1
|
Benvenuti JL, Casa PL, Pessi de Abreu F, Martinez GS, de Avila E Silva S. From straight to curved: A historical perspective of DNA shape. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 193:46-54. [PMID: 39260792 DOI: 10.1016/j.pbiomolbio.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/30/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024]
Abstract
DNA is the macromolecule responsible for storing the genetic information of a cell and it has intrinsic properties such as deformability, stability and curvature. DNA Curvature plays an important role in gene transcription and, consequently, in the subsequent production of proteins, a fundamental process of cells. With recent advances in bioinformatics and theoretical biology, it became possible to analyze and understand the involvement of DNA Curvature as a discriminatory characteristic of gene-promoting regions. These regions act as sites where RNAp (ribonucleic acid-polymerase) binds to initiate transcription. This review aims to describe the formation of Curvature, as well as highlight its importance in predicting promoters. Furthermore, this article provides the potential of DNA Curvature as a distinguishing feature for promoter prediction tools, as well as outlining the calculation procedures that have been described by other researchers. This work may support further studies directed towards the enhancement of promoter prediction software.
Collapse
Affiliation(s)
- Jean Lucas Benvenuti
- Universidade de Caxias do Sul. Petrópolis, Caxias do Sul, Rio Grande do Sul, Brazil.
| | - Pedro Lenz Casa
- Universidade de Caxias do Sul. Petrópolis, Caxias do Sul, Rio Grande do Sul, Brazil
| | - Fernanda Pessi de Abreu
- Universidade de Caxias do Sul. Petrópolis, Caxias do Sul, Rio Grande do Sul, Brazil; Instituto de Biociências, Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | | | | |
Collapse
|
2
|
Barbero-Aparicio JA, Olivares-Gil A, Díez-Pastor JF, García-Osorio C. Deep learning and support vector machines for transcription start site identification. PeerJ Comput Sci 2023; 9:e1340. [PMID: 37346545 PMCID: PMC10280436 DOI: 10.7717/peerj-cs.1340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/21/2023] [Indexed: 06/23/2023]
Abstract
Recognizing transcription start sites is key to gene identification. Several approaches have been employed in related problems such as detecting translation initiation sites or promoters, many of the most recent ones based on machine learning. Deep learning methods have been proven to be exceptionally effective for this task, but their use in transcription start site identification has not yet been explored in depth. Also, the very few existing works do not compare their methods to support vector machines (SVMs), the most established technique in this area of study, nor provide the curated dataset used in the study. The reduced amount of published papers in this specific problem could be explained by this lack of datasets. Given that both support vector machines and deep neural networks have been applied in related problems with remarkable results, we compared their performance in transcription start site predictions, concluding that SVMs are computationally much slower, and deep learning methods, specially long short-term memory neural networks (LSTMs), are best suited to work with sequences than SVMs. For such a purpose, we used the reference human genome GRCh38. Additionally, we studied two different aspects related to data processing: the proper way to generate training examples and the imbalanced nature of the data. Furthermore, the generalization performance of the models studied was also tested using the mouse genome, where the LSTM neural network stood out from the rest of the algorithms. To sum up, this article provides an analysis of the best architecture choices in transcription start site identification, as well as a method to generate transcription start site datasets including negative instances on any species available in Ensembl. We found that deep learning methods are better suited than SVMs to solve this problem, being more efficient and better adapted to long sequences and large amounts of data. We also create a transcription start site (TSS) dataset large enough to be used in deep learning experiments.
Collapse
Affiliation(s)
| | - Alicia Olivares-Gil
- Departamento de Ingeniería Informática, Universidad de Burgos, Burgos, Spain
| | - José F. Díez-Pastor
- Departamento de Ingeniería Informática, Universidad de Burgos, Burgos, Spain
| | - César García-Osorio
- Departamento de Ingeniería Informática, Universidad de Burgos, Burgos, Spain
| |
Collapse
|
3
|
Li K, Wei Y, Wang Y, Tan B, Chen S, Li H. Genome-Wide Identification of LBD Genes in Foxtail Millet ( Setaria italica) and Functional Characterization of SiLBD21. Int J Mol Sci 2023; 24:ijms24087110. [PMID: 37108274 PMCID: PMC10138450 DOI: 10.3390/ijms24087110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/05/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
Plant-specific lateral organ boundaries domain (LBD) proteins play important roles in plant growth and development. Foxtail millet (Setaria italica) is one new C4 model crop. However, the functions of foxtail millet LBD genes are unknown. In this study, a genome-wide identification of foxtail millet LBD genes and a systematical analysis were conducted. A total of 33 SiLBD genes were identified. They are unevenly distributed on nine chromosomes. Among these SiLBD genes, six segmental duplication pairs were detected. The thirty-three encoded SiLBD proteins could be classified into two classes and seven clades. Members in the same clade have similar gene structure and motif composition. Forty-seven kinds of cis-elements were found in the putative promoters, and they are related to development/growth, hormone, and abiotic stress response, respectively. Meanwhile, the expression pattern was investigated. Most SiLBD genes are expressed in different tissues, while several genes are mainly expressed in one or two kinds of tissues. In addition, most SiLBD genes respond to different abiotic stresses. Furthermore, the function of SiLBD21, which is mainly expressed in roots, was characterized by ectopic expression in Arabidopsis and rice. Compared to controls, transgenic plants generated shorter primary roots and more lateral roots, indicating the function of SiLBD21 in root development. Overall, our study laid the foundation for further functional elucidation of SiLBD genes.
Collapse
Affiliation(s)
- Kunjie Li
- College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Yaning Wei
- College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Yimin Wang
- College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Bin Tan
- College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Shoukun Chen
- College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Haifeng Li
- College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China
| |
Collapse
|
4
|
Li J, Song C, Li H, Wang S, Hu L, Yin Y, Wang Z, He W. Comprehensive analysis of cucumber RAV family genes and functional characterization of CsRAV1 in salt and ABA tolerance in cucumber. FRONTIERS IN PLANT SCIENCE 2023; 14:1115874. [PMID: 36818828 PMCID: PMC9933981 DOI: 10.3389/fpls.2023.1115874] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
The RAV (related to ABI3 and VP1) transcription factors are specific and exist in plants, which contain a B3 DNA binding domain and/or an APETALA2 (AP2) DNA binding domain. RAVs have been extensively studied in plants, and more and more evidences show that RAVs are involved in various aspects of plant growth and development, stress resistance and hormone signal transduction. However, the systematic analysis of RAV family in cucumber is rarely reported. In this study, eight CsRAV genes were identified in cucumber genome and we further comprehensively analyzed their protein physicochemical properties, conserved domains, gene structure and phylogenetic relationships. The synteny analysis and gene duplications of CsRAV genes were also analysed. Cis-element analysis revealed that the CsRAVs promoter contained several elements related to plant hormones and abiotic stress. Expression analysis showed that NaCl and ABA could significantly induce CsRAV genes expression. Subcellular localization revealed that all CsRAVs were localized in the nucleus. In addition, 35S:CsRAV1 transgenic Arabidopsis and cucumber seedlings enhanced NaCl and ABA tolerance, revealing CsRAV1 may be an important regulator of abiotic stress response. In conclusion, comprehensive analysis of CsRAVs would provide certain reference for understanding the evolution and function of the CsRAV genes.
Collapse
Affiliation(s)
- Jialin Li
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Chunying Song
- Xilin Gol League Agricultural and Animal Product Quality and Safety Monitoring Center, Xilinhot, China
| | - Hongmei Li
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Siqi Wang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Linyue Hu
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Yanlei Yin
- Shandong Institute of Pomology, Tai’an, Shandong, China
| | - Zenghui Wang
- Shandong Institute of Pomology, Tai’an, Shandong, China
| | - Wenxing He
- School of Biological Science and Technology, University of Jinan, Jinan, China
| |
Collapse
|
5
|
CapsProm: a capsule network for promoter prediction. Comput Biol Med 2022; 147:105627. [DOI: 10.1016/j.compbiomed.2022.105627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/05/2022] [Accepted: 04/11/2022] [Indexed: 11/21/2022]
|
6
|
Zhang M, Jia C, Li F, Li C, Zhu Y, Akutsu T, Webb GI, Zou Q, Coin LJM, Song J. Critical assessment of computational tools for prokaryotic and eukaryotic promoter prediction. Brief Bioinform 2022; 23:6502561. [PMID: 35021193 PMCID: PMC8921625 DOI: 10.1093/bib/bbab551] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/12/2021] [Accepted: 11/30/2021] [Indexed: 01/13/2023] Open
Abstract
Promoters are crucial regulatory DNA regions for gene transcriptional activation. Rapid advances in next-generation sequencing technologies have accelerated the accumulation of genome sequences, providing increased training data to inform computational approaches for both prokaryotic and eukaryotic promoter prediction. However, it remains a significant challenge to accurately identify species-specific promoter sequences using computational approaches. To advance computational support for promoter prediction, in this study, we curated 58 comprehensive, up-to-date, benchmark datasets for 7 different species (i.e. Escherichia coli, Bacillus subtilis, Homo sapiens, Mus musculus, Arabidopsis thaliana, Zea mays and Drosophila melanogaster) to assist the research community to assess the relative functionality of alternative approaches and support future research on both prokaryotic and eukaryotic promoters. We revisited 106 predictors published since 2000 for promoter identification (40 for prokaryotic promoter, 61 for eukaryotic promoter, and 5 for both). We systematically evaluated their training datasets, computational methodologies, calculated features, performance and software usability. On the basis of these benchmark datasets, we benchmarked 19 predictors with functioning webservers/local tools and assessed their prediction performance. We found that deep learning and traditional machine learning-based approaches generally outperformed scoring function-based approaches. Taken together, the curated benchmark dataset repository and the benchmarking analysis in this study serve to inform the design and implementation of computational approaches for promoter prediction and facilitate more rigorous comparison of new techniques in the future.
