1
|
Pu J, Liu T, Wang X, Sharma A, Schmidt-Wolf IGH, Jiang L, Hou J. Exploring the role of histone deacetylase and histone deacetylase inhibitors in the context of multiple myeloma: mechanisms, therapeutic implications, and future perspectives. Exp Hematol Oncol 2024; 13:45. [PMID: 38654286 DOI: 10.1186/s40164-024-00507-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/02/2024] [Indexed: 04/25/2024] Open
Abstract
Histone deacetylase inhibitors (HDACis) are a significant category of pharmaceuticals that have developed in the past two decades to treat multiple myeloma. Four drugs in this category have received approval from the U.S. Food and Drug Administration (FDA) for use: Panobinonstat (though canceled by the FDA in 2022), Vorinostat, Belinostat and Romidepsin. The efficacy of this group of drugs is attributed to the disruption of many processes involved in tumor growth through the inhibition of histone deacetylase, and this mode of action leads to significant anti-multiple myeloma (MM) activity. In MM, inhibition of histone deacetylase has many downstream consequences, including suppression of NF-κB signaling and HSP90, upregulation of cell cycle regulators (p21, p53), and downregulation of antiapoptotic proteins including Bcl-2. Furthermore, HDACis have a variety of direct and indirect oxidative effects on cellular DNA. HDAC inhibitors enhance normal immune function, thereby decreasing the proliferation of malignant plasma cells and promoting autophagy. The various biological effects of inhibiting histone deacetylase have a combined or additional impact when used alongside other chemotherapeutic and targeted drugs for multiple myeloma. This helps to decrease resistance to treatment. Combination treatment regimens that include HDACis have become an essential part of the therapy for multiple myeloma. These regimens incorporate drugs from other important classes of anti-myeloma agents, such as immunomodulatory drugs (IMiDs), conventional chemotherapy, monoclonal antibodies, and proteasome inhibitors. This review provides a comprehensive evaluation of the clinical efficacy and safety data pertaining to the currently approved histone deacetylase inhibitors, as well as an explanation of the crucial function of histone deacetylase in multiple myeloma and the characteristics of the different histone deacetylase inhibitors. Moreover, it provides a concise overview of the most recent developments in the use of histone deacetylase inhibitors for treating multiple myeloma, as well as potential future uses in treatment.
Collapse
Affiliation(s)
- Jingjing Pu
- Department of Integrated Oncology, Center for Integrated Oncology (CIO) Bonn, University Hospital Bonn, 53127, Bonn, NRW, Germany
| | - Ting Liu
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), 53127, Bonn, NRW, Germany
| | - Xuzhen Wang
- Wuxi Maternity and Child Health Care Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi, 214002, Jiangsu, China
| | - Amit Sharma
- Department of Integrated Oncology, Center for Integrated Oncology (CIO) Bonn, University Hospital Bonn, 53127, Bonn, NRW, Germany
| | - Ingo G H Schmidt-Wolf
- Department of Integrated Oncology, Center for Integrated Oncology (CIO) Bonn, University Hospital Bonn, 53127, Bonn, NRW, Germany
| | - Liping Jiang
- Wuxi Maternity and Child Health Care Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi, 214002, Jiangsu, China.
| | - Jian Hou
- Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| |
Collapse
|
2
|
Sheridan R, Brennan K, Bazou D, O’Gorman P, Matallanas D, Mc Gee MM. Multiple Myeloma Derived Extracellular Vesicle Uptake by Monocyte Cells Stimulates IL-6 and MMP-9 Secretion and Promotes Cancer Cell Migration and Proliferation. Cancers (Basel) 2024; 16:1011. [PMID: 38473370 PMCID: PMC10930391 DOI: 10.3390/cancers16051011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Multiple Myeloma (MM) is an incurable haematological malignancy caused by uncontrolled growth of plasma cells. MM pathogenesis is attributed to crosstalk between plasma cells and the bone marrow microenvironment, where extracellular vesicles (EVs) play a role. In this study, EVs secreted from a panel of MM cell lines were isolated from conditioned media by ultracentrifugation and fluorescently stained EVs were co-cultured with THP-1 monocyte cells. MM EVs from three cell lines displayed a differential yet dose-dependent uptake by THP-1 cells, with H929 EVs displaying the greatest EV uptake compared to MM.1s and U266 EVs suggesting that uptake efficiency is dependent on the cell line of origin. Furthermore, MM EVs increased the secretion of MMP-9 and IL-6 from monocytes, with H929 EVs inducing the greatest effect, consistent with the greatest uptake efficiency. Moreover, monocyte-conditioned media collected following H929 EV uptake significantly increased the migration and proliferation of MM cells. Finally, EV proteome analysis revealed differential cargo enrichment that correlates with disease progression including a significant enrichment of spliceosome-related proteins in H929 EVs compared to the U266 and MM.1s EVs. Overall, this study demonstrates that MM-derived EVs modulate monocyte function to promote tumour growth and metastasis and reveals possible molecular mechanisms involved.
Collapse
Affiliation(s)
- Rebecca Sheridan
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland (K.B.)
| | - Kieran Brennan
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland (K.B.)
| | - Despina Bazou
- Department of Haematology, Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland; (D.B.)
- School of Medicine, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| | - Peter O’Gorman
- Department of Haematology, Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland; (D.B.)
| | - David Matallanas
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland;
| | - Margaret M. Mc Gee
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland (K.B.)
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| |
Collapse
|
3
|
Lungu O, Toscani D, Burroughs-Garcia J, Giuliani N. The Metabolic Features of Osteoblasts: Implications for Multiple Myeloma (MM) Bone Disease. Int J Mol Sci 2023; 24:ijms24054893. [PMID: 36902326 PMCID: PMC10003241 DOI: 10.3390/ijms24054893] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
The study of osteoblast (OB) metabolism has recently received increased attention due to the considerable amount of energy used during the bone remodeling process. In addition to glucose, the main nutrient for the osteoblast lineages, recent data highlight the importance of amino acid and fatty acid metabolism in providing the fuel necessary for the proper functioning of OBs. Among the amino acids, it has been reported that OBs are largely dependent on glutamine (Gln) for their differentiation and activity. In this review, we describe the main metabolic pathways governing OBs' fate and functions, both in physiological and pathological malignant conditions. In particular, we focus on multiple myeloma (MM) bone disease, which is characterized by a severe imbalance in OB differentiation due to the presence of malignant plasma cells into the bone microenvironment. Here, we describe the most important metabolic alterations involved in the inhibition of OB formation and activity in MM patients.
Collapse
Affiliation(s)
- Oxana Lungu
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Denise Toscani
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | | | - Nicola Giuliani
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Hematology, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy
- Correspondence:
| |
Collapse
|
4
|
Solimando AG, Da Vià MC, Bolli N, Steinbrunn T. The Route of the Malignant Plasma Cell in Its Survival Niche: Exploring “Multiple Myelomas”. Cancers (Basel) 2022; 14:cancers14133271. [PMID: 35805041 PMCID: PMC9265748 DOI: 10.3390/cancers14133271] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 02/04/2023] Open
Abstract
Growing evidence points to multiple myeloma (MM) and its stromal microenvironment using several mechanisms to subvert effective immune and anti-tumor responses. Recent advances have uncovered the tumor-stromal cell influence in regulating the immune-microenvironment and have envisioned targeting these suppressive pathways to improve therapeutic outcomes. Nevertheless, some subgroups of patients include those with particularly unfavorable prognoses. Biological stratification can be used to categorize patient-, disease- or therapy-related factors, or alternatively, these biological determinants can be included in a dynamic model that customizes a given treatment to a specific patient. Genetic heterogeneity and current knowledge enforce a systematic and comprehensive bench-to-bedside approach. Given the increasing role of cancer stem cells (CSCs) in better characterizing the pathogenesis of solid and hematological malignancies, disease relapse, and drug resistance, identifying and describing CSCs is of paramount importance in the management of MM. Even though the function of CSCs is well-known in other cancer types, their role in MM remains elusive. With this review, we aim to provide an update on MM homing and resilience in the bone marrow micro milieu. These data are particularly interesting for clinicians facing unmet medical needs while designing novel treatment approaches for MM.
Collapse
Affiliation(s)
- Antonio Giovanni Solimando
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine ‘G. Baccelli’, University of Bari Medical School, 70124 Bari, Italy
- Department of Medicine II, University Hospital of Würzburg, 97080 Würzburg, Germany
- Correspondence: (A.G.S.); (T.S.); Tel.: +39-3395626475 (A.G.S.)
| | - Matteo Claudio Da Vià
- Hematology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.C.D.V.); (N.B.)
| | - Niccolò Bolli
- Hematology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.C.D.V.); (N.B.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Torsten Steinbrunn
- Department of Medicine II, University Hospital of Würzburg, 97080 Würzburg, Germany
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
- Correspondence: (A.G.S.); (T.S.); Tel.: +39-3395626475 (A.G.S.)
| |
Collapse
|
5
|
Current Understanding of Myelomatous Mesenchymal Stromal Cells Extended through Advances in Experimental Methods. Cancers (Basel) 2020; 13:cancers13010025. [PMID: 33374627 PMCID: PMC7793501 DOI: 10.3390/cancers13010025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 01/03/2023] Open
Abstract
Simple Summary As the amount of information available has grown, now it is known that many types of non-hematopoietic cells, including mesenchymal stem/progenitor cells, mature mesenchymal cells, and endothelial cells, as well as mature hematopoietic cells such as monocytes, macrophages, T-cells, and B-cells, have roles in the pathogenesis of multiple myeloma. This review focuses on the role of mesenchymal cells in the microenvironment of multiple myeloma. We summarize the experimental strategies and current understanding of the biological roles in the pathogenesis of myeloma. Furthermore, we discuss the possible clinical applications targeting mesenchymal cells. Abstract Multiple myeloma is an incurable cancer formed by malignant plasma cells. For the proliferation and survival of myeloma cells, as well as the occurrence of the complications, numerous intra- and extra-cellular mechanisms are involved. The interaction of myeloma cells with the microenvironment is known to be one of the most critical mechanisms. A specific microenvironment could affect the progression and growth of tumor cells, as well as drug resistance. Among various microenvironment components, such as hematological and non-hematological cells, and soluble factors (cytokines, chemokines, and extracellular matrix (ECM) proteins), in this review, we focus on the role of mesenchymal cells. We aimed to summarize the experimental strategies used for conducting studies and current understanding of the biological roles in the pathogenesis of myeloma. Furthermore, we discuss the possible clinical applications targeting mesenchymal cells.
