1
|
Zhu J, Edwards MR, Message SD, Stanciu LA, Johnston SL, Jeffery PK. Cilomilast Modulates Rhinovirus-Induced Airway Epithelial ICAM-1 Expression and IL-6, CXCL8 and CCL5 Production. Pharmaceuticals (Basel) 2024; 17:1554. [PMID: 39598462 PMCID: PMC11597196 DOI: 10.3390/ph17111554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
Background: Cilomilast, a phosphodiesterase-4 (PDE4) selective inhibitor, has anti-inflammatory effects in vitro and in vivo and reduces COPD exacerbations. We tested the hypothesis that cilomilast inhibits virus-induced airway epithelial intercellular adhesion molecule-1 (ICAM-1) expression and inflammatory cytokine/chemoattractants, IL-6, CXCL8, and CCL5 production in vitro. Methods: BEAS-2B bronchial epithelial cells were incubated with 0.5-2 MOI (multiplicity of infection-infectious units/cell) of rhinovirus 16 (RV16). Then, 0.1-10 μM cilomilast or 10 nM dexamethasone, as inhibition control, were added pre- or post-1 h RV16 infection. Supernatant and cells were sampled at 8, 24, 48, and 72 h after infection. Cell surface ICAM-1 expression was detected by immunogold labelling and visualised by high-resolution scanning electron microscopy (HR-SEM), while IL-6, CXCL8, and CCL5 protein release and mRNA expression were measured using an ELISA and RT-PCR. Results: Cilomilast significantly decreased RV16-induced ICAM-1 expression to approximately 45% (p < 0.01). CXCL8 protein/mRNA production was reduced by about 41% (p < 0.05), whereas IL-6 protein/mRNA production was increased to between 41-81% (p < 0.001). There was a trend to reduction by cilomilast of RV16-induced CCL5. Conclusions: Cilomilast has differential effects on RV16-induced ICAM-1 and interleukins, inhibiting virus-induced ICAM-1 expression and CXCL8 while increasing IL-6 production. These in vitro effects may help to explain the beneficial actions of this PDE4 inhibitor in vivo.
Collapse
Affiliation(s)
- Jie Zhu
- Airway Disease, National Heart and Lung Institute, Imperial College London, Norfolk Place, London W2 1PG, UK or (J.Z.); (M.R.E.); (S.L.J.)
| | - Michael R. Edwards
- Airway Disease, National Heart and Lung Institute, Imperial College London, Norfolk Place, London W2 1PG, UK or (J.Z.); (M.R.E.); (S.L.J.)
| | - Simon D. Message
- Thoracic Medicine, Gloucestershire Hospitals NHS Foundation Trust, Alexandra House, Sandford Road, Cheltenham GL53 7AN, UK;
| | - Luminita A. Stanciu
- Airway Disease, National Heart and Lung Institute, Imperial College London, Norfolk Place, London W2 1PG, UK or (J.Z.); (M.R.E.); (S.L.J.)
| | - Sebastian L. Johnston
- Airway Disease, National Heart and Lung Institute, Imperial College London, Norfolk Place, London W2 1PG, UK or (J.Z.); (M.R.E.); (S.L.J.)
| | - Peter K. Jeffery
- Airway Disease, National Heart and Lung Institute, Imperial College London, Norfolk Place, London W2 1PG, UK or (J.Z.); (M.R.E.); (S.L.J.)
| |
Collapse
|
2
|
Philip M, Karakka Kal AK, Subhahar MB, Karatt TK, Graiban FM, Ajeebsanu MM, Joseph M, Jose SV. Investigation Into the Equine Metabolism of Phosphodiesterase-4 Inhibitor Roflumilast for Potential Doping Control. Drug Test Anal 2024. [PMID: 39551487 DOI: 10.1002/dta.3822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 11/19/2024]
Abstract
The phosphodiesterase 4 (PDE4) inhibitors constitute a relatively modern class of medications that are known for inducing bronchodilation and exhibiting anti-inflammatory properties within the body. Due to these properties, there is concern regarding their potential misuse as performance-enhancing substances in competitive sports. This study delves into the metabolic conversion of roflumilast in thoroughbred horses following oral administration and in vitro experimentation using equine liver microsomes and Cunninghamella elegans. High-performance liquid chromatography coupled with a Q Exactive Orbitrap mass spectrometer (HPLC-HRMS) was employed for analysis. The investigation identified 10 metabolites of roflumilast, including six phase I and four phase II metabolites from in vivo studies, and 11 metabolites from in vitro studies, consisting of eight phase I and three phase II metabolites. The identified biotransformation products encompassed processes such as hydroxylation, chlorine substitution, methylation, N-oxide formation, and even the dissociation of methylenecyclopropane and difluoromethane. Furthermore, the study identified three glucuronic acid and one sulfonic acid conjugated phase II metabolites of the investigated drug candidate. The aforementioned findings contribute to the detection and comprehension of the unauthorized utilization of roflumilast in equestrian sports.
Collapse
Affiliation(s)
- Moses Philip
- Equine Forensic Unit, Central Veterinary Research Laboratory, Dubai, UAE
| | | | | | - Tajudheen K Karatt
- Equine Forensic Unit, Central Veterinary Research Laboratory, Dubai, UAE
| | | | | | - Marina Joseph
- Department of Bacteriology, Diagnostic Section, Central Veterinary Research Laboratory, Dubai, UAE
| | - Shantymol V Jose
- Department of Bacteriology, Diagnostic Section, Central Veterinary Research Laboratory, Dubai, UAE
| |
Collapse
|
3
|
Barresi E, Robello M, Baglini E, Poggetti V, Viviano M, Salerno S, Da Settimo F, Taliani S. Indol-3-ylglyoxylamide as Privileged Scaffold in Medicinal Chemistry. Pharmaceuticals (Basel) 2023; 16:997. [PMID: 37513909 PMCID: PMC10386336 DOI: 10.3390/ph16070997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
In recent years, indolylglyoxylamide-based derivatives have received much attention due to their application in drug design and discovery, leading to the development of a wide array of compounds that have shown a variety of pharmacological activities. Combining the indole nucleus, already validated as a "privileged structure," with the glyoxylamide function allowed for an excellent template to be obtained that is suitable to a great number of structural modifications aimed at permitting interaction with specific molecular targets and producing desirable therapeutic effects. The present review provides insight into how medicinal chemists have elegantly exploited the indolylglyoxylamide moiety to obtain potentially useful drugs, with a particular focus on compounds exhibiting activity in in vivo models or reaching clinical trials. All in all, this information provides exciting new perspectives on existing data that can be useful in further design of indolylglyoxylamide-based molecules with interesting pharmacological profiles. The aim of this report is to present an update of collection data dealing with the employment of this moiety in the rational design of compounds that are able to interact with a specific target, referring to the last 20 years.
Collapse
Affiliation(s)
- Elisabetta Barresi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Marco Robello
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Emma Baglini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Valeria Poggetti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Monica Viviano
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| | - Silvia Salerno
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Federico Da Settimo
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Sabrina Taliani
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| |
Collapse
|
4
|
Melick CH, Lama-Sherpa TD, Curukovic A, Jewell JL. G-Protein Coupled Receptor Signaling and Mammalian Target of Rapamycin Complex 1 Regulation. Mol Pharmacol 2022; 101:181-190. [PMID: 34965982 PMCID: PMC9092479 DOI: 10.1124/molpharm.121.000302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 11/29/2021] [Indexed: 11/30/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) senses upstream stimuli to regulate numerous cellular functions such as metabolism, growth, and autophagy. Increased activation of mTOR complex 1 (mTORC1) is typically observed in human disease and continues to be an important therapeutic target. Understanding the upstream regulators of mTORC1 will provide a crucial link in targeting hyperactivated mTORC1 in human disease. In this mini-review, we will discuss the regulation of mTORC1 by upstream stimuli, with a specific focus on G-protein coupled receptor signaling to mTORC1. SIGNIFICANCE STATEMENT: mTORC1 is a master regulator of many cellular processes and is often hyperactivated in human disease. Therefore, understanding the molecular underpinnings of G-protein coupled receptor signaling to mTORC1 will undoubtedly be beneficial for human disease.
