1
|
Elkhawagah AR, Donato GG, Poletto M, Martino NA, Vincenti L, Conti L, Necchi D, Nervo T. Effect of Mitoquinone on sperm quality of cryopreserved stallion semen. J Equine Vet Sci 2024; 141:105168. [PMID: 39151811 DOI: 10.1016/j.jevs.2024.105168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/27/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
This study aimed to investigate the effect of mitochondria-targeted antioxidants (Mitoquinone, MitoQ) on the quality of frozen-thawed stallion semen. Semen samples collected from three fertile stallions aged 10 - 13 years, were filtered, centrifuged in a skimmed milk-based extender, and diluted to a final concentration of 50 × 106 sperm/mL in freezing medium. Diluted semen was divided into five experimental groups supplemented with MitoQ at concentrations of 0 (control), 25, 50, 100, and 200 nM and then subjected to freezing after cooling and equilibration. After thawing, semen was evaluated for motility and kinetics at different time points. Sperm viability, plasma membrane, acrosome, DNA integrity, mitochondrial membrane potential, apoptosis, and intracellular reactive oxygen species (ROS) concentrations were evaluated. The results revealed that MitoQ at concentrations of 25, 50, and 100 nM improved (P< 0.01) the total sperm motility after 30 minutes of incubation. In addition, 25 nM MitoQ improved the sperm amplitude of lateral head displacement values (P< 0.01) after 30 minutes of incubation. Conversely, negative effects on sperm motility, kinetics, and viability were observed with the highest tested concentration of MitoQ (200 nM). The various concentrations of MitoQ did not affect the plasma membrane, acrosome, and DNA integrity, or the mitochondrial membrane potential and intracellular ROS concentrations. In conclusion, supplementation of MitoQ during cryopreservation, had a mild positive effect on sperm motility and kinetics especially at a concentration of 25 nM, while the highest concentration (200nM) has a detrimental effect on motility and viability parameters of frozen-thawed stallion sperm.
Collapse
Affiliation(s)
- Ahmed R Elkhawagah
- Theriogenology Department, Faculty of Veterinary Medicine, Benha University, Egypt
| | - Gian Guido Donato
- Department of Veterinary Science, University of Torino, Grugliasco, Italy.
| | | | - Nicola A Martino
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Leila Vincenti
- Department of Veterinary Science, University of Torino, Grugliasco, Italy
| | - Laura Conti
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Grugliasco, Italy
| | - Denis Necchi
- Keros Insemination and Embryo Transfer Center, Passendale, Belgium
| | - Tiziana Nervo
- Department of Veterinary Science, University of Torino, Grugliasco, Italy
| |
Collapse
|
2
|
Wang TT, Yang CY, Peng L, Li L, Chen NT, Feng X, Xie J, Wu TC, Xu T, Chen YZ. QiShenYiQi pill inhibits atherosclerosis by promoting TTC39B-LXR mediated reverse cholesterol transport in liver. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155192. [PMID: 37951148 DOI: 10.1016/j.phymed.2023.155192] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/02/2023] [Accepted: 11/04/2023] [Indexed: 11/13/2023]
Abstract
BACKGROUND Tetranucleotide repeat domain protein 39B (TTC39B) was found to combine with ubiquitin ligase E3, and promote the ubiquitination modification of liver X receptor (LXR), which led to the inhibition of reverse cholesterol transport and development of atherosclerosis. QiShenYiQi pill (QSYQ) is a modern Chinese patent drug for treating ischemic cardiovascular diseases, the underlying mechanism is found to promote the expression of LXR-α/ ATP-binding cassette transporter G5 (ABCG5) in the liver of atherosclerotic mice. PURPOSE The aim of this study is to investigate the effect of QSYQ on TTC39B-LXR mediated reverse cholesterol transport in atherosclerotic mice. STUDY DESIGN AND METHODS Male apolipoprotein E gene knockout mice (7 weeks old) were fed with high-fat diet and treated with low dose of QSYQ (QSYQ-l, 0.3 g/kg·d), high dose of QSYQ (QSYQ-H, 1.2 g/kg·d) and LXR-α agonist (LXR-A, GW3965 10 mg/kg·d) for 8 weeks. C57BL/6 J mice were fed with normal diet and used as negative control. Oil red O staining, HE staining, ELISA, RNA sequencing, western blot, immunohistochemistry, RT-PCR, cell culture and RNA interference were performed to analyze the effect of QSYQ on atherosclerosis. RESULTS HE staining showed that QSYQ reduced the atherosclerotic lesion significantly when compared to the control group. ELISA measurement showed that QSYQ decreased serum VLDL and increased serum ApoA1. Oil Red O staining showed that QSYQ reduced the lipid content of liver and protect liver function. Comparative transcriptome RNA-sequence of liver showed that DEGs after QSYQ treatment enriched in high-density lipoprotein particle, ubiquitin ligase complex, bile secretion, etc. Immunohistochemical staining and western blot proved that QSYQ increased the protein expression of hepatic SR-B1, LXR-α, LXR-β, CYP7A1 and ABCG5. Targeted inhibiting Ttc39b gene in vitro further established that QSYQ inhibited the gene expression of Ttc39b, increased the protein expression of SR-B1, LXR-α/β, CYP7A1 and ABCG5 in rat hepatocyte. CONCLUSION Our results demonstrated the new anti-atherosclerotic mechanism of QSYQ by targeting TTC39B-LXR mediated reverse cholesterol transport in liver. QSYQ not only promoted reverse cholesterol transport, but also improved fatty liver and protected liver function.
Collapse
Affiliation(s)
- Tao-Tao Wang
- Graduate School, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, China
| | - Cheng-Yong Yang
- Graduate School, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, China
| | - Li Peng
- Department of Cardiovascular Internal Medicine, Second Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China.
| | - Li Li
- Graduate School, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, China
| | - Nan-Ting Chen
- Graduate School, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, China
| | - Xue Feng
- Graduate School, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, China
| | - Jing Xie
- Graduate School, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, China
| | - Ting-Chun Wu
- Department of Cardiovascular Internal Medicine, Second Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China
| | - Tao Xu
- Department of Cardiovascular Internal Medicine, Second Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China
| | - Yun-Zhi Chen
- Basic Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, China
| |
Collapse
|
3
|
Alahmar AT. Coenzyme Q10 improves sperm motility and antioxidant status in infertile men with idiopathic oligoasthenospermia. Clin Exp Reprod Med 2022; 49:277-284. [PMID: 36482502 PMCID: PMC9732077 DOI: 10.5653/cerm.2022.05463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/10/2022] [Accepted: 09/19/2022] [Indexed: 11/26/2023] Open
Abstract
OBJECTIVE Oxidative stress is a key player in the development of idiopathic male infertility (IMI), and various antioxidants have been used for the treatment of IMI with inconsistent results. Coenzyme Q10 (CoQ10) is a cofactor and an antioxidant that may improve semen parameters and reduce oxidative stress in patients with idiopathic oligoasthenospermia (OA). Therefore, this study aimed to explore the effect of CoQ10 on semen parameters and antioxidant markers in patients with idiopathic OA. METHODS Fifty patients with idiopathic OA and 35 fertile controls were enrolled in this prospective controlled study. All participants underwent a comprehensive fertility assessment. All patients received CoQ10 (300 mg/day) orally once daily for 3 months. Semen parameters, seminal CoQ10 levels, reactive oxygen species (ROS) levels, total antioxidant capacity (TAC), superoxide dismutase (SOD), and glutathione peroxidase (GPx) were measured in patients and controls at the start of the study and after 3 months. RESULTS Treatment with CoQ10 resulted in increased sperm progressive motility (p<0.05), total motility (p<0.01), seminal TAC (p<0.01), SOD (p<0.05), GPx (p<0.001), and seminal CoQ10 (p<0.001) levels and reduced ROS (p<0.01) in patients as compared to baseline. Sperm concentration and motility were also significantly correlated with antioxidant measures and seminal CoQ10 levels (r=0.38-0.57). CONCLUSION CoQ10 therapy (300 mg/day for 3 months) improved sperm motility and seminal antioxidant markers in patients with idiopathic OA. Therefore, CoQ10 could be a promising treatment for patients with idiopathic infertility and may improve their fertility potential.