Collapse
Affiliation(s)
| | - Cangzhi Jia
- Corresponding authors: Jiangning Song, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia. E-mail: ; Lachlan J.M. Coin, Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, 792 Elizabeth Street, Melbourne, Victoria 3000, Australia. E-mail: ; Quan Zou, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China. E-mail: ; Cangzhi Jia, School of Science, Dalian Maritime University, Dalian 116026, China. E-mail:
| | | | | | | | | | - Geoffrey I Webb
- Department of Data Science and Artificial Intelligence, Monash University, Melbourne, VIC 3800, Australia,Monash Data Futures Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Quan Zou
- Corresponding authors: Jiangning Song, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia. E-mail: ; Lachlan J.M. Coin, Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, 792 Elizabeth Street, Melbourne, Victoria 3000, Australia. E-mail: ; Quan Zou, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China. E-mail: ; Cangzhi Jia, School of Science, Dalian Maritime University, Dalian 116026, China. E-mail:
| | - Lachlan J M Coin
- Corresponding authors: Jiangning Song, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia. E-mail: ; Lachlan J.M. Coin, Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, 792 Elizabeth Street, Melbourne, Victoria 3000, Australia. E-mail: ; Quan Zou, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China. E-mail: ; Cangzhi Jia, School of Science, Dalian Maritime University, Dalian 116026, China. E-mail:
| | - Jiangning Song
- Corresponding authors: Jiangning Song, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia. E-mail: ; Lachlan J.M. Coin, Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, 792 Elizabeth Street, Melbourne, Victoria 3000, Australia. E-mail: ; Quan Zou, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China. E-mail: ; Cangzhi Jia, School of Science, Dalian Maritime University, Dalian 116026, China. E-mail:
| |
Collapse
|
7
|
Zhang X, Li Y, Sun Y, Guo M, Feng J, Wang Y, Zhang Z. Regulatory effect of heat shock transcription factor-1 gene on heat shock proteins and its transcriptional regulation analysis in small abalone Haliotis diversicolor. BMC Mol Cell Biol 2020; 21:83. [PMID: 33228519 PMCID: PMC7685655 DOI: 10.1186/s12860-020-00323-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 10/25/2020] [Indexed: 12/12/2022] Open
Abstract
Background The effects of diverse stresses ultimately alter the structures and functions of proteins. As molecular chaperones, heat shock proteins (HSPs) are a group of highly conserved proteins that help in the refolding of misfolded proteins and the elimination of irreversibly damaged proteins. They are mediated by a family of transcription factors called heat shock factors (HSFs). The small abalone Haliotis diversicolor is a species naturally distributed along the southern coast of China. In this study, the expression of HdHSF1 was inhibited by RNAi in hemocytes in order to further elucidate the regulatory roles of HdHSF1 on heat shock responsive genes in abalone. Meanwhile, to understand the transcriptional regulation of the HdHSF1 gene, the 5′-upstream regulatory region of HdHSF1 was characterized, and the relative promoter activity was examined by dual-luciferase reporter gene assay system in HEK293T cell lines. Results After the inhibition of the H. diversicolor HSF1 gene (HdHSF1) by dsRNA (double-stranded RNA), the expression of most heat shock related-genes was down-regulated (p < 0.05). It indicated the importance of HdHSF1 in the heat shock response of H. diversicolor. Meanwhile, 5′-flanking region sequence (2633 bp) of the HdHSF1 gene was cloned; it contained a putative core promoter region, TATA box, CAAT box, CpG island, and many transcription elements. In HEK293T cells, the 5′-flanking region sequence can drive expression of the enhanced green fluorescent protein (EGFP), proving its promoter function. Exposure of cells to the high-temperature (39 °C and 42 °C) resulted in the activation of HdHSF1 promoter activity, which may explain why the expression of the HdHSF1 gene participates in heat shock response. Luciferase activity of different recombinant plasmids, which contained different truncated promoter fragments of the HdHSF1 gene in HEK293T cells, revealed the possible active regions of the promoter. To further identify the binding site of the critical transcription factor in the region, an expression vector with the site-directed mutation was constructed. After being mutated on the GATA-1 binding site, we found that the luciferase activity was significantly increased, which suggested that the GATA-1 binding site has a certain weakening effect on the activity of the HdHSF1 promoter. Conclusions These findings suggest that GATA-1 may be one of the transcription factors of HdHSF1, and a possible signaling pathway mediated by HdHSF1 may exist in H. diversicolor to counteract the adverse effects of heat shock stress. Supplementary Information Supplementary information accompanies this paper at 10.1186/s12860-020-00323-9.
Collapse
Affiliation(s)
- Xin Zhang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, 361021, China.,Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Yuting Li
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Yulong Sun
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Mingxing Guo
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jianjun Feng
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, 361021, China.,Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Yilei Wang
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, 361021, China. .,Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China.
| | - Ziping Zhang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China. .,Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
8
|
Garcia-Gimenez G, Russell J, Aubert MK, Fincher GB, Burton RA, Waugh R, Tucker MR, Houston K. Barley grain (1,3;1,4)-β-glucan content: effects of transcript and sequence variation in genes encoding the corresponding synthase and endohydrolase enzymes. Sci Rep 2019. [PMID: 31754200 DOI: 10.1038/s41598-019-53798-53798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023] Open
Abstract
The composition of plant cell walls is important in determining cereal end uses. Unlike other widely consumed cereal grains barley is comparatively rich in (1,3;1,4)-β-glucan, a source of dietary fibre. Previous work showed Cellulose synthase-like genes synthesise (1,3;1,4)-β-glucan in several tissues. HvCslF6 encodes a grain (1,3;1,4)-β-glucan synthase, whereas the function of HvCslF9 is unknown. Here, the relationship between mRNA levels of HvCslF6, HvCslF9, HvGlbI (1,3;1,4)-β-glucan endohydrolase, and (1,3;1,4)-β-glucan content was studied in developing grains of four barley cultivars. HvCslF6 was differentially expressed during mid (8-15 DPA) and late (38 DPA) grain development stages while HvCslF9 transcript was only clearly detected at 8-10 DPA. A peak of HvGlbI expression was detected at 15 DPA. Differences in transcript abundance across the three genes could partially explain variation in grain (1,3;1,4)-β-glucan content in these genotypes. Remarkably narrow sequence variation was found within the HvCslF6 promoter and coding sequence and does not explain variation in (1,3;1,4)-β-glucan content. Our data emphasise the genotype-dependent accumulation of (1,3;1,4)-β-glucan during barley grain development and a role for the balance between hydrolysis and synthesis in determining (1,3;1,4)-β-glucan content, and suggests that other regulatory sequences or proteins are likely to be involved in this trait in developing grain.
Collapse
Affiliation(s)
- Guillermo Garcia-Gimenez
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
- Guillermo Garcia-Gimenez, Agriculture & Food, Commonwealth Scientific and Industrial Research Organization (CSIRO), Canberra, ACT 2601, Australia
| | - Joanne Russell
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
| | - Matthew K Aubert
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia
| | - Geoffrey B Fincher
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia
| | - Rachel A Burton
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia
| | - Robbie Waugh
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
- Plant Sciences Division, College of Life Sciences, University of Dundee. Dundee, DD1 5EH, Scotland, UK
| | - Matthew R Tucker
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia
| | - Kelly Houston
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK.
| |
Collapse
|
9
|
Garcia-Gimenez G, Russell J, Aubert MK, Fincher GB, Burton RA, Waugh R, Tucker MR, Houston K. Barley grain (1,3;1,4)-β-glucan content: effects of transcript and sequence variation in genes encoding the corresponding synthase and endohydrolase enzymes. Sci Rep 2019; 9:17250. [PMID: 31754200 PMCID: PMC6872655 DOI: 10.1038/s41598-019-53798-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/31/2019] [Indexed: 01/13/2023] Open
Abstract
The composition of plant cell walls is important in determining cereal end uses. Unlike other widely consumed cereal grains barley is comparatively rich in (1,3;1,4)-β-glucan, a source of dietary fibre. Previous work showed Cellulose synthase-like genes synthesise (1,3;1,4)-β-glucan in several tissues. HvCslF6 encodes a grain (1,3;1,4)-β-glucan synthase, whereas the function of HvCslF9 is unknown. Here, the relationship between mRNA levels of HvCslF6, HvCslF9, HvGlbI (1,3;1,4)-β-glucan endohydrolase, and (1,3;1,4)-β-glucan content was studied in developing grains of four barley cultivars. HvCslF6 was differentially expressed during mid (8-15 DPA) and late (38 DPA) grain development stages while HvCslF9 transcript was only clearly detected at 8-10 DPA. A peak of HvGlbI expression was detected at 15 DPA. Differences in transcript abundance across the three genes could partially explain variation in grain (1,3;1,4)-β-glucan content in these genotypes. Remarkably narrow sequence variation was found within the HvCslF6 promoter and coding sequence and does not explain variation in (1,3;1,4)-β-glucan content. Our data emphasise the genotype-dependent accumulation of (1,3;1,4)-β-glucan during barley grain development and a role for the balance between hydrolysis and synthesis in determining (1,3;1,4)-β-glucan content, and suggests that other regulatory sequences or proteins are likely to be involved in this trait in developing grain.
Collapse
Affiliation(s)
- Guillermo Garcia-Gimenez
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
- Guillermo Garcia-Gimenez, Agriculture & Food, Commonwealth Scientific and Industrial Research Organization (CSIRO), Canberra, ACT 2601, Australia
| | - Joanne Russell
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
| | - Matthew K Aubert
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia
| | - Geoffrey B Fincher
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia
| | - Rachel A Burton
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia
| | - Robbie Waugh
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
- Plant Sciences Division, College of Life Sciences, University of Dundee. Dundee, DD1 5EH, Scotland, UK
| | - Matthew R Tucker
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia
| | - Kelly Houston
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK.
| |
Collapse
|
10
|
Lai HY, Zhang ZY, Su ZD, Su W, Ding H, Chen W, Lin H. iProEP: A Computational Predictor for Predicting Promoter. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 17:337-346. [PMID: 31299595 PMCID: PMC6616480 DOI: 10.1016/j.omtn.2019.05.028] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 05/18/2019] [Accepted: 05/19/2019] [Indexed: 11/29/2022]
Abstract
Promoter is a fundamental DNA element located around the transcription start site (TSS) and could regulate gene transcription. Promoter recognition is of great significance in determining transcription units, studying gene structure, analyzing gene regulation mechanisms, and annotating gene functional information. Many models have already been proposed to predict promoters. However, the performances of these methods still need to be improved. In this work, we combined pseudo k-tuple nucleotide composition (PseKNC) with position-correlation scoring function (PCSF) to formulate promoter sequences of Homo sapiens (H. sapiens), Drosophila melanogaster (D. melanogaster), Caenorhabditis elegans (C. elegans), Bacillus subtilis (B. subtilis), and Escherichia coli (E. coli). Minimum Redundancy Maximum Relevance (mRMR) algorithm and increment feature selection strategy were then adopted to find out optimal feature subsets. Support vector machine (SVM) was used to distinguish between promoters and non-promoters. In the 10-fold cross-validation test, accuracies of 93.3%, 93.9%, 95.7%, 95.2%, and 93.1% were obtained for H. sapiens, D. melanogaster, C. elegans, B. subtilis, and E. coli, with the areas under receiver operating curves (AUCs) of 0.974, 0.975, 0.981, 0.988, and 0.976, respectively. Comparative results demonstrated that our method outperforms existing methods for identifying promoters. An online web server was established that can be freely accessed (http://lin-group.cn/server/iProEP/).