Collapse
|
6
|
Phase 2 study of clarithromycin, pomalidomide, and dexamethasone in relapsed or refractory multiple myeloma. Blood Adv 2020; 3:603-611. [PMID: 30792190 DOI: 10.1182/bloodadvances.2018028027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/15/2019] [Indexed: 01/17/2023] Open
Abstract
The addition of clarithromycin enhances the efficacy of lenalidomide plus dexamethasone in treatment-naive multiple myeloma (MM). We conducted a phase 2 trial to evaluate the safety and efficacy of clarithromycin, pomalidomide, and dexamethasone (ClaPd) in relapsed or refractory multiple myeloma (RRMM) with prior lenalidomide exposure. One hundred twenty patients with a median of 5 prior lines of therapy received clarithromycin 500 mg orally twice daily, pomalidomide 4 mg orally on days 1 to 21, and dexamethasone 40 mg orally on days 1, 8, 15, and 22 of a 28-day cycle. The overall response rate (ORR) was 60% with 23% achieving at least a very good partial response. There was no statistical difference in response rates for patients who were refractory to lenalidomide (ORR, 58%), bortezomib (ORR, 55%), or both lenalidomide and bortezomib (ORR, 54%). Median progression-free survival (PFS) for the cohort was 7.7 months and median overall survival (OS) was 19.2 months. A history of dual-refractoriness to lenalidomide and bortezomib did not significantly impact either PFS or OS. The most common toxicities were neutropenia (83%), lymphopenia (74%), and thrombocytopenia (71%). The most common grade ≥3 toxicities included neutropenia (58%), thrombocytopenia (31%), and anemia (28%). ClaPd is an effective combination in RRMM with response and survival outcomes that are independent of lenalidomide- or bortezomib-refractory status. Toxicities are manageable with low rates of nonhematologic or high-grade events. ClaPd is a convenient, all-oral option in RRMM with comparable efficacy to other highly active, 3-drug, pomalidomide-based combinations. This trial was registered at www.clinicaltrials.gov as #NCT01159574.
Collapse
|
7
|
Yu K, Yin Y, Ma D, Lu T, Wei D, Xiong J, Zhou Z, Zhang T, Zhang S, Fang Q, Wang J. Shp2 activation in bone marrow microenvironment mediates the drug resistance of B-cell acute lymphoblastic leukemia through enhancing the role of VCAM-1/VLA-4. Int Immunopharmacol 2020; 80:106008. [PMID: 31978797 DOI: 10.1016/j.intimp.2019.106008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/09/2019] [Accepted: 10/25/2019] [Indexed: 02/03/2023]
Abstract
B-cell acute lymphoblastic leukemia (B-ALL) is immune to the chemotherapy-induced apoptosis as a result of the protection of bone marrow mesenchymal stromal cells (BMSCs). However, the precise underlying mechanism of such protection remains unclear so far. In this experiment, protein tyrosine phosphatase 2 (Shp2), which was encoded by the PTPN11 gene, was highly expressed in BMSCs of the newly diagnosed and the recurrent B-ALL patients. The plasmid-induced (including Shp2 E76K) Shp2 activation in BMSCs (Shp2-activated BMSCs) markedly increased the BMSCs-mediated resistance of leukemia cells both in vitro and in vivo. Additionally, studies in vitro suggested that, the expression of vascular cell adhesion molecule 1 (VCAM-1) was markedly up-regulated in Shp2-activated BMSCs, and VCAM-1 expression in BMSCs of B-ALL patients was negatively correlated with Shp2 expression. Down-regulation of VCAM-1 in BMSCs using siRNA reversed the resistance of CCRF-SB cells mediated by the Shp2-activated BMSCs. As for the molecular mechanism, the PI3K/AKT pathway mediated the regulation of VCAM-1 by Shp2. Blocking the very late antigen-4 (VLA-4) by antibodies in CCRF-SB cells dramatically reversed the resistance of CCRF-SB cells mediated by the Shp2-activated BMSCs, and decreased the adhesion effects of both CCRF-SB cells and BMSCs. In conclusion, Shp2 activation in BMSCs up-regulates VCAM-1 expression through increasing the PI3K/AKT phosphorylation level, and targeting the VCAM-1/VLA-4 signaling may serve as a clinically relevant mechanism to overcome the BMSCs-mediated chemoresistance of B-ALL cells.
Collapse
Affiliation(s)
- Kunlin Yu
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Laboratory of Hematopoietic Stem Cell Transplantation Centre of Guizhou Province, Guiyang, Guizhou, China; College of Pharmacy, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yi Yin
- Department of Imaging, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Dan Ma
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Laboratory of Hematopoietic Stem Cell Transplantation Centre of Guizhou Province, Guiyang, Guizhou, China
| | - Tingting Lu
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Laboratory of Hematopoietic Stem Cell Transplantation Centre of Guizhou Province, Guiyang, Guizhou, China
| | - Danna Wei
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Laboratory of Hematopoietic Stem Cell Transplantation Centre of Guizhou Province, Guiyang, Guizhou, China
| | - Jie Xiong
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Laboratory of Hematopoietic Stem Cell Transplantation Centre of Guizhou Province, Guiyang, Guizhou, China.
| | - Zheng Zhou
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Laboratory of Hematopoietic Stem Cell Transplantation Centre of Guizhou Province, Guiyang, Guizhou, China.
| | - Tianzhuo Zhang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Laboratory of Hematopoietic Stem Cell Transplantation Centre of Guizhou Province, Guiyang, Guizhou, China
| | - Siyu Zhang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Laboratory of Hematopoietic Stem Cell Transplantation Centre of Guizhou Province, Guiyang, Guizhou, China; College of Pharmacy, Guizhou Medical University, Guiyang, Guizhou, China
| | - Qin Fang
- Department of Pharmacy, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China.
| | - Jishi Wang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Laboratory of Hematopoietic Stem Cell Transplantation Centre of Guizhou Province, Guiyang, Guizhou, China.
| |
Collapse
|
8
|
Stanković T, Dinić J, Podolski-Renić A, Musso L, Burić SS, Dallavalle S, Pešić M. Dual Inhibitors as a New Challenge for Cancer Multidrug Resistance Treatment. Curr Med Chem 2019; 26:6074-6106. [PMID: 29874992 DOI: 10.2174/0929867325666180607094856] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/28/2018] [Accepted: 05/28/2018] [Indexed: 12/23/2022]
Abstract
BACKGROUND Dual-targeting in cancer treatment by a single drug is an unconventional approach in relation to drug combinations. The rationale for the development of dualtargeting agents is to overcome incomplete efficacy and drug resistance frequently present when applying individual targeting agents. Consequently, -a more favorable outcome of cancer treatment is expected with dual-targeting strategies. METHODS We reviewed the literature, concentrating on the association between clinically relevant and/or novel dual inhibitors with the potential to modulate multidrug resistant phenotype of cancer cells, particularly the activity of P-glycoprotein. A balanced analysis of content was performed to emphasize the most important findings and optimize the structure of this review. RESULTS Two-hundred and forty-five papers were included in the review. The introductory part was interpreted by 9 papers. Tyrosine kinase inhibitors' role in the inhibition of Pglycoprotein and chemosensitization was illustrated by 87 papers. The contribution of naturalbased compounds in overcoming multidrug resistance was reviewed using 92 papers, while specific dual inhibitors acting against microtubule assembling and/or topoisomerases were described with 55 papers. Eleven papers gave an insight into a novel and less explored approach with hybrid drugs. Their influence on P-glycoprotein and multidrug resistance was also evaluated. CONCLUSION These findings bring into focus rational anticancer strategies with dual-targeting agents. Most evaluated synthetic and natural drugs showed a great potential in chemosensitization. Further steps in this direction are needed for the optimization of anticancer treatment.
Collapse
Affiliation(s)
- Tijana Stanković
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Jelena Dinić
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Ana Podolski-Renić
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Loana Musso
- DeFENS, Department of Food, Environmental and Nutritional Sciences, Universita degli Studi di Milano, Milano, Italy
| | - Sonja Stojković Burić
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Sabrina Dallavalle
- DeFENS, Department of Food, Environmental and Nutritional Sciences, Universita degli Studi di Milano, Milano, Italy
| | - Milica Pešić
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| |
Collapse
|
9
|
Liu J, Song T, Zhou W, Xing L, Wang S, Ho M, Peng Z, Tai YT, Hideshima T, Anderson KC, Cang Y. A genome-scale CRISPR-Cas9 screening in myeloma cells identifies regulators of immunomodulatory drug sensitivity. Leukemia 2018; 33:171-180. [PMID: 30026574 DOI: 10.1038/s41375-018-0205-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/03/2018] [Accepted: 06/08/2018] [Indexed: 12/31/2022]
Abstract
Immunomodulatory drugs (IMiDs) including lenalidomide and pomalidomide bind cereblon (CRBN) and activate the CRL4CRBN ubiquitin ligase to trigger proteasomal degradation of the essential transcription factors IKZF1 and IKZF3 and multiple myeloma (MM) cytotoxicity. We have shown that CRBN is also targeted for degradation by SCFFbxo7 ubiquitin ligase. In the current study, we explored the mechanisms underlying sensitivity of MM cells to IMiDs using genome-wide CRISPR-Cas9 screening. We validate that CSN9 signalosome complex, a deactivator of Cullin-RING ubiquitin ligase, inhibits SCFFbxo7 E3 ligase-mediated CRBN degradation, thereby conferring sensitivity to IMiDs; conversely, loss of function of CSN9 signalosome activates SCFFbxo7 complex, thereby enhancing degradation of CRBN and conferring IMiD resistance. Finally, we show that pretreatment with either proteasome inhibitors or NEDD8 activating enzyme (NAE) inhibitors can abrogate degradation and maintain levels of CRBN, thereby enhancing sensitivity to IMiDs. These studies therefore demonstrate that CSN9 signalosome complex regulates sensitivity to IMiDs by modulating CRBN expression.
Collapse
Affiliation(s)
- Jiye Liu
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Tianyu Song
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Wenrong Zhou
- Oncology Business Unit and Innovation Center for Cell Signalling Network, WuXi AppTec Group, Shanghai, China
| | - Lijie Xing
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Su Wang
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Matthew Ho
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Zhengang Peng
- Oncology Business Unit and Innovation Center for Cell Signalling Network, WuXi AppTec Group, Shanghai, China
| | - Yu-Tzu Tai
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Teru Hideshima
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Kenneth C Anderson
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | - Yong Cang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
10
|
Xu S, De Veirman K, De Becker A, Vanderkerken K, Van Riet I. Mesenchymal stem cells in multiple myeloma: a therapeutical tool or target? Leukemia 2018; 32:1500-1514. [PMID: 29535427 PMCID: PMC6035148 DOI: 10.1038/s41375-018-0061-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 01/08/2018] [Accepted: 01/16/2018] [Indexed: 12/13/2022]
Abstract
Multiple myeloma (MM) is a malignant plasma cell (PC) disorder, characterized by a complex interactive network of tumour cells and the bone marrow (BM) stromal microenvironment, contributing to MM cell survival, proliferation and chemoresistance. Mesenchymal stem cells (MSCs) represent the predominant stem cell population of the bone marrow stroma, capable of differentiating into multiple cell lineages, including fibroblasts, adipocytes, chondrocytes and osteoblasts. MSCs can migrate towards primary tumours and metastatic sites, implying that these cells might modulate tumour growth and metastasis. However, this issue remains controversial and is not well understood. Interestingly, several recent studies have shown functional abnormalities of MM patient-derived MSCs indicating that MSCs are not just by-standers in the BM microenvironment but rather active players in the pathophysiology of this disease. It appears that the complex interaction of MSCs and MM cells is critical for MM development and disease outcome. This review will focus on the current understanding of the biological role of MSCs in MM as well as the potential utility of MSC-based therapies in this malignancy.