Collapse
Affiliation(s)
- Ahmed T Alahmar
- Department of Medical Physiology, College of Medicine, University of Babylon, Hillah, Iraq
| |
Collapse
|
4
|
Preclinical and Clinical Role of Coenzyme Q10 Supplementation in Various Pathological States. Drug Res (Stuttg) 2022; 72:367-371. [PMID: 35724675 DOI: 10.1055/a-1835-1738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Coenzyme Q10 (CoQ10) is an efficient antioxidant produced endogenously in a living organism. It acts as an important cofactor in the electron transport system of mitochondria and reported as a safe supplement in humans and animals with minimal adverse effect. CoQ10 is found naturally, as a trans configuration, chemical nomenclature of which is 2,3- dimethoxy-5- methyl-6-decaprenyle -1,4-benzoquinone. It is found in the body in two forms. In quinone form (oxidized form), it serves as an electron transporter that transfers the electrons in the electron transport chain between various complexes, and in ubiquinol form (reduced form), it serves as potent antioxidants by scavenging free radicals or by tocopherol regeneration in the living organism. Its primary roles include synthesis of adenosine triphosphate (ATP), stabilizes lipid membrane, antioxidant activity, cell growth stimulation, and cell death inhibition. CoQ10 has shown a variety of pharmacological and clinical effects including neuroprotective, hepatoprotective, anti-atherosclerotic, anticonvulsant, antidepressant, anti-inflammatory, antinociceptive, cardiovascular, antimicrobial, immunomodulatory, and various effects on the central nervous system. Present review has set about to bring updated information regarding to clinical and preclinical activities of CoQ10, which may be helpful to researchers to explore a new bioactive molecules for various therapeutic application.
Collapse
|
5
|
Coenzyme Q10 and Melatonin Protect Cryopreserved Equine Sperm Against Lipoperoxidation. Anim Reprod Sci 2022; 243:107027. [DOI: 10.1016/j.anireprosci.2022.107027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/19/2022] [Accepted: 06/13/2022] [Indexed: 11/22/2022]
|
6
|
Inflammation and Oxidative Stress in Seminal Plasma: Search for Biomarkers in Diagnostic Approach to Male Infertility. J Pers Med 2022; 12:jpm12060857. [PMID: 35743642 PMCID: PMC9224911 DOI: 10.3390/jpm12060857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 02/04/2023] Open
Abstract
Oxidative and inflammatory damage underlie several conditions related to male infertility, including varicocele. Free light chains of immunoglobulins (FLCs) are considered markers of low-grade inflammation in numerous diseases. Coenzyme Q10 (CoQ10), a lipidic antioxidant and anti-inflammatory compound, is involved in spermatozoa energy metabolism and motility. We aimed to evaluate FLCs’ seminal levels in patients with varicocele in comparison to control subjects and to correlate them with CoQ10 and Total Antioxidant Capacity (TAC) in human semen. Sixty-five patients were enrolled. Semen analysis was performed; patients were divided into three groups: controls, 12 normozoospermic patients, aged 34 (33–41) years; varicocele (VAR), 29 patients, aged 33 (26–37) years; and idiopathic, 24 oligo-, astheno- and oligoasthenozoospermic patients aged 37 (33.5–40.5) years. FLCs (κ and λ) were assayed by turbidimetric method; CoQ10 by HPLC; TAC by spectrophotometric method. λ FLCs showed a trend toward higher levels in VAR vs. controls and the idiopathic group. VAR showed a trend toward lower κ FLCs levels vs. the other two groups. When comparing κ/λ ratio, VAR showed significantly lower levels vs. controls and idiopathic. Moreover, CoQ10 seminal levels showed higher levels in VAR and idiopathic compared to controls. Data reported here confirm lower levels of κ/λ ratio in VAR and suggest a possible application in personalized medicine as clinical biomarkers for male infertility.
Collapse
|
7
|
Kumar P, Wang M, Isachenko E, Rahimi G, Mallmann P, Wang W, von Brandenstein M, Isachenko V. Unraveling Subcellular and Ultrastructural Changes During Vitrification of Human Spermatozoa: Effect of a Mitochondria-Targeted Antioxidant and a Permeable Cryoprotectant. Front Cell Dev Biol 2021; 9:672862. [PMID: 34277615 PMCID: PMC8284099 DOI: 10.3389/fcell.2021.672862] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/19/2021] [Indexed: 12/20/2022] Open
Abstract
Mitochondria-targeted antioxidants have great potential to counterbalance the generated reactive oxygen species (ROS) because they cross the inner membrane of the mitochondria. Still, their use was not reported in vitrified human spermatozoa. Our laboratory has successfully vitrified spermatozoa without the use of permeable cryoprotectants, but subcellular-level evidence was missing. Therefore, this study aimed to improve spermatozoa vitrification using a mitochondria-targeted antioxidant (mitoquinone, MitoQ), reveal ultrastructural changes in the spermatozoa due to the use of a permeable cryoprotectant, and report alterations of functional proteins during the spermatozoa vitrification process. For this, each of 20 swim-up-prepared ejaculates was divided into seven aliquots and diluted with a vitrification medium supplemented with varying concentrations of MitoQ (0.02 and 0.2 μM), glycerol (1, 4, and 6%), and a combination of MitoQ and glycerol. All aliquots were vitrified by the aseptic capillary method developed in our laboratory. The spermatozoa function assays revealed that the addition of either MitoQ (0.02 μM), glycerol (1%), or a combination of MitoQ (0.02 μM) and glycerol (1%) in the vitrification medium results in better or equivalent spermatozoa quality relative to the control. Transmission electron microscopy revealed that MitoQ protects the spermatozoa from undergoing ultrastructural alterations, but glycerol induced ultrastructural alterations during the vitrification process. Next, we performed label-free quantitative proteomics and identified 1,759 proteins, of which 69, 60, 90, and 81 were altered in the basal medium, 0.02 μM MitoQ, 1% glycerol, and Mito-glycerol groups, respectively. Actin, tubulins, and outer dense fiber proteins were not affected during the vitrification process. Some of the identified ubiquitinating enzymes were affected during spermatozoa vitrification. Only a few proteins responsible for phosphorylation were altered during vitrification. Similarly, several proteins involved in spermatozoa–egg fusion and fertilization (IZUMO1 and Tektin) were not affected during the vitrification process. In conclusion, MitoQ attenuates the vitrification-induced ultrastructural changes and alterations in the key proteins involved in spermatozoa functions and fertilization.
