryos from each treatment group were transferred to the oviduct of synchronized heifers, while the remainder were further cultured in vitro. Embryos from in vivo culture were flushed from recipients on the fourth day post transfer (= Day 7 post insemination). Blastocyst stage embryos from both culture systems were used for mRNA and protein expression analysis. Irrespective of treatment or culture conditions, microinjection resulted in a decline in the proportion of embryos reaching the blastocyst stage. Significantly, lower blastocyst development was observed in E-cadherin and water-injected embryos following in vivo culture compared to the noninjected controls, while intermediate results were obtained following injection with Cx43 dsRNA. Both mRNA and protein products of the target genes were suppressed but the efficiency of suppression of the target genes varied depending on the initial level of transcript abundance, which is known to be greatly affected by the culture environment.
Collapse
Affiliation(s)
- Dawit Tesfaye
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, Bonn, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Vejlsted M, Avery B, Schmidt M, Greve T, Alexopoulos N, Maddox-Hyttel P. Ultrastructural and Immunohistochemical Characterization of the Bovine Epiblast1. Biol Reprod 2005; 72:678-86. [PMID: 15537864 DOI: 10.1095/biolreprod.104.034348] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The epiblast represents the final embryonic founder cell population with the potential for giving rise to all cell types of the adult body. The pluripotency of the epiblast is lost during the process of gastrulation. Large animal species have a lack of specific markers for pluripotency. The aim of the present study was to characterize the bovine epiblast cell population and to provide such markers. Bovine Day 12 and Day 14 embryos were processed for transmission-electron microscopy or immunohistochemistry. In Day 12 embryos, two cell populations of the epiblast were identified: one constituting a distinctive basal layer apposing the hypoblast, and one arranged inside or above the former layer, including cells apposing the Rauber layer. Immunohistochemically, staining for the octamer-binding transcription factor 4 (OCT4, also known as POU5F1), revealed a specific and exclusive staining of nuclei of the complete epiblast. Colocalization of vimentin and OCT4 was demonstrated. Only trophectodermal cells stained for alkaline phosphatase. Staining for the proliferation marker Ki-67 was localized to most nuclei throughout the epiblast. A continuous staining for zonula occludens-1 protein was found between cells of the trophectoderm and hypoblast but was not evident in the epiblast. A basement membrane, detected by staining for laminin, formed a "cup-like" structure in which the epiblast was located. The ventrolateral sides of the cup appeared to be incomplete. In conclusion, the bovine epiblast includes at least two cell subpopulations, and OCT4 was shown, to our knowledge for the first time, to be localized exclusively to epiblast cells in this species.
Collapse
Affiliation(s)
- Morten Vejlsted
- Department of Animal and Veterinary Basic Sciences, Royal Veterinary and Agricultural University, DK-1870 Frederiksberg C, Denmark.
| | | | | | | | | | | |
Collapse
|
18
|
Gray CA, Adelson DL, Bazer FW, Burghardt RC, Meeusen ENT, Spencer TE. Discovery and characterization of an epithelial-specific galectin in the endometrium that forms crystals in the trophectoderm. Proc Natl Acad Sci U S A 2004; 101:7982-7. [PMID: 15148380 PMCID: PMC419543 DOI: 10.1073/pnas.0402669101] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2004] [Indexed: 01/21/2023] Open
Abstract
Secretions of the uterus support survival and growth of the conceptus (embryo/fetus and associated membranes) during pregnancy. Galectin-15, also known as OVGAL11 and a previously uncharacterized member of the galectin family of secreted beta-galactoside lectins containing a conserved carbohydrate recognition domain and a separate putative integrin binding domain, was discovered in the uterus of sheep. In endometria of cyclic and pregnant sheep, galectin-15 mRNA was expressed specifically in the endometrial luminal epithelium but not in the conceptus. In pregnant sheep, galectin-15 mRNA expression appeared in the epithelia between days 10 and 12 and increased between days 12 and 16. Progesterone induced and IFN-tau stimulated galectin-15 mRNA in the endometrial epithelium. Galectin-15 protein was concentrated near and on the apical surface of the endometrial luminal epithelia and localized within discrete cytoplasmic crystalline structures of conceptus trophectoderm (Tr). In the uterine lumen, secreted galectin-15 protein increased between days 14 and 16 of pregnancy. Galectin-15 protein was functional in binding lactose and mannose sugars and immunologically identical to the unnamed Mr 14,000 (14K) protein from the ovine uterus that forms crystalline inclusion bodies in endometrial epithelia and conceptus Tr. Based on the functional studies of other galectins, galectin-15 is hypothesized to function extracellularly to regulate Tr migration and adhesion to the endometrial epithelium and intracellularly to regulate Tr cell survival, growth, and differentiation. Galectins may be useful as cellular and molecular markers for endometrial function and receptivity, to enhance conceptus survival and development, and to evaluate and enhance fertility.