Collapse
Affiliation(s)
- Song Xu
- Department of Lung Cancer Surgery, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Kim De Veirman
- Department Hematology- Stem Cell Laboratory, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
- Research Group Hematology and Immunology-Vrije Universiteit Brussel (VUB), Myeloma Center Brussels, Brussels, Belgium
| | - Ann De Becker
- Department Hematology- Stem Cell Laboratory, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Karin Vanderkerken
- Research Group Hematology and Immunology-Vrije Universiteit Brussel (VUB), Myeloma Center Brussels, Brussels, Belgium
| | - Ivan Van Riet
- Department Hematology- Stem Cell Laboratory, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium.
- Research Group Hematology and Immunology-Vrije Universiteit Brussel (VUB), Myeloma Center Brussels, Brussels, Belgium.
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW Bone disease is a defining characteristic of multiple myeloma (MM) and the major cause of morbidity. It manifests as lytic lesions or osteopenia and is often associated with severe pain, pathological fracture, spinal cord compression, vertebral collapse, and hypercalcemia. Here, we have reviewed recent data on understanding its biology and treatment. RECENT FINDINGS The imbalance between bone regeneration and bone resorption underlies the pathogenesis of osteolytic bone disease. Increased osteoclast proliferation and activity accompanied by inhibition of bone-forming osteoblasts leads to progressive bone loss and lytic lesions. Although tremendous progress has been made, MM remains an incurable disease. Novel agents targeting bone disease are under investigation with the goal of not only preventing bone loss and improving bone quality but also harnessing MM tumor growth. Current data illustrate that the interactions between MM cells and the tumor-bone microenvironment contribute to the bone disease and continued MM progression. A better understanding of this microenvironment is critical for novel therapeutic treatments of both MM and associated bone disease.
Collapse
Affiliation(s)
- Cristina Panaroni
- Center for Multiple Myeloma, Massachusetts General Hospital Cancer Center, Professional Office Building 216, 55 Fruit Street, Boston, MA, 02114, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Andrew J Yee
- Center for Multiple Myeloma, Massachusetts General Hospital Cancer Center, Professional Office Building 216, 55 Fruit Street, Boston, MA, 02114, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Noopur S Raje
- Center for Multiple Myeloma, Massachusetts General Hospital Cancer Center, Professional Office Building 216, 55 Fruit Street, Boston, MA, 02114, USA.
- Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
12
|
Kaplan GS, Torcun CC, Grune T, Ozer NK, Karademir B. Proteasome inhibitors in cancer therapy: Treatment regimen and peripheral neuropathy as a side effect. Free Radic Biol Med 2017; 103:1-13. [PMID: 27940347 DOI: 10.1016/j.freeradbiomed.2016.12.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/22/2016] [Accepted: 12/04/2016] [Indexed: 01/10/2023]
Abstract
Proteasomal system plays an important role in protein turnover, which is essential for homeostasis of cells. Besides degradation of oxidized proteins, it is involved in the regulation of many different signaling pathways. These pathways include mainly cell differentiation, proliferation, apoptosis, transcriptional activation and angiogenesis. Thus, proteasomal system is a crucial target for treatment of several diseases including neurodegenerative diseases, cystic fibrosis, atherosclerosis, autoimmune diseases, diabetes and cancer. Over the last fifteen years, proteasome inhibitors have been tested to highlight their mechanisms of action and used in the clinic to treat different types of cancer. Proteasome inhibitors are mainly used in combinational therapy along with classical chemo-radiotherapy. Several studies have proved their significant effects but serious side effects such as peripheral neuropathy, limits their use in required effective doses. Recent studies focus on peripheral neuropathy as the primary side effect of proteasome inhibitors. Therefore, it is important to delineate the underlying mechanisms of peripheral neuropathy and develop new inhibitors according to obtained data. This review will detail the role of proteasome inhibition in cancer therapy and development of peripheral neuropathy as a side effect. Additionally, new approaches to prevent treatment-limiting side effects will be discussed in order to help researchers in developing effective strategies to overcome side effects of proteasome inhibitors.
Collapse
Affiliation(s)
- Gulce Sari Kaplan
- Department of Biochemistry, School of Medicine/Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, 34854 Maltepe, Istanbul, Turkey
| | - Ceyda Corek Torcun
- Department of Biochemistry, School of Medicine/Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, 34854 Maltepe, Istanbul, Turkey
| | - Tilman Grune
- Department for Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
| | - Nesrin Kartal Ozer
- Department of Biochemistry, School of Medicine/Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, 34854 Maltepe, Istanbul, Turkey
| | - Betul Karademir
- Department of Biochemistry, School of Medicine/Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, 34854 Maltepe, Istanbul, Turkey.
| |
Collapse
|
13
|
Furukawa M, Ohkawara H, Ogawa K, Ikeda K, Ueda K, Shichishima-Nakamura A, Ito E, Imai JI, Yanagisawa Y, Honma R, Watanabe S, Waguri S, Ikezoe T, Takeishi Y. Autocrine and Paracrine Interactions between Multiple Myeloma Cells and Bone Marrow Stromal Cells by Growth Arrest-specific Gene 6 Cross-talk with Interleukin-6. J Biol Chem 2017; 292:4280-4292. [PMID: 28154173 DOI: 10.1074/jbc.m116.733030] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 01/19/2017] [Indexed: 12/12/2022] Open
Abstract
The pathogenesis of multiple myeloma (MM) has not yet been fully elucidated. Our microarray analysis and immunohistochemistry revealed significant up-regulation of growth arrest-specific gene 6 (Gas6), a vitamin K-dependent protein with a structural homology with protein S, in bone marrow (BM) cells of MM patients. ELISA showed that the serum levels of soluble Gas6 were significantly increased in the MM patients when compared with healthy controls. Gas6 was overexpressed in the human CD138-positive MM cell line RPMI-8226. Exogenous Gas6 suppressed apoptosis induced by serum deprivation and enhanced cell proliferation of the MM cells. The conditional medium from the human BM stromal cell line HS-5 induced cell proliferation and anti-apoptosis of the MM cells with extracellular signal-regulated kinase, Akt, and nuclear factor-κB phosphorylation, which were reversed by the neutralizing antibody to Gas6 or IL-6. The TAM family receptor Mer, which has been identified as a Gas6 receptor, was overexpressed in BM cells of MM patients. The knockdown of Mer by siRNA inhibited cell proliferation, anti-apoptosis, and up-regulation of intercellular cell adhesion molecule-1 (ICAM-1) in MM cells stimulated by an HS-5 cell-conditioned medium. Furthermore, the Gas6-neutralizing antibody reduced the up-regulation of IL-6 and ICAM-1 induced by a HS-5 cell-conditioned medium in MM cells. The present study provides new evidence that autocrine and paracrine stimulation of Gas6 in concert with IL-6 contributes to the pathogenesis of MM, suggesting that Gas6-Mer-related signaling pathways may be a promising novel target for treating MM.
Collapse
Affiliation(s)
| | | | | | - Kazuhiko Ikeda
- From the Departments of Hematology.,Blood Transfusion and Transplantation Immunology, and
| | | | | | - Emi Ito
- the Translational Research Center, Fukushima Medical University, Fukushima 960-1295 and
| | - Jun-Ichi Imai
- the Translational Research Center, Fukushima Medical University, Fukushima 960-1295 and
| | - Yuka Yanagisawa
- the Translational Research Center, Fukushima Medical University, Fukushima 960-1295 and
| | | | - Shinya Watanabe
- the Translational Research Center, Fukushima Medical University, Fukushima 960-1295 and
| | - Satoshi Waguri
- the Translational Research Center, Fukushima Medical University, Fukushima 960-1295 and
| | | | | |
Collapse
|
14
|
Dotterweich J, Schlegelmilch K, Keller A, Geyer B, Schneider D, Zeck S, Tower RJJ, Ebert R, Jakob F, Schütze N. Contact of myeloma cells induces a characteristic transcriptome signature in skeletal precursor cells -Implications for myeloma bone disease. Bone 2016; 93:155-166. [PMID: 27519972 DOI: 10.1016/j.bone.2016.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 06/24/2016] [Accepted: 08/08/2016] [Indexed: 10/21/2022]
Abstract
Physical interaction of skeletal precursors with multiple myeloma cells has been shown to suppress their osteogenic potential while favoring their tumor-promoting features. Although several transcriptome analyses of myeloma patient-derived mesenchymal stem cells have displayed differences compared to their healthy counterparts, these analyses insufficiently reflect the signatures mediated by tumor cell contact, vary due to different methodologies, and lack results in lineage-committed precursors. To determine tumor cell contact-mediated changes on skeletal precursors, we performed transcriptome analyses of mesenchymal stem cells and osteogenic precursor cells cultured in contact with the myeloma cell line INA-6. Comparative analyses confirmed dysregulation of genes which code for known disease-relevant factors and additionally revealed upregulation of genes that are associated with plasma cell homing, adhesion, osteoclastogenesis, and angiogenesis. Osteoclast-derived coupling factors, a dysregulated adipogenic potential, and an imbalance in favor of anti-anabolic factors may play a role in the hampered osteoblast differentiation potential of mesenchymal stem cells. Angiopoietin-Like 4 (ANGPTL4) was selected from a list of differentially expressed genes as a myeloma cell contact-dependent target in skeletal precursor cells which warranted further functional analyses. Adhesion assays with full-length ANGPTL4-coated plates revealed a potential role of this protein in INA-6 cell attachment. This study expands knowledge of the myeloma cell contact-induced signature in the stromal compartment of myelomatous bones and thus offers potential targets that may allow detection and treatment of myeloma bone disease at an early stage.
Collapse
Affiliation(s)
- Julia Dotterweich
- Orthopedic Center for Musculoskeletal Research, Orthopedic Department, University of Würzburg, Würzburg, Germany
| | - Katrin Schlegelmilch
- Orthopedic Center for Musculoskeletal Research, Orthopedic Department, University of Würzburg, Würzburg, Germany
| | - Alexander Keller
- DNA-Analytics Core Facility, Biocenter and Department of Animal Ecology and Tropical Biology, University of Würzburg, Würzburg, Germany
| | - Beate Geyer
- Orthopedic Center for Musculoskeletal Research, Orthopedic Department, University of Würzburg, Würzburg, Germany
| | - Doris Schneider
- Orthopedic Center for Musculoskeletal Research, Orthopedic Department, University of Würzburg, Würzburg, Germany
| | - Sabine Zeck
- Orthopedic Center for Musculoskeletal Research, Orthopedic Department, University of Würzburg, Würzburg, Germany
| | - Robert J J Tower
- Section Biomedical Imaging, MOIN CC, Department of Radiology and Neuroradiology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Regina Ebert
- Orthopedic Center for Musculoskeletal Research, Orthopedic Department, University of Würzburg, Würzburg, Germany
| | - Franz Jakob
- Orthopedic Center for Musculoskeletal Research, Orthopedic Department, University of Würzburg, Würzburg, Germany.
| | - Norbert Schütze
- Orthopedic Center for Musculoskeletal Research, Orthopedic Department, University of Würzburg, Würzburg, Germany
| |
Collapse
|
15
|
Tumor necrosis factor α in the onset and progression of leukemia. Exp Hematol 2016; 45:17-26. [PMID: 27833035 DOI: 10.1016/j.exphem.2016.10.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/30/2016] [Accepted: 10/06/2016] [Indexed: 12/17/2022]
Abstract
Tumor necrosis factor alpha (TNF-α), originally described as an anti-neoplastic cytokine, has been found, in apparent contradiction to its name, to play an important role in promoting the development and progression of malignant disease. Targeting TNF-α with TNF antagonists has elicited an objective response in certain solid tumors in phase I and II clinical trials. This review focuses on the relationship of TNF-α expressed by leukemia cells and adverse clinical features of leukemia. TNF-α is involved in all steps of leukemogenesis, including cellular transformation, proliferation, angiogenesis, and extramedullary infiltration. TNF-α is also an important factor in the tumor microenvironment and assists leukemia cells in immune evasion, survival, and resistance to chemotherapy. TNF-α may be a potent target for leukemia therapy.