Collapse
Affiliation(s)
- Pradeep Kumar
- Department of Animal Physiology and Reproduction, ICAR-Central Institute for Research on Buffaloes, Hisar, India.,Department of Obstetrics and Gynaecology, Medical Faculty, Cologne University, Cologne, Germany
| | - Mengying Wang
- Department of Obstetrics and Gynaecology, Medical Faculty, Cologne University, Cologne, Germany
| | - Evgenia Isachenko
- Department of Obstetrics and Gynaecology, Medical Faculty, Cologne University, Cologne, Germany
| | - Gohar Rahimi
- Department of Obstetrics and Gynaecology, Medical Faculty, Cologne University, Cologne, Germany
| | - Peter Mallmann
- Department of Obstetrics and Gynaecology, Medical Faculty, Cologne University, Cologne, Germany
| | - Wanxue Wang
- Department of Obstetrics and Gynaecology, Medical Faculty, Cologne University, Cologne, Germany
| | | | - Vladimir Isachenko
- Department of Obstetrics and Gynaecology, Medical Faculty, Cologne University, Cologne, Germany
| |
Collapse
|
8
|
Vaughan DA, Tirado E, Garcia D, Datta V, Sakkas D. DNA fragmentation of sperm: a radical examination of the contribution of oxidative stress and age in 16 945 semen samples. Hum Reprod 2021; 35:2188-2196. [PMID: 32976601 DOI: 10.1093/humrep/deaa159] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/28/2020] [Indexed: 02/07/2023] Open
Abstract
STUDY QUESTION What is the relationship between sperm DNA fragmentation and oxidative stress (OS) with increasing male age? SUMMARY ANSWER Sperm DNA fragmentation increases with age and is likely related to both defective spermatogenesis and increasing OS levels. WHAT IS KNOWN ALREADY Sperm quality declines with age. The presence of DNA damage in a high fraction of spermatozoa from a raw semen sample is associated with lower male fertility in natural conception and intrauterine insemination. STUDY DESIGN, SIZE, DURATION A retrospective cohort study of 16 945 semen samples analysed at a single reference laboratory between January 2010 and December 2018. PARTICIPANTS/MATERIALS, SETTING, METHODS All males were undergoing an infertility evaluation. The cohort was divided into seven age categories: <30, 30-34, 35-39, 40-44, 45-49, 50 to <54 and ≥55 years. The mean age was 37.6 years (SD 6.8). Sperm DNA fragmentation index (DFI) and high DNA stainability (HDS) were calculated using flow cytometry. OS levels were measured using the oxidative stress adducts (OSA) test, by spectrophotometry. ANOVA with weighted polynomial contrast analysis was used to evaluate trends for DFI, OSA and HDS values across age categories. MAIN RESULTS AND THE ROLE OF CHANCE Mean DFI significantly increased across all age groups (Ptrend < 0.001). OSA was lowest in patients <30 years old (mean 3.6, SD 1.0) and also increased as age increased (Ptrend < 0.001). There was a statistically significant difference between age groups for each of the three parameters (P < 0.001). There was a significant linear trend for DFI, OSA and HDS across the seven age categories (P < 0.001). Among patients with high DFI, there was a decreasing age-dependent trend in the patients observed with high OSA (P < 0.001). LIMITATIONS, REASONS FOR CAUTION This is a retrospective study. All males included in the study were undergoing a work-up for infertility and may not be representative of a fertile population. Additional patient demographics and clinical data were not available. WIDER IMPLICATIONS OF THE FINDINGS DNA and/or oxidative damage in sperm may be just as important to understand as the chromosomal aberrations that are carried in the oocyte. Further studies are needed to evaluate the effect of advancing paternal age on the male genome and, ultimately, on the health of the offspring. STUDY FUNDING/COMPETING INTEREST(S) No funding was obtained for this study. V.D. is an employee of Reprosource/Quest Diagnostics. D.S. reports he was a Scientific Advisor to Cooper Surgical. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- D A Vaughan
- Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA.,Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA 02115, USA.,Boston IVF, Waltham, MA 02445, USA
| | - E Tirado
- ReproSource Fertility Diagnostics, Marlborough, MA 01752, USA
| | - D Garcia
- Clinica EUGIN, Barcelona 08029, Spain
| | - V Datta
- ReproSource Fertility Diagnostics, Marlborough, MA 01752, USA
| | - D Sakkas
- Boston IVF, Waltham, MA 02445, USA
| |
Collapse
|
9
|
Lançoni R, Celeghini ECC, Giuli VD, de Carvalho CPT, Zoca GB, Garcia-Oliveros LN, Batissaco L, Oliveira LZ, de Arruda RP. Coenzyme Q-10 improves preservation of mitochondrial functionality and actin structure of cryopreserved stallion sperm. Anim Reprod 2021; 18:e20200218. [PMID: 33936294 PMCID: PMC8078863 DOI: 10.1590/1984-3143-ar2020-0218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Coenzyme Q-10 (CoQ-10) is a cofactor for mitochondrial electron transport chain and may be an alternative to improve sperm quality of cryopreserved equine semen. This work aimed to improve stallion semen quality after freezing by adding CoQ-10 to the cryopreservation protocol. Seven saddle stallions were utilized. Each animal was submitted to five semen collections and freezing procedures. For cryopreservation, each ejaculate was divided in three treatments: 1) Botucrio® diluent (control); 2) 50 μmol CoQ-10 added to Botucrio® diluent; 3) 1 mmol CoQ-10 added to Botucrio® diluent. Semen batches were analyzed for sperm motility characteristics (CASA), plasma and acrosomal membranes integrity and mitochondrial membrane potential (by fluorescence probes propidium iodide, Hoechst 33342, FITC-PSA and JC-1, respectively), alterations in cytoskeletal actin (phalloidin-FITC) and mitochondrial function (diaminobenzidine; DAB). The 1 mmol CoQ-10 treatment presented higher (P<0.05) amount (66.8%) of sperm cells with fully stained midpiece (indicating high mitochondrial activity) and higher (P<0.05) amount (81.6%) of cells without actin reorganization to the post-acrosomal region compared to control group (60.8% and 76.0%, respectively). It was concluded that the addition of 1 mmol CoQ-10 to the freezing diluent was more effective in preserving mitochondria functionality and cytoskeleton of sperm cells submitted to cryopreservation process.
Collapse
Affiliation(s)
- Renata Lançoni
- Departamento de Reprodução Animal, Universidade Federal de Uberlândia, Uberlândia, MG, Brasil
| | | | - Valdemar De Giuli
- Central Internacional de Reprodução Equina Rancho das Américas, Porto Feliz, SP, Brasil
| | | | | | | | - Leonardo Batissaco
- Departamento de Reprodução Animal, Universidade de São Paulo, Pirassununga, SP, Brasil
| | - Letícia Zoccolaro Oliveira
- Departamento de Clínica Veterinária e Cirurgia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Rubens Paes de Arruda
- Departamento de Reprodução Animal, Universidade de São Paulo, Pirassununga, SP, Brasil
| |
Collapse
|
10
|
Duca Y, Calogero AE, Cannarella R, Condorelli RA, La Vignera S. Current and emerging medical therapeutic agents for idiopathic male infertility. Expert Opin Pharmacother 2018; 20:55-67. [DOI: 10.1080/14656566.2018.1543405] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Ylenia Duca
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Aldo E. Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Rosita A. Condorelli
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| |
Collapse
|
11
|
Effects of coenzyme Q10 on semen cryopreservation of stallions classified as having good or bad semen freezing ability. Anim Reprod Sci 2018; 192:107-118. [DOI: 10.1016/j.anireprosci.2018.02.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/15/2018] [Accepted: 02/23/2018] [Indexed: 12/19/2022]
|
12
|
Wagner H, Cheng JW, Ko EY. Role of reactive oxygen species in male infertility: An updated review of literature. Arab J Urol 2017; 16:35-43. [PMID: 29713534 PMCID: PMC5922220 DOI: 10.1016/j.aju.2017.11.001] [Citation(s) in RCA: 201] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 10/31/2017] [Accepted: 11/01/2017] [Indexed: 01/09/2023] Open
Abstract
Objectives To review the literature and provide an updated summary on the role of reactive oxygen species (ROS) in male infertility. Methods A review of PubMed, Cochrane review, and Web of Science databases for full-text English-language articles published between 1943 and 2017 was performed, focusing on the aetiology of ROS, physiological role of ROS on spermatic function, pathological role of ROS in infertility, evaluation of ROS, and role of antioxidants in oxidative stress. Results ROS play a role in spermatic function and fertilisation. The literature describes both a physiological and a pathological role of ROS in fertility. A delicate balance between ROS necessary for physiological activity and antioxidants to protect from cellular oxidative injury is essential for fertility. Conclusion Although elevated levels of ROS are implicated as a cause of infertility, there is no consensus on selecting patients to test for ROS, which test to perform, or if treatment for ROS can have a positive impact on infertility rates and pregnancy.
Collapse
Key Words
- 4-HNE, 4 hydroxy-nonenal
- ATP, adenosine triphosphate
- Antioxidants
- CAT, catalase
- ESR, electron spin resonance
- Free radicals
- G-6-PDH, glucose-6-phosphate dehydrogenase
- GPX, glutathione peroxidase
- MAGI, male accessory gland infections
- MDA, malondialdehyde
- Male infertility
- NADH, nicotinamide adenine dinucleotide
- NO, nitric oxide
- ROS, reactive oxygen species
- Reactive oxygen species
- SOD, superoxide dismutase
Collapse
Affiliation(s)
- Hillary Wagner
- Department of Urology, Loma Linda University Health, Loma Linda, CA, USA
| | - Julie W Cheng
- Department of Urology, Loma Linda University Health, Loma Linda, CA, USA
| | - Edmund Y Ko
- Department of Urology, Loma Linda University Health, Loma Linda, CA, USA
| |
Collapse
|
13
|
Balercia G, Mancini A, Tirabassi G, Pontecorvi A. Coenzyme Q10 in Male Infertility. ANTIOXIDANTS IN ANDROLOGY 2017. [DOI: 10.1007/978-3-319-41749-3_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
14
|
Abstract
Introduction: Idiopathic oligoasthenoteratozoospermia (iOAT) is commonly encountered during the evaluation of men with infertility. Antioxidants have been utilized empirically in the treatment of iOAT based on their ability to reverse oxidative stress (OS)-induced sperm dysfunction often encountered in this patient population. Methods: A literature search was performed using MEDLINE/PubMed, focusing on publications of antioxidant therapies for iOAT. The main objective of our review article was to report the rationale and available evidence supporting the use of antioxidants. Results: Antioxidants such as glutathione, vitamins E and C, carnitines, coenzyme-Q10, N-acetylcysteine, selenium, zinc, folic acid, and lycopene have been shown to reduce OS-induced sperm damage. While rigorous scientific evidence in the form of double-blind, placebo-controlled clinical trials is limited, recent systematic reviews and meta-analyses have reported a beneficial effect of antioxidants on semen parameters and live birth rates. Conclusion: Additional randomized controlled studies are required to confirm the efficacy and safety of antioxidant supplementation in the medical treatment of idiopathic male infertility as well as the dosage required to improve semen parameters, fertilization rates, and pregnancy outcomes in iOAT.