Collapse
Affiliation(s)
- Hong-Yan Lai
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Zhao-Yue Zhang
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Zhen-Dong Su
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Wei Su
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Hui Ding
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Wei Chen
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611730, China; Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China.
| | - Hao Lin
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| |
Collapse
|
11
|
Martins-Santana L, Nora LC, Sanches-Medeiros A, Lovate GL, Cassiano MHA, Silva-Rocha R. Systems and Synthetic Biology Approaches to Engineer Fungi for Fine Chemical Production. Front Bioeng Biotechnol 2018; 6:117. [PMID: 30338257 PMCID: PMC6178918 DOI: 10.3389/fbioe.2018.00117] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 08/02/2018] [Indexed: 01/16/2023] Open
Abstract
Since the advent of systems and synthetic biology, many studies have sought to harness microbes as cell factories through genetic and metabolic engineering approaches. Yeast and filamentous fungi have been successfully harnessed to produce fine and high value-added chemical products. In this review, we present some of the most promising advances from recent years in the use of fungi for this purpose, focusing on the manipulation of fungal strains using systems and synthetic biology tools to improve metabolic flow and the flow of secondary metabolites by pathway redesign. We also review the roles of bioinformatics analysis and predictions in synthetic circuits, highlighting in silico systemic approaches to improve the efficiency of synthetic modules.
Collapse
Affiliation(s)
- Leonardo Martins-Santana
- Systems and Synthetic Biology Laboratory, Cell and Molecular Biology Department, Ribeirão Preto Medical School, São Paulo University (FMRP-USP), Ribeirão Preto, Brazil
| | - Luisa C Nora
- Systems and Synthetic Biology Laboratory, Cell and Molecular Biology Department, Ribeirão Preto Medical School, São Paulo University (FMRP-USP), Ribeirão Preto, Brazil
| | - Ananda Sanches-Medeiros
- Systems and Synthetic Biology Laboratory, Cell and Molecular Biology Department, Ribeirão Preto Medical School, São Paulo University (FMRP-USP), Ribeirão Preto, Brazil
| | - Gabriel L Lovate
- Systems and Synthetic Biology Laboratory, Cell and Molecular Biology Department, Ribeirão Preto Medical School, São Paulo University (FMRP-USP), Ribeirão Preto, Brazil
| | - Murilo H A Cassiano
- Systems and Synthetic Biology Laboratory, Cell and Molecular Biology Department, Ribeirão Preto Medical School, São Paulo University (FMRP-USP), Ribeirão Preto, Brazil
| | - Rafael Silva-Rocha
- Systems and Synthetic Biology Laboratory, Cell and Molecular Biology Department, Ribeirão Preto Medical School, São Paulo University (FMRP-USP), Ribeirão Preto, Brazil
| |
Collapse
|
12
|
Zhang X, Huang D, Jia X, Zou Z, Wang Y, Zhang Z. Functional analysis of the promoter of the molt-inhibiting hormone (mih) gene in mud crab Scylla paramamosain. Gen Comp Endocrinol 2018; 259:131-140. [PMID: 29170022 DOI: 10.1016/j.ygcen.2017.11.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/15/2017] [Accepted: 11/18/2017] [Indexed: 11/24/2022]
Abstract
In this study, the 5'-flanking region of molt-inhibiting hormone (MIH) gene was cloned by Tail-PCR. It is 2024 bp starting from the translation initiation site, and 1818 bp starting from the predicted transcription start site. Forecast analysis results by the bioinformatics software showed that the transcription start site is located at 207 bp upstream of the start codon ATG, and TATA box is located at 240 bp upstream of the start codon ATG. Potential transcription factor binding sites include Sp1, NF-1, Oct-1, Sox-2, RAP1, and so on. There are two CpG islands, located at -25- +183 bp and -1451- -1316 bp respectively. The transfection results of luciferase reporter constructs showed that the core promoter region was located in the fragment -308 bp to -26 bp. NF-kappaB and RAP1 were essential for mih basal transcriptional activity. There are three kinds of polymorphism CA in the 5'-flanking sequence, and they can influence mih promoter activity. These findings provide a genetic foundation of the further research of mih transcription regulation.
Collapse
Affiliation(s)
- Xin Zhang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Danping Huang
- Fisheries College, Jimei University, Xiamen 361021, China
| | - Xiwei Jia
- Fisheries College, Jimei University, Xiamen 361021, China
| | - Zhihua Zou
- Fisheries College, Jimei University, Xiamen 361021, China
| | - Yilei Wang
- Fisheries College, Jimei University, Xiamen 361021, China.
| | - Ziping Zhang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
13
|
Vieira DDSS, Emiliani G, Bartolini P, Podda A, Centritto M, Luro F, Del Carratore R, Morillon R, Gesteira A, Maserti B. A L-type lectin gene is involved in the response to hormonal treatment and water deficit in Volkamer lemon. JOURNAL OF PLANT PHYSIOLOGY 2017; 218:94-99. [PMID: 28802186 DOI: 10.1016/j.jplph.2017.07.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 07/27/2017] [Accepted: 07/27/2017] [Indexed: 06/07/2023]
Abstract
Combination of biotic and abiotic stress is a major challenge for crop and fruit production. Thus, identification of genes involved in cross-response to abiotic and biotic stress is of great importance for breeding superior genotypes. Lectins are glycan-binding proteins with a functions in the developmental processes as well as in the response to biotic and abiotic stress. In this work, a lectin like gene, namely ClLectin1, was characterized in Volkamer lemon and its expression was studied in plants exposed to either water stress, hormonal elicitors (JA, SA, ABA) or wounding to understand whether this gene may have a function in the response to multiple stress combination. Results showed that ClLectin1 has 100% homology with a L-type lectin gene from C. sinensis and the in silico study of the 5'UTR region showed the presence of cis-responsive elements to SA, DRE2 and ABA. ClLectin1 was rapidly induced by hormonal treatments and wounding, at local and systemic levels, suggesting an involvement in defence signalling pathways and a possible role as fast detection biomarker of biotic stress. On the other hand, the induction of ClLectin1 by water stress pointed out a role of the gene in the response to drought. The simultaneous response of ClLectin1 expression to water stress and SA treatment could be further investigated to assess whether a moderate drought stress may be useful to improve citrus performance by stimulating the SA-dependent response to biotic stress.
Collapse
Affiliation(s)
- Dayse Drielly Sousa Santana Vieira
- CNR-Istituto per la Protezione Sostenibile delle Piante, Area della Ricerca di Firenze, Via Madonna del Piano 10, 50019 Sesto Fiorentino, FI, Italy; Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Rodovia Jorge Amado, Km 16, 45662-900 Ilhéus, Bahia, Brazil
| | - Giovanni Emiliani
- CNR-Istituto per la Valorizzazione del Legno e delle Specie Arboree, Area della Ricerca di Firenze, Via Madonna del Piano 10, 50019 Sesto Fiorentino, FI, Italy
| | - Paola Bartolini
- CNR-Istituto per la Protezione Sostenibile delle Piante, Area della Ricerca di Firenze, Via Madonna del Piano 10, 50019 Sesto Fiorentino, FI, Italy
| | - Alessandra Podda
- CNR-Istituto per la Protezione Sostenibile delle Piante, Area della Ricerca di Firenze, Via Madonna del Piano 10, 50019 Sesto Fiorentino, FI, Italy
| | - Mauro Centritto
- CNR-Istituto per la Valorizzazione del Legno e delle Specie Arboree, Area della Ricerca di Firenze, Via Madonna del Piano 10, 50019 Sesto Fiorentino, FI, Italy
| | - François Luro
- UMR AGAP - INRA de Corse, équipe APMV, 20230 San Giuliano, France
| | - Renata Del Carratore
- CNR-Istituto di Fisiologia Clinica, Area della Ricerca Pisa, Via Moruzzi 1, 56100 Pisa,Italy
| | - Raphaël Morillon
- UMR AGAP - CIRAD, équipé APMV - Station de Roujol, 97170 Petit Bourg, Guadaloupe, France
| | | | - Biancaelena Maserti
- CNR-Istituto per la Protezione Sostenibile delle Piante, Area della Ricerca di Firenze, Via Madonna del Piano 10, 50019 Sesto Fiorentino, FI, Italy.
| |
Collapse
|
14
|
Lu X, Dun H, Lian C, Zhang X, Yin W, Xia X. The role of peu-miR164 and its target PeNAC genes in response to abiotic stress in Populus euphratica. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 115:418-438. [PMID: 28445829 DOI: 10.1016/j.plaphy.2017.04.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/17/2017] [Accepted: 04/06/2017] [Indexed: 05/22/2023]
Abstract
Plant miR164 family is highly conserved and miR164 members regulate conserved targets belonging to NAC transcription factors. Our previous studies have revealed that peu-miR164a-e and its target gene POPTR_0007s08420 participate in abiotic stress response in Populus euphratica according to deep sequencing and degradome sequencing. In this study, miR164 family comprises six members that generate two mature products (miR164a-e and miR164f) and target seven NAC genes in P. euphratica. Co-expression in Nicotiana benthamiana and 5' RACE confirmed that peu-miR164 directs PeNAC070, PeNAC012 and PeNAC028 mRNAs cleavage. Expression profiles of primary peu-miR164 a/b/c/d/e bear similarity to those of peu-miR164a-e, whereas PeNAC070 and PeNAC081 showed inverse expression patterns with peu-miR164a-e under abiotic stresses. Existence of cis-acting elements in PeNAC070 promoter (ABRE,MBs, Box-W1, GC-motif, and W-box) and in peu-MIR164b promoter (HSE) further confirmed different responses of peu-miR164 and PeNAC070 to abiotic stresses. Histochemical β-glucuronidase (GUS) staining revealed that GUS activities increased when ProPeNAC070::GUS transgenic Arabidopsis plants were exposed to NaCl, mannitol and abscisic acid (ABA), whereas GUS activity of Propeu-MIR164b::GUS plants decreased under ABA treatment. Subcellular localization and transactivation assays showed that PeNAC070 protein was localized to the nucleus and exhibited transactivation activity at the C-terminal. Overexpression of PeNAC070 in Arabidopsis promoted lateral root development, delayed stem elongation, and increased sensitivity of transgenic plants to drought and salt stresses. This study aids in understanding the adaptability of P. euphratica to extreme drought and salt environment by analysing tissue-specific expression patterns of miR164-regulated and specific promoter-regulated PeNAC genes.