Collapse
|
16
|
Baertsch MA, Schlenzka J, Mai EK, Merz M, Hillengaß J, Raab MS, Hose D, Wuchter P, Ho AD, Jauch A, Hielscher T, Kunz C, Luntz S, Klein S, Schmidt-Wolf IGH, Goerner M, Schmidt-Hieber M, Reimer P, Graeven U, Fenk R, Salwender H, Scheid C, Nogai A, Haenel M, Lindemann HW, Martin H, Noppeney R, Weisel K, Goldschmidt H. Rationale and design of the German-Speaking Myeloma Multicenter Group (GMMG) trial ReLApsE: a randomized, open, multicenter phase III trial of lenalidomide/dexamethasone versus lenalidomide/dexamethasone plus subsequent autologous stem cell transplantation and lenalidomide maintenance in patients with relapsed multiple myeloma. BMC Cancer 2016; 16:290. [PMID: 27114074 PMCID: PMC4845347 DOI: 10.1186/s12885-016-2321-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 04/15/2016] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Despite novel therapeutic agents, most multiple myeloma (MM) patients eventually relapse. Two large phase III trials have shown significantly improved response rates (RR) of lenalidomide/dexamethasone compared with placebo/dexamethasone in relapsed MM (RMM) patients. These results have led to the approval of lenalidomide for RMM patients and lenalidomide/dexamethasone has since become a widely accepted second-line treatment. Furthermore, in RMM patients consolidation with high-dose chemotherapy plus autologous stem cell transplantation has been shown to significantly increase progression free survival (PFS) as compared to cyclophosphamide in a phase III trial. The randomized prospective ReLApsE trial is designed to evaluate PFS after lenalidomide/dexamethasone induction, high-dose chemotherapy consolidation plus autologous stem cell transplantation and lenalidomide maintenance compared with the well-established lenalidomide/dexamethasone regimen in RMM patients. METHODS/DESIGN ReLApsE is a randomized, open, multicenter phase III trial in a planned study population of 282 RMM patients. All patients receive three lenalidomide/dexamethasone cycles and--in absence of available stem cells from earlier harvesting--undergo peripheral blood stem cell mobilization and harvesting. Subsequently, patients in arm A continue on consecutive lenalidomide/dexamethasone cycles, patients in arm B undergo high dose chemotherapy plus autologous stem cell transplantation followed by lenalidomide maintenance until discontinuation criteria are met. Therapeutic response is evaluated after the 3(rd) (arm A + B) and the 5(th) lenalidomide/dexamethasone cycle (arm A) or 2 months after autologous stem cell transplantation (arm B) and every 3 months thereafter (arm A + B). After finishing the study treatment, patients are followed up for survival and subsequent myeloma therapies. The expected trial duration is 6.25 years from first patient in to last patient out. The primary endpoint is PFS, secondary endpoints include overall survival (OS), RR, time to best response and the influence of early versus late salvage high dose chemotherapy plus autologous stem cell transplantation on OS. DISCUSSION This phase III trial is designed to evaluate whether high dose chemotherapy plus autologous stem cell transplantation and lenalidomide maintenance after lenalidomide/dexamethasone induction improves PFS compared with the well-established continued lenalidomide/dexamethasone regimen in RMM patients. TRIAL REGISTRATION ISRCTN16345835 (date of registration 2010-08-24).
Collapse
Affiliation(s)
- Marc-Andrea Baertsch
- />Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Jana Schlenzka
- />Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Elias K. Mai
- />Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Maximilian Merz
- />Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Jens Hillengaß
- />Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Marc S. Raab
- />Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Dirk Hose
- />Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Patrick Wuchter
- />Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Anthony D. Ho
- />Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Anna Jauch
- />Institute for Human Genetics, University of Heidelberg, Heidelberg, Germany
| | - Thomas Hielscher
- />Division of Biostatistics, German Cancer Research Center, Heidelberg, Germany
| | - Christina Kunz
- />Division of Biostatistics, German Cancer Research Center, Heidelberg, Germany
| | - Steffen Luntz
- />Coordination Centre for Clinical Trials (KKS), University Hospital Heidelberg, Heidelberg, Germany
| | - Stefan Klein
- />Hematology and Oncology, University Hospital Mannheim, Mannheim, Germany
| | - Ingo G. H. Schmidt-Wolf
- />Center for Integrated Oncology, Med. Klinik und Poliklinik III, University Hospital Bonn, Bonn, Germany
| | - Martin Goerner
- />Hematology, Oncology and Palliative Care, Community Hospital Bielefeld, Bielefeld, Germany
| | | | - Peter Reimer
- />Hematology, Oncology and Stem Cell Transplantation, Evangelisches Krankenhaus Essen-Werden gGmbH, Essen, Germany
| | - Ullrich Graeven
- />Hematology, Oncology and Gastroenterology, Maria-Hilf-Krankenhaus, Mönchengladbach, Germany
| | - Roland Fenk
- />Hematology, Oncology and Clinical Immunology, University of Duesseldorf, Duesseldorf, Germany
| | - Hans Salwender
- />Hematology, Oncology and Palliative Care, Asklepios Klinik Altona, Hamburg, Germany
| | - Christof Scheid
- />Department I of Internal Medicine, University of Cologne, Cologne, Germany
| | - Axel Nogai
- />Internal Medicine III, Charité Campus Benjamin Franklin, Berlin, Germany
| | - Mathias Haenel
- />Hematology, Oncology and Stem Cell Transplantation, Klinikum Chemnitz GmbH, Chemnitz, Germany
| | - Hans W. Lindemann
- />Hematology and Oncology, Kath. Krankenhaus Hagen gem. GmbH - St.-Marien-Hospital, Hagen, Germany
| | - Hans Martin
- />Hematology and Oncology, Goethe University, Frankfurt, Germany
| | | | - Katja Weisel
- />Hematology, Oncology and Immunology, University of Tuebingen, Tuebingen, Germany
| | - Hartmut Goldschmidt
- />Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
- />National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
17
|
Gullà A, Di Martino MT, Gallo Cantafio ME, Morelli E, Amodio N, Botta C, Pitari MR, Lio SG, Britti D, Stamato MA, Hideshima T, Munshi NC, Anderson KC, Tagliaferri P, Tassone P. A 13 mer LNA-i-miR-221 Inhibitor Restores Drug Sensitivity in Melphalan-Refractory Multiple Myeloma Cells. Clin Cancer Res 2016; 22:1222-33. [PMID: 26527748 PMCID: PMC4775414 DOI: 10.1158/1078-0432.ccr-15-0489] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 10/29/2015] [Indexed: 12/31/2022]
Abstract
PURPOSE The onset of drug resistance is a major cause of treatment failure in multiple myeloma. Although increasing evidence is defining the role of miRNAs in mediating drug resistance, their potential activity as drug-sensitizing agents has not yet been investigated in multiple myeloma. EXPERIMENTAL DESIGN Here we studied the potential utility of miR-221/222 inhibition in sensitizing refractory multiple myeloma cells to melphalan. RESULTS miR-221/222 expression inversely correlated with melphalan sensitivity of multiple myeloma cells. Inhibition of miR-221/222 overcame melphalan resistance and triggered apoptosis of multiple myeloma cells in vitro, in the presence or absence of human bone marrow (BM) stromal cells. Decreased multiple myeloma cell growth induced by inhibition of miR-221/222 plus melphalan was associated with a marked upregulation of pro-apoptotic BBC3/PUMA protein, a miR-221/222 target, as well as with modulation of drug influx-efflux transporters SLC7A5/LAT1 and the ABC transporter ABCC1/MRP1. Finally, in vivo treatment of SCID/NOD mice bearing human melphalan-refractory multiple myeloma xenografts with systemic locked nucleic acid (LNA) inhibitors of miR-221 (LNA-i-miR-221) plus melphalan overcame drug resistance, evidenced by growth inhibition with significant antitumor effects together with modulation of PUMA and ABCC1 in tumors retrieved from treated mice. CONCLUSIONS Taken together, our findings provide the proof of concept that LNA-i-miR-221 can reverse melphalan resistance in preclinical models of multiple myeloma, providing the framework for clinical trials to overcome drug resistance, and improve patient outcome in multiple myeloma.
Collapse
Affiliation(s)
- Annamaria Gullà
- Department of Experimental and Clinical Medicine, Magna Græcia University, Campus Salvatore Venuta, Catanzaro, Italy
| | - Maria Teresa Di Martino
- Department of Experimental and Clinical Medicine, Magna Græcia University, Campus Salvatore Venuta, Catanzaro, Italy
| | - Maria Eugenia Gallo Cantafio
- Department of Experimental and Clinical Medicine, Magna Græcia University, Campus Salvatore Venuta, Catanzaro, Italy
| | - Eugenio Morelli
- Department of Experimental and Clinical Medicine, Magna Græcia University, Campus Salvatore Venuta, Catanzaro, Italy
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Græcia University, Campus Salvatore Venuta, Catanzaro, Italy
| | - Cirino Botta
- Department of Experimental and Clinical Medicine, Magna Græcia University, Campus Salvatore Venuta, Catanzaro, Italy
| | - Maria Rita Pitari
- Department of Experimental and Clinical Medicine, Magna Græcia University, Campus Salvatore Venuta, Catanzaro, Italy
| | - Santo Giovanni Lio
- Pathology Unit, "Giovanni Paolo II" Hospital, Lamezia Terme, Catanzaro, Italy
| | - Domenico Britti
- Department of Experimental and Clinical Medicine, Magna Græcia University, Campus Salvatore Venuta, Catanzaro, Italy
| | - Maria Angelica Stamato
- Department of Experimental and Clinical Medicine, Magna Græcia University, Campus Salvatore Venuta, Catanzaro, Italy
| | - Teru Hideshima
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Nikhil C Munshi
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Boston, Massachusetts. VA Boston Healthcare System, West Roxbury, Boston, Massachusetts
| | - Kenneth C Anderson
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Pierosandro Tagliaferri
- Department of Experimental and Clinical Medicine, Magna Græcia University, Campus Salvatore Venuta, Catanzaro, Italy
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Græcia University, Campus Salvatore Venuta, Catanzaro, Italy. Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, Pennsylvania.