Collapse
Affiliation(s)
- Ahmad Majzoub
- Department of Urology, Hamad Medical Corporation, Doha, Qatar
| | - Ashok Agarwal
- Center for Reproductive Medicine, Cleveland Clinic, Cleveland, USA
| |
Collapse
|
15
|
Tiseo BC, Gaskins AJ, Hauser R, Chavarro JE, Tanrikut C. Coenzyme Q10 Intake From Food and Semen Parameters in a Subfertile Population. Urology 2016; 102:100-105. [PMID: 27888150 DOI: 10.1016/j.urology.2016.11.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/28/2016] [Accepted: 11/11/2016] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To assess the association between coenzyme Q10 (CoQ10) intake from food sources and semen quality. We assessed this association in a prospective cohort of men attending a fertility clinic. CoQ10 supplementation has been associated with improvements in semen parameters. However, the impact of CoQ10 intake from food sources on semen quality has not been investigated. MATERIALS AND METHODS Subfertile couples seeking fertility evaluation at the Massachusetts General Hospital Fertility Center were invited to participate in an ongoing study of environmental factors and fertility. In total, 211 male participants completed a validated food frequency questionnaire and provided 476 semen samples. Multivariable linear mixed models were used to examine the relation between CoQ10 intake from food and semen parameters while adjusting for potential confounders and accounting for within-person correlations. RESULTS Mean dietary CoQ10 intake was 19.2 mg/day (2.4-247.2 mg/day). No subjects were taking CoQ10 supplements. There were no associations between dietary CoQ10 intake from food and conventional semen parameters. The adjusted mean difference (95% confidence interval) comparing men in the top and bottom quartiles of CoQ10 intake from food were -3.1 mil/mL (95% confidence interval -29.5, 38.8 mil/mL) for sperm concentration, -4.5% (-15.1%, 6.0%) for total motility, -1.3% for progressive motility (-8.4%, 5.7%), and 0.3% (-1.4%, 2.0%) for sperm morphology. CONCLUSION CoQ10 intake from food was not related to semen parameters among subfertile men. Mean dietary intake of CoQ10 in this study was 10-fold lower than the supplemental dose used in clinical trials showing improved sperm motility. CoQ10 intake from food alone may be insufficient to optimize semen parameters.
Collapse
Affiliation(s)
- Bruno C Tiseo
- Division of Urology, Hospital das Clínicas, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Audrey J Gaskins
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Russ Hauser
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA; Vincent Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Jorge E Chavarro
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Cigdem Tanrikut
- Department of Urology, Massachusetts General Hospital, Boston, MA.
| | | |
Collapse
|
16
|
Nogueira BG, Sampaio BFB, Souza MIL, Costa e Silva EV, Zúccari CESN. Coenzyme Q10 andα-Tocopherol Prevent the Lipid Peroxidation of Cooled Equine Semen. Reprod Domest Anim 2015; 50:1003-10. [DOI: 10.1111/rda.12627] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 09/13/2015] [Indexed: 01/13/2023]
Affiliation(s)
- BG Nogueira
- Biotechnology of Animal Reproduction Laboratory; Veterinary and Animal Science College; Federal University of Mato Grosso do Sul; Campo Grande Mato Grosso do Sul Brazil
| | - BFB Sampaio
- Biotechnology of Animal Reproduction Laboratory; Veterinary and Animal Science College; Federal University of Mato Grosso do Sul; Campo Grande Mato Grosso do Sul Brazil
| | - MIL Souza
- Biotechnology of Animal Reproduction Laboratory; Veterinary and Animal Science College; Federal University of Mato Grosso do Sul; Campo Grande Mato Grosso do Sul Brazil
| | - EV Costa e Silva
- Biotechnology of Animal Reproduction Laboratory; Veterinary and Animal Science College; Federal University of Mato Grosso do Sul; Campo Grande Mato Grosso do Sul Brazil
| | - CESN Zúccari
- Biotechnology of Animal Reproduction Laboratory; Veterinary and Animal Science College; Federal University of Mato Grosso do Sul; Campo Grande Mato Grosso do Sul Brazil
| |
Collapse
|
17
|
Collins GG, Rossi BV. The impact of lifestyle modifications, diet, and vitamin supplementation on natural fertility. FERTILITY RESEARCH AND PRACTICE 2015; 1:11. [PMID: 28620516 PMCID: PMC5424364 DOI: 10.1186/s40738-015-0003-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 07/16/2015] [Indexed: 02/06/2023]
Abstract
BACKGROUND Infertility is a relatively common condition. When patients are confronted with this diagnosis, there are medical, psychological, and financial sequelae. Patients often wonder if there is anything they can do to optimize their natural fertility or increase the effectiveness of infertility treatments. FINDINGS If there is a clear impact on fertility, such as with smoking and alcohol, cessation should be advised. Similarly, weight loss should be recommended if the BMI is in the overweight and obese category, and weight gain should be recommended for an underweight BMI. The evidence surrounding other lifestyle modifications is less clear. There are conflicting data regarding an optimal fertility diet and consumption of vitamins and supplements. Antioxidants seem to improve semen parameters in men, but the effect on female fertility is less clear. If conflicting evidence exists, such as with caffeine consumption or exercise, moderation should be emphasized. Finally, the diagnosis of infertility and subsequent fertility treatments are stressful for both partners. The psychological aspects should not be ignored and methods such as yoga and cognitive behavioral therapy may be beneficial. CONCLUSION Continued research will determine the optimal lifestyle modifications to achieve pregnancy.
Collapse
Affiliation(s)
- Gretchen Garbe Collins
- Department of Obstetrics and Gynecology, University Hospitals/ Case Western Reserve School of Medicine, 1000 Auburn Drive, Suite 310, Beachwood, OH 44122 USA
| | - Brooke V Rossi
- Department of Obstetrics and Gynecology, University Hospitals/ Case Western Reserve School of Medicine, 1000 Auburn Drive, Suite 310, Beachwood, OH 44122 USA
| |
Collapse
|
18
|
Coenzyme Q₁₀, α-tocopherol, and oxidative stress could be important metabolic biomarkers of male infertility. DISEASE MARKERS 2015; 2015:827941. [PMID: 25810566 PMCID: PMC4355595 DOI: 10.1155/2015/827941] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 01/29/2015] [Accepted: 01/29/2015] [Indexed: 12/21/2022]
Abstract
Oxidative stress, decreased antioxidant capacity, and impaired sperm mitochondrial function are the main factors contributing to male infertility. The goal of the present study was to assess the effect of the per os treatment with Carni-Q-Nol (440 mg L-carnitine fumarate + 30 mg ubiquinol + 75 IU vitamin E + 12 mg vitamin C in each softsule) in infertile men on sperm parameters, concentration of antioxidants (coenzyme Q10, CoQ10-TOTAL, γ, and α-tocopherols), and oxidative stress in blood plasma and seminal fluid. Forty infertile men were supplemented daily with two or three Carni-Q-Nol softsules. After 3 and 6 months of treatment, improved sperm density was observed (by 48.9% and 80.9%, resp.) and after 3-month treatment the sperm pathology decreased by 25.8%. Concentrations of CoQ10-TOTAL (ubiquinone + ubiquinol) and α-tocopherol were significantly increased and the oxidative stress was decreased. In conclusion, the effect of supplementary therapy with Carni-Q-Nol showed benefits on sperm function in men, resulting in 45% pregnancies of their women. We assume that assessment of oxidative stress, CoQ10-TOTAL, and α-tocopherol in blood plasma and seminal fluid could be important metabolic biomarkers in both diagnosis and treatment of male infertility.