Collapse
Affiliation(s)
- Chase H Melick
- Department of Molecular Biology, Harold C. Simmons Comprehensive Cancer, and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Tshering D Lama-Sherpa
- Department of Molecular Biology, Harold C. Simmons Comprehensive Cancer, and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Adna Curukovic
- Department of Molecular Biology, Harold C. Simmons Comprehensive Cancer, and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jenna L Jewell
- Department of Molecular Biology, Harold C. Simmons Comprehensive Cancer, and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
5
|
Paes D, Schepers M, Rombaut B, van den Hove D, Vanmierlo T, Prickaerts J. The Molecular Biology of Phosphodiesterase 4 Enzymes as Pharmacological Targets: An Interplay of Isoforms, Conformational States, and Inhibitors. Pharmacol Rev 2021; 73:1016-1049. [PMID: 34233947 DOI: 10.1124/pharmrev.120.000273] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The phosphodiesterase 4 (PDE4) enzyme family plays a pivotal role in regulating levels of the second messenger cAMP. Consequently, PDE4 inhibitors have been investigated as a therapeutic strategy to enhance cAMP signaling in a broad range of diseases, including several types of cancers, as well as in various neurologic, dermatological, and inflammatory diseases. Despite their widespread therapeutic potential, the progression of PDE4 inhibitors into the clinic has been hampered because of their related relatively small therapeutic window, which increases the chance of producing adverse side effects. Interestingly, the PDE4 enzyme family consists of several subtypes and isoforms that can be modified post-translationally or can engage in specific protein-protein interactions to yield a variety of conformational states. Inhibition of specific PDE4 subtypes, isoforms, or conformational states may lead to more precise effects and hence improve the safety profile of PDE4 inhibition. In this review, we provide an overview of the variety of PDE4 isoforms and how their activity and inhibition is influenced by post-translational modifications and interactions with partner proteins. Furthermore, we describe the importance of screening potential PDE4 inhibitors in view of different PDE4 subtypes, isoforms, and conformational states rather than testing compounds directed toward a specific PDE4 catalytic domain. Lastly, potential mechanisms underlying PDE4-mediated adverse effects are outlined. In this review, we illustrate that PDE4 inhibitors retain their therapeutic potential in myriad diseases, but target identification should be more precise to establish selective inhibition of disease-affected PDE4 isoforms while avoiding isoforms involved in adverse effects. SIGNIFICANCE STATEMENT: Although the PDE4 enzyme family is a therapeutic target in an extensive range of disorders, clinical use of PDE4 inhibitors has been hindered because of the adverse side effects. This review elaborately shows that safer and more effective PDE4 targeting is possible by characterizing 1) which PDE4 subtypes and isoforms exist, 2) how PDE4 isoforms can adopt specific conformations upon post-translational modifications and protein-protein interactions, and 3) which PDE4 inhibitors can selectively bind specific PDE4 subtypes, isoforms, and/or conformations.
Collapse
Affiliation(s)
- Dean Paes
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, EURON, Maastricht University, Maastricht, The Netherlands (D.P, M.S., B.R., D.v.d.H., T.V., J.P.); Department of Neuroscience, Neuro-Immune Connect and Repair laboratory, Biomedical Research Institute, Hasselt University, Hasselt, Belgium (D.P., M.S., B.R., T.V.); and Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany (D.v.d.H.)
| | - Melissa Schepers
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, EURON, Maastricht University, Maastricht, The Netherlands (D.P, M.S., B.R., D.v.d.H., T.V., J.P.); Department of Neuroscience, Neuro-Immune Connect and Repair laboratory, Biomedical Research Institute, Hasselt University, Hasselt, Belgium (D.P., M.S., B.R., T.V.); and Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany (D.v.d.H.)
| | - Ben Rombaut
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, EURON, Maastricht University, Maastricht, The Netherlands (D.P, M.S., B.R., D.v.d.H., T.V., J.P.); Department of Neuroscience, Neuro-Immune Connect and Repair laboratory, Biomedical Research Institute, Hasselt University, Hasselt, Belgium (D.P., M.S., B.R., T.V.); and Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany (D.v.d.H.)
| | - Daniel van den Hove
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, EURON, Maastricht University, Maastricht, The Netherlands (D.P, M.S., B.R., D.v.d.H., T.V., J.P.); Department of Neuroscience, Neuro-Immune Connect and Repair laboratory, Biomedical Research Institute, Hasselt University, Hasselt, Belgium (D.P., M.S., B.R., T.V.); and Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany (D.v.d.H.)
| | - Tim Vanmierlo
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, EURON, Maastricht University, Maastricht, The Netherlands (D.P, M.S., B.R., D.v.d.H., T.V., J.P.); Department of Neuroscience, Neuro-Immune Connect and Repair laboratory, Biomedical Research Institute, Hasselt University, Hasselt, Belgium (D.P., M.S., B.R., T.V.); and Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany (D.v.d.H.)
| | - Jos Prickaerts
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, EURON, Maastricht University, Maastricht, The Netherlands (D.P, M.S., B.R., D.v.d.H., T.V., J.P.); Department of Neuroscience, Neuro-Immune Connect and Repair laboratory, Biomedical Research Institute, Hasselt University, Hasselt, Belgium (D.P., M.S., B.R., T.V.); and Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany (D.v.d.H.)
| |
Collapse
|
6
|
Abstract
Inhaled therapy remains the cornerstone of chronic obstructive pulmonary disease pharmacologic care, but some systemic treatments can be of help when the burden of the disease remains high. Azithromycin, phosphodiesterase-4 inhibitors, and mucoactive agents can be used in such situations. The major difficulty remains in the identification of the optimal target populations. Another difficulty is to determine how these treatments should be positioned in the global treatment algorithm. For instance, should they be prescribed in addition to other antiinflammatory agents or should they replace them in some cases? Research is ongoing to identify new therapeutic targets.
Collapse
Affiliation(s)
- Nicolas Roche
- Respiratory Medicine, Pneumologie et Soins Intensifs Respiratoires, APHP Centre, Cochin Hospital, Université de Paris (Descartes), Institut Cochin (UMR 1016), 27, rue du Fbg St Jacques, Paris 75014, France.
| |
Collapse
|
7
|
Abstract
Inhaled therapy remains the cornerstone of chronic obstructive pulmonary disease pharmacologic care, but some systemic treatments can be of help when the burden of the disease remains high. Azithromycin, phosphodiesterase-4 inhibitors, and mucoactive agents can be used in such situations. The major difficulty remains in the identification of the optimal target populations. Another difficulty is to determine how these treatments should be positioned in the global treatment algorithm. For instance, should they be prescribed in addition to other antiinflammatory agents or should they replace them in some cases? Research is ongoing to identify new therapeutic targets.
Collapse
Affiliation(s)
- Nicolas Roche
- Respiratory Medicine, Pneumologie et Soins Intensifs Respiratoires, APHP Centre, Cochin Hospital, Université de Paris (Descartes), Institut Cochin (UMR 1016), 27, rue du Fbg St Jacques, Paris 75014, France.
| |
Collapse
|
8
|
Weiss A, Porter S, Rozenberg D, O'Connor E, Lee T, Balter M, Wentlandt K. Chronic Obstructive Pulmonary Disease: A Palliative Medicine Review of the Disease, Its Therapies, and Drug Interactions. J Pain Symptom Manage 2020; 60:135-150. [PMID: 32004618 DOI: 10.1016/j.jpainsymman.2020.01.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 01/16/2020] [Indexed: 12/12/2022]
Abstract
Despite significant advances in treatment, chronic obstructive pulmonary disease (COPD) remains a chronic and progressive disease that frequently leads to premature mortality. COPD is associated with a constellation of significant symptoms, including dyspnea, cough, wheezing, pain, fatigue, anxiety, depression, and insomnia, and is associated with increased morbidity. Palliative care is appropriate to support these patients. However, historically, palliative care has focused on supporting patients with malignant disease, rather than progressive chronic diseases such as COPD. Therapies for COPD often result in functional and symptomatic improvements, including health-related quality of life (HRQL), and palliative care may further improve symptoms and HRQL. Provision of usual palliative care therapies for this patient population requires understanding the pathogenesis of COPD and common disease-targeted pharmacotherapies, as well as an approach to balancing life-prolonging and HRQL care strategies. This review describes COPD and current targeted therapies and their effects on symptoms, exercise tolerance, HRQL, and survival. It is important to note that medications commonly used for symptom management in palliative care can interact with COPD medications resulting in increased risk of adverse effects, enhanced toxicity, or changes in clearance of medications. To address this, we review pharmacologic interactions with and precautions related to use of COPD therapies in conjunction with commonly used palliative care medications.