| |
Collapse
|
18
|
Mysore VS, Szablowski J, Dervan PB, Frost PJ. A DNA-binding Molecule Targeting the Adaptive Hypoxic Response in Multiple Myeloma Has Potent Antitumor Activity. Mol Cancer Res 2016; 14:253-66. [PMID: 26801054 DOI: 10.1158/1541-7786.mcr-15-0361] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 01/14/2016] [Indexed: 12/17/2022]
Abstract
UNLABELLED Multiple myeloma is incurable and invariably becomes resistant to chemotherapy. Although the mechanisms remain unclear, hypoxic conditions in the bone marrow have been implicated in contributing to multiple myeloma progression, angiogenesis, and resistance to chemotherapy. These effects occur via adaptive cellular responses mediated by hypoxia-inducible transcription factors (HIF), and targeting HIFs can have anticancer effects in both solid and hematologic malignancies. Here, it was found that in most myeloma cell lines tested, HIF1α, but not HIF2α expression was oxygen dependent, and this could be explained by the differential expression of the regulatory prolyl hydroxylase isoforms. The anti-multiple myeloma effects of a sequence-specific DNA-binding pyrrole-imidazole (Py-Im) polyamide (HIF-PA), which disrupts the HIF heterodimer from binding to its cognate DNA sequences, were also investigated. HIF-PA is cell permeable, localizes to the nuclei, and binds specific regions of DNA with an affinity comparable with that of HIFs. Most of the multiple myeloma cells were resistant to hypoxia-mediated apoptosis, and HIF-PA treatment could overcome this resistance in vitro. Using xenograft models, it was determined that HIF-PA significantly decreased tumor volume and increased hypoxic and apoptotic regions within solid tumor nodules and the growth of myeloma cells engrafted in the bone marrow. This provides a rationale for targeting the adaptive cellular hypoxic response of the O2-dependent activation of HIFα using polyamides. IMPLICATIONS Py-Im polyamides target and disrupt the adaptive hypoxic responses in multiple myeloma cells that may have clinical significance as a therapeutic strategy to treat myeloma engrafted in the bone marrow microenvironment.
Collapse
Affiliation(s)
- Veena S Mysore
- Greater Los Angeles Veterans Administration Healthcare System, Los Angeles, California. University of California, Los Angeles, Los Angeles, California
| | - Jerzy Szablowski
- Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, California
| | - Peter B Dervan
- Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, California
| | - Patrick J Frost
- Greater Los Angeles Veterans Administration Healthcare System, Los Angeles, California. University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
19
|
When and why should patients with hematologic malignancies see a palliative care specialist? Hematology 2015; 2015:471-8. [DOI: 10.1182/asheducation-2015.1.471] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Abstract
Palliative care is a multidisciplinary approach to symptom management, psychosocial support, and assistance in treatment decision-making for patients with serious illness and their families. It emphasizes well-being at any point along the disease trajectory, regardless of prognosis. The term “palliative care” is often incorrectly used as a synonym for end-of-life care, or “hospice care”. However, palliative care does not require a terminal diagnosis or proximity to death, a misconception that we will address in this article. Multiple randomized clinical trials demonstrate the many benefits of early integration of palliative care for patients with cancer, including reductions in symptom burden, improvements in quality-of-life, mood, and overall survival, as well as improved caregiver outcomes. Thus, early concurrent palliative care integrated with cancer-directed care has emerged as a standard-of-care practice for patients with cancer. However, patients with hematologic malignancies rarely utilize palliative care services, despite their many unmet palliative care needs, and are much less likely to use palliative care compared to patients with solid tumors. In this article, we will define “palliative care” and address some common misconceptions regarding its role as part of high-quality care for patients with cancer. We will then review the evidence supporting the integration of palliative care into comprehensive cancer care, discuss perceived barriers to palliative care in hematologic malignancies, and suggest opportunities and triggers for earlier and more frequent palliative care referral in this population.
Collapse
|
20
|
Kawano Y, Moschetta M, Manier S, Glavey S, Görgün GT, Roccaro AM, Anderson KC, Ghobrial IM. Targeting the bone marrow microenvironment in multiple myeloma. Immunol Rev 2015; 263:160-72. [PMID: 25510276 DOI: 10.1111/imr.12233] [Citation(s) in RCA: 281] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Multiple myeloma (MM) is characterized by clonal expansion of malignant plasma cells in the bone marrow (BM). Despite the significant advances in treatment, MM is still a fatal malignancy. This is mainly due to the supportive role of the BM microenvironment in differentiation, migration, proliferation, survival, and drug resistance of the malignant plasma cells. The BM microenvironment is composed of a cellular compartment (stromal cells, osteoblasts, osteoclasts, endothelial cells, and immune cells) and a non-cellular compartment. In this review, we discuss the interaction between the malignant plasma cell and the BM microenvironment and the strategy to target them.
Collapse
Affiliation(s)
- Yawara Kawano
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Cejalvo MJ, de la Rubia J. Front-line lenalidomide therapy in patients with newly diagnosed multiple myeloma. Future Oncol 2015; 11:1643-58. [PMID: 25857329 DOI: 10.2217/fon.15.51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The availability of novel drugs with different and innovative mechanisms of action such as proteasome inhibitors such as bortezomib and immunomdulatory agents as thalidomide and lenalidomide have changed the landscape of the treatment of patients with newly diagnosed multiple myeloma, allowing the development of several new therapeutic regimens both for transplant-eligible and -ineligible patients. Among these new agents, lenalidomide has become one of the most commonly used in these patients. In this article, we review the current state-of-the-art of different induction and maintenance lenalidomide-containing regimens administered in transplant-eligible and -ineligible patients with newly diagnosed multiple myeloma. We also discuss the safety profile and potential long-term side effects of this drug and analyze its utility in certain subgroups of patients like those with high-risk disease or different degrees of renal impairment.
Collapse
Affiliation(s)
- María J Cejalvo
- 1Hematology Service, University Hospital Doctor Peset, Avda Gaspar Aguilar 90, 46017 Valencia, Spain
| | - Javier de la Rubia
- 1Hematology Service, University Hospital Doctor Peset, Avda Gaspar Aguilar 90, 46017 Valencia, Spain.,2Universidad Católica de Valencia 'San Vicente Mártir', Valencia, Spain
| |
Collapse
|
22
|
Paramjot, Khan NM, Kapahi H, Kumar S, Bhardwaj TR, Arora S, Mishra N. Role of polymer–drug conjugates in organ-specific delivery systems. J Drug Target 2015; 23:387-416. [DOI: 10.3109/1061186x.2015.1016436] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
23
|
Kim C, Kasuya J, Jeon J, Chung S, Kamm RD. A quantitative microfluidic angiogenesis screen for studying anti-angiogenic therapeutic drugs. LAB ON A CHIP 2015; 15:301-10. [PMID: 25370780 PMCID: PMC4311754 DOI: 10.1039/c4lc00866a] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Anti-angiogenic therapy, which suppresses tumor growth by disrupting oxygen and nutrient supply from blood to the tumor, is now widely accepted as a treatment for cancer. To investigate the mechanisms of action of these anti-angiogenesis drugs, new three dimensional (3D) cell culture-based drug screening models are increasingly employed. However, there is no in vitro high-throughput screening (HTS) angiogenesis assay that can provide uniform culture conditions for the quantitative assessment of physiological responses to chemoattractant reagents under various concentrations of anti-angiogenesis drugs. Here we describe a method for screening and quantifying the vascular endothelial growth factor (VEGF)-induced chemotactic response on human umbilical vein endothelial cells (HUVECs) cultured with different concentrations of bortezomib, a selective 26S proteasome inhibitor. With this quantitative microfluidic angiogenesis screen (QMAS), we demonstrate that bortezomib-induced endothelial cell death is preceded by a series of morphological changes that develop over several days. We also explore the mechanisms by which bortezomib can inhibit angiogenesis.
Collapse
Affiliation(s)
- Choong Kim
- Departments of Biological Engineering and Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | | | | | | | |
Collapse
|
24
|
Xu N, Zhou X, Wang S, Xu LL, Zhou HS, Liu XL. Artesunate Induces SKM-1 Cells Apoptosis by Inhibiting Hyperactive β-catenin Signaling Pathway. Int J Med Sci 2015; 12:524-9. [PMID: 26078714 PMCID: PMC4466518 DOI: 10.7150/ijms.11352] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 05/13/2015] [Indexed: 11/05/2022] Open
Abstract
INTRODUCTION Artesunate (ART), a wildly used agent to treat severe malarial around the world, also has the power to inhibit growth of different types of tumor. However, the exact molecular mechanisms keep unknown. METHOD In this study, we used myelodysplastic syndrome (MDS) cells (SKM-1 cells) with differential ART concentrations treatment at multiple time points to observe the subsequence cell function alteration and the possible involved pathway genes. RESULTS We found that ART demonstrated the ability to inhibit proliferation and induce apoptosis in SKM-1 in a dose and time-dependent manner. Demethylase recovered CDH1 gene expression may be involved in the apoptosis process. The β-catenin protein translocated from the nucleus and cytoplasm to the membrane result in inactivation of β-catenin signaling pathway. CONCLUSION Our findings provide a rational basis to develop ART as a useful therapeutic agent for the treatment of myelodysplastic syndromes.
Collapse
Affiliation(s)
- Na Xu
- 1. Department of Hematology, Nan fang Hospital, Southern Medical University, Guangzhou, China
| | - Xuan Zhou
- 1. Department of Hematology, Nan fang Hospital, Southern Medical University, Guangzhou, China
| | - Shuang Wang
- 2. Department of Ultrasound, Xiangtan Central Hospital, Xiangtan, Hunan, China
| | - Lu-lu Xu
- 1. Department of Hematology, Nan fang Hospital, Southern Medical University, Guangzhou, China
| | - Hong-sheng Zhou
- 1. Department of Hematology, Nan fang Hospital, Southern Medical University, Guangzhou, China
| | - Xiao-li Liu
- 1. Department of Hematology, Nan fang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
25
|
Borsi E, Perrone G, Terragna C, Martello M, Zamagni E, Tacchetti P, Pantani L, Brioli A, Dico AF, Zannetti BA, Rocchi S, Cavo M. HIF-1α inhibition blocks the cross talk between multiple myeloma plasma cells and tumor microenvironment. Exp Cell Res 2014; 328:444-55. [PMID: 25257607 DOI: 10.1016/j.yexcr.2014.09.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 09/11/2014] [Accepted: 09/15/2014] [Indexed: 01/25/2023]
Abstract
Multiple myeloma (MM) is a malignant disorder of post-germinal center B cells, characterized by the clonal proliferation of malignant plasma cells (PCs) within the bone marrow (BM). The reciprocal and complex interactions that take place between the different compartments of BM and the MM cells result in tumor growth, angiogenesis, bone disease, and drug resistance. Given the importance of the BM microenvironment in MM pathogenesis, we investigated the possible involvement of Hypoxia-Inducible transcription Factor-1 alpha (HIF-1α) in the PCs-bone marrow stromal cells interplay. To test this hypothesis, we used EZN-2968, a 3rd generation antisense oligonucleotide against HIF-1α, to inhibit HIF-1α functions. Herein, we provide evidence that the interaction between MM cells and BM stromal cells is drastically reduced upon HIF-1α down-modulation. Notably, we showed that upon exposure to HIF-1α inhibitor, neither the incubation with IL-6 nor the co-culture with BM stromal cells were able to revert the anti-proliferative effect induced by EZN-2968. Moreover, we observed a down-modulation of cytokine-induced signaling cascades and a reduction of MM cells adhesion capability to the extracellular matrix proteins in EZN-2968-treated samples. Taken together, these results strongly support the concept that HIF-1α plays a critical role in the interactions between bone BM cells and PCs in Multiple Myeloma.