Collapse
Affiliation(s)
- Xin Lu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 10083, PR China
| | - Hui Dun
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 10083, PR China
| | - Conglong Lian
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 10083, PR China
| | - Xiaofei Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 10083, PR China
| | - Weilun Yin
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 10083, PR China.
| | - Xinli Xia
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 10083, PR China.
| |
Collapse
|
15
|
Singh S, Kaur S, Goel N. A Review of Computational Intelligence Methods for Eukaryotic Promoter Prediction. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2016; 34:449-62. [PMID: 26158565 DOI: 10.1080/15257770.2015.1013126] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In past decades, prediction of genes in DNA sequences has attracted the attention of many researchers but due to its complex structure it is extremely intricate to correctly locate its position. A large number of regulatory regions are present in DNA that helps in transcription of a gene. Promoter is one such region and to find its location is a challenging problem. Various computational methods for promoter prediction have been developed over the past few years. This paper reviews these promoter prediction methods. Several difficulties and pitfalls encountered by these methods are also detailed, along with future research directions.
Collapse
Affiliation(s)
- Shailendra Singh
- a Department of Computer Science and Engineering , PEC University of Technology , Chandigarh , India
| | | | | |
Collapse
|
16
|
Sloutskin A, Danino YM, Orenstein Y, Zehavi Y, Doniger T, Shamir R, Juven-Gershon T. ElemeNT: a computational tool for detecting core promoter elements. Transcription 2016. [PMID: 26226151 PMCID: PMC4581360 DOI: 10.1080/21541264.2015.1067286] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Core promoter elements play a pivotal role in the transcriptional output, yet they are often detected manually within sequences of interest. Here, we present 2 contributions to the detection and curation of core promoter elements within given sequences. First, the Elements Navigation Tool (ElemeNT) is a user-friendly web-based, interactive tool for prediction and display of putative core promoter elements and their biologically-relevant combinations. Second, the CORE database summarizes ElemeNT-predicted core promoter elements near CAGE and RNA-seq-defined Drosophila melanogaster transcription start sites (TSSs). ElemeNT's predictions are based on biologically-functional core promoter elements, and can be used to infer core promoter compositions. ElemeNT does not assume prior knowledge of the actual TSS position, and can therefore assist in annotation of any given sequence. These resources, freely accessible at http://lifefaculty.biu.ac.il/gershon-tamar/index.php/resources, facilitate the identification of core promoter elements as active contributors to gene expression.
Collapse
Affiliation(s)
- Anna Sloutskin
- a The Mina and Everard Goodman Faculty of Life Sciences ; Bar-Ilan University ; Ramat Gan , Israel
| | | | | | | | | | | | | |
Collapse
|
17
|
Pang S, Shen J, Liu Y, Chen F, Zheng Z, James AW, Hsu CY, Zhang H, Lee KS, Wang C, Li C, Chen X, Jia H, Zhang X, Soo C, Ting K. Proliferation and osteogenic differentiation of mesenchymal stem cells induced by a short isoform of NELL-1. Stem Cells 2015; 33:904-15. [PMID: 25376942 DOI: 10.1002/stem.1884] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 09/19/2014] [Accepted: 09/27/2014] [Indexed: 01/11/2023]
Abstract
Neural epidermal growth factor-like (NEL)-like protein 1 (NELL-1) has been identified as an osteoinductive differentiation factor that promotes mesenchymal stem cell (MSC) osteogenic differentiation. In addition to full-length NELL-1, there are several NELL-1-related transcripts reported. We used rapid amplification of cDNA ends to recover potential cDNA of NELL-1 isoforms. A NELL-1 isoform with the N-terminal 240 amino acid (aa) residues truncated was identified. While full-length NELL-1 that contains 810 aa residues (NELL-1810 ) plays an important role in embryologic skeletal development, the N-terminal-truncated NELL-1 isoform (NELL-1570 ) was expressed postnatally. Similar to NELL-1810 , NELL-1570 induced MSC osteogenic differentiation. In addition, NELL-1570 significantly stimulated MSC proliferation in multiple MSC-like populations such as murine C3H10T1/2 MSC cell line, mouse primary MSCs, and perivascular stem cells, which is a type of stem cells proposed as the perivascular origin of MSCs. In contrast, NELL-1810 demonstrated only limited stimulation of MSC proliferation. Similar to NELL-1810 , NELL-1570 was found to be secreted from host cells. Both NELL-1570 expression lentiviral vector and column-purified recombinant protein NELL-1570 demonstrated almost identical effects in MSC proliferation and osteogenic differentiation, suggesting that NELL-1570 may function as a pro-osteogenic growth factor. In vivo, NELL-1570 induced significant calvarial defect regeneration accompanied by increased cell proliferation. Thus, NELL-1570 has the potential to be used for cell-based or hormone-based therapy of bone regeneration.
Collapse
Affiliation(s)
- Shen Pang
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, University of California, Los Angeles, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Xia X, Yan C, Wu W, Zhou Y, Hou L, Zuo B, Xu D, Ren Z, Xiong Y. Characterization of the porcine peptidylarginine deiminase type VI gene (PADI6) promoter: Sp1 regulates basal transcription of the porcine PADI6. Gene 2015; 575:551-558. [PMID: 26403316 DOI: 10.1016/j.gene.2015.09.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 09/13/2015] [Accepted: 09/16/2015] [Indexed: 11/19/2022]
Abstract
It is a general consensus that oocyte quality is the key to embryo survival in pig reproduction. Thus, study on regulation of the ovary-associated gene is of great significance in pig breeding. Peptidylarginine deiminases (PADs) are a family of enzymes which catalyze the conversion of arginine to citrulline in proteins. The peptidylarginine deiminases type VI gene (PADI6) is mainly expressed in the ovary, and plays an important role in oocyte growth, fertilization and early embryo development. However, until now, little is known about its transcriptional regulation mechanism. Here, we firstly isolated and characterized the 5'-flanking region of porcine PADI6 gene. We determined the transcription start site using 5'-rapid amplification of cDNA ends (RACE) analysis, and identified the minimal promoter (-85/+68) that drove the basal expression of PADI6 by constructing various progressive deletions. Mutational analysis and electrophoretic mobility shift assays demonstrated Sp1 bound to the -56/-47 region of the PADI6 promoter. Furthermore, overexpression of Sp1 significantly increased the promoter activity and promoted PADI6 gene expression, and accordingly, inhibition of Sp1 expression with specific siRNA significantly reduced the promoter activity and suppressed the PADI6 expression. In addition, inhibition of Sp1 binding by Mithramycin A treatment reduced the transcriptional activity of PADI6 in a dose-dependent manner. Taken together, these data indicate that Sp1 is essential for the transcriptional regulation of PADI6.
Collapse
Affiliation(s)
- Xiaoliang Xia
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| | - Chi Yan
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| | - Wangjun Wu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Ying Zhou
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| | - Liming Hou
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| | - Bo Zuo
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| | - Dequan Xu
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| | - Zhuqing Ren
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yuanzhu Xiong
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
19
|
Tuckow AP, Temeyer KB. Discovery, adaptation and transcriptional activity of two tick promoters: Construction of a dual luciferase reporter system for optimization of RNA interference in rhipicephalus (boophilus) microplus cell lines. INSECT MOLECULAR BIOLOGY 2015; 24:454-466. [PMID: 25892533 DOI: 10.1111/imb.12172] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 02/10/2015] [Accepted: 03/06/2015] [Indexed: 06/04/2023]
Abstract
Dual luciferase reporter systems are valuable tools for functional genomic studies, but have not previously been developed for use in tick cell culture. We evaluated expression of available luciferase constructs in tick cell cultures derived from Rhipicephalus (Boophilus) microplus, an important vector of bovine babesiosis and anaplasmosis. Commercial promoters were evaluated for transcriptional activity driving luciferase expression in the tick cell lines. The human phosphoglycerate kinase (PGK) promoter resulted in detectable firefly luciferase activity within 2 days post-transfection of the R. microplus cell line BME26, with maximal activity at 5 days post-transfection. Several other promoters were weaker or inactive in the tick cells, prompting identification and assessment of transcriptional activity of the homologous ribosomal protein L4 (rpL4, GenBank accession no.: KM516205) and elongation factor 1α (EF-1α, GenBank accession no.: KM516204) promoters cloned from R. microplus. Evaluation of luciferase expression driven by various promoters in tick cell culture resulted in selection of the R. microplus rpL4 promoter and the human PGK promoter driving transcription of sequences encoding modified firefly and NanoLuc® luciferases for construction of a dual luciferase reporter system for use in tick cell culture.
Collapse
Affiliation(s)
- A P Tuckow
- USDA, Agricultural Research Service, Knipling-Bushland U.S. Livestock Insects Research Laboratory, Kerrville, TX, USA
| | - K B Temeyer
- USDA, Agricultural Research Service, Knipling-Bushland U.S. Livestock Insects Research Laboratory, Kerrville, TX, USA
| |
Collapse
|
20
|
Carquet M, Pompon D, Truan G. Transcription interference and ORF nature strongly affect promoter strength in a reconstituted metabolic pathway. Front Bioeng Biotechnol 2015; 3:21. [PMID: 25767795 PMCID: PMC4341558 DOI: 10.3389/fbioe.2015.00021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/12/2015] [Indexed: 11/13/2022] Open
Abstract
Fine tuning of individual enzyme expression level is necessary to alleviate metabolic imbalances in synthetic heterologous pathways. A known approach consists of choosing a suitable combination of promoters, based on their characterized strengths in model conditions. We questioned whether each step of a multiple-gene synthetic pathway could be independently tunable at the transcription level. Three open reading frames, coding for enzymes involved in a synthetic pathway, were combinatorially associated to different promoters on an episomal plasmid in Saccharomyces cerevisiae. We quantified the mRNA levels of the three genes in each strain of our generated combinatorial metabolic library. Our results evidenced that the ORF nature, position, and orientation induce strong discrepancies between the previously reported promoters' strengths and the observed ones. We conclude that, in the context of metabolic reconstruction, the strength of usual promoters can be dramatically affected by many factors. Among them, transcriptional interference and ORF nature seem to be predominant.