Collapse
Affiliation(s)
- Andrea Weiss
- Division of Palliative Care, Department of Supportive Care, University Health Network, Toronto, Ontario, Canada; Division of Palliative Care, Department of Family and Community Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Sandra Porter
- Department of Pharmacy, University Health Network, Toronto, Ontario, Canada
| | - Dmitry Rozenberg
- Division of Respirology and Lung Transplantation, Department of Medicine, University Health Network, Toronto, Ontario, Canada; Division of Respirology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Erin O'Connor
- Division of Palliative Care, Department of Supportive Care, University Health Network, Toronto, Ontario, Canada; Division of Emergency Medicine, Department of Medicine, University Health Network, and University of Toronto, Toronto, Ontario, Canada
| | - Tiffany Lee
- Division of Palliative Care, Department of Supportive Care, University Health Network, Toronto, Ontario, Canada
| | - Meyer Balter
- Division of Respirology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada; Division of Respirology, Department of Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Kirsten Wentlandt
- Division of Palliative Care, Department of Supportive Care, University Health Network, Toronto, Ontario, Canada; Division of Palliative Care, Department of Family and Community Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
9
|
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is associated with cough, sputum production or dyspnoea, and a reduction in lung function, quality of life, and life expectancy. Apart from smoking cessation, no other treatments that slow lung function decline are available. Roflumilast and cilomilast are oral phosphodiesterase-4 (PDE₄) inhibitors proposed to reduce the airway inflammation and bronchoconstriction seen in COPD. This Cochrane Review was first published in 2011, and was updated in 2017 and 2020. OBJECTIVES To evaluate the efficacy and safety of oral PDE₄ inhibitors for management of stable COPD. SEARCH METHODS We identified randomised controlled trials (RCTs) from the Cochrane Airways Trials Register (date of last search 9 March 2020). We found other trials at web-based clinical trials registers. SELECTION CRITERIA We included RCTs if they compared oral PDE₄ inhibitors with placebo in people with COPD. We allowed co-administration of standard COPD therapy. DATA COLLECTION AND ANALYSIS We used standard Cochrane methods. Two independent review authors selected trials for inclusion, extracted data, and assessed risk of bias. We resolved discrepancies by involving a third review author. We assessed our confidence in the evidence by using GRADE recommendations. Primary outcomes were change in lung function (minimally important difference (MID) = 100 mL) and quality of life (scale 0 to 100; higher score indicates more limitations). MAIN RESULTS We found 42 RCTs that met the inclusion criteria and were included in the analyses for roflumilast (28 trials with 18,046 participants) or cilomilast (14 trials with 6457 participants) or tetomilast (1 trial with 84 participants), with a duration between six weeks and one year or longer. These trials included people across international study centres with moderate to very severe COPD (Global Initiative for Chronic Obstructive Lung Disease (GOLD) grades II to IV), with mean age of 64 years. We judged risks of selection bias, performance bias, and attrition bias as low overall amongst the 39 published and unpublished trials. Lung function Treatment with a PDE₄ inhibitor was associated with a small, clinically insignificant improvement in forced expiratory volume in one second (FEV₁) over a mean of 40 weeks compared with placebo (mean difference (MD) 49.33 mL, 95% confidence interval (CI) 44.17 to 54.49; participants = 20,815; studies = 29; moderate-certainty evidence). Forced vital capacity (FVC) and peak expiratory flow (PEF) were also improved over 40 weeks (FVC: MD 86.98 mL, 95% CI 74.65 to 99.31; participants = 22,108; studies = 17; high-certainty evidence; PEF: MD 6.54 L/min, 95% CI 3.95 to 9.13; participants = 4245; studies = 6; low-certainty evidence). Quality of life Trials reported improvements in quality of life over a mean of 33 weeks (St George's Respiratory Questionnaire (SGRQ) MD -1.06 units, 95% CI -1.68 to -0.43; participants = 7645 ; moderate-certainty evidence). Incidence of exacerbations Treatment with a PDE₄ inhibitor was associated with a reduced likelihood of COPD exacerbation over a mean of 40 weeks (odds ratio (OR) 0.78, 95% CI 0.73 to 0.84; participants = 20,382; studies = 27; high-certainty evidence), that is, for every 100 people treated with PDE₄ inhibitors, five more remained exacerbation-free during the study period compared with those given placebo (number needed to treat for an additional beneficial outcome (NNTB) 20, 95% CI 16 to 27). No change in COPD-related symptoms nor in exercise tolerance was found. Adverse events More participants in the treatment groups experienced an adverse effect compared with control participants over a mean of 39 weeks (OR 1.30, 95% CI 1.22 to 1.38; participants = 21,310; studies = 30; low-certainty evidence). Participants experienced a range of gastrointestinal symptoms such as diarrhoea, nausea, vomiting, or dyspepsia. Diarrhoea was more commonly reported with PDE₄ inhibitor treatment (OR 3.20, 95% CI 2.74 to 3.50; participants = 20,623; studies = 29; high-certainty evidence), that is, for every 100 people treated with PDE₄ inhibitors, seven more suffered from diarrhoea during the study period compared with those given placebo (number needed to treat for an additional harmful outcome (NNTH) 15, 95% CI 13 to 17). The likelihood of psychiatric adverse events was higher with roflumilast 500 µg than with placebo (OR 2.13, 95% CI 1.79 to 2.54; participants = 11,168; studies = 15 (COPD pool data); moderate-certainty evidence). Roflumilast in particular was associated with weight loss during the trial period and with an increase in insomnia and depressive mood symptoms. Participants treated with PDE₄ inhibitors were more likely to withdraw from trial participation; on average, 14% in the treatment groups withdrew compared with 8% in the control groups. Mortality No effect on mortality was found (OR 0.98, 95% CI 0.77 to 1.24; participants = 19,786; studies = 27; moderate-certainty evidence), although mortality was a rare event during these trials. AUTHORS' CONCLUSIONS For this current update, five new studies from the 2020 search contributed to existing findings but made little impact on outcomes described in earlier versions of this review. PDE₄ inhibitors offered a small benefit over placebo in improving lung function and reducing the likelihood of exacerbations in people with COPD; however, they had little impact on quality of life or on symptoms. Gastrointestinal adverse effects and weight loss were common, and the likelihood of psychiatric symptoms was higher, with roflumilast 500 µg. The findings of this review provide cautious support for the use of PDE₄ inhibitors in COPD. In accordance with GOLD 2020 guidelines, they may have a place as add-on therapy for a subgroup of people with persistent symptoms or exacerbations despite optimal COPD management (e.g. people whose condition is not controlled by fixed-dose long-acting beta₂-agonist (LABA) and inhaled corticosteroid (ICS) combinations). More longer-term trials are needed to determine whether or not PDE₄ inhibitors modify FEV₁ decline, hospitalisation, or mortality in COPD.