Collapse
Affiliation(s)
- Enrica Borsi
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), "L. & A. Seràgnoli", Bologna University School of Medicine, S. Orsola׳s University Hospital, Italy.
| | - Giulia Perrone
- Fondazione IRCCS Istituto Nazionale dei Tumori, Hematology Department, Via Venezian 1, 20133 Milano, Italy
| | - Carolina Terragna
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), "L. & A. Seràgnoli", Bologna University School of Medicine, S. Orsola׳s University Hospital, Italy
| | - Marina Martello
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), "L. & A. Seràgnoli", Bologna University School of Medicine, S. Orsola׳s University Hospital, Italy
| | - Elena Zamagni
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), "L. & A. Seràgnoli", Bologna University School of Medicine, S. Orsola׳s University Hospital, Italy
| | - Paola Tacchetti
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), "L. & A. Seràgnoli", Bologna University School of Medicine, S. Orsola׳s University Hospital, Italy
| | - Lucia Pantani
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), "L. & A. Seràgnoli", Bologna University School of Medicine, S. Orsola׳s University Hospital, Italy
| | - Annamaria Brioli
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), "L. & A. Seràgnoli", Bologna University School of Medicine, S. Orsola׳s University Hospital, Italy
| | - Angela Flores Dico
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), "L. & A. Seràgnoli", Bologna University School of Medicine, S. Orsola׳s University Hospital, Italy
| | - Beatrice Anna Zannetti
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), "L. & A. Seràgnoli", Bologna University School of Medicine, S. Orsola׳s University Hospital, Italy
| | - Serena Rocchi
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), "L. & A. Seràgnoli", Bologna University School of Medicine, S. Orsola׳s University Hospital, Italy
| | - Michele Cavo
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), "L. & A. Seràgnoli", Bologna University School of Medicine, S. Orsola׳s University Hospital, Italy
| |
Collapse
|
26
|
Nakamura R, Forman SJ. Reduced intensity conditioning for allogeneic hematopoietic cell transplantation: considerations for evidence-based GVHD prophylaxis. Expert Rev Hematol 2014; 7:407-21. [DOI: 10.1586/17474086.2014.898561] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
27
|
ICAM-3 endows anticancer drug resistance against microtubule-damaging agents via activation of the ICAM-3-AKT/ERK-CREB-2 pathway and blockage of apoptosis. Biochem Biophys Res Commun 2013; 441:507-13. [DOI: 10.1016/j.bbrc.2013.10.096] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 10/18/2013] [Indexed: 11/20/2022]
|
28
|
TNF α mediated IL-6 secretion is regulated by JAK/STAT pathway but not by MEK phosphorylation and AKT phosphorylation in U266 multiple myeloma cells. BIOMED RESEARCH INTERNATIONAL 2013; 2013:580135. [PMID: 24151609 PMCID: PMC3787550 DOI: 10.1155/2013/580135] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 08/15/2013] [Accepted: 08/16/2013] [Indexed: 12/16/2022]
Abstract
IL-6 and TNFα were significantly increased in the bone marrow aspirate samples of patients with active multiple myeloma (MM) compared to those of normal controls. Furthermore, MM patients with advanced aggressive disease had significantly higher levels of IL-6 and TNFα than those with MM in plateau phase. TNFα increased interleukin-6 (IL-6) production from MM cells. However, the detailed mechanisms involved in signaling pathways by which TNFα promotes IL-6 secretion from MM cells are largely unknown. In our study, we found that TNFα treatments induce MEK and AKT phosphorylation. TNFα-stimulated IL-6 production was abolished by inhibition of JAK2 and IKKβ or by small interfering RNA (siRNA) targeting TNF receptors (TNFR) but not by MEK, p38, and PI3K inhibitors. Also, TNFα increased phosphorylation of STAT3 (ser727) including c-Myc and cyclin D1. Three different types of JAK inhibitors decreased the activation of the previously mentioned pathways. In conclusion, blockage of JAK/STAT-mediated NF-κB activation was highly effective in controlling the growth of MM cells and, consequently, an inhibitor of TNFα-mediated IL-6 secretion would be a potential new therapeutic agent for patients with multiple myeloma.
Collapse
|
29
|
Magill L, Walker B, Irvine AE. The Proteasome: A Novel Therapeutic Target in Haematopoietic Malignancy. Hematology 2013; 8:275-83. [PMID: 14530169 DOI: 10.1080/10245330310001604755] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The proteasome plays a key role in regulating protein degradation in eukaryotic cells. A range of synthetic inhibitors of proteasome activity have been developed which have helped elucidate its role in the cell. These inhibitors have selectively induced apoptosis in malignant cells in vitro suggesting that the proteasome may be a novel therapeutic target. First generation proteasome inhibitors are currently showing promise in phase II/III clinical trials for patients with multiple myeloma.
Collapse
Affiliation(s)
- Laura Magill
- Department of Haemotology, Queen's University of Belfast, UK
| | | | | |
Collapse
|
30
|
Abstract
Bone is one of the most frequent sites of metastasis in patients with malignancies. Up to 90 % of patients with multiple myeloma, and 60 % to 75 % patients with prostate cancer and breast cancer develop bone metastasis at the later stages of their diseases. Bone metastases are responsible for tremendous morbidity in patients with cancer, including severe bone pain, pathologic fractures, spinal cord and nerve compression syndromes, life-threatening hypercalcemia, and increased mortality. Multiple factors produced by tumor cells or produced by the bone marrow microenvironment in response to tumor cells play important roles in activation of osteoclastic bone resorption and modulation of osteoblastic activity in patients with bone metastasis. In this chapter, we will review the genes that play important roles in bone destruction, tumor growth, and osteoblast activity in bone metastasis and discuss the potential therapies targeting the products of these genes to block both bone destruction and tumor growth.
Collapse
|
31
|
Pappa CA, Tsirakis G, Samiotakis P, Tsigaridaki M, Alegakis A, Goulidaki N, Alexandrakis MG. Serum levels of angiopoietin-2 are associated with the growth of multiple myeloma. Cancer Invest 2013; 31:385-9. [PMID: 23758184 DOI: 10.3109/07357907.2013.800093] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Angiopoietins and their receptor, Tie-2, have crucial role in angiogenesis. We measured serum levels of angiopoietin-2 (Ang-2), soluble Tie-2, and factors of burden and prognosis in myeloma (LDH, CRP, beta-2 microglobulin, and interleukin-6) in 55 newly diagnosed patients, with 30 of them in plateau phase, in order to note correlations among them. Levels of Ang-2 were higher in patients in advanced stage of disease, decreased in plateau phase, and correlated with all other factors. Circulating Ang-2 in myeloma patients significantly correlated to factors of disease burden and prognosis, and therefore measuring its levels may be important for the valuation of the disease.
Collapse
Affiliation(s)
- Constantina A Pappa
- Hematology Department, Venizelion Hospital of Heraklion, Heraklion, Crete, Greece
| | | | | | | | | | | | | |
Collapse
|
32
|
Silbermann R, Roodman GD. Myeloma bone disease: Pathophysiology and management. J Bone Oncol 2013; 2:59-69. [PMID: 26909272 PMCID: PMC4723362 DOI: 10.1016/j.jbo.2013.04.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 03/29/2013] [Accepted: 04/02/2013] [Indexed: 10/26/2022] Open
Abstract
Multiple myeloma bone disease is marked by severe dysfunction of both bone formation and resorption and serves as a model for understanding the regulation of osteoblasts (OBL) and osteoclasts (OCL) in cancer. Myeloma bone lesions are purely osteolytic and are associated with severe and debilitating bone pain, pathologic fractures, hypercalcemia, and spinal cord compression, as well as increased mortality. Interactions within the bone marrow microenvironment in myeloma are responsible for the abnormal bone remodeling in myeloma bone disease. Myeloma cells drive bone destruction that increases tumor growth, directly stimulates the OCL formation, and induces cells in the marrow microenvironment to produce factors that drive OCL formation and suppress OBL formation. Factors produced by marrow stromal cells and OCL promote tumor growth through direct action on myeloma cells and by increasing angiogenesis. Current therapies targeting MMBD focus on preventing osteoclastic bone destruction; however regulators of OBL inhibition in MMBD have also been identified, and targeted agents with a potential anabolic effect in MMBD are under investigation. This review will discuss the mechanisms responsible for MMBD and therapeutic approaches currently in use and in development for the management of MMBD.
Collapse
Affiliation(s)
- Rebecca Silbermann
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
| | | |
Collapse
|
33
|
Cellular mechanisms of multiple myeloma bone disease. Clin Dev Immunol 2013; 2013:289458. [PMID: 23818912 PMCID: PMC3681224 DOI: 10.1155/2013/289458] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 05/16/2013] [Accepted: 05/16/2013] [Indexed: 12/19/2022]
Abstract
Multiple myeloma (MM) is a hematologic malignancy of differentiated plasma cells that accumulates and proliferates in the bone marrow. MM patients often develop bone disease that results in severe bone pain, osteolytic lesions, and pathologic fractures. These skeletal complications have not only a negative impact on quality of life but also a possible effect in overall survival. MM osteolytic bone lesions arise from the altered bone remodeling due to both increased osteoclast activation and decreased osteoblast differentiation. A dysregulated production of numerous cytokines that can contribute to the uncoupling of bone cell activity is well documented in the bone marrow microenvironment of MM patients. These molecules are produced not only by malignant plasma cells, that directly contribute to MM bone disease, but also by bone, immune, and stromal cells interacting with each other in the bone microenvironment. This review focuses on the current knowledge of MM bone disease biology, with particular regard on the role of bone and immune cells in producing cytokines critical for malignant plasma cell proliferation as well as in osteolysis development. Therefore, the understanding of MM pathogenesis could be useful to the discovery of novel agents that will be able to both restore bone remodelling and reduce tumor burden.
Collapse
|
34
|
He W, Mazumder A, Wilder T, Cronstein BN. Adenosine regulates bone metabolism via A1, A2A, and A2B receptors in bone marrow cells from normal humans and patients with multiple myeloma. FASEB J 2013; 27:3446-54. [PMID: 23682121 DOI: 10.1096/fj.13-231233] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Multiple myeloma (MM) is characterized by osteolytic bone lesions with uncoupled bone remodeling. In this study, we examined the effects of adenosine and its receptors (A1R, A2AR, A2BR, and A3R) on osteoblast and osteoclast differentiation of cells derived from patients with MM and healthy control subjects. Mesenchymal stem cells and bone marrow-derived mononuclear cells were isolated from bone marrow and differentiated into osteoblasts and osteoclasts, respectively. A1R antagonist rolofylline and A2BR agonist BAY60-6583 inhibit osteoclast differentiation of cells from patients with MM in a dose-dependent manner, as shown by TRAP staining (IC50: 10 and ∼10 nM, respectively). BAY60-6583 and dipyridamole, a nucleoside transport inhibitor, stimulate osteoblast differentiation of cells from patients with MM, as measured by ALP activity at d 14 and Alizarin Red staining at d 21 (by 1.57±0.03- and 1.71±0.45-fold, respectively), which can be blocked by A2BR antagonist MRS1754. Consistently, real-time PCR showed a significant increase of mRNA of osteocalcin and osterix at d 14. The effect of adenosine and its receptors is consistent in patients with MM and healthy subjects, suggesting an intrinsic mechanism that is important in both MM bone metabolism and normal physiology. Furthermore, the effect of dipyridamole on osteoblast differentiation is diminished in both A2BR- and CD39-knockout mice. These results indicate that adenosine receptors may be useful targets for the treatment of MM-induced bone disease.