Collapse
Affiliation(s)
- Marie Carquet
- Université de Toulouse, INSA, UPS, INP, LISBP , Toulouse , France ; INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés , Toulouse , France ; CNRS, UMR5504 , Toulouse , France
| | - Denis Pompon
- Université de Toulouse, INSA, UPS, INP, LISBP , Toulouse , France ; INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés , Toulouse , France ; CNRS, UMR5504 , Toulouse , France
| | - Gilles Truan
- Université de Toulouse, INSA, UPS, INP, LISBP , Toulouse , France ; INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés , Toulouse , France ; CNRS, UMR5504 , Toulouse , France
| |
Collapse
|
21
|
Abstract
Artemisinin is the most effective antimalarial drug that is derived from Artemisia annua. Amorpha-4,11-diene synthase (ADS) controls the first committed step in artemisinin biosynthesis. The ADS gene expression is regulated by transcription factors which bind to the cis-acting elements on the ADS promoter and are probably responsible for the ADS gene expression difference in the Artemisia species. To identify the elements that are significantly involved in ADS gene expression, the ADS gene promoter of the seven Artemisia species was isolated and comparative analysis was performed on the ADS promoter sequences of these species. Results revealed that some of the cis-elements were unique or in terms of number were more in the high artemisinin producer species, A. annua, than the other species. We have reported that the light-responsive elements, W-box, CAAT-box, 5'-UTR py-rich stretch, TATA-box sequence and tandem repeat sequences have been identified as important factors in the increased expression of ADS gene.
Collapse
|
22
|
Yella VR, Bansal M. In silico Identification of Eukaryotic Promoters. SYSTEMS AND SYNTHETIC BIOLOGY 2015. [DOI: 10.1007/978-94-017-9514-2_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Xiong D, Liu R, Xiao F, Gao X. ProMT: effective human promoter prediction using Markov chain model based on DNA structural properties. IEEE Trans Nanobioscience 2014; 13:374-83. [PMID: 24919203 DOI: 10.1109/tnb.2014.2327586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The core promoters play significant and extensive roles for the initiation and regulation of DNA transcription. The identification of core promoters is one of the most challenging problems yet. Due to the diverse nature of core promoters, the results obtained through existing computational approaches are not satisfactory. None of them considered the potential influence on performance of predictive approach resulted by the interference between neighboring TSSs in TSS clusters. In this paper, we sufficiently considered this main factor and proposed an approach to locate potential TSS clusters according to the correlation of regional profiles of DNA and TSS clusters. On this basis, we further presented a novel computational approach (ProMT) for promoter prediction using Markov chain model and predictive TSS clusters based on structural properties of DNA. Extensive experiments demonstrated that ProMT can significantly improve the predictive performance. Therefore, considering interference between neighboring TSSs is essential for a wider range of promoter prediction.
Collapse
|
24
|
P U, Dubey JK, Rv K, Cherian BS, Gopalakrishnan G, Nair AS. A novel sequence and context based method for promoter recognition. Bioinformation 2014; 10:175-9. [PMID: 24966516 PMCID: PMC4070045 DOI: 10.6026/97320630010175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 03/17/2014] [Accepted: 03/18/2014] [Indexed: 11/23/2022] Open
Abstract
UNLABELLED Identification of promoters in DNA sequence using computational techniques is a significant research area because of its direct association in transcription regulation. A wide range of algorithms are available for promoter prediction. Most of them are polymerase dependent and cannot handle eukaryotes and prokaryotes alike. This study proposes a polymerase independent algorithm, which can predict whether a given DNA fragment is a promoter or not, based on the sequence features and statistical elements. This algorithm considers all possible pentamers formed from the nucleotides A, C, G, and T along with CpG islands, TATA box, initiator elements, and downstream promoter elements. The highlight of the algorithm is that it is not polymerase specific and can predict for both eukaryotes and prokaryotes in the same computational manner even though the underlying biological mechanisms of promoter recognition differ greatly. The proposed Method, Promoter Prediction System - PPS-CBM achieved a sensitivity, specificity, and accuracy percentages of 75.08, 83.58 and 79.33 on E. coli data set and 86.67, 88.41 and 87.58 on human data set. We have developed a tool based on PPS-CBM, the proposed algorithm, with which multiple sequences of varying lengths can be tested simultaneously and the result is reported in a comprehensive tabular format. The tool also reports the strength of the prediction. AVAILABILITY The tool and source code of PPS-CBM is available at http://keralabs.org.
Collapse
Affiliation(s)
- Umesh P
- Department of Computational Biology and Bioinformatics, University of Kerala, Thiruvananthapuram - 695581, Kerala, India
| | - Jitendra Kumar Dubey
- Department of Computer Science and Engineering, National Institute of Technology, Calicut - 673601, Kerala, India
| | - Karthika Rv
- Department of Computational Biology and Bioinformatics, University of Kerala, Thiruvananthapuram - 695581, Kerala, India
| | | | - Gopakumar Gopalakrishnan
- Department of Computer Science and Engineering, National Institute of Technology, Calicut - 673601, Kerala, India
| | - Achuthsankar Sukumaran Nair
- Department of Computational Biology and Bioinformatics, University of Kerala, Thiruvananthapuram - 695581, Kerala, India
| |
Collapse
|
25
|
Identifying and engineering promoters for high level and sustainable therapeutic recombinant protein production in cultured mammalian cells. Biotechnol Lett 2014; 36:1569-79. [DOI: 10.1007/s10529-014-1523-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 03/25/2014] [Indexed: 12/15/2022]
|
26
|
Zuo Y, Zhang P, Liu L, Li T, Peng Y, Li G, Li Q. Sequence-specific flexibility organization of splicing flanking sequence and prediction of splice sites in the human genome. Chromosome Res 2014; 22:321-34. [PMID: 24728765 DOI: 10.1007/s10577-014-9414-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 03/24/2014] [Accepted: 03/26/2014] [Indexed: 12/15/2022]
Abstract
More and more reported results of nucleosome positioning and histone modifications showed that DNA structure play a well-established role in splicing. In this study, a set of DNA geometric flexibility parameters originated from molecular dynamics (MD) simulations were introduced to discuss the structure organization around splice sites at the DNA level. The obtained profiles of specific flexibility/stiffness around splice sites indicated that the DNA physical-geometry deformation could be used as an alternative way to describe the splicing junction region. In combination with structural flexibility as discriminatory parameter, we developed a hybrid computational model for predicting potential splicing sites. And the better prediction performance was achieved when the benchmark dataset evaluated. Our results showed that the mechanical deformability character of a splice junction is closely correlated with both the splice site strength and structural information in its flanking sequences.
Collapse
Affiliation(s)
- Yongchun Zuo
- The Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, Inner Mongolia University, Hohhot, 010021, China,
| | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Evolutionary selection for optimal genome preservation, replication, and expression should yield similar chromosome organizations in any type of cells. And yet, the chromosome organization is surprisingly different between eukaryotes and prokaryotes. The nuclear versus cytoplasmic accommodation of genetic material accounts for the distinct eukaryotic and prokaryotic modes of genome evolution, but it falls short of explaining the differences in the chromosome organization. I propose that the two distinct ways to organize chromosomes are driven by the differences between the global-consecutive chromosome cycle of eukaryotes and the local-concurrent chromosome cycle of prokaryotes. Specifically, progressive chromosome segregation in prokaryotes demands a single duplicon per chromosome, while other "precarious" features of the prokaryotic chromosomes can be viewed as compensations for this severe restriction.
Collapse
|
28
|
Yokoyama KD, Pollock DD. SP transcription factor paralogs and DNA-binding sites coevolve and adaptively converge in mammals and birds. Genome Biol Evol 2013; 4:1102-17. [PMID: 23019068 PMCID: PMC3514965 DOI: 10.1093/gbe/evs085] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Functional modification of regulatory proteins can affect hundreds of genes throughout the genome, and is therefore thought to be almost universally deleterious. This belief, however, has recently been challenged. A potential example comes from transcription factor SP1, for which statistical evidence indicates that motif preferences were altered in eutherian mammals. Here, we set out to discover possible structural and theoretical explanations, evaluate the role of selection in SP1 evolution, and discover effects on coregulatory proteins. We show that SP1 motif preferences were convergently altered in birds as well as mammals, inducing coevolutionary changes in over 800 regulatory regions. Structural and phylogenic evidence implicates a single causative amino acid replacement at the same SP1 position along both lineages. Furthermore, paralogs SP3 and SP4, which coregulate SP1 target genes through competitive binding to the same sites, have accumulated convergent replacements at the homologous position multiple times during eutherian and bird evolution, presumably to preserve competitive binding. To determine plausibility, we developed and implemented a simple model of transcription factor and binding site coevolution. This model predicts that, in contrast to prevailing beliefs, even small selective benefits per locus can drive concurrent fixation of transcription factor and binding site mutants under a broad range of conditions. Novel binding sites tend to arise de novo, rather than by mutation from ancestral sites, a prediction substantiated by SP1-binding site alignments. Thus, multiple lines of evidence indicate that selection has driven convergent evolution of transcription factors along with their binding sites and coregulatory proteins.
Collapse
Affiliation(s)
- Ken Daigoro Yokoyama
- Department of Biochemistry and Molecular Genetics, University of Colorado, Denver School of Medicine, USA
| | | |
Collapse
|
29
|
Joubert DA, de Lorenzo G, Vivier MA. Regulation of the grapevine polygalacturonase-inhibiting protein encoding gene: expression pattern, induction profile and promoter analysis. JOURNAL OF PLANT RESEARCH 2013; 126:267-81. [PMID: 22932820 DOI: 10.1007/s10265-012-0515-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 07/04/2012] [Indexed: 05/10/2023]
Abstract
Regulation of defense in plants is a complex process mediated by various signaling pathways. Promoter analysis of defense-related genes is useful to understand these signaling pathways involved in regulation. To this end, the regulation of the polygalacturonase-inhibiting protein encoding gene from Vitis vinifera L. (Vvpgip1) was analyzed with regard to expression pattern and induction profile as well as the promoter in terms of putative regulatory elements present, core promoter size and the start of transcription. Expression of Vvpgip1 is tissue-specific and developmentally regulated. Vvpgip1 expression was induced in response to auxin, salicylic acid and sugar treatment, wounding and pathogen infection. The start of transcription was mapped to 17 bp upstream of the ATG and the core promoter was mapped to the 137 bp upstream of the ATG. Fructose- and Botrytis responsiveness were identified in the region between positions -3.1 and -1.5 kb. The analyses showed induction in water when the leaves were submersed and this response and the response to wounding mapped to the region between positions -1.1 and -0.1 kb. In silico analyses revealed putative cis-acting elements in these areas that correspond well to the induction stimuli tested.