Collapse
Affiliation(s)
- Sadia Janjua
- Cochrane Airways, Population Health Research Institute, St George's, University of London, London, UK
| | - Rebecca Fortescue
- Cochrane Airways, Population Health Research Institute, St George's, University of London, London, UK
| | - Phillippa Poole
- Department of Medicine, University of Auckland, Auckland, New Zealand
| |
Collapse
|
10
|
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is associated with cough, sputum production or dyspnoea and a reduction in lung function, quality of life and life expectancy. Apart from smoking cessation, there are no other treatments that slow lung function decline. Roflumilast and cilomilast are oral phosphodiesterase 4 (PDE4) inhibitors proposed to reduce the airway inflammation and bronchoconstriction seen in COPD. This is an update of a Cochrane review first published in 2011 and updated in 2013. OBJECTIVES To evaluate the efficacy and safety of oral PDE4 inhibitors in the management of stable COPD. SEARCH METHODS We identified randomised controlled trials (RCTs) from the Cochrane Airways Trials Register (date of last search October 2016). We found other trials from web-based clinical trials registers. SELECTION CRITERIA We included RCTs if they compared oral PDE4 inhibitors with placebo in people with COPD. We allowed co-administration of standard COPD therapy. DATA COLLECTION AND ANALYSIS One review author extracted data and a second review author checked the data. We reported pooled data in Review Manager as mean differences (MD), standardised mean differences (SMD) or odds ratios (OR). We converted the odds ratios into absolute treatment effects in a 'Summary of findings' table. MAIN RESULTS Thirty-four separate RCTs studying roflumilast (20 trials with 17,627 participants) or cilomilast (14 trials with 6457 participants) met the inclusion criteria, with a duration of between six weeks and one year. These included people across international study centres with moderate to very severe COPD (Global Initiative for Chronic Obstructive Lung Disease (GOLD) grades II-IV), with a mean age of 64 years.We considered that the methodological quality of the 34 published and unpublished trials was acceptable overall. Treatment with a PDE4 inhibitor was associated with a significant improvement in forced expiratory volume in one second (FEV1) over the trial period compared with placebo (MD 51.53 mL, 95% confidence interval (CI) 43.17 to 59.90, 27 trials with 20,585 participants, moderate-quality evidence due to moderate levels of heterogeneity and risk of reporting bias). There were small improvements in quality of life (St George's Respiratory Questionnaire (SGRQ), MD -1.06 units, 95% CI -1.68 to -0.43, 11 trials with 7645 participants, moderate-quality evidence due to moderate levels of heterogeneity and risk of reporting bias) and COPD-related symptoms, but no significant change in exercise tolerance. Treatment with a PDE4 inhibitor was associated with a reduced likelihood of COPD exacerbation (OR 0.78, 95% CI 0.73 to 0.83; 23 trials with 19,948 participants, high-quality evidence). For every 100 people treated with PDE4 inhibitors, five more remained exacerbation-free during the study period compared with placebo (number needed to treat for an additional beneficial outcome (NNTB) 20, 95% CI 16 to 26). More participants in the treatment groups experienced non-serious adverse events compared with controls, particularly a range of gastrointestinal symptoms such as diarrhoea, nausea, vomiting or dyspepsia. For every 100 people treated with PDE4 inhibitors, seven more suffered from diarrhoea during the study period compared with placebo (number needed to treat for an additional harmful outcome (NNTH) 15, 95% CI 13 to 17). Roflumilast in particular was associated with weight loss during the trial period and an increase in insomnia and depressive mood symptoms. There was no significant effect of treatment on non-fatal serious adverse events (OR 0.99, 95% CI 0.91 to 1.07) or mortality (OR 0.97, 95% CI 0.76 to 1.23), although mortality was a rare event during the trials. Participants treated with PDE4 inhibitors were more likely to withdraw from the trials because of adverse effects; on average 14% in the treatment groups withdrew compared with 8% in the control groups. AUTHORS' CONCLUSIONS In people with COPD, PDE4 inhibitors offered benefit over placebo in improving lung function and reducing the likelihood of exacerbations; however, they had little impact on quality of life or symptoms. Gastrointestinal adverse effects and weight loss were common, and safety data submitted to the US Food and Drug Administration (FDA) have raised concerns over psychiatric adverse events with roflumilast. The findings of this review give cautious support to the use of PDE4 inhibitors in COPD. They may be best used as add-on therapy in a subgroup of people with persistent symptoms or exacerbations despite optimal COPD management. This is in accordance with the GOLD 2017 guidelines. Longer-term trials are needed to determine whether or not PDE4 inhibitors modify FEV1 decline, hospitalisation or mortality in COPD.
Collapse
Affiliation(s)
- Jimmy Chong
- University of AucklandDepartment of MedicineAucklandNew Zealand
| | - Bonnie Leung
- University of AucklandDepartment of MedicineAucklandNew Zealand
| | - Phillippa Poole
- University of AucklandDepartment of MedicineAucklandNew Zealand
| | | |
Collapse
|
11
|
Kawamatawong T. Roles of roflumilast, a selective phosphodiesterase 4 inhibitor, in airway diseases. J Thorac Dis 2017; 9:1144-1154. [PMID: 28523172 DOI: 10.21037/jtd.2017.03.116] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) are common chronic respiratory diseases. Both diseases have incompletely distinct pathophysiology, clinical manifestation, and treatment responsiveness. Pulmonary and systemic inflammations are the hallmarks of COPD. Most asthma responds to inhaled corticosteroid (ICS) treatment. In contrast, COPD is a corticosteroid-resistant disease. Bronchodilators are a preferred treatment method of COPD, with the aim of improving symptoms and preventing exacerbation. In addition, corticosteroid insensitivity is an underlying mechanism in severe asthma. An overlap of features between asthma and COPD, which was described as asthma-COPD overlap syndrome (ACOS) is not uncommon in practice. Novel nonsteroidal therapies focusing on inflammation in asthma and COPD have been developed. Selective phosphodiesterase 4 (PDE4) inhibitor is a promising class of drugs that has been studied for the treatment of COPD. Selective PDE4 inhibitor is different from xanthine in terms of mechanisms and pharmacokinetic profiles. This review focuses on clinical data on PDE4 inhibitors and its future roles in asthma, COPD, bronchiectasis, ACOS and other chronic non-pulmonary diseases.
Collapse
Affiliation(s)
- Theerasuk Kawamatawong
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
12
|
Abstract
Theophylline is an orally acting xanthine that has been used since 1937 for the treatment of respiratory diseases including asthma and chronic obstructive pulmonary disease (COPD). However, in most treatment guidelines, xanthines have now been consigned to third-line therapy because of their narrow therapeutic window and propensity for drug-drug interactions. However, lower than conventional doses of theophylline considered to be bronchodilator are now known to have anti-inflammatory actions of relevance to the treatment of respiratory disease. The molecular mechanism(s) of action of theophylline are not well understood, but several potential targets have been suggested including non-selective inhibition of phosphodiesterases (PDE), inhibition of phosphoinositide 3-kinase, adenosine receptor antagonism and increased activity of certain histone deacetylases. Although theophylline has a narrow therapeutic window, other xanthines are in clinical use that are claimed to have a better tolerability such as doxofylline and bamifylline. Nonetheless, xanthines still play an important role in the treatment of asthma and COPD as they can show clinical benefit in patients who are refractory to glucocorticosteroid therapy, and withdrawal of xanthines from patients causes worsening of disease, even in patients taking concomitant glucocorticosteroids.More recently the orally active selective PDE4 inhibitor, roflumilast, has been introduced into clinical practice for the treatment of severe COPD on top of gold standard treatment. This drug has been shown to improve lung function in patients with severe COPD and to reduce exacerbations, but is dose limited by a range side effect, particularly gastrointestinal side effects.
Collapse
Affiliation(s)
- D Spina
- The Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, Franklin Wilkins Building, London, SE1 9NH, UK
| | - C P Page
- The Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, Franklin Wilkins Building, London, SE1 9NH, UK.
| |
Collapse
|
13
|
Edwards MR, Facchinetti F, Civelli M, Villetti G, Johnston SL. Anti-inflammatory effects of the novel inhaled phosphodiesterase type 4 inhibitor CHF6001 on virus-inducible cytokines. Pharmacol Res Perspect 2016; 4:e00202. [PMID: 26977295 PMCID: PMC4777265 DOI: 10.1002/prp2.202] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 10/30/2015] [Accepted: 11/03/2015] [Indexed: 12/31/2022] Open
Abstract
Respiratory virus infections precipitate asthma and chronic obstructive pulmonary disease (COPD) exacerbations, with most exacerbations due to rhinovirus infection. Both asthma and COPD exacerbations are not well controlled by steroid therapies, and there is a much research interest in finding improved therapies or combinations of therapies for controlling exacerbations. CHF6001 is a new, inhaled highly potent and selective phosphodiesterase type 4 (PDE4) inhibitor. Using in vitro human bronchial epithelial cells (BEAS‐2B), we investigated the potential anti‐inflammatory effects of CHF6001 on rhinovirus (RV1B)‐induced cytokines. Cytokine mRNA was measured by real‐time PCR, while protein release was measured by ELISA. CHF6001 was used in a 7‐point dose–response curve (1000–0.001 nmol/L) as a 1.5‐h pretreatment prior to infection in comparison with roflumilast. Both roflumilast and CHF6001 reduced RV1B‐induced IL‐8, IL‐29, IP‐10, and RANTES mRNA and protein in a concentration‐dependent manner. Generally, CHF6001 was 13‐ to 16‐fold more potent (subnanomolar EC50 values) than roflumilast at reducing IL‐8, IL‐29, IP‐10, and RANTES mRNA and protein release, but had similar efficacies. In combination with the steroid fluticasone propionate (1 nmol/L), CHF6001 had additive effects, significantly reducing RV‐induced cytokines when compared with steroid or CHF6001 alone. Combined low‐dose steroid and low‐dose CHF6001 had a similar efficacy as high‐dose steroid or CHF6001 alone, indicating the combination had steroid and PDE4 inhibitor sparing effects. Overall results indicate that PDE4 inhibitors have anti‐inflammatory activity against virus‐induced inflammatory mediators and that CHF6001 is more potent than roflumilast.