Collapse
|
19
|
The Effect of Coenzyme Q10 and α-Tocopherol in Skim Milk–Based Extender for Preservation of Caspian Stallion Semen in Cool Condition. J Equine Vet Sci 2014. [DOI: 10.1016/j.jevs.2014.04.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Wright C, Milne S, Leeson H. Sperm DNA damage caused by oxidative stress: modifiable clinical, lifestyle and nutritional factors in male infertility. Reprod Biomed Online 2014; 28:684-703. [DOI: 10.1016/j.rbmo.2014.02.004] [Citation(s) in RCA: 247] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 02/01/2014] [Accepted: 02/04/2014] [Indexed: 12/23/2022]
|
21
|
Formulation and Development of CoQ10-Loaded s-SNEDDS for Enhancement of Oral Bioavailability. J Pharm Innov 2014. [DOI: 10.1007/s12247-014-9179-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
Lafuente R, González-Comadrán M, Solà I, López G, Brassesco M, Carreras R, Checa MA. Coenzyme Q10 and male infertility: a meta-analysis. J Assist Reprod Genet 2013; 30:1147-56. [PMID: 23912751 PMCID: PMC3800531 DOI: 10.1007/s10815-013-0047-5] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 07/03/2013] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVE To evaluate the effect of coenzyme Q10 treatments in male infertility, specifically in these parameters: live birth and pregnancy rates, CoQ10 seminal concentration, sperm concentration, and sperm motility. MATERIALS AND METHODS Systematic review and meta-analysis in male infertility patients with CoQ10 oral treatments. Three trials were included: 149 males in CoQ10 group and 147 males in placebo group. RESULTS None of the included trials provided any data regarding live births. The results of this meta-analysis show that supplementing infertile men with CoQ10 does not increase pregnancy rates. The analysis showed, among patients receiving CoQ10 treatment, a statistically significant increase in: CoQ10 seminal concentration (RR 49.55, 95 % CI 46.44 to 52.66, I(2) = 17 %), sperm concentration (RR 5.33, 95 % CI 4.18 to 6.47, I(2) = 58 %), and sperm motility (RR 4.50, 95 % CI 3.92 to 5.08, I(2) = 0 %) CONCLUSION There is no evidence in the literature that CoQ10 increases either live birth or pregnancy rates, but there is a global improvement in sperm parameters. Adequately powered, robust trials of individual and combination antioxidant therapies are required to guide clinical practice.
Collapse
Affiliation(s)
- Rafael Lafuente
- Andrology Laboratory, CIRH. Clínica Corachan. ANACER, Eguilaz, 14, bajos, 08017, Barcelona, Spain,
| | | | | | | | | | | | | |
Collapse
|
23
|
Safarinejad MR, Safarinejad S, Shafiei N, Safarinejad S. Effects of the reduced form of coenzyme Q10 (ubiquinol) on semen parameters in men with idiopathic infertility: a double-blind, placebo controlled, randomized study. J Urol 2012; 188:526-31. [PMID: 22704112 DOI: 10.1016/j.juro.2012.03.131] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2011] [Indexed: 01/12/2023]
Abstract
PURPOSE We investigated the effects of the administration of ubiquinol (a reduced form of coenzyme Q(10)) on semen parameters and seminal plasma antioxidant capacity in infertile men with idiopathic oligoasthenoteratozoospermia. MATERIALS AND METHODS A total of 228 men with unexplained infertility were randomly assigned 1:1 into 2 groups. Group 1 (114) received 200 mg ubiquinol daily by mouth for 26 weeks and group 2 (114) received a similar regimen of placebo. After completion of the 26-week treatment phase, all participants were followed for another 12-week off-drug period. Primary outcomes were improvement in sperm density, sperm motility and sperm strict morphology. RESULTS At the end of the 26-week treatment period mean ± SD sperm density in the ubiquinol and placebo groups was 28.7 ± 4.6 × 10(6)/ml and 16.8 ± 4.4 × 10(6)/ml (p = 0.005), sperm motility was 35.8% ± 2.7% and 25.4% ± 2.1% (p = 0.008), and sperm strict morphology was 17.6% ± 4.4% and 14.8% ± 4.1% (p = 0.01) of normal sperm, respectively. During the treatment period serum follicle-stimulating hormone levels decreased significantly (p = 0.02) and serum inhibin B concentrations increased significantly (p = 0.01). During the off-drug period semen parameters gradually returned to baseline values but the differences were still significant for sperm density (p = 0.03) and sperm motility (p = 0.03). The correlation coefficients analysis revealed a positive association between the duration of treatment with ubiquinol and sperm density (r = 0.74, p = 0.017), sperm motility (r = 0.66, p = 0.024) and sperm morphology (r = 0.57, p = 0.027). CONCLUSIONS Ubiquinol was significantly effective in men with unexplained oligoasthenoteratozoospermia for improving sperm density, sperm motility and sperm morphology.
Collapse
|
24
|
Mancini A, Balercia G. Coenzyme Q(10) in male infertility: physiopathology and therapy. Biofactors 2011; 37:374-80. [PMID: 21989906 DOI: 10.1002/biof.164] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 03/31/2011] [Indexed: 12/19/2022]
Abstract
Both the bioenergetic and the antioxidant role of CoQ(10) suggest a possible involvement in sperm biochemistry and male infertility. CoQ(10) can be quantified in seminal fluid, where its concentration correlates with sperm count and motility. It was found that distribution of CoQ(10) between sperm cells and seminal plasma was altered in varicocele patients, who also presented a higher level of oxidative stress and lower total antioxidant capacity. The effect of vericocelectomy on partially reversing these biochemical abnormalities is discussed. The redox status of coenzyme Q(10) in seminal fluid was also determined: an inverse correlation was found between ubiquinol/ubiquinone ratio and hydroperoxide levels and between this ratio and the percentage of abnormal sperm forms. After the first in vitro observations CoQ(10) was administered to infertile patients affected by idiopathic asthenozoospermia, originally in an open label study and then in three randomized placebo-controlled trials; doses were around 200-300 mg/day and treatment lasted 6 months. A significant increase in the concentration of CoQ(10) was found, both in seminal plasma and sperm cells. Treatment also led to a certain improvement in sperm motility. In one of the studies there was also a decrease in plasma levels of follicle stimulating horhone (FSH) and luteinizine horhone (LH). Administration of CoQ(10) may play a positive role in the treatment of asthenozoospermia, possibly related to not only to its function in the mitochondrial respiratory chain but also to its antioxidant properties. Further studies are needed in order to determine whether there is also an effect on fertility rate.
Collapse
Affiliation(s)
- Antonio Mancini
- Department of Internal Medicine, Catholic University of the Sacred Heart, Rome, Italy
| | | |
Collapse
|
25
|
Agarwal A, Sekhon LH. The role of antioxidant therapy in the treatment of male infertility. HUM FERTIL 2011; 13:217-25. [PMID: 21117931 DOI: 10.3109/14647273.2010.532279] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Oxidative stress contributes to defective spermatogenesis leading to male factor infertility. The aim of this study was to review the current literature on the effects of various antioxidants to improve fertilisation and pregnancy rates. The sources of literature were Pubmed and the Cochrane data base. Reviewing the current literature revealed that Carnitines and vitamin C and E have been clearly shown to be effective by many well-conducted studies and may be considered as a first line treatment. The efficacy of antioxidants, such as glutathione, selenium and coenzyme Q10 has been demonstrated by few, but well-performed studies, and may be considered second line treatment. There is, however, a need for further investigation with randomised controlled studies to confirm the efficacy and safety of antioxidant supplementation in the medical treatment of idiopathic male infertility as well as the need to determine the ideal dose of each compound to improve semen parameters, fertilisation rates and pregnancy outcomes.
Collapse
Affiliation(s)
- Ashok Agarwal
- Center for Reproductive Medicine, Glickman Urological & Kidney Institute and Ob/Gyn & Women's Health Institute, Cleveland Clinic, Cleveland, Ohio, USA.
| | | |
Collapse
|
26
|
Activity of superoxide dismutase and catalase and content of malondialdehyde in seminal plasma of infertile patients. MEDICAL REVIEW 2010; 63:624-9. [PMID: 21443057 DOI: 10.2298/mpns1010624z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The reactive oxygen species, the highly reactive metabolites of oxygen, play a crucial role in both the normal function and the metabolism of sperm cells. Oxygen radicals achieve their physiological effects in the cells only if there is a proper balance between their production and degradation. In case of radicals' production exceeding the antioxidant capacity of the semen, there is an oxidative damage of the membrane lipids and proteins as well as the DNA damage followed by the fragmentation and decondensation of DNA. The ejaculates were obtained from seventy-seven infertile and fertile healthy individuals. The semen samples were collected and classified according to the WHO criteria. The activities of superoxide dismutase and catalase as well as the concentration of malondialdehyde were measured spectrophotometrically. The fertile, healthy donors showed the significantly higher activities of both superoxide dismutase and catalase, as well as the lower concentration of malondialdehyde compared to the infertile donors. The activities of superoxide dismutase and catalase, as well as the HOS test, correlated positively with the sperm cell number, but negatively with the concentration of malondialdehyde. The activity of superoxide dismutase and the concentration of malondialdehyde were highest in the group of patients with the lowest success of the HOS test. The assessment of the antioxidant enzymes and malondialdehyde in addition to the semen analysis and the HOS test may be greatly useful in diagnosing infertility in men having oxidative stress in their etiology.