Collapse
Affiliation(s)
- D Albert Joubert
- Department of Viticulture and Oenology, Institute for Wine Biotechnology, Stellenbosch University, Victoria Street, Stellenbosch 7600, South Africa
| | | | | |
Collapse
|
30
|
Datta S, Mukhopadhyay S. A composite method based on formal grammar and DNA structural features in detecting human polymerase II promoter region. PLoS One 2013; 8:e54843. [PMID: 23437045 PMCID: PMC3577817 DOI: 10.1371/journal.pone.0054843] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 12/17/2012] [Indexed: 11/25/2022] Open
Abstract
An important step in understanding gene regulation is to identify the promoter regions where the transcription factor binding takes place. Predicting a promoter region de novo has been a theoretical goal for many researchers for a long time. There exists a number of in silico methods to predict the promoter region de novo but most of these methods are still suffering from various shortcomings, a major one being the selection of appropriate features of promoter region distinguishing them from non-promoters. In this communication, we have proposed a new composite method that predicts promoter sequences based on the interrelationship between structural profiles of DNA and primary sequence elements of the promoter regions. We have shown that a Context Free Grammar (CFG) can formalize the relationships between different primary sequence features and by utilizing the CFG, we demonstrate that an efficient parser can be constructed for extracting these relationships from DNA sequences to distinguish the true promoter sequences from non-promoter sequences. Along with CFG, we have extracted the structural features of the promoter region to improve upon the efficiency of our prediction system. Extensive experiments performed on different datasets reveals that our method is effective in predicting promoter sequences on a genome-wide scale and performs satisfactorily as compared to other promoter prediction techniques.
Collapse
Affiliation(s)
- Sutapa Datta
- Department of Biophysics, Molecular Biology and Bioinformatics and Distributed Information Centre for Bioinformatics, University of Calcutta, Kolkata, West Bengal, India.
| | | |
Collapse
|
31
|
Todt TJ, Wels M, Bongers RS, Siezen RS, van Hijum SAFT, Kleerebezem M. Genome-wide prediction and validation of sigma70 promoters in Lactobacillus plantarum WCFS1. PLoS One 2012; 7:e45097. [PMID: 23028780 PMCID: PMC3447810 DOI: 10.1371/journal.pone.0045097] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 08/14/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND In prokaryotes, sigma factors are essential for directing the transcription machinery towards promoters. Various sigma factors have been described that recognize, and bind to specific DNA sequence motifs in promoter sequences. The canonical sigma factor σ(70) is commonly involved in transcription of the cell's housekeeping genes, which is mediated by the conserved σ(70) promoter sequence motifs. In this study the σ(70)-promoter sequences in Lactobacillus plantarum WCFS1 were predicted using a genome-wide analysis. The accuracy of the transcriptionally-active part of this promoter prediction was subsequently evaluated by correlating locations of predicted promoters with transcription start sites inferred from the 5'-ends of transcripts detected by high-resolution tiling array transcriptome datasets. RESULTS To identify σ(70)-related promoter sequences, we performed a genome-wide sequence motif scan of the L. plantarum WCFS1 genome focussing on the regions upstream of protein-encoding genes. We obtained several highly conserved motifs including those resembling the conserved σ(70)-promoter consensus. Position weight matrices-based models of the recovered σ(70)-promoter sequence motif were employed to identify 3874 motifs with significant similarity (p-value<10(-4)) to the model-motif in the L. plantarum genome. Genome-wide transcript information deduced from whole genome tiling-array transcriptome datasets, was used to infer transcription start sites (TSSs) from the 5'-end of transcripts. By this procedure, 1167 putative TSSs were identified that were used to corroborate the transcriptionally active fraction of these predicted promoters. In total, 568 predicted promoters were found in proximity (≤ 40 nucleotides) of the putative TSSs, showing a highly significant co-occurrence of predicted promoter and TSS (p-value<10(-263)). CONCLUSIONS High-resolution tiling arrays provide a suitable source to infer TSSs at a genome-wide level, and allow experimental verification of in silico predicted promoter sequence motifs.
Collapse
Affiliation(s)
- Tilman J. Todt
- Center for Molecular and Biomolecular Informatics, Nijmegen Center for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
- HAN University of Applied Sciences, Institute of Applied Sciences, Nijmegen, The Netherlands
| | - Michiel Wels
- Center for Molecular and Biomolecular Informatics, Nijmegen Center for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
- NIZO food research, Ede, The Netherlands
- TI Food and Nutrition, Wageningen, The Netherlands
- Kluyver Centre for Genomics of Industrial Fermentation, Delft, The Netherlands
| | - Roger S. Bongers
- NIZO food research, Ede, The Netherlands
- TI Food and Nutrition, Wageningen, The Netherlands
| | - Roland S. Siezen
- Center for Molecular and Biomolecular Informatics, Nijmegen Center for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
- HAN University of Applied Sciences, Institute of Applied Sciences, Nijmegen, The Netherlands
- NIZO food research, Ede, The Netherlands
- TI Food and Nutrition, Wageningen, The Netherlands
- Kluyver Centre for Genomics of Industrial Fermentation, Delft, The Netherlands
- Netherlands Bioinformatics Centre, Nijmegen, The Netherlands
| | - Sacha A. F. T. van Hijum
- Center for Molecular and Biomolecular Informatics, Nijmegen Center for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
- NIZO food research, Ede, The Netherlands
- TI Food and Nutrition, Wageningen, The Netherlands
- Kluyver Centre for Genomics of Industrial Fermentation, Delft, The Netherlands
- Netherlands Bioinformatics Centre, Nijmegen, The Netherlands
- * E-mail:
| | - Michiel Kleerebezem
- NIZO food research, Ede, The Netherlands
- TI Food and Nutrition, Wageningen, The Netherlands
- Kluyver Centre for Genomics of Industrial Fermentation, Delft, The Netherlands
- Wageningen University, Host Microbe Interactomics Group, Wageningen, The Netherlands
| |
Collapse
|
32
|
Osypov AA, Krutinin GG, Krutinina EA, Kamzolova SG. DEPPDB - DNA electrostatic potential properties database. Electrostatic properties of genome DNA elements. J Bioinform Comput Biol 2012; 10:1241004. [PMID: 22809340 DOI: 10.1142/s0219720012410041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Electrostatic properties of genome DNA are important to its interactions with different proteins, in particular, related to transcription. DEPPDB - DNA Electrostatic Potential (and other Physical) Properties Database - provides information on the electrostatic and other physical properties of genome DNA combined with its sequence and annotation of biological and structural properties of genomes and their elements. Genomes are organized on taxonomical basis, supporting comparative and evolutionary studies. Currently, DEPPDB contains all completely sequenced bacterial, viral, mitochondrial, and plastids genomes according to the NCBI RefSeq, and some model eukaryotic genomes. Data for promoters, regulation sites, binding proteins, etc., are incorporated from established DBs and literature. The database is complemented by analytical tools. User sequences calculations are available. Case studies discovered electrostatics complementing DNA bending in E.coli plasmid BNT2 promoter functioning, possibly affecting host-environment metabolic switch. Transcription factors binding sites gravitate to high potential regions, confirming the electrostatics universal importance in protein-DNA interactions beyond the classical promoter-RNA polymerase recognition and regulation. Other genome elements, such as terminators, also show electrostatic peculiarities. Most intriguing are gene starts, exhibiting taxonomic correlations. The necessity of the genome electrostatic properties studies is discussed.
Collapse
Affiliation(s)
- Alexander A Osypov
- Laboratory of Mechanisms of the Cell Genome Functioning, Institute of Cell Biophysics RAS, Pushchino, 142290, Russia.
| | | | | | | |
Collapse
|
33
|
Zhang DW, Rodríguez-Molina JB, Tietjen JR, Nemec CM, Ansari AZ. Emerging Views on the CTD Code. GENETICS RESEARCH INTERNATIONAL 2012; 2012:347214. [PMID: 22567385 PMCID: PMC3335543 DOI: 10.1155/2012/347214] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 11/03/2011] [Indexed: 12/21/2022]
Abstract
The C-terminal domain (CTD) of RNA polymerase II (Pol II) consists of conserved heptapeptide repeats that function as a binding platform for different protein complexes involved in transcription, RNA processing, export, and chromatin remodeling. The CTD repeats are subject to sequential waves of posttranslational modifications during specific stages of the transcription cycle. These patterned modifications have led to the postulation of the "CTD code" hypothesis, where stage-specific patterns define a spatiotemporal code that is recognized by the appropriate interacting partners. Here, we highlight the role of CTD modifications in directing transcription initiation, elongation, and termination. We examine the major readers, writers, and erasers of the CTD code and examine the relevance of describing patterns of posttranslational modifications as a "code." Finally, we discuss major questions regarding the function of the newly discovered CTD modifications and the fundamental insights into transcription regulation that will necessarily emerge upon addressing those challenges.
Collapse
Affiliation(s)
- David W. Zhang
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Juan B. Rodríguez-Molina
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Joshua R. Tietjen
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Corey M. Nemec
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Aseem Z. Ansari
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
- Genome Center of Wisconsin, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| |
Collapse
|
34
|
Raatz B, Eicker A, Schmitz G, Fuss E, Müller D, Rossmann S, Theres K. Specific expression of LATERAL SUPPRESSOR is controlled by an evolutionarily conserved 3' enhancer. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 68:400-12. [PMID: 21722220 DOI: 10.1111/j.1365-313x.2011.04694.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Aerial plant architecture is largely based on the activity of axillary meristems (AMs), initiated in the axils of leaves. The Arabidopsis gene LATERAL SUPPRESSOR (LAS), which is expressed in well-defined domains at the adaxial boundary of leaf primordia, is a key regulator of AM formation. The precise definition of organ boundaries is an essential step for the formation of new organs in general and for meristem initiation; however, mechanisms leading to these specific patterns are not well understood. To increase understanding of how the highly specific transcript accumulation in organ boundary regions is established, we investigated the LAS promoter. Analysis of deletion constructs revealed that an essential enhancer necessary for complementation is situated about 3.2 kb downstream of the LAS open reading frame. This enhancer is sufficient to confer promoter specificity as upstream sequences in LAS could be replaced by non-specific promoters, such as the 35S minimal promoter. Further promoter swapping experiments using the PISTILLATA or the full 35S promoter demonstrated that the LAS 3' enhancer also has suppressor functions, largely overwriting the activity of different 5' promoters. Phylogenetic analyses suggest that LAS function and regulation are evolutionarily highly conserved. Homologous elements in downstream regulatory sequences were found in all LAS orthologs, including grasses. Transcomplementation experiments demonstrated the functional conservation of non-coding sequences between Solanum lycopersicum (tomato) and Arabidopsis. In summary, our results show that a highly conserved enhancer/suppressor element is the main regulatory module conferring the boundary-specific expression of LAS.