Collapse
Affiliation(s)
- C Allison Gray
- Center for Animal Biotechnology and Genomics and Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | | | | |
Collapse
|
19
|
Rizos D, Ward F, Duffy P, Boland MP, Lonergan P. Consequences of bovine oocyte maturation, fertilization or early embryo development in vitro versus in vivo: implications for blastocyst yield and blastocyst quality. Mol Reprod Dev 2002; 61:234-48. [PMID: 11803560 DOI: 10.1002/mrd.1153] [Citation(s) in RCA: 599] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The aim of this study is to examine the effect of bovine oocyte maturation, fertilization or culture in vivo or in vitro on the proportion of oocytes reaching the blastocyst stage, and on blastocyst quality as measured by survival following vitrification. In Experiment 1, 4 groups of oocytes were used: (1) immature oocytes from 2-6 mm follicles; (2) immature oocytes from > 6 mm follicles; (3) immature oocytes recovered in vivo just before the LH surge; and (4) in vivo matured oocytes. Significantly more blastocysts developed from oocytes matured in vivo than those recovered just before the LH surge or than oocytes from 2-6 mm follicles. Results from > 6 mm follicles were intermediate. All blastocysts had low survival following vitrification. In Experiment 2, in vivo matured oocytes were either (1) fertilized in vitro or (2) fertilized in vivo by artificial insemination and the resulting presumptive zygotes recovered on day 1. Both groups were then cultured in vitro. In vivo fertilized oocytes had a significantly higher blastocyst yield than those fertilized in vitro. Blastocyst quality was similar between the groups. Both groups had low survival following vitrification. In Experiment 3a, presumptive zygotes produced by in vitro maturation (IVM)/fertilization (IVF) were cultured either in vitro in synthetic oviduct fluid, or in vivo in the ewe oviduct. In Experiment 3b, in vivo matured/in vivo fertilized zygotes were either surgically recovered on day 1 and cultured in vitro in synthetic oviduct fluid, or were nonsurgically recovered on day 7. There was no difference in blastocyst yields between groups of zygotes originating from the same source (in vivo or in vitro fertilization) irrespective of whether culture took place in vivo or in vitro. However, there was a dramatic effect on blastocyst quality with those blastocysts produced following in vivo culture surviving vitrification at significantly higher rates than their in vitro cultured counterparts. Collectively, these results indicate that the intrinsic quality of the oocyte is the main factor affecting blastocyst yields, while the conditions of embryo culture have a crucial role in determining blastocyst quality.