Collapse
|
27
|
Lanzafame FM, La Vignera S, Vicari E, Calogero AE. Oxidative stress and medical antioxidant treatment in male infertility. Reprod Biomed Online 2009; 19:638-59. [DOI: 10.1016/j.rbmo.2009.09.014] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
Safarinejad MR. Efficacy of coenzyme Q10 on semen parameters, sperm function and reproductive hormones in infertile men. J Urol 2009; 182:237-48. [PMID: 19447425 DOI: 10.1016/j.juro.2009.02.121] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Indexed: 01/12/2023]
Abstract
PURPOSE We determined the efficacy of coenzyme Q10 supplementation on semen parameters, sperm function and reproductive hormone profiles in infertile men. MATERIALS AND METHODS A total of 212 infertile men with idiopathic oligoasthenoteratospermia were randomly assigned to receive 300 mg coenzyme Q10 (Kaneka, Osaka, Japan) orally daily (106 in group 1) or a similar placebo regimen (106 in group 2) during a 26-week period, followed by a 30-week treatment-free phase. Two semen analyses, acrosome reaction test, immunobead test for antisperm antibody, and determination of resting levels of luteinizing hormone, follicle-stimulating hormone, prolactin, testosterone and inhibin B were done in all participants. Blood and seminal plasma total coenzyme Q10 was also assessed. RESULTS Significant improvement in sperm density and motility was evident with coenzyme Q10 therapy (each p = 0.01). Using the Kruger classification sperm morphology evaluation revealed an increase in the percent of normal forms in the coenzyme Q10 group (p = 0.07). A positive correlation was found between treatment duration with coenzyme Q10 and sperm count (r = 0.46, p = 0.03) as well as with sperm motility (r = 0.45, p = 0.04) and sperm morphology (r = 0.34, p = 0.04). The coenzyme Q10 group had a significant decrease in serum follicle-stimulating hormone and luteinizing hormone at the 26-week treatment phase (each p = 0.03). By the end of the treatment phase the mean +/- SD acrosome reaction had increased from 14% +/- 8% and 15% +/- 8% to 31% +/- 11% and 16% +/- 10% in the coenzyme Q10 and placebo groups, respectively (p = 0.01). CONCLUSIONS Coenzyme Q10 supplementation resulted in a statistically significant improvement in certain semen parameters. However, further studies are needed to draw a final conclusion and evaluate the effect of coenzyme Q10 supplementation on the pregnancy rate.
Collapse
|
29
|
Balercia G, Mancini A, Paggi F, Tiano L, Pontecorvi A, Boscaro M, Lenzi A, Littarru GP. Coenzyme Q10 and male infertility. J Endocrinol Invest 2009; 32:626-32. [PMID: 19509475 DOI: 10.1007/bf03346521] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We had previously demonstrated that Coenzyme Q10 [(CoQ10) also commonly called ubiquinone] is present in well-measurable levels in human seminal fluid, where it probably exerts important metabolic and antioxidant functions; seminal CoQ10 concentrations show a direct correlation with seminal parameters (count and motility). Alterations of CoQ10 content were also shown in conditions associated with male infertility, such as asthenozoospermia and varicocele (VAR). The physiological role of this molecule was further clarified by inquiring into its variations in concentrations induced by different medical or surgical procedures used in male infertility treatment. We therefore evaluated CoQ10 concentration and distribution between seminal plasma and spermatozoa in VAR, before and after surgical treatment, and in infertile patients after recombinant human FSH therapy. The effect of CoQ10 on sperm motility and function had been addressed only through some in vitro experiments. In two distinct studies conducted by our group, 22 and 60 patients affected by idiopathic asthenozoospermia were enrolled, respectively. CoQ10 and its reduced form, ubiquinol, increased significantly both in seminal plasma and sperm cells after treatment, as well as spermatozoa motility. A weak linear dependence among the relative variations, at baseline and after treatment, of seminal plasma or intracellular CoQ10, ubiquinol levels and kinetic parameters was found in the treated group. Patients with lower baseline value of motility and CoQ10 levels had a statistically significant higher probability to be responders to the treatment. In conclusion, the exogenous administration of CoQ10 increases both ubiquinone and ubiquinol levels in semen and can be effective in improving sperm kinetic features in patients affected by idiopathic asthenozoospermia.
Collapse
Affiliation(s)
- G Balercia
- Endocrinology, Andrology Unit, Department of Clinical Medicine and Applied Biotechnologies, Polytechnic University of Marche, Umberto I Hospital, Ancona, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Balercia G, Buldreghini E, Vignini A, Tiano L, Paggi F, Amoroso S, Ricciardo-Lamonica G, Boscaro M, Lenzi A, Littarru G. Coenzyme Q10 treatment in infertile men with idiopathic asthenozoospermia: a placebo-controlled, double-blind randomized trial. Fertil Steril 2009; 91:1785-1792. [PMID: 18395716 DOI: 10.1016/j.fertnstert.2008.02.119] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Revised: 02/04/2008] [Accepted: 02/12/2008] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To evaluate the effectiveness of coenzyme Q(10) treatment in improving semen quality in men with idiopathic infertility. DESIGN Placebo-controlled, double-blind randomized trial. SETTING Andrology Unit, Department of Internal Medicine, Polytechnic University of Marche, Italy. PATIENT(S) Sixty infertile patients (27-39 years of age) with the following baseline sperm selection criteria: concentration >20 x 10(6)/mL, sperm forward motility <50%, and normal sperm morphology >30%; 55 patients completed the study. INTERVENTION(S) Patients underwent double-blind therapy with coenzyme Q(10), 200 mg/day, or placebo; the study design was 1 month of run-in, 6 months of therapy or placebo, and 3 months of follow-up. MAIN OUTCOME MEASURE(S) Variations in semen parameters used for patient selection and variations of coenzyme Q(10) and ubiquinol concentrations in seminal plasma and spermatozoa. RESULT(S) Coenzyme Q(10) and ubiquinol increased significantly in both seminal plasma and sperm cells after treatment, as well as spermatozoa motility. A weak linear dependence among the relative variations, baseline and after treatment, of seminal plasma or intracellular coenzyme Q(10) and ubiquinol levels and kinetic parameters was found in the treated group. Patients with a lower baseline value of motility and levels of coenzyme Q(10) had a statistically significant higher probability to be responders to the treatment. CONCLUSION(S) The exogenous administration of coenzyme Q(10) increases the level of the same and ubiquinol in semen and is effective in improving sperm kinetic features in patients affected by idiopathic asthenozoospermia.
Collapse
Affiliation(s)
- Giancarlo Balercia
- Department of Internal Medicine and Applied Biotechnologies, Andrology Unit, Endocrinology, Umberto I Hospital, School of Medicine, Polytechnic University of Marche, Ancona, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Although reports have suggested the benefit of antioxidant treatment of infertile men, many studies also show no effect. Most studies in the literature are not randomized, placebo controlled, or double blinded in design, which makes it difficult to differentiate regression toward the mean from true positive treatment effects. The small patient sample sizes and varying male populations also add to the difficulty in comparing studies. Pregnancy, the most relevant outcome parameter, is rarely reported. Ideally, patients would be selected based on oxidative stress levels, and improvement in these levels would be correlated to improvement in pregnancy rates. Until those studies are performed, the use of antioxidants for the treatment of male infertility remains empiric.