Collapse
Affiliation(s)
- Bodo Raatz
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829 Cologne, Germany
| | | | | | | | | | | | | |
Collapse
|
35
|
Morey C, Mookherjee S, Rajasekaran G, Bansal M. DNA free energy-based promoter prediction and comparative analysis of Arabidopsis and rice genomes. PLANT PHYSIOLOGY 2011; 156:1300-15. [PMID: 21531900 PMCID: PMC3135951 DOI: 10.1104/pp.110.167809] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 04/21/2011] [Indexed: 05/06/2023]
Abstract
The cis-regulatory regions on DNA serve as binding sites for proteins such as transcription factors and RNA polymerase. The combinatorial interaction of these proteins plays a crucial role in transcription initiation, which is an important point of control in the regulation of gene expression. We present here an analysis of the performance of an in silico method for predicting cis-regulatory regions in the plant genomes of Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa) on the basis of free energy of DNA melting. For protein-coding genes, we achieve recall and precision of 96% and 42% for Arabidopsis and 97% and 31% for rice, respectively. For noncoding RNA genes, the program gives recall and precision of 94% and 75% for Arabidopsis and 95% and 90% for rice, respectively. Moreover, 96% of the false-positive predictions were located in noncoding regions of primary transcripts, out of which 20% were found in the first intron alone, indicating possible regulatory roles. The predictions for orthologous genes from the two genomes showed a good correlation with respect to prediction scores and promoter organization. Comparison of our results with an existing program for promoter prediction in plant genomes indicates that our method shows improved prediction capability.
Collapse
Affiliation(s)
| | | | | | - Manju Bansal
- Indian Institute of Science, Bangalore 560 012, India
| |
Collapse
|
36
|
Mishra H, Singh N, Misra K, Lahiri T. An ANN-GA model based promoter prediction in Arabidopsis thaliana using tilling microarray data. Bioinformation 2011; 6:240-3. [PMID: 21887014 PMCID: PMC3159145 DOI: 10.6026/97320630006240] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 05/09/2011] [Indexed: 11/23/2022] Open
Abstract
Identification of promoter region is an important part of gene annotation. Identification of promoters in eukaryotes is important as promoters modulate various
metabolic functions and cellular stress responses. In this work, a novel approach utilizing intensity values of tilling microarray data for a model eukaryotic plant
Arabidopsis thaliana, was used to specify promoter region from non-promoter region. A feed-forward back propagation neural network model supported by
genetic algorithm was employed to predict the class of data with a window size of 41. A dataset comprising of 2992 data vectors representing both promoter and
non-promoter regions, chosen randomly from probe intensity vectors for whole genome of Arabidopsis thaliana generated through tilling microarray technique
was used. The classifier model shows prediction accuracy of 69.73% and 65.36% on training and validation sets, respectively. Further, a concept of distance based
class membership was used to validate reliability of classifier, which showed promising results. The study shows the usability of micro-array probe intensities to
predict the promoter regions in eukaryotic genomes.
Collapse
Affiliation(s)
- Hrishikesh Mishra
- Division of Applied Sciences and Indo-Russian Centre for Biotechnology, Indian Institute of Information Technology, Allahabad, India
| | | | | | | |
Collapse
|
37
|
Sterling KM. The procollagen type III, alpha 1 (COL3A1) gene first intron expresses poly-A+ RNA corresponding to multiple ESTs and putative miRNAs. J Cell Biochem 2011; 112:541-7. [PMID: 21268075 DOI: 10.1002/jcb.22944] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The mouse COL3A1 first intron is 9684 bp. RNA's of approximately 1.6 and 3.0 kb were detected by Northern hybridization analysis of poly-A RNA from fetal mice and total RNA from suckling and adult mouse intestine using (32)P-labeled, anti-sense RNA synthesized from a mouse COL3A1 first intron, 5 prime region, 5.4 kb Xba I fragment (1655-7030 bp), recombinant plasmid (pPI5.4x). Expression of the 1.6 and 3.0 kb RNA's was significantly reduced in adult mouse intestine, indicating that these RNAs are developmentally regulated. "BLAST" analysis indicated that the mouse first intron 5 prime sequence has 94-100% identity to 13 mouse ESTs. These mouse first intron EST's lie within the 5.4 Xba I fragment of the mouse COL3A1 first intron. Two of the mouse first intron EST's have significant identity to known miRNA, mature sequences, mmu-miR-466f-3P, mmu-miR-1187, and mmu-miR-574-5P as well as others. Predicted targets for mmu-miR-466f-3P include COL1A1, COL19A1, COL11A2, COL4A1, and COL4A5 indicating that COL3A1 intronic miRNAs may regulate the expression of other collagen genes in development.
Collapse
Affiliation(s)
- Kenneth M Sterling
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, Florida 32080-8610, USA.
| |
Collapse
|
38
|
Vedel V, Scotti I. Promoting the promoter. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 180:182-189. [PMID: 21421359 DOI: 10.1016/j.plantsci.2010.09.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2010] [Revised: 09/23/2010] [Accepted: 09/27/2010] [Indexed: 05/28/2023]
Abstract
Recent evolutionary studies clearly indicate that evolution is mainly driven by changes in the complex mechanisms of gene regulation and not solely by polymorphism in protein-encoding genes themselves. After a short description of the cis-regulatory mechanism, we intend in this review to argue that by applying newly available technologies and by merging research areas such as evolutionary and developmental biology, population genetics, ecology and molecular cell biology it is now possible to study evolution in an integrative way. We contend that, by analysing the effects of promoter sequence variation on phenotypic diversity in natural populations, we will soon be able to break the barrier between the study of extant genetic variability and the study of major developmental changes. This will lead to an integrative view of evolution at different scales. Because of their sessile nature and their continuous development, plants must permanently regulate their gene expression to react to their environment, and can, therefore, be considered as a remarkable model for these types of studies.
Collapse
Affiliation(s)
- Vincent Vedel
- UMR ECOFOG, INRA, Ecological genetic, Campus Agronomique de Kourou, BP 709, 97387 Kourou, French Guiana.
| | | |
Collapse
|
39
|
Eukaryotic and prokaryotic promoter prediction using hybrid approach. Theory Biosci 2010; 130:91-100. [DOI: 10.1007/s12064-010-0114-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 10/23/2010] [Indexed: 12/27/2022]
|
40
|
Hendrickson RC, Wang C, Hatcher EL, Lefkowitz EJ. Orthopoxvirus genome evolution: the role of gene loss. Viruses 2010; 2:1933-1967. [PMID: 21994715 PMCID: PMC3185746 DOI: 10.3390/v2091933] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 08/25/2010] [Accepted: 09/01/2010] [Indexed: 12/26/2022] Open
Abstract
Poxviruses are highly successful pathogens, known to infect a variety of hosts. The family Poxviridae includes Variola virus, the causative agent of smallpox, which has been eradicated as a public health threat but could potentially reemerge as a bioterrorist threat. The risk scenario includes other animal poxviruses and genetically engineered manipulations of poxviruses. Studies of orthologous gene sets have established the evolutionary relationships of members within the Poxviridae family. It is not clear, however, how variations between family members arose in the past, an important issue in understanding how these viruses may vary and possibly produce future threats. Using a newly developed poxvirus-specific tool, we predicted accurate gene sets for viruses with completely sequenced genomes in the genus Orthopoxvirus. Employing sensitive sequence comparison techniques together with comparison of syntenic gene maps, we established the relationships between all viral gene sets. These techniques allowed us to unambiguously identify the gene loss/gain events that have occurred over the course of orthopoxvirus evolution. It is clear that for all existing Orthopoxvirus species, no individual species has acquired protein-coding genes unique to that species. All existing species contain genes that are all present in members of the species Cowpox virus and that cowpox virus strains contain every gene present in any other orthopoxvirus strain. These results support a theory of reductive evolution in which the reduction in size of the core gene set of a putative ancestral virus played a critical role in speciation and confining any newly emerging virus species to a particular environmental (host or tissue) niche.
Collapse
Affiliation(s)
- Robert Curtis Hendrickson
- Department of Microbiology, University of Alabama at Birmingham, BBRB 276/11, 845 19th St S, Birmingham, AL 35222, USA; E-Mails: (R.C.H.); (E.L.H.)
| | - Chunlin Wang
- Stanford Genome Technology Center, Stanford University, 855 California Ave, Palo Alto, CA 94304, USA; E-Mail:
| | - Eneida L. Hatcher
- Department of Microbiology, University of Alabama at Birmingham, BBRB 276/11, 845 19th St S, Birmingham, AL 35222, USA; E-Mails: (R.C.H.); (E.L.H.)
| | - Elliot J. Lefkowitz
- Department of Microbiology, University of Alabama at Birmingham, BBRB 276/11, 845 19th St S, Birmingham, AL 35222, USA; E-Mails: (R.C.H.); (E.L.H.)
| |
Collapse
|
41
|
Lenglet G, David-Cordonnier MH. DNA-Destabilizing Agents as an Alternative Approach for Targeting DNA: Mechanisms of Action and Cellular Consequences. J Nucleic Acids 2010; 2010. [PMID: 20725618 PMCID: PMC2915751 DOI: 10.4061/2010/290935] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 05/27/2010] [Accepted: 06/03/2010] [Indexed: 01/06/2023] Open
Abstract
DNA targeting drugs represent a large proportion of the actual anticancer drug pharmacopeia, both in terms of drug brands and prescription volumes. Small DNA-interacting molecules share the ability of certain proteins to change the DNA helix's overall organization and geometrical orientation via tilt, roll, twist, slip, and flip effects. In this ocean of DNA-interacting compounds, most stabilize both DNA strands and very few display helix-destabilizing properties. These types of DNA-destabilizing effect are observed with certain mono- or bis-intercalators and DNA alkylating agents (some of which have been or are being developed as cancer drugs). The formation of locally destabilized DNA portions could interfere with protein/DNA recognition and potentially affect several crucial cellular processes, such as DNA repair, replication, and transcription. The present paper describes the molecular basis of DNA destabilization, the cellular impact on protein recognition, and DNA repair processes and the latter's relationships with antitumour efficacy.