Collapse
Affiliation(s)
- Michael R Edwards
- Airway Disease Infection Section National Heart Lung Institute Imperial College London London United Kingdom; MRC and Asthma UK Centre for Allergic Mechanisms of Asthma London United Kingdom
| | | | - Maurizio Civelli
- Corporate Pre-clinical R&D Chiesi Farmaceutici S.p.A. Parma Italy
| | - Gino Villetti
- Corporate Pre-clinical R&D Chiesi Farmaceutici S.p.A. Parma Italy
| | - Sebastian L Johnston
- Airway Disease Infection Section National Heart Lung Institute Imperial College London London United Kingdom; MRC and Asthma UK Centre for Allergic Mechanisms of Asthma London United Kingdom
| |
Collapse
|
14
|
Armani E, Amari G, Rizzi A, De Fanti R, Ghidini E, Capaldi C, Carzaniga L, Caruso P, Guala M, Peretto I, La Porta E, Bolzoni PT, Facchinetti F, Carnini C, Moretto N, Patacchini R, Bassani F, Cenacchi V, Volta R, Amadei F, Capacchi S, Delcanale M, Puccini P, Catinella S, Civelli M, Villetti G. Novel class of benzoic acid ester derivatives as potent PDE4 inhibitors for inhaled administration in the treatment of respiratory diseases. J Med Chem 2014; 57:793-816. [PMID: 24400806 DOI: 10.1021/jm401549m] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The first steps in the selection process of a new anti-inflammatory drug for the inhaled treatment of asthma and chronic obstructive pulmonary disease are herein described. A series of novel ester derivatives of 1-(3-(cyclopropylmethoxy)-4-(difluoromethoxy)phenyl)-2-(3,5-dichloropyridin-4-yl) ethanol have been synthesized and evaluated for inhibitory activity toward cAMP-specific phosphodiesterase-4 (PDE4). In particular, esters of variously substituted benzoic acids were extensively explored, and structural modification of the alcoholic and benzoic moieties were performed to maximize the inhibitory potency. Several compounds with high activity in cell-free and cell-based assays were obtained. Through the evaluation of opportune in vitro ADME properties, a potential candidate suitable for inhaled administration in respiratory diseases was identified and tested in an in vivo model of pulmonary inflammation, proving its efficacy.
Collapse
Affiliation(s)
- Elisabetta Armani
- Chiesi Farmaceutici S.p.A., Nuovo Centro Ricerche , Largo Belloli 11/a, 43122 Parma, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Baeumer DW, Szelenyi PI, Kietzmann PM. Cilomilast, an orally active phosphodiesterase 4 inhibitor for the treatment of COPD. Expert Rev Clin Immunol 2014; 1:27-36. [DOI: 10.1586/1744666x.1.1.27] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
16
|
Abstract
Clinical trials with new drugs for chronic obstructive pulmonary disease (COPD) have been performed. Viruses exacerbate COPD and bacteria may play a part in severe COPD; therefore, antibiotic and antiviral approaches have a sound rationale. Antiinflammatory approaches have been studied. Advances in understanding the molecular basis of other processes have resulted in novel drugs to target reactive oxidant species, mucus, proteases, fibrosis, cachexia, and muscle wasting, and accelerated aging. Studies with monoclonal antibodies have been disappointing, highlighting the tendency for infections and malignancies during treatment. Promising future directions are lung regeneration with retinoids and stem cells.
Collapse
Affiliation(s)
- Clare L Ross
- Imperial Clinical Respiratory Research Unit (ICRRU), Biomedical Research Centre (BMRC), Centre for Respiratory Infection (CRI), National Heart and Lung Institute (NHLI), St Mary's Hospital, Imperial College, Praed Street, Paddington, London W2 INY, UK
| | - Trevor T Hansel
- Imperial Clinical Respiratory Research Unit (ICRRU), Biomedical Research Centre (BMRC), Centre for Respiratory Infection (CRI), National Heart and Lung Institute (NHLI), St Mary's Hospital, Imperial College, Praed Street, Paddington, London W2 INY, UK.
| |
Collapse
|
17
|
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is associated with cough, sputum production or dyspnoea and a reduction in lung function, quality of life and life expectancy. Apart from smoking cessation, there are no other treatments that slow lung function decline. Roflumilast and cilomilast are oral phosphodiesterase 4 (PDE4) inhibitors proposed to reduce the airway inflammation and bronchoconstriction seen in COPD. OBJECTIVES To evaluate the efficacy and safety of oral PDE4 inhibitors in the management of stable COPD. SEARCH METHODS We identified randomised controlled trials (RCTs) from the Cochrane Airways Group Specialised Register of trials (date of last search June 2013). We found other trials from web-based clinical trial registers. SELECTION CRITERIA We included RCTs if they compared oral PDE4 inhibitors with placebo in people with COPD. We allowed co-administration of standard COPD therapy. DATA COLLECTION AND ANALYSIS One review author extracted data and a second review author checked the data, before entry into The Cochrane Collaboration software program (RevMan version 5.2). We reported pooled data as mean differences (MD), standardised mean differences (SMD) or odds ratios (OR). MAIN RESULTS Twenty-nine separate RCTs studying roflumilast (15 trials, 12,654 patients) or cilomilast (14 trials, 6457 patients) met the inclusion criteria, with a duration between six weeks and one year. These included people across international study centres with moderate to very severe COPD (GOLD grades II-IV), with a mean age of 64 years.Treatment with a PDE4 inhibitor was associated with a significant improvement in forced expiratory volume in one second (FEV1) over the trial period compared with placebo (MD 45.60 mL; 95% confidence interval (CI) 39.45 to 51.75, 22 trials with 15,670 participants, moderate quality evidence due to moderate levels of heterogeneity and risk of reporting bias). There were small improvements in quality of life (St George's Respiratory Questionnaire MD -1.04; 95% CI -1.66 to -0.41, 10 trials with 7618 participants, moderate quality evidence due to moderate levels of heterogeneity and risk of reporting bias) and COPD-related symptoms, but no change in exercise tolerance. Treatment with a PDE4 inhibitor was associated with a reduced likelihood of COPD exacerbation (OR 0.77; 95% CI 0.71 to 0.83, high quality evidence). For every 100 people treated with PDE4 inhibitors, six more remained exacerbation-free during the study period compared with placebo (number needed to treat for an additional beneficial effect (NNTB) 20; 95% CI 16 to 27). More participants in the treatment groups experienced non-serious adverse events compared with controls, particularly gastrointestinal symptoms and headache. Roflumilast in particular was associated with weight loss during the trial period and an increase in insomnia and depressive mood symptoms. Participants treated with PDE4 inhibitors were also more likely to withdraw from the trials because of adverse effects; on average 24% in the treatment groups withdrew compared with 19% in the control groups. AUTHORS' CONCLUSIONS In people with COPD, PDE4 inhibitors offered benefit over placebo in improving lung function and reducing the likelihood of exacerbations; however, they had little impact on quality of life or symptoms. Gastrointestinal adverse effects and weight loss were common, and safety data submitted to the US Food and Drug Administration (FDA) have raised concerns over psychiatric adverse events with roflumilast. The optimum place of PDE4 inhibitors in COPD management therefore remains to be defined. Longer-term trials are needed to determine whether or not PDE4 inhibitors modify FEV1 decline, hospitalisation or mortality in COPD.
Collapse
|
18
|
Abstract
Chronic obstructive pulmonary disease (COPD) is one of the leading causes of mortality and morbidity worldwide. In addition to generating high healthcare costs, COPD imposes a significant burden in terms of disability and impaired quality of life. Unlike many leading causes of death and disability, COPD is projected to increase in many regions of the world as the frequency of smoking is rising and the population is aging. The pharmacological treatment of COPD includes bronchodilators to relax smooth muscle, such as β2-agonists (salbutamol, terbutaline, and fenoterol, short-acting β2-agonists as well as salmeterol, formoterol, and indacaterol, and long-acting β2-agonists) and anticholinergics, such as ipratropium, oxitropium (short-acting anticholinergic), and tiotropium (long-acting anticholinergic). Although airway inflammation in COPD poorly responds to steroids, several inhaled corticosteroids (fluticasone, budesonide, and beclomethasone) are in use in combination with long-acting β2-agonists. Other medications include theophylline (both a bronchodilator and a phosphodiesterase inhibitor) and the phosphodiesterase-4 antagonists, such as roflumilast. Finally, a number of novel long-acting anticholinergics and β2-agonists with once- or twice-daily profiles are in development and clinical testing.