Collapse
Affiliation(s)
- Sutchin R Patel
- The Warren Alpert Medical School of Brown University, Division of Urology, Rhode Island Hospital, Box G-A Providence, RI 02912, USA
| | | |
Collapse
|
32
|
Littarru GP, Tiano L. Bioenergetic and antioxidant properties of coenzyme Q10: recent developments. Mol Biotechnol 2007; 37:31-7. [PMID: 17914161 DOI: 10.1007/s12033-007-0052-y] [Citation(s) in RCA: 278] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 12/31/2022]
Abstract
For a number of years, coenzyme Q (CoQ10 in humans) was known for its key role in mitochondrial bioenergetics; later studies demonstrated its presence in other subcellular fractions and in plasma, and extensively investigated its antioxidant role. These two functions constitute the basis on which research supporting the clinical use of CoQ10 is founded. Also at the inner mitochondrial membrane level, coenzyme Q is recognized as an obligatory co-factor for the function of uncoupling proteins and a modulator of the transition pore. Furthermore, recent data reveal that CoQ10 affects expression of genes involved in human cell signalling, metabolism, and transport and some of the effects of exogenously administered CoQ10 may be due to this property. Coenzyme Q is the only lipid soluble antioxidant synthesized endogenously. In its reduced form, CoQH2, ubiquinol, inhibits protein and DNA oxidation but it is the effect on lipid peroxidation that has been most deeply studied. Ubiquinol inhibits the peroxidation of cell membrane lipids and also that of lipoprotein lipids present in the circulation. Dietary supplementation with CoQ10 results in increased levels of ubiquinol-10 within circulating lipoproteins and increased resistance of human low-density lipoproteins to the initiation of lipid peroxidation. Moreover, CoQ10 has a direct anti-atherogenic effect, which has been demonstrated in apolipoprotein E-deficient mice fed with a high-fat diet. In this model, supplementation with CoQ10 at pharmacological doses was capable of decreasing the absolute concentration of lipid hydroperoxides in atherosclerotic lesions and of minimizing the size of atherosclerotic lesions in the whole aorta. Whether these protective effects are only due to the antioxidant properties of coenzyme Q remains to be established; recent data point out that CoQ10 could have a direct effect on endothelial function. In patients with stable moderate CHF, oral CoQ10 supplementation was shown to ameliorate cardiac contractility and endothelial dysfunction. Recent data from our laboratory showed a strong correlation between endothelium bound extra cellular SOD (ecSOD) and flow-dependent endothelial-mediated dilation, a functional parameter commonly used as a biomarker of vascular function. The study also highlighted that supplementation with CoQ10 that significantly affects endothelium-bound ecSOD activity. Furthermore, we showed a significant correlation between increase in endothelial bound ecSOD activity and improvement in FMD after CoQ10 supplementation. The effect was more pronounced in patients with low basal values of ecSOD. Finally, we summarize the findings, also from our laboratory, on the implications of CoQ10 in seminal fluid integrity and sperm cell motility.
Collapse
Affiliation(s)
- Gian Paolo Littarru
- Institute of Biochemistry, Polytechnic University of the Marche, Via Ranieri, Ancona 60131, Italy.
| | | |
Collapse
|
33
|
Pentyala S, Lee J, Annam S, Alvarez J, Veerraju A, Yadlapalli N, Khan SA. Current perspectives on pyospermia: a review. Asian J Androl 2007; 9:593-600. [PMID: 17712476 DOI: 10.1111/j.1745-7262.2007.00251.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Pyospermia is an abnormal laboratory finding of high concentration of white blood cells in human ejaculates during infertility workup. The role of pyospermia and its impact on fertility is an important consideration in the management of infertility. Etiology, pathogenesis, diagnostic modalities and the management of pyospermia are reviewed in this paper. Current use of antibiotics and the intrinsic production of antioxidants in the management of pyospermia are also discussed in this review.
Collapse
Affiliation(s)
- Srinivas Pentyala
- Department of Anesthesiology, School of Medicine, State University of New York, Stony Brook, New York 11794, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
Li K, Shi Y, Chen S, Li W, Shang X, Huang Y. Determination of coenzyme Q10 in human seminal plasma by high-performance liquid chromatography and its clinical application. Biomed Chromatogr 2007; 20:1082-6. [PMID: 16583456 DOI: 10.1002/bmc.645] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A high-performance liquid chromatographic (HPLC) method for the analysis of coenzyme Q10 (CoQ10) in human seminal plasma was developed and applied to investigate its clinical significance as a reference index relating to oxidative stress and infertile status of spermatozoa. After precipitation of proteins in seminal plasma with methanol, CoQ10 and coenzyme Q9 (CoQ9; internal standard) were extracted with hexane. The supernatant after centrifugation was evaporated to dryness with nitrogen at 45 degrees C. The residue was re-dissolved in isopropanol. HPLC separation of the sample solution was performed on a Lichrospher C(18) column with a mobile phase composed of isopropanol-methanol-tetrahydrofuran in the ratio of 55:39:6 (v/v/v) at a flow rate of 1.0 mL/min. Under the chromatographic conditions described, the CoQ10 and CoQ9 had retention times of approximately 5.83 and 4.97 min, respectively. The peaks were detected at UV 275 nm. Good separation and detectability of CoQ10 in human seminal plasma were obtained. The method was linear in the range 0.01-10.00 microg/mL. The relative standard deviations within- and between-assay for CoQ10 analysis were 0.85 and 1.86%, respectively. The average recoveries were 94.1-99.0% for the human seminal plasma samples. The CoQ10 levels in seminal plasma of 195 patients and 23 control subjects were studied. CoQ10 concentrations in the two populations were: 37.1 +/- 12.2 ng/mL in the fertile group and 48.5 +/- 20.4 ng/mL in the infertile group. The large difference (p < 0.01) between the fertile and infertile populations is evident.
Collapse
Affiliation(s)
- Ke Li
- The Center of Medical Laboratory Science, Jinling Hospital, Nanjing 210002, Jiangsu, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
35
|
Kumar R, Gautam G, Gupta NP. Drug Therapy for Idiopathic Male Infertility: Rationale Versus Evidence. J Urol 2006; 176:1307-12. [PMID: 16952617 DOI: 10.1016/j.juro.2006.06.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Indexed: 11/29/2022]
Abstract
PURPOSE About half of all infertile men who seek treatment have no specific cause that can be determined for the seminal abnormality. These men are often subject to a number of medical therapies with doubtful efficacy. We reviewed the rationale on which these therapies are advised and determined whether sufficient medical evidence exists to justify their use. MATERIALS AND METHODS A literature search was performed using MEDLINE/PubMed, focusing on publications of the last 20 years of drug therapies for idiopathic male factor infertility. Therapies for specific abnormalities such as hypogonadism were excluded. Basic science, in vitro and animal studies suggesting the mechanism of action for male infertility were evaluated as the rationale part of the review, while controlled and uncontrolled human clinical trials were reviewed as evidence for drug use. RESULTS There is no evidence in support of androgens and gonadotropins for enhancing male fertility. These agents may instead act as contraceptives with significant side effects. There is insufficient evidence regarding the role of antiestrogens, aromatase inhibitors and antioxidants. No drug therapy has proved to be clearly beneficial for idiopathic oligoasthenoteratospermia. CONCLUSIONS Drug therapy for idiopathic male infertility is at best empirical. There is no clear benefit of using any medication in these patients. Moreover, androgens should not be used because they may actually suppress spermatogenesis.
Collapse
Affiliation(s)
- Rajeev Kumar
- Department of Urology, All India Institute of Medical Sciences, New Delhi, India.
| | | | | |
Collapse
|
36
|
Abstract
Oxidative stress is now recognized as an important etiological factor in the causation of several chronic diseases including cancer, cardiovascular diseases, osteoporosis, and diabetes. Antioxidants play an important role in mitigating the damaging effects of oxidative stress on cells. Lycopene, a carotenoid antioxidant, has received considerable scientific interest in recent years. Epidemiological, tissue culture, and animal studies provide convincing evidence supporting the role of lycopene in the prevention of chronic diseases. Human intervention studies are now being conducted to validate epidemiological observations and to understand the mechanisms of action of lycopene in disease prevention. To obtain a better understanding of the role of lycopene in human health, this chapter reviews the most recent information pertaining to its chemistry, bioavailability, metabolism, role in the prevention of prostate cancer and cancer of other target organs, its role in cardiovascular diseases, osteoporosis, hypertension, and male infertility. A discussion of the most relevant molecular markers of cancer is also included as a guide to future researchers in this area. The chapter concludes by reviewing global intake levels of lycopene, suggested levels of intake, and future research directions.