Collapse
Affiliation(s)
- Dimitrios Rizos
- Department of Animal Science and Production and Conway Institute for Biomedical and Biomolecular Research, University College Dublin, Lyons Research Farm, Newcastle, County Dublin, Ireland
| | | | | | | | | |
Collapse
|
20
|
Van Soom A, Vanroose G, de Kruif A. Blastocyst evaluation by means of differential staining: a practical approach. Reprod Domest Anim 2001; 36:29-35. [PMID: 11305483 DOI: 10.1046/j.1439-0531.2001.00265.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Techniques for in vitro production of embryos have been developed world-wide in different species, with promising results in human and ruminants. Thousands of human IVF-babies have been born during the last 20 years and thousands of in vitro-produced calves have been born since the late 1980s. With current methods for bovine in vitro fertilization, about 30-40% of in vitro-fertilized bovine oocytes develop further to the blastocyst stage and can be used for transfer. A proper evaluation of blastocyst quality remains however, an important challenge for every researcher involved in embryology and for every clinician who wants to select the best embryos for transfer. This review attempts to summarize the different methods available for estimation of blastocyst quality with a special emphasis upon differential staining.
Collapse
Affiliation(s)
- A Van Soom
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Merelbeke, Belgium.
| | | | | |
Collapse
|
21
|
Enright BP, Lonergan P, Dinnyes A, Fair T, Ward FA, Yang X, Boland MP. Culture of in vitro produced bovine zygotes in vitro vs in vivo: implications for early embryo development and quality. Theriogenology 2000; 54:659-73. [PMID: 11101029 DOI: 10.1016/s0093-691x(00)00381-2] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The objectives of this study were to examine the effect of culture system on bovine blastocyst formation rates and quality. Presumptive IVM/IVF bovine zygotes were cultured either in vitro in synthetic oviduct fluid (SOF, 25 embryos/25 microL in 5% CO2, 5% O2, 90% N2 at 39 degrees C) or in vivo in the ewe oviduct (approximately 100 embryos per oviduct). The recovery rate after in vivo culture was 53% (813/1,530). The blastocyst rate on Day 7 was significantly higher for the in vitro system (28%, 362/1,278 vs 17%, 37/813; P< 0.0001). However, after culture in vitro for a further 24 h, there was no difference in Day 8 yields (36%, 457/1,278 vs 32%, 258/813, for in vitro and in vivo culture, respectively). There was no difference in blastocyst cell number between treatments (Day 7: 96 vs 103; Day 8: 78 vs 85 for in vitro and in vivo culture, respectively). Irrespective of culture system, Day 7 blastocysts had a significantly higher cell number than those appearing on Day 8. There was no difference in pregnancy rate at Day 35 after fresh transfer of a single Day 7 blastocyst (37.5%, 21/56 vs 45.3%/, 24/53 for in vitro and in vivo culture, respectively). After cryopreservation by freezing in 10% glycerol, VS3a vitrification or solid surface vitrification, the survival of in vitro cultured embryos was significantly lower than survival of embryos cultured in the ewe oviduct or those produced by superovulation of donors. In conclusion, these findings demonstrate that while bovine zygotes cultured in vitro are capable of rates of development similar to those of their in vivo cultured counterparts (in terms of Day 8 blastocyst yield, cell number and early pregnancy rate), there are significant differences in embryo cryosurvival. This suggests that current in vitro culture systems need to be improved to optimize embryo quality and pregnancy rates.