Collapse
Affiliation(s)
- Wenjie He
- New York University School of Medicine, 550 First Ave., New York, NY 10016, USA
| | | | | | | |
Collapse
|
35
|
Udi J, Schüler J, Wider D, Ihorst G, Catusse J, Waldschmidt J, Schnerch D, Follo M, Wäsch R, Engelhardt M. Potent in vitro and in vivo activity of sorafenib in multiple myeloma: induction of cell death, CD138-downregulation and inhibition of migration through actin depolymerization. Br J Haematol 2013; 161:104-16. [PMID: 23384035 DOI: 10.1111/bjh.12226] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 12/20/2012] [Indexed: 12/13/2022]
Abstract
Despite considerable advances, multiple myeloma (MM) remains incurable and the development of novel therapies targeting the interplay between plasma cells (PCs) and their bone marrow (BM) microenvironment remains essential. We investigated the effect of various agents in vitro on the proliferation, phenotype, morphology, actin polymerization and migration of MM cells and, in vivo, the tumour growth of L363-bearing non-obese diabetic severe combined immunodeficient mice with a deficient interleukin-2 receptor gamma chain (NSG). In vitro, we observed a dose-dependent cytotoxicity with bortezomib and sorafenib. Using RPMI8226 cells co-expressing histone 2B-mCherry and cytochrome c-GFP, bortezomib- and sorafenib-induced apoptosis was confirmed, and both agents combined showed synergism. Sorafenib induced CD138-downregulation and abolished CXCL12-induced actin polymerization. L363 cells expressed CCR4 and CCR5 and migrated to their common ligand CCL5. Chemotaxis to BM stroma cells was notable and significantly reduced by sorafenib. Downregulation of phospho-ERK appeared relevant for the inhibition of actin polymerization and chemotaxis. Sorafenib alone, and combined with bortezomib, showed substantial antitumour activity in L363-bearing NSG. Correspondingly, sorafenib induced clinical responses in MM-/AL-amyloidosis patients. We conclude that, in addition to the cytotoxic and anti-angiogenic effects of sorafenib, blocking of MM cell migration and homing represent promising mechanisms to interrupt the interplay between PCs and their supportive microenvironment.
Collapse
Affiliation(s)
- Josefina Udi
- Department of Haematology and Oncology, Freiburg University Medical Centre, Freiburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Papanikolaou X, Repousis P, Tzenou T, Maltezas D, Kotsopoulou M, Megalakaki K, Angelopoulou M, Dimitrakoloulou E, Koulieris E, Bartzis V, Pangalis G, Panayotidis P, Kyrtsonis MC. Incidence, clinical features, laboratory findings and outcome of patients with multiple myeloma presenting with extramedullary relapse. Leuk Lymphoma 2012; 54:1459-64. [PMID: 23151071 DOI: 10.3109/10428194.2012.746683] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Extramedullary plasmacytomas constitute a rare and not well studied subset of multiple myeloma (MM) relapses. We report the incidence, clinical-laboratory features and outcome of patients with MM and extramedullary relapse (ExMeR). A total of 303 patients with symptomatic MM were recorded in a 13-year period in two institutions. Twenty-eight cases of ExMeR (9%) were recorded. There was an increased frequency of elevated lactate dehydrogenase (LDH) (p = 0.026), bone plasmacytomas (p = 0.001) and fractures (p = 0.002) at diagnosis, in patients with ExMeR compared to the others. ExMeR was associated with an ominous outcome, high LDH, constitutional symptoms and a statistically significant decrease of monoclonal paraprotein compared to levels at diagnosis (p = 0.009). Prior treatment with bortezomib was associated with a decreased hazard of ExMeR (p = 0.041). Overall survival (OS) was decreased in patients with ExMeR compared to the others (38 vs. 59 months, p = 0.006). Patients with MM with ExMeR have a lower OS and their clinical and laboratory features differ from those without.
Collapse
Affiliation(s)
- Xenofon Papanikolaou
- First Department of Propaedeutic Internal Medicine-Hematology Section, Laikon University Hospital, Athens, Greece
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Wang X, Zhang Z, Yao C. Bortezomib inhibits the angiogenesis mediated by mesenchymal stem cells. Cancer Invest 2012; 30:657-62. [PMID: 23013101 DOI: 10.3109/07357907.2012.725442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This study is to investigate the effects of bortezomib on the angiogenesis of mesenchymal stem cells (MSCs). We examined the effects of bortezomib on the cellular proliferation, migration, and capillary network formation of HUVECs cocultured with CMs of MSCs. We found that Bortezomib inhibited the cellular proliferation and tube formation of HUVECs cocultured with CMs in a dose-dependent fashion. Bortezomib also prevented the migration of HUVECs cocultured with CMs. In addition, bortezomib dose-dependently inhibited the growth of MSCs and prevented the production of angiogenic factors including VEGF (vascular endothelial growth factor), HGF (hepatocyte growth factor), and bFGF (basic fibroblast growth factor) in MSCs. In conclusion, bortezomib prevented the angiogenesis mediated by MSCs.
Collapse
Affiliation(s)
- Xiaofang Wang
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China.
| | | | | |
Collapse
|
38
|
Abstract
Thalidomide is a drug that, since its development, has made history in the world of medicine--having been withdrawn and now has returned with a boom as an anticancer and immunomodulatory drug. However, its mode of action in various diseases (i.e. different types of hematologic malignancies, solid tumors) as well as in various infections (i.e. pneumonia, tuberculosis, HIV infection etc.) and related inflammatory conditions is not well understood. As the immune system plays an important role in the pathogenesis of both infection-related as well as noninfectious (i.e. cancer) inflammatory diseases, much research has been done in the past few years to discover and design better immunomodulatory agents. Such immunomodulatory agents should be able to target the immune system in such a way that host suffers minimum damage and normal function of the immune system remains intact. In the present review an attempt is made to highlight the immunomodulatory action of thalidomide in various pathologic conditions.
Collapse
Affiliation(s)
- V Kumar
- Department of Cancer Biology and Genetics, Cancer Research Institute, Queen's University, Kingston, Ontario, Canada.
| | | |
Collapse
|
39
|
Galson DL, Silbermann R, Roodman GD. Mechanisms of multiple myeloma bone disease. BONEKEY REPORTS 2012; 1:135. [PMID: 23951515 PMCID: PMC3727863 DOI: 10.1038/bonekey.2012.135] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 06/11/2012] [Indexed: 11/08/2022]
Abstract
Multiple myeloma is the second most common hematological malignancy and the most frequent cancer to involve the skeleton. Multiple myeloma bone disease (MMBD) is characterized by abnormal bone remodeling with dysfunction of both bone resorption and bone formation, and thus can be used as a paradigm for other inflammatory bone diseases, and the regulation of osteoclasts and osteoblasts in malignancy. Studies of MMBD have identified novel regulators that increase osteoclastogenesis and osteoclast function, repress osteoblast differentiation, increase angiogenesis, or permanently alter stromal cells. This review will discuss the current understanding of mechanisms of osteoclast and osteoblast regulation in MMBD, and therapeutic approaches currently in use and under development that target mediators of bone destruction and blockade of bone formation for myeloma patients, including new anabolic therapies.
Collapse
Affiliation(s)
- Deborah L Galson
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rebecca Silbermann
- Department of Medicine, Division of Hematology/Oncology, Indiana University, Indianapolis, IN, USA
| | - G David Roodman
- Department of Medicine, Division of Hematology/Oncology, Indiana University, Indianapolis, IN, USA
| |
Collapse
|
40
|
Gaballa MR, Laubach JP, Schlossman RL, Redman K, Noonan K, Mitsiades CS, Ghobrial IM, Munshi N, Anderson KC, Richardson PG. Management of myeloma-associated renal dysfunction in the era of novel therapies. Expert Rev Hematol 2012; 5:51-66; quiz 67-8. [PMID: 22272706 DOI: 10.1586/ehm.11.72] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Multiple myeloma (MM) is a plasma cell neoplasm often associated with renal impairment (RI), with myeloma cast nephropathy recognized as the most common cause. While RI is present in over 50% of MM patients at some point in their disease course, it is associated with higher tumor burden, more aggressive disease, diminished quality of life, development of complications and increased mortality. The introduction of novel therapies, including bortezomib, lenalidomide and thalidomide, has revolutionized the management of MM. They are now considered first-line therapies in induction, maintenance and salvage therapy for MM. In addition to their anti-MM effect, they can improve outcome in patients with RI, especially when combined, and bortezomib with dexamethasone may have a renal protective effect. This review focuses on the use of these agents in patients with MM and RI, and evaluates their efficacy, safety, need for dose adjustment and impact on RI.
Collapse
Affiliation(s)
- Mahmoud R Gaballa
- Department of Internal Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Kim J, Denu RA, Dollar BA, Escalante LE, Kuether JP, Callander NS, Asimakopoulos F, Hematti P. Macrophages and mesenchymal stromal cells support survival and proliferation of multiple myeloma cells. Br J Haematol 2012; 158:336-46. [PMID: 22583117 DOI: 10.1111/j.1365-2141.2012.09154.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 03/27/2012] [Indexed: 02/05/2023]
Abstract
Multiple myeloma (MM) is characterized by almost exclusive tropism of malignant cells for the bone marrow (BM) milieu. The survival and proliferation of malignant plasma cells have been shown to rely on interactions with nonmalignant stromal cells, in particular mesenchymal stromal cells (MSCs), in the BM microenvironment. However, the BM microenvironment is composed of a diverse array of cell types. This study examined the role of macrophages, an abundant component of BM stroma, as a potential niche component that supports malignant plasma cells. We investigated the proliferation of MM tumour cell lines when cultured alone or together with MSCs, macrophages, or a combination of MSCs and macrophages, using the carboxyfluorescein succinimidyl ester assay. Consistently, we observed increased proliferation of MM cell lines in the presence of either MSCs or macrophages compared to cell line-only control. Furthermore, the combined co-culture of MSCs plus macrophages induced the greatest degree of proliferation of myeloma cells. In addition to increased proliferation, MSCs and macrophages decreased the rate of apoptosis of myeloma cells. Our in vitro studies provide evidence that highlights the role of macrophages as a key component of the BM microenvironment facilitating the growth of malignant plasma cells in MM.