Collapse
|
19
|
Sinden NJ, Stockley RA. Chronic obstructive pulmonary disease: an update of treatment related to frequently associated comorbidities. Ther Adv Chronic Dis 2012; 1:43-57. [PMID: 23251728 DOI: 10.1177/2040622310370631] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is associated with a pulmonary inflammatory response to inhaled substances, and individuals with COPD often have raised levels of several circulating inflammatory markers indicating the presence of systemic inflammation. Recently, there has been increasing interest in comorbidities associated with COPD such as skeletal muscle dysfunction, cardiovascular disease, osteoporosis, diabetes and lung cancer. These conditions are associated with a similar inflammation-based patho-physiology to COPD, and may represent a lung inflammatory 'overspill' to distant organs. Cardiovascular disease is a significant cause of mortality in COPD, and the concepts of an inflammatory link raise the possibility that treatment for one organ may show benefits to comorbidities in other organs. When considering treatment of COPD and its comorbidities, one approach is to target the pulmonary inflammation and hence reduce any 'overspill' effect of inflammatory mediators systemically as suggested by response to inhaled corticosteroids. Alternatively, treatment targeted towards comorbid organs may alter features of pulmonary disease as statins, angiotensin-converting enzyme (ACE) inhibitors and peroxisome proliferator-activated receptor (PPAR) agonists may have beneficial effects on COPD by reducing exacerbations and mortality. Newer anti-inflammatory treatments, such as phosphodiesterase 4 (PDE4), nuclear factor(NF)-kB, and p38 mitogen-activated protein kinase (MAPK) inhibitors, are given systemically and may confer benefits to both COPD and its comorbidities. With common inflammatory pathways it might be expected that successful anti-inflammatory therapy in one organ may also influence others. In this review we explore the concepts of systemic inflammation in COPD and current evidence for treatment of its related comorbidities.
Collapse
Affiliation(s)
- Nicola J Sinden
- Nicola J. Sinden, MBChB(Honours), MRCP (UK) University Hospital Birmingham NHS Foundation Trust - Respiratory Medicine, Birmingham, UK
| | | |
Collapse
|
20
|
Yawn BP. Is 'GOLD' standard for the management of COPD in clinical practice? Drugs Context 2012; 2012:212243. [PMID: 24432032 PMCID: PMC3884956 DOI: 10.7573/dic.212243] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 09/14/2012] [Indexed: 12/29/2022] Open
|
21
|
Hikida T, Gamo NJ, Sawa A. DISC1 as a therapeutic target for mental illnesses. Expert Opin Ther Targets 2012; 16:1151-60. [PMID: 23130881 DOI: 10.1517/14728222.2012.719879] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Many genetic studies have indicated that DISC1 is not merely "disrupted-in-schizophrenia," but is more generally implicated in various brain dysfunctions associated with aberrant neurodevelopment and intracellular signaling pathways. Thus, the DISC1 gene is mildly associated with a variety of brain disorders, including schizophrenia, mood disorders, and autism. This novel concept fits with the results from biological studies of DISC1, which include cell and animal models. AREAS COVERED We review the molecular structure and functions of DISC1, particularly those in conjunction with its important interactors. Functions of these interacting proteins are also introduced under the concept of the "DISC1 interactome." Finally, we discuss how the DISC1 interactome can provide potential therapeutic targets for mental illnesses. EXPERT OPINION Modulation of DISC1 stability and post-transcriptional modifications may be key targets to address DISC1-related pathology. In addition, modulation of DISC1 interactors and the mechanisms of their interactions with DISC1 may also provide drug targets. Disc1 rodent models can subsequently be used as templates for in vivo validations of compounds designed for DISC1 and its interacting proteins. Furthermore, these rodents will serve as genetic models for schizophrenia and related conditions, especially in conjunction with their pathologies during the neurodevelopmental trajectory.
Collapse
Affiliation(s)
- Takatoshi Hikida
- Kyoto University School of Medicine, Medical Innovation Center, Kyoto, Japan.
| | | | | |
Collapse
|
22
|
Blankenburg T, Guettel A, Busch C, Schuette W. Six-minute walk distance and dyspnoea scores to assess the course of COPD exacerbation in elderly patients. CLINICAL RESPIRATORY JOURNAL 2012; 7:261-7. [PMID: 22823008 DOI: 10.1111/j.1752-699x.2012.00314.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 06/04/2012] [Accepted: 07/17/2012] [Indexed: 12/27/2022]
Abstract
INTRODUCTION While the severity of stable chronic obstructive pulmonary disease (COPD) has been defined in a valid and relevant prognostic manner, parameters that describe the course of COPD exacerbations are not yet established. Physical performance and dyspnoea are of prognostic relevance in stable COPD. The issue investigated was to assess the course of COPD exacerbations to find parameters that describe this situation better. METHODS In 82 hospitalised patients with acute exacerbation of COPD who responded to intensified medical treatment (age 67.3 ± 9.5 years; forced expiratory volume in 1 s 1.0l, 40% predicted), we measured the 6-min walk distance and the visual analogue scale dyspnoea scores before the start of treatment, prior to discharge and after a 4-week stable period. Additionally, the conventional clinical parameters of COPD and quality of life were documented. RESULTS The 6-min walk distance was significantly increased from 97 ± 114 m to 290 ± 106 m. After 4 weeks of outpatient treatment in clinically stable patients, the 6-min walk distance fell non-significantly to 270 ± 120 m. The increment in walk distance fell significantly with advancing severity of COPD: from 112 ± 68 m for grade I and II to 56 ± 88 m for grade IV. Resting as well as exertional dyspnoea scores were significantly reduced (resting dyspnoea from 4 to 2 and exertional dyspnoea from 8 to 6). CONCLUSION We were able to demonstrate that 6-min walk test and dyspnoea scores, but not pulmonary function test, are suitable parameters to assess the course of COPD exacerbations.
Collapse
Affiliation(s)
- Thomas Blankenburg
- Second Medical Clinic, Hospital Martha-Maria Halle-Doelau, Halle, Germany.
| | | | | | | |
Collapse
|
23
|
Calverley PMA, Martinez FJ, Fabbri LM, Goehring UM, Rabe KF. Does roflumilast decrease exacerbations in severe COPD patients not controlled by inhaled combination therapy? The REACT study protocol. Int J Chron Obstruct Pulmon Dis 2012; 7:375-82. [PMID: 22791991 PMCID: PMC3393336 DOI: 10.2147/copd.s31100] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Many patients with chronic obstructive pulmonary disease (COPD) continue to suffer exacerbations, even when treated with maximum recommended therapy (eg, inhaled combinations of long-acting β2-agonist and high dose inhaled corticosteroids, with or without a long-acting anticholinergic [long-acting muscarinic antagonist]). Roflumilast is approved to treat severe COPD in patients with chronic bronchitis--and a history of frequent exacerbations--as an add-on to bronchodilators. PURPOSE The REACT (Roflumilast in the Prevention of COPD Exacerbations While Taking Appropriate Combination Treatment) study (identification number RO-2455-404-RD, clinicaltrials. gov identifier NCT01329029) will investigate whether roflumilast further reduces exacerbations when added to inhaled combination therapy in patients still suffering from frequent exacerbations. PATIENTS AND METHODS REACT is a 1-year randomized, double-blind, multicenter, phase III/IV study of roflumilast 500 μg once daily or placebo on top of a fixed long-acting β2-agonist/inhaled corticosteroid combination. A concomitant long-acting muscarinic antagonist will be allowed at stable doses. The primary outcome is the rate of moderate or severe COPD exacerbations. Using a Poisson regression model with a two-sided significance level of 5%, a sample size of 967 patients per treatment group is needed for 90% power. COPD patients with severe to very severe airflow limitation, symptoms of chronic bronchitis, and at least two exacerbations in the previous year will be recruited. CONCLUSION It is hypothesized that because roflumilast (a phosphodiesterase-4 inhibitor) has a different mode of action to bronchodilators and inhaled corticosteroids, it may provide additional benefits when added to these treatments in frequent exacerbators. REACT will be important to determine the role of roflumilast in COPD management. Here, the design and rationale for this important study is described.