Collapse
Affiliation(s)
- B P Enright
- Department of Animal Science and Production, University College Dublin, Lyons Research Farm, Newcastle, Ireland
| | | | | | | | | | | | | |
Collapse
|
22
|
Talbot NC, Powell A, Garrett W, Edwards JL, Rexroad C. Ultrastructural and karyotypic examination of in vitro produced bovine embryos developed in the sheep uterus. Tissue Cell 2000; 32:9-27. [PMID: 10798314 DOI: 10.1054/tice.1999.0083] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This study examined whether development of bovine in vitro produced (IVP) blastocysts in the sheep uterus resulted in morphologically and karyotypically normal elongation stage bovine blastocysts. Seven day IVP bovine blastocysts, resulting from either in vitro maturation and fertilization, nuclear transfer (NT), or parthenogenic activation, were surgically transferred at the blastocyst stage into sheep uteri. Sheep were sacrificed after 7-9 days, and blastocysts were flushed from their uteri. One of each kind of IVP bovine blastocyst was recovered from sheep uteri for analysis by transmission electron microscopy, and nine NT blastocysts were used to establish cell cultures that were analysed for chromosome complement. TEM analysis of in vivo-derived elongation stage bovine and ovine blastocysts was done for comparative purposes. Most ultrastructural features of the 13-19 day blastocysts were similar to earlier stage blastocysts except that distinct alternative mitochondrial morphologies were found between epiblast and trophectoderm cells. Monociliated cells, presumably nodal cells, were observed in the bovine epiblast and hypoblast, and retrovirus-like particles were elaborated by cells in these same areas. Development in the sheep uterus of IVP bovine blastocysts resulted in the presence of crystalloid bodies in the trophectoderm cells, and apoptotic and necrotic cells were observed in the epiblast tissue. Thus, in vivo incubation in the sheep uterus allowed nearly normal development to the elongated blastocyst stage and may be useful for assessment of NT bovine blastocyst developmental competence. Cell cultures derived from the NT blastocysts had normal chromosome complements suggesting that activation by ionomycin and 6-dimethyl-aminopurine did not cause detrimental changes in ploidy in those blastocysts that developed.
Collapse
Affiliation(s)
- N C Talbot
- USDA, ARS, LPSI, Gene Evaluation and Mapping Laboratory, Beltsville Agricultural Research Center, MD 20705, USA.
| | | | | | | | | |
Collapse
|
23
|
Talbot NC, Caperna TJ, Edwards JL, Garrett W, Wells KD, Ealy AD. Bovine blastocyst-derived trophectoderm and endoderm cell cultures: interferon tau and transferrin expression as respective in vitro markers. Biol Reprod 2000; 62:235-47. [PMID: 10642558 DOI: 10.1095/biolreprod62.2.235] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Continuous cultures of bovine trophectoderm (CT-1 and CT-5) and bovine endoderm (CE-1 and CE-2) were initiated and maintained on STO feeder cells. CT-1 and CT-5 were derived from the culture of intact, 10- to 11-day in vitro-produced blastocysts. CE-1 and CE-2 were derived from the culture of immunodissected inner cell masses of 7- to 8-day in vitro-produced blastocysts. The cultures were routinely passaged by physical dissociation. Although morphologically distinct, the trophectoderm and endoderm both grew as cell sheets of polarized epithelium (dome formations) composed of approximately cuboidal cells. Both cell types, particularly the endoderm, grew on top of the feeder cells for the most part. Trophectoderm cultures grew faster, relative to endoderm, in large, rapidly extending colonies of initially flat cells with little or no visible lipid. The endoderm, in contrast, grew more slowly as tightly knit colonies with numerous lipid vacuoles in the cells at the colony centers. Ultrastructure analysis revealed that both cell types were connected by desmosomes and tight junctional areas, although these were more extensive in the trophectoderm. Endoderm was particularly rich in rough endoplasmic reticulum and Golgi apparatus indicative of cells engaged in high protein production and secretion. Interferon tau expression was specific to trophectoderm cultures, as demonstrated by reverse transcription-polymerase chain reaction, Western blot, and antiviral activity; and this property may act as a marker for this cell type. Serum protein production specific to endoderm cultures was demonstrated by Western blot; this attribute may be a useful marker for this cell type. This simple coculture method for the in vitro propagation of bovine trophectoderm and endoderm provides a system for assessing their biology in vitro.
Collapse
Affiliation(s)
- N C Talbot
- USDA, ARS, LPSI, Gene Evaluation and Mapping Laboratory, and Growth Biology Laboratory, Beltsville Agricultural Research Center, Beltsville, Maryland 20705, USA.
| | | | | | | | | | | |
Collapse
|