Collapse
Affiliation(s)
- A V Rao
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
37
|
Mancini A, De Marinis L, Littarru GP, Balercia G. An update of Coenzyme Q10 implications in male infertility: biochemical and therapeutic aspects. Biofactors 2005; 25:165-74. [PMID: 16873942 DOI: 10.1002/biof.5520250119] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This review is focused upon the role of coenzyme Q(10) in male infertility in the light of a broader issue of oxidative damage and antioxidant defence in sperm cells and seminal plasma. Reactive oxygen species play a key pathogenetic role in male infertility besides having a well-recognized physiological function. The deep involvement of coenzyme Q(10) in mitochondrial bioenergetics and its antioxidant properties are at the basis of its role in seminal fluid. Following the early studies addressing its presence in sperm cells and seminal plasma, the relative distribution of the quinone between these two compartments was studied in infertile men, with special attention to varicocele. The reduction state of CoQ(10) in seminal fluid was also investigated. After the first in vitro experiments CoQ(10) was administered to a group of idiopathic asthenozoospermic infertile patients. Seminal analysis showed a significant increase of CoQ(10) both in seminal plasma and in sperm cells, together with an improvement in sperm motility. The increased concentration of CoQ(10) in seminal plasma and sperm cells, the improvement of semen kinetic features after treatment, and the evidence of a direct correlation between CoQ(10) concentrations and sperm motility strongly support a cause/effect relationship. From a general point of view, a deeper knowledge of these molecular mechanisms could lead to a new insight into the so-called unexplained infertility.
Collapse
Affiliation(s)
- A Mancini
- Operative Unit of Endocrinology, Catholic University School of Medicine, Rome, Italy.
| | | | | | | |
Collapse
|
38
|
Balercia G, Mosca F, Mantero F, Boscaro M, Mancini A, Ricciardo-Lamonica G, Littarru G. Coenzyme Q(10) supplementation in infertile men with idiopathic asthenozoospermia: an open, uncontrolled pilot study. Fertil Steril 2004; 81:93-8. [PMID: 14711549 DOI: 10.1016/j.fertnstert.2003.05.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To clarify a potential therapeutic role of coenzyme Q(10) (CoQ(10)) in infertile men with idiopathic asthenozoospermia. DESIGN Open, uncontrolled pilot study. PATIENT(S) Infertile men with idiopathic asthenozoospermia. INTERVENTION(S) CoQ(10) was administered orally; semen samples were collected at baseline and after 6 months of therapy. MAIN OUTCOME MEASURE (S): Semen kinetic parameters, including computer-assisted sperm data and CoQ(10) and phosphatidylcholine levels. RESULT(S) CoQ(10) levels increased significantly in seminal plasma and in sperm cells after treatment. Phosphatidylcholine levels also increased. A significant increase was also found in sperm cell motility as confirmed by computer-assisted analysis. A positive dependence (using the Cramer's index of association) was evident among the relative variations, baseline and after treatment, of seminal plasma or intracellular CoQ(10) content and computer-determined kinetic parameters. CONCLUSION(S) The exogenous administration of CoQ(10) may play a positive role in the treatment of asthenozoospermia. This is probably the result of its role in mitochondrial bioenergetics and its antioxidant properties.
Collapse
Affiliation(s)
- Giancarlo Balercia
- Department of Internal Medicine, Umberto I Hospital, School of Medicine, University of Ancona, Ancona, Italy.
| | | | | | | | | | | | | |
Collapse
|
39
|
Balercia G, Armeni T, Mantero F, Principato G, Regoli F. Total oxyradical scavenging capacity toward different reactive oxygen species in seminal plasma and sperm cells. Clin Chem Lab Med 2003; 41:13-9. [PMID: 12636043 DOI: 10.1515/cclm.2003.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The objective of this work was to evaluate the capability of both seminal plasma and sperm cells to scavenge different forms of oxyradicals and the possible correlation with sperm motility parameters. A total of 14 individuals were analyzed by computer-assisted sperm analysis (CASA) and the results integrated with the measurement of total oxyradical scavenging capacity (TOSC) toward peroxyl radicals, hydroxyl radicals and peroxynitrite in seminal plasma and spermatozoa. TOSC values revealed some significant correlation with kinetic sperm cell parameters, including curvilinear velocity (VCL), straight-line velocity (VSL) and linearity (LIN). A lower antioxidant capacity toward hydroxyl radical was found in the seminal fluid of men with reduced sperm motility. Such correlations were not found with peroxyl radicals and peroxynitrite, neither when TOSC values were analyzed in spermatozoa. The TOSC assay is a useful tool for studying the relationship between oxyradical toxicity and abnormal sperm cell motility. Although further investigations are needed, the data clearly establish different role for various forms of oxyradicals, i.e., hydroxyl radicals, in altering sperm motility. Measurement of TOSC is suggested as a useful means of indicating relationship between reactive oxygen species and sperm cell kinetics in clinical trials and antioxidant-based treatments.
Collapse
Affiliation(s)
- Giancarlo Balercia
- Endocrinology, Department of Internal Medicine, University of Ancona, Ancona, Italy
| | | | | | | | | |
Collapse
|
40
|
Balercia G, Arnaldi G, Fazioli F, Serresi M, Alleva R, Mancini A, Mosca F, Lamonica GR, Mantero F, Littarru GP. Coenzyme Q10 levels in idiopathic and varicocele-associated asthenozoospermia. Andrologia 2002; 34:107-11. [PMID: 11966577 DOI: 10.1046/j.0303-4569.2001.00485.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Levels of coenzyme Q10 (CoQ10) and of its reduced and oxidized forms (ubiquinol, QH2, and ubiquinone, Qox) have been determined in sperm cells and seminal plasma of idiopathic (IDA) and varicocele-associated (VARA) asthenozoospermic patients and of controls. The results have shown significantly lower levels of coenzyme Q10 and of its reduced form, QH2, in semen samples from patients with asthenospermia; furthermore, the coenzyme Q10 content was mainly associated with spermatozoa. Interestingly, sperm cells from IDA patients exhibited significantly lower levels of CoQ10 and QH2 when compared to VARA ones. The QH2/Qox ratio was significantly lower in sperm cells from IDA patients and in seminal plasma from IDA and VARA patients when compared with the control group. The present data suggest that the QH2/Qox ratio may be an index of oxidative stress and its reduction, a risk factor for semen quality. Therefore, the present data could suggest that sperm cells, characterized by low motility and abnormal morphology, have low levels of coenzyme Q10. As a consequence, they could be less capable in dealing with oxidative stress which could lead to a reduced QH2/Qox ratio. Furthermore, the significantly lower levels of CoQ10 and QH2 levels in sperm cells from IDA patients, when compared to VARA ones, enable us to hypothesize a pathogenetic role of antioxidant impairment, at least as a cofactor, in idiopathic forms of asthenozoospermia.
Collapse
Affiliation(s)
- G Balercia
- Division of Endocrinology, School of Medicine, University of Ancona, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Mancini A, Conte G, Milardi D, De Marinis L, Littarru GP. Relationship between sperm cell ubiquinone and seminal parameters in subjects with and without varicocele. Andrologia 1998; 30:1-4. [PMID: 9567163 DOI: 10.1111/j.1439-0272.1998.tb01374.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
In a previous paper it was demonstrated that Coenzyme Q10, a lipidic molecule with important antioxidant properties, is present at remarkable levels in human seminal fluid, and shows a direct correlation with seminal parameters (sperm count and motility). In patients with varicocele, on the contrary, correlation with sperm motility was lacking and a higher proportion of Coenzyme Q10 was found in seminal plasma. In the present study, the levels of Coenzyme Q10 in the cell pellet of spermatozoa, obtained after centrifugation of semen, were evaluated. In nonvaricocele subjects it was observed that a higher concentration of Coenzyme Q10 (expressed as ng of the molecule per million of cells) was present in the spermatozoa of oligospermic and asthenospermic patients (sperm count < 20 x 10(6) spermatozoa ml-1, sperm motility < 40%). This relationship was not observed in varicocele subjects, who also showed slightly lower intracellular absolute values of the conenzyme. Since Coenzyme Q10 is an antioxidant molecule involved in the defence of the cell from free radical damage, higher intracellular concentrations may represent a mechanism of protection of the spermatozoa. In varicocele patients, this mechanism could be deficient, leading to higher sensitivity to oxidative damage.
Collapse
Affiliation(s)
- A Mancini
- Institute of Endocrinology, Catholic University School of Medicine, Rome, Italy
| | | | | | | | | |
Collapse
|