Collapse
Affiliation(s)
- Jaehyup Kim
- Department of Medicine, University of Wisconsin-Madison, School of Medicine and Public Health, USA.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Abdominal manifestations of extraosseous myeloma: cross-sectional imaging spectrum. J Comput Assist Tomogr 2012; 36:207-12. [PMID: 22446361 DOI: 10.1097/rct.0b013e318245c261] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Extraosseous myeloma, defined as the myelomatous involvement outside the skeleton system, is rare and often associated with advanced multiple myeloma. There has been a recent increase in the clinicoradiological incidence of this entity, possibly secondary to increased survival of patients and frequent use of imaging. This has led to the development of new clinical staging guidelines for multiple myeloma, which include the use of imaging modalities positron emission tomography/computed tomography and magnetic resonance imaging for accurate detection and optimal management. The aims of this review were to discuss the significance of identification of extraosseous disease, to describe the spectrum and common sites of extraosseous involvement in the abdomen, and to review the imaging findings of extraosseous myeloma in the abdomen.
Collapse
|
43
|
Abstract
Multiple myeloma (MM) is a plasma cell dyscrasia characterized by the presence of multiple myelomatous "omas" throughout the skeleton, indicating that there is continuous trafficking of tumor cells to multiple areas in the bone marrow niches. MM may therefore represent one of the best models to study cell trafficking or cell metastasis. The process of cell metastasis is described as a multistep process, the invasion-metastasis cascade. This involves cell invasion, intravasation into nearby blood vessels, passage into the circulation, followed by homing into predetermined distant tissues, the formation of new foci of micrometastases, and finally the growth of micrometastasis into macroscopic tumors. This review discusses the significant advances that have been discovered in the complex process of invasion-metastasis in epithelial carcinomas and cell trafficking in hematopoietic stem cells and how this process relates to progression in MM. This progression is mediated by clonal intrinsic factors that mediate tumor invasiveness as well as factors present in the tumor microenvironment that are permissive to oncogenic proliferation. Therapeutic agents that target the different steps of cell dissemination and progression are discussed. Despite the significant advances in the treatment of MM, better therapeutic agents that target this metastatic cascade are urgently needed.
Collapse
|
44
|
Abstract
Cancer is one of the most frightful diseases mostly resulting in mortality; it has recently become more possible to overcome with the help of new therapies. In this direction, carcinogenesis is defined as a complicated process that can include several different factors that contribute to its progress. Proteasome is implicated in cancer studies as it is the main degradation system for oxidatively damaged proteins and also for several proteins playing a role in the cell cycle and transcription, which are important for cancer improvement. Because of this crucial role of proteasome in cancer development, myriad in vitro and in vivo studies have focused on the proteasome in different cancer cases. In this chapter, the involvement of proteasome in the degradation of cancer-related proteins is explained with the results of representative studies. Related to these proteins, the use of proteasome inhibitors in cancer treatment is reviewed.
Collapse
|
45
|
Otjacques E, Binsfeld M, Noel A, Beguin Y, Cataldo D, Caers J. Biological aspects of angiogenesis in multiple myeloma. Int J Hematol 2011; 94:505-18. [PMID: 22086206 DOI: 10.1007/s12185-011-0963-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2011] [Revised: 10/17/2011] [Accepted: 10/20/2011] [Indexed: 11/26/2022]
Abstract
Multiple myeloma (MM) is a hematological malignancy characterized by the aberrant expansion of malignant plasma cells within the bone marrow (BM). One of the hallmarks of this disease is the close interaction between myeloma cells and neighboring cells within the BM. Angiogenesis, through the activation of endothelial cells, plays an essential role in MM biology. In the current review, we describe the angiogenesis process in MM by identifying the interacting cells, the pro- and anti-angiogenic cytokines modulated, and the extracellular matrix degrading proteases liable to participate in the pathophysiology. Finally, we highlight the impact of hypoxia (through hypoxia-inducible factor-1) and constitutive activation of nuclear factor-κB in this tumor-induced neo-vascularization.
Collapse
Affiliation(s)
- Eléonore Otjacques
- Laboratory of Hematology, GIGA-Research, University of Liège, Sart-Tilman, Belgium
| | | | | | | | | | | |
Collapse
|
46
|
Ismail SI, Mahmoud IS, Salman MAL, Sughayer MA, Mahafzah AM. Frequent detection of Human Herpes Virus-8 in bone marrow of Jordanian patients of multiple myeloma. Cancer Epidemiol 2011; 35:471-4. [PMID: 21130059 DOI: 10.1016/j.canep.2010.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2010] [Revised: 10/10/2010] [Accepted: 10/22/2010] [Indexed: 01/04/2023]
Affiliation(s)
- Said I Ismail
- Molecular Biology Research Lab, Department of Biochemistry, Faculty of Medicine, University of Jordan, Amman 11942, Jordan.
| | | | | | | | | |
Collapse
|
47
|
Jiang A, Reece D, Chang H. Genomic stratification of multiple myeloma treated with novel agents. Leuk Lymphoma 2011; 53:202-7. [PMID: 21823830 DOI: 10.3109/10428194.2011.608449] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cytogenetic testing is now routinely performed for the prognostic work-up of multiple myeloma (MM). The abnormalities del(17p), t(4;14) and del(13q) have been established as predictors of poor outcome in patients with MM treated with conventional chemotherapy or stem cell transplant; chromosome 1q gains and 1p losses have also been identified as novel prognostic factors. In recent years, bortezomib and lenalidomide have emerged as effective treatments for both relapsed/refractory and newly diagnosed MM. However, the effect of cytogenetic abnormalities is unclear among patients with MM treated with these novel agents. Here we review recent studies that analyze the impact of specific genomic aberrations on the outcome of MM treated with bortezomib and/or lenalidomide.
Collapse
Affiliation(s)
- Allan Jiang
- Department of Laboratory Hematology and Medical Oncology, University Health Network, Toronto, Ontario, Canada
| | | | | |
Collapse
|
48
|
Roccaro AM, Ghobrial IM, Blotta S, Treon SP, Malagola M, Anderson KC, Richardson PG, Russo D. Advances in the treatment of monoclonal gammopaties: The emerging role of targeted therapy in plasma cell dyscrasias. Biologics 2011; 2:419-31. [PMID: 19707373 PMCID: PMC2721375 DOI: 10.2147/btt.s3088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The paradigm for the treatment of monoclonal gammopaties has dramatically changed: therapeutic options in multiple myeloma (MM) have evolved from the introduction of melphalan and prednisone in the 1960s, high-dose chemotherapy and stem cell transplantation in the late 1980s and 1990s, to the rapid introduction of small novel molecules within the last seven years. Based on the understanding of the complex interaction of the MM cells with the bone marrow microenvironment and the signaling pathways that are dysregulated in this process, a number of novel therapeutic agents are now available. Specifically, three novel agents with a specific-targeted anti-MM activity, have been FDA-approved for the treatment of this disease, namely Bortezomib, thalidomide, and lenalidomide which are now all playing a key role in the treatment of MM. The success of targeted therapy in MM has since led to the development and investigation of more than 30 new compounds in this disease and in other plasma cell dyscrasias such as Waldenström’s macroglobulinemia and primary amyloidosis, both in the preclinical settings and as part of clinical trials.
Collapse
Affiliation(s)
- Aldo M Roccaro
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Crawford LJ, Walker B, Irvine AE. Proteasome inhibitors in cancer therapy. J Cell Commun Signal 2011; 5:101-10. [PMID: 21484190 PMCID: PMC3088792 DOI: 10.1007/s12079-011-0121-7] [Citation(s) in RCA: 214] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 01/13/2011] [Indexed: 02/03/2023] Open
Abstract
The ubiquitin proteasome pathway plays a critical role in regulating many processes in the cell which are important for tumour cell growth and survival. Inhibition of proteasome function has emerged as a powerful strategy for anti-cancer therapy. Clinical validation of the proteasome as a therapeutic target was achieved with bortezomib and has prompted the development of a second generation of proteasome inhibitors with improved pharmacological properties. This review summarises the main mechanisms of action of proteasome inhibitors in cancer, the development of proteasome inhibitors as therapeutic agents and the properties and progress of next generation proteasome inhibitors in the clinic.
Collapse
Affiliation(s)
- Lisa J. Crawford
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Ground Floor, 97 Lisburn Road, Belfast, Northern Ireland BT9 7BL
| | - Brian Walker
- Department of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast, Northern Ireland BT9 7BL
| | - Alexandra E. Irvine
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Ground Floor, 97 Lisburn Road, Belfast, Northern Ireland BT9 7BL
| |
Collapse
|
50
|
Morgenroth A, Dinger C, Zlatopolskiy BD, Al-Momani E, Glatting G, Mottaghy FM, Reske SN. Auger electron emitter against multiple myeloma--targeted endo-radio-therapy with 125I-labeled thymidine analogue 5-iodo-4'-thio-2'-deoxyuridine. Nucl Med Biol 2011; 38:1067-77. [PMID: 21982576 DOI: 10.1016/j.nucmedbio.2011.02.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 02/18/2011] [Accepted: 02/27/2011] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Multiple myeloma (MM) is a plasma cell malignancy characterized by accumulation of malignant, terminally differentiated B cells in the bone marrow. Despite advances in therapy, MM remains an incurable disease. Novel therapeutic approaches are, therefore, urgently needed. Auger electron-emitting radiopharmaceuticals are attractive for targeted nano-irradiation therapy, given that DNA of malignant cells is selectively addressed. Here we evaluated the antimyeloma potential of the Auger electron-emitting thymidine analogue (125)I-labeled 5-iodo-4'-thio-2'-deoxyuridine ([(125)I]ITdU). METHODS Cellular uptake and DNA incorporation of [(125)I]ITdU were determined in fluorodeoxyuridine-pretreated KMS12BM, U266, dexamethasone-sensitive MM1.S and -resistant MM1.R cell lines. The effect of stimulation with interleukin 6 (IL6) or insulin-like growth factor 1 (IGF1) on the intracellular incorporation of [(125)I]ITdU was investigated in cytokine-sensitive MM1.S and MM1.R cell lines. Apoptotic cells were identified using Annexin V. Cleavage of caspase 3 and PARP was visualized by Western blot. DNA fragmentation was investigated using laddering assay. Therapeutic efficiency of [(125)I]ITdU was proven by clonogenic assay. RESULTS [(125)I]ITdU was shown to be efficiently incorporated into DNA of malignant cells, providing a promising mechanism for delivering highly toxic Auger radiation emitters into tumor DNA. [(125)I]ITdU had a potent antimyeloma effect in cell lines representing distinct disease stages and, importantly, in cell lines sensitive or resistant to the conventional therapeutic agent, but was not toxic for normal plasma and bone marrow stromal cells. Furthermore, [(125)I]ITdU abrogated the protective actions of IL6 and IGF1 on MM cells. [(125)I]ITdU induced massive damage in the DNA of malignant plasma cells, which resulted in efficient inhibition of clonogenic growth. CONCLUSION These studies may provide a novel treatment strategy for overcoming resistance to conventional therapy in multiple myeloma.
Collapse
Affiliation(s)
- Agnieszka Morgenroth
- Nuclear Medicine Clinic, University Ulm, Albert-Einstein-Allee 23, D-89081 Ulm, Germany.
| | | | | | | | | | | | | |
Collapse
|