Collapse
Affiliation(s)
- Gaëlle Lenglet
- INSERM U-837, Jean-Pierre Aubert Research Center (JPARC), Team 4 Molecular and Cellular Targeting for Cancer Treatment, Institute for Research on Cancer of Lille (IRCL), Lille F-59045, France
| | | |
Collapse
|
42
|
Osypov AA, Krutinin GG, Kamzolova SG. Deppdb--DNA electrostatic potential properties database: electrostatic properties of genome DNA. J Bioinform Comput Biol 2010; 8:413-25. [PMID: 20556853 DOI: 10.1142/s0219720010004811] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 01/28/2010] [Accepted: 02/12/2010] [Indexed: 11/18/2022]
Abstract
The electrostatic properties of genome DNA influence its interactions with different proteins, in particular, the regulation of transcription by RNA-polymerases. DEPPDB--DNA Electrostatic Potential Properties Database--was developed to hold and provide all available information on the electrostatic properties of genome DNA combined with its sequence and annotation of biological and structural properties of genome elements and whole genomes. Genomes in DEPPDB are organized on a taxonomical basis. Currently, the database contains all the completely sequenced bacterial and viral genomes according to NCBI RefSeq. General properties of the genome DNA electrostatic potential profile and principles of its formation are revealed. This potential correlates with the GC content but does not correspond to it exactly and strongly depends on both the sequence arrangement and its context (flanking regions). Analysis of the promoter regions for bacterial and viral RNA polymerases revealed a correspondence between the scale of these proteins' physical properties and electrostatic profile patterns. We also discovered a direct correlation between the potential value and the binding frequency of RNA polymerase to DNA, supporting the idea of the role of electrostatics in these interactions. This matches a pronounced tendency of the promoter regions to possess higher values of the electrostatic potential.
Collapse
Affiliation(s)
- Alexander A Osypov
- Laboratory of Mechanisms of the Cell Genome Functioning, Institute of Cell Biophysics RAS, Pushchino 142290, Russia.
| | | | | |
Collapse
|
43
|
Abstract
Recognition of promoter elements by the transcription factors is one of the early initial and crucial steps in gene expression and regulation. In prokaryotes, there are clear signals to identify the promoter regions like TATAAT at around -10 and TTGACA at -35 positions from transcription start site (TSS). In eukaryotes the promoter regions are structurally more complex and there are no conserved or consensus sequences similar to the ones found in prokaryotic promoters. We have located a set of GC rich short sequences (< 8 nt) that are relatively common in human promoter sequences around the TSS (+/- 100 relative to TSS). These sequences were sorted based on their frequency of occurrence in the database and the most common 50 sequences were used for further studies. Sigmoidal behavior of the high end of the frequency distribution of these sequences suggests presence of some internal co-operativity. These short sequences are distributed on both sides of TSS, suggesting that probably the transcription factors recognize these sequences on both upstream and downstream of TSS. As eukaryotic promoters lack any conserved sequences, we expect that these short sequences may help in recognition of promoter regions by relevant transcription factors prior to the initiation of transcription process. We postulate that a cluster of genes with common short sequences in the promoter region can be recognized by a particular transcription factor. We also found that most of these short sequences are fairly common within miRNA (both mature and stem-loop sequences). Our studies indicate that eukaryotic transcription is more complex than currently believed.
Collapse
Affiliation(s)
- Padmavathi Putta
- Department of Biochemistry, University of Hyderabad, Hyderabad - 500 046, India.
| | | |
Collapse
|
44
|
Solovyev VV, Shahmuradov IA, Salamov AA. Identification of promoter regions and regulatory sites. Methods Mol Biol 2010; 674:57-83. [PMID: 20827586 DOI: 10.1007/978-1-60761-854-6_5] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Promoter sequences are the main regulatory elements of gene expression. Their recognition by computer algorithms is fundamental for understanding gene expression patterns, cell specificity and development. This chapter describes the advanced approaches to identify promoters in animal, plant and bacterial sequences. Also, we discuss an approach to identify statistically significant regulatory motifs in genomic sequences.
Collapse
|
45
|
Genome-wide identification of transcription start sites, promoters and transcription factor binding sites in E. coli. PLoS One 2009; 4:e7526. [PMID: 19838305 PMCID: PMC2760140 DOI: 10.1371/journal.pone.0007526] [Citation(s) in RCA: 210] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Accepted: 09/28/2009] [Indexed: 11/19/2022] Open
Abstract
Despite almost 40 years of molecular genetics research in Escherichia coli a major fraction of its Transcription Start Sites (TSSs) are still unknown, limiting therefore our understanding of the regulatory circuits that control gene expression in this model organism. RegulonDB (http://regulondb.ccg.unam.mx/) is aimed at integrating the genetic regulatory network of E. coli K12 as an entirely bioinformatic project up till now. In this work, we extended its aims by generating experimental data at a genome scale on TSSs, promoters and regulatory regions. We implemented a modified 5' RACE protocol and an unbiased High Throughput Pyrosequencing Strategy (HTPS) that allowed us to map more than 1700 TSSs with high precision. From this collection, about 230 corresponded to previously reported TSSs, which helped us to benchmark both our methodologies and the accuracy of the previous mapping experiments. The other ca 1500 TSSs mapped belong to about 1000 different genes, many of them with no assigned function. We identified promoter sequences and type of sigma factors that control the expression of about 80% of these genes. As expected, the housekeeping sigma(70) was the most common type of promoter, followed by sigma(38). The majority of the putative TSSs were located between 20 to 40 nucleotides from the translational start site. Putative regulatory binding sites for transcription factors were detected upstream of many TSSs. For a few transcripts, riboswitches and small RNAs were found. Several genes also had additional TSSs within the coding region. Unexpectedly, the HTPS experiments revealed extensive antisense transcription, probably for regulatory functions. The new information in RegulonDB, now with more than 2400 experimentally determined TSSs, strengthens the accuracy of promoter prediction, operon structure, and regulatory networks and provides valuable new information that will facilitate the understanding from a global perspective the complex and intricate regulatory network that operates in E. coli.
Collapse
|
46
|
|
47
|
Abstract
Since the early 1980s, when the first transgenic mice were generated, thousands of genetically modified mouse lines have been created. Early on, Jaenisch established proof of principle, showing that viral integration into the mouse genome and germline transmission of those exogenous sequences were possible (Proc Natl Acad Sci USA 71:1250-1254, 1974). Gordon et al. (Proc Natl Acad Sci USA 77:7380-7384, 1980) and Brinster et al. (Cell 27:223-231, 1981) subsequently used cloned genes to create "transgenic constructs" in which the exogenous DNA was randomly inserted into different sites in the mouse genome, stably maintained, and transmitted through the germline to the progeny. The utility of the process quickly became apparent when a transgene carrying the metallothionein-1 (Mt-1) promoter linked to thymidine kinase was able to drive expression in the mouse liver when promoter activity was induced by administration of metals. In an attempt to find stronger and more reliable promoters, viral promoter elements from SV40 or cytomegalovirus were incorporated. However, while these promoters were able to drive high levels of expression, for many applications they proved to be too blunt an instrument as they drove ubiquitous expression in many, if not all cell types, making it very hard to discern organ-specific or cell-type-specific effects due to transgene expression. Thus the need to find cell-type-specific promoters that could reproducibly drive high levels of transgene expression in a particular cell type, e.g., cardiomyocyte, became apparent. One such example is the alpha myosin heavy-chain (MHC) promoter, which has been used extensively to drive transgene expression in a cardiomyocyte-specific manner in the mouse. This chapter, while not written as a typical methods section, will describe the necessary components of the alpha myosin promoter. In addition, common problems associated with transgenic mouse lines will be addressed.
Collapse
Affiliation(s)
- James Gulick
- Cincinnati Children's Hospital, University of Cincinnati, Cincinnati, OH, USA
| | | |
Collapse
|
48
|
Zeng J, Zhu S, Yan H. Towards accurate human promoter recognition: a review of currently used sequence features and classification methods. Brief Bioinform 2009; 10:498-508. [PMID: 19531545 DOI: 10.1093/bib/bbp027] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This review describes important advances that have been made during the past decade for genome-wide human promoter recognition. Interest in promoter recognition algorithms on a genome-wide scale is worldwide and touches on a number of practical systems that are important in analysis of gene regulation and in genome annotation without experimental support of ESTs, cDNAs or mRNAs. The main focus of this review is on feature extraction and model selection for accurate human promoter recognition, with descriptions of what they are, what has been accomplished, and what remains to be done.
Collapse
Affiliation(s)
- Jia Zeng
- Department of Computer Science, Hong Kong Baptist University, Kowloon, Hong Kong.
| | | | | |
Collapse
|
49
|
Gan Y, Guan J, Zhou S. A pattern-based nearest neighbor search approach for promoter prediction using DNA structural profiles. ACTA ACUST UNITED AC 2009; 25:2006-12. [PMID: 19515962 DOI: 10.1093/bioinformatics/btp359] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
MOTIVATION Identification of core promoters is a key clue in understanding gene regulations. However, due to the diverse nature of promoter sequences, the accuracy of existing prediction approaches for non-CpG island (simply CGI)-related promoters is not as high as that for CGI-related promoters. This consequently leads to a low genome-wide promoter prediction accuracy. RESULTS In this article, we first systematically analyze the similarities and differences between the two types of promoters (CGI- and non-CGI-related) from a novel structural perspective, and then devise a unified framework, called PNNP (Pattern-based Nearest Neighbor search for Promoter), to predict both CGI- and non-CGI-related promoters based on their structural features. Our comparative analysis on the structural characteristics of promoters reveals two interesting facts: (i) the structural values of CGI- and non-CGI-related promoters are quite different, but they exhibit nearly similar structural patterns; (ii) the structural patterns of promoters are obviously different from that of non-promoter sequences though the sequences have almost similar structural values. Extensive experiments demonstrate that the proposed PNNP approach is effective in capturing the structural patterns of promoters, and can significantly improve genome-wide performance of promoters prediction, especially non-CGI-related promoters prediction. AVAILABILITY The implementation of the program PNNP is available at http://admis.tongji.edu.cn/Projects/pnnp.aspx.
Collapse
Affiliation(s)
- Yanglan Gan
- Department of Computer Science and Technology, Tongji University, Shanghai 201804, China
| | | | | |
Collapse
|
50
|
Shelenkov A, Korotkov E. Search of regular sequences in promoters from eukaryotic genomes. Comput Biol Chem 2009; 33:196-204. [DOI: 10.1016/j.compbiolchem.2009.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 02/08/2009] [Accepted: 03/18/2009] [Indexed: 12/14/2022]
|