Collapse
Affiliation(s)
- Peter M A Calverley
- Clinical Science Center, University Hospital Aintree, Liverpool, United Kingdom.
| | | | | | | | | |
Collapse
|
24
|
Cazzola M, Page CP, Calzetta L, Matera MG. Pharmacology and therapeutics of bronchodilators. Pharmacol Rev 2012; 64:450-504. [PMID: 22611179 DOI: 10.1124/pr.111.004580] [Citation(s) in RCA: 317] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Bronchodilators are central in the treatment of of airways disorders. They are the mainstay of the current management of chronic obstructive pulmonary disease (COPD) and are critical in the symptomatic management of asthma, although controversies around the use of these drugs remain. Bronchodilators work through their direct relaxation effect on airway smooth muscle cells. at present, three major classes of bronchodilators, β(2)-adrenoceptor (AR) agonists, muscarinic receptor antagonists, and xanthines are available and can be used individually or in combination. The use of the inhaled route is currently preferred to minimize systemic effects. Fast- and short-acting agents are best used for rescue of symptoms, whereas long-acting agents are best used for maintenance therapy. It has proven difficult to discover novel classes of bronchodilator drugs, although potential new targets are emerging. Consequently, the logical approach has been to improve the existing bronchodilators, although several novel broncholytic classes are under development. An important step in simplifying asthma and COPD management and improving adherence with prescribed therapy is to reduce the dose frequency to the minimum necessary to maintain disease control. Therefore, the incorporation of once-daily dose administration is an important strategy to improve adherence. Several once-daily β(2)-AR agonists or ultra-long-acting β(2)-AR-agonists (LABAs), such as indacaterol, olodaterol, and vilanterol, are already in the market or under development for the treatment of COPD and asthma, but current recommendations suggest the use of LABAs only in combination with an inhaled corticosteroid. In addition, some new potentially long-acting antimuscarinic agents, such as glycopyrronium bromide (NVA-237), aclidinium bromide, and umeclidinium bromide (GSK573719), are under development, as well as combinations of several classes of long-acting bronchodilator drugs, in an attempt to simplify treatment regimens as much as possible. This review will describe the pharmacology and therapeutics of old, new, and emerging classes of bronchodilator.
Collapse
Affiliation(s)
- Mario Cazzola
- Università di Roma Tor Vergata, Dipartimento di Medicina Interna, Via Montpellier 1, 00133 Roma, Italy.
| | | | | | | |
Collapse
|
25
|
Ashworth AJ. Enhanced recovery from respiratory infection following treatment with a PDE-5 inhibitor: a single case study. PRIMARY CARE RESPIRATORY JOURNAL : JOURNAL OF THE GENERAL PRACTICE AIRWAYS GROUP 2012; 21:17. [PMID: 22382866 DOI: 10.4104/pcrj.2012.00016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
26
|
Michalski JM, Golden G, Ikari J, Rennard SI. PDE4: a novel target in the treatment of chronic obstructive pulmonary disease. Clin Pharmacol Ther 2011; 91:134-42. [PMID: 22130119 DOI: 10.1038/clpt.2011.266] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Phosphodiesterases (PDEs) are important modulators of inflammation and wound healing. In this capacity, specific targeting of PDEs for the treatment of many diseases, including chronic obstructive pulmonary disease (COPD), has been investigated. Currently, treatment of COPD is suboptimal. PDE4 modulates the inflammatory response of the lung, and inhibition of PDE4 may be a novel, COPD-specific approach toward more effective treatment strategies. This review describes the state of PDE4-inhibitor therapy for use in COPD treatment.
Collapse
Affiliation(s)
- J M Michalski
- Section of Pulmonary, Critical Care, Sleep and Allergy, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA.
| | | | | | | |
Collapse
|
27
|
Schudt C, Hatzelmann A, Beume R, Tenor H. Phosphodiesterase inhibitors: history of pharmacology. Handb Exp Pharmacol 2011:1-46. [PMID: 21695634 DOI: 10.1007/978-3-642-17969-3_1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The first pharmacological investigations of phosphodiesterase (PDE) inhibitors were developed with the clinical efficacies of drugs isolated from coffee, cacao and tea but only later their relevant ingredients were identified as xanthines that act as PDE. With its diuretic, inotropic and bronchodilating clinical efficacy, use of theophylline anticipated the clinical goals, which were later approached with the first-generation of weakly selective PDE inhibitors in the period from 1980 to 1990. Pharmacological and clinical research with these early compounds provided a vast pool of information regarding desired and adverse actions - although most of these new drugs had to be discontinued due to severe adverse effects. The pharmacological models for cardiac, vascular and respiratory indications were analysed for their PDE isoenzyme profiles, and when biochemical and molecular biological approaches expanded our knowledge of the PDE superfamily, the purified isoenzymes that were now available opened the door for more systematic studies of inhibitors and for generation of highly selective isoenzyme-specific drugs. The development of simple screening models and clinically relevant indication models reflecting the growing knowledge about pathomechanisms of disease are summarised here for today's successful application of highly selective PDE3, PDE4 and PDE5 inhibitors. The interplay of serendipitous discoveries, the establishment of intelligent pharmacological models and the knowledge gain by research results with new substances is reviewed. The broad efficacies of new substances in vitro, the enormous biodiversity of the PDE isoenzyme family and the sophisticated biochemical pharmacology enabled Viagra to be the first success story in the field of PDE inhibitor drug development, but probably more success stories will follow.
Collapse
Affiliation(s)
- Christian Schudt
- Department of Biologics, Nycomed GmbH, 78467, Konstanz, Germany.
| | | | | | | |
Collapse
|
28
|
Chong J, Poole P, Leung B, Black PN. Phosphodiesterase 4 inhibitors for chronic obstructive pulmonary disease. Cochrane Database Syst Rev 2011:CD002309. [PMID: 21563134 DOI: 10.1002/14651858.cd002309.pub3] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) affects symptoms, lung function, quality of life and life expectancy. Apart from smoking cessation, there are no other treatments that slow lung function decline. Roflumilast and cilomilast are oral phosphodiesterase 4 (PDE(4)) inhibitors proposed to reduce the airway inflammation and bronchoconstriction seen in COPD. OBJECTIVES To evaluate the efficacy and safety of PDE(4) inhibitors in the management of people with stable COPD. Outcomes included lung function, quality of life, symptoms, exacerbations and adverse effects. SEARCH STRATEGY We identified randomised controlled trials (RCTs) from the Cochrane Airways Group Specialised Register of trials (date of last search 6 August 2010). We found other trials from web-based clinical trial registers. SELECTION CRITERIA We included RCTs if they compared oral PDE(4) inhibitors with placebo in people with COPD. We allowed co-administration of standard COPD therapy. DATA COLLECTION AND ANALYSIS One review author extracted data and a second review author checked the data, before entry into The Cochrane Collaboration software programme (RevMan version 5.1). We reported pooled data as mean differences (MD), standardised mean differences (SMD), or odds ratios (OR). MAIN RESULTS Twenty-three separate RCTs studying roflumilast (nine trials, 9211 patients) or cilomilast (fourteen trials, 6457 patients) met the inclusion criteria. None of the trials exceeded a year in duration.Treatment with a PDE(4) inhibitor was associated with a significant improvement in FEV(1)over the trial period compared with placebo (MD 45.59 mL; 95% confidence interval (CI) 39.15 to 52.03), regardless of COPD severity or concomitant COPD treatment. There were some small improvements in quality of life (St George's Respiratory Questionnaire MD -1.04; 95% CI -1.66 to -0.41) and COPD-related symptoms, but no change in exercise tolerance. Treatment with a PDE(4) inhibitor was associated with a reduced likelihood of COPD exacerbation (OR 0.78; 95% CI 0.72 to 0.85). More participants in the treatment groups experienced non-serious adverse events compared with controls, particularly gastrointestinal symptoms and headache. Roflumilast was associated with weight loss during the trial period. AUTHORS' CONCLUSIONS In people with COPD, PDE(4) inhibitors offered benefit over placebo in improving lung function and reducing likelihood of exacerbations, however, they had little impact on quality of life or symptoms. Gastrointestinal adverse effects and weight loss were common. The optimum place of PDE(4) inhibitors in COPD management remains to be defined. Longer-term trials are needed to determine whether or not PDE(4) inhibitors modify FEV(1) decline, healthcare utilisation or mortality in COPD.
Collapse
Affiliation(s)
- Jimmy Chong
- University of Auckland, Auckland, New Zealand
| | | | | | | |
Collapse
|
29
|
Rafii R, Albertson TE, Louie S, Chan AL. Update on pharmaceutical and minimally invasive management strategies for chronic obstructive pulmonary disease. Pulm Med 2011; 2011:257496. [PMID: 21660228 PMCID: PMC3109340 DOI: 10.1155/2011/257496] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2010] [Revised: 01/21/2011] [Accepted: 02/22/2011] [Indexed: 01/01/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a debilitating pulmonary disorder with systemic effects, and it is the fourth leading cause of death in the United States. COPD patients not only develop respiratory limitations, but can also demonstrate systemic wasting, features of depression, and can succumb to social isolation. Smoking cessation is crucial, and pharmacotherapy with bronchodilators is helpful in symptom management. Inhaled corticosteroids may be beneficial in some patients. In addition, pulmonary rehabilitation and palliative care are important components under the right clinical circumstance. This review highlights current guidelines and management strategies for COPD and emphasizes novel pharmacotherapy and minimally invasive (nonsurgical) lung-volume reduction interventions that may prove to be of significant benefit in the future.
Collapse
Affiliation(s)
- Rokhsara Rafii
- Division of Pulmonary, Critical Care and Sleep Medicine, UC Davis School of Medicine and VA Northern California Health Care System, 4150 V Street, Suite 3400, Sacramento, CA 95817, USA
| | - Timothy E. Albertson
- Division of Pulmonary, Critical Care and Sleep Medicine, UC Davis School of Medicine and VA Northern California Health Care System, 4150 V Street, Suite 3400, Sacramento, CA 95817, USA
| | - Samuel Louie
- Division of Pulmonary, Critical Care and Sleep Medicine, UC Davis School of Medicine, 4150 V Street, Suite 3400, Sacramento, CA 95817, USA
| | - Andrew L. Chan
- Division of Pulmonary, Critical Care and Sleep Medicine, UC Davis School of Medicine and VA Northern California Health Care System, 4150 V Street, Suite 3400, Sacramento, CA 95817, USA
| |
Collapse
|
30
|
Relative resistance to oral theophylline treatment in patients with hyposmia manifested by decreased secretion of nasal mucus cyclic nucleotides. Am J Med Sci 2011; 341:17-22. [PMID: 21191261 DOI: 10.1097/maj.0b013e3181f1fdc8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Oral treatment with the phosphodiesterase inhibitor theophylline in an open-label fixed-design clinical trial in 312 patients with hyposmia improved smell function in >50%. Before treatment, all patients had lower than normal levels of nasal mucus cAMP and cGMP. The purpose of this study was to study relationships among changes in smell function, theophylline levels and nasal mucus cAMP and cGMP among patients whose smell function improved (responders) and those who did not improve (nonresponders) on oral theophylline treatment. METHODS After all data analysis from the clinical trial was completed, data from each of the 31 of the 312 patients in whom nasal mucus cAMP and cGMP and theophylline levels were available before and after theophylline treatment at several drug doses were evaluated. At initiation and at termination of each treatment, dose smell function, nasal mucus cAMP and cGMP and plasma theophylline were analyzed. RESULTS On the same theophylline dose, although serum theophylline increased among both responders and nonresponders, serum levels were consistently higher among responders. Nasal mucus cAMP and cGMP were also higher among responders than nonresponders. At higher theophylline doses, cGMP reached normal levels among responders, whereas it did not change significantly among nonresponders. CONCLUSIONS Some patients with hyposmia with initially low nasal mucus cAMP and cGMP levels may be relatively resistant to oral theophylline treatment. This result may offer a mechanism of response lack among some patients whose smell function did not improve after oral theophylline treatment although other factors may influence their response lack.
Collapse
|
31
|
Diamant Z, Spina D. PDE4-inhibitors: a novel, targeted therapy for obstructive airways disease. Pulm Pharmacol Ther 2011; 24:353-60. [PMID: 21255672 DOI: 10.1016/j.pupt.2010.12.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2010] [Revised: 12/05/2010] [Accepted: 12/24/2010] [Indexed: 01/21/2023]
Abstract
Roflumilast is a selective once daily, oral phosphodiesterase-4 inhibitor that has recently been registered in all European Union countries as novel targeted therapy for COPD, while FDA approval for the USA market is expected in 2011. In several phase III trials in patients with moderate to (very) severe COPD and in patients with symptoms of chronic bronchitis and recurrent exacerbations, roflumilast showed sustained clinical efficacy by improving lung function and by reducing exacerbation rates. These beneficial effects have also been demonstrated when added to long-acting bronchodilators (both LABA and LAMA), underscoring the anti-inflammatory activity of roflumilast in COPD. Pooled data analysis showed overall mild to moderate, mostly self-limiting adverse events, mainly consisting of nausea, diarrhea and weight loss. In this review we discuss the results of the 4 registration studies showing promising effects of roflumilast in COPD and provide an overview of the topics that still need to be addressed.
Collapse
Affiliation(s)
- Zuzana Diamant
- Erasmus Medical Center, Dept of Allergology, Rotterdam, The Netherlands.
| | | |
Collapse
|
32
|
Tenor H, Hatzelmann A, Beume R, Lahu G, Zech K, Bethke TD. Pharmacology, clinical efficacy, and tolerability of phosphodiesterase-4 inhibitors: impact of human pharmacokinetics. Handb Exp Pharmacol 2011:85-119. [PMID: 21695636 DOI: 10.1007/978-3-642-17969-3_3] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Since more than two decades anti-inflammatory effects of inhibitors of phosphodiesterase-4 have been described in numerous cellular and animal studies and were finally confirmed in clinical trials. The path from an early, pioneering study with Ro20-1724 showing reduction of psoriatric plaque size in 1979 to modern PDE4 inhibitors such as oral apremilast in development for psoriasis, the inhaled PDE4 inhibitor GSK256066 in development for asthma and COPD and finally roflumilast, the first PDE4 inhibitor approved and currently marketed as an oral, once-daily remedy for severe COPD was marked by large progress in chemical optimization based on improved understanding of PDE4 biology and drug-like properties determining the appropriate pharmacokinetic profile. In this chapter aspects of the pharmacology and clinical efficacy of PDE4 inhibitors, which have been in clinical development over the years are summarized with specific emphasis on their clinical pharmacokinetic properties.
Collapse
Affiliation(s)
- Hermann Tenor
- Nycomed GmbH, Byk Gulden Strasse 2, 78467 Konstanz, Germany,
| | | | | | | | | | | |
Collapse
|
33
|
The human area postrema and other nuclei related to the emetic reflex express cAMP phosphodiesterases 4B and 4D. J Chem Neuroanat 2010; 40:36-42. [DOI: 10.1016/j.jchemneu.2010.03.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 03/17/2010] [Accepted: 03/17/2010] [Indexed: 01/01/2023]
|
34
|
Venkatasamy R, Spina D. Protease inhibitors in respiratory disease: focus on asthma and chronic obstructive pulmonary disease. Expert Rev Clin Immunol 2010; 3:365-81. [PMID: 20477680 DOI: 10.1586/1744666x.3.3.365] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Respiratory diseases, such as asthma and chronic obstructive pulmonary disease (COPD), are a major health burden on society and current treatment modalities for these diseases have not significantly changed over the past 40 years. The only major pharmacological advancement for the treatment of these diseases has been to increase the duration of action of bronchodilators (asthma: salmeterol; COPD: tiotropium bromide) and glucocorticosteroids (asthma: fluticasone propionate) and, increasingly, to formulate these agents in the same delivery device. Despite our increasing understanding of the cell and molecular biology of these diseases, the development of novel treatments remains beyond the reach of the scientific community. Proteases are a family of proteins with diverse biological activity, which are found in abundance within the airways of asthma and COPD, and have been implicated in the pathogenesis of these diseases. The targeting of proteases, including mast cell tryptase, neutrophil elastase and matrix metalloprotease with low-molecular-weight inhibitors, has highlighted the potential role of these enzymes in mediating certain aspects of the disease process in preclinical studies. Several challenges remain regarding the development of protease inhibitors, including the synthesis of highly potent and specific inhibitors, and target validation in man.
Collapse
Affiliation(s)
- Radhakrishnan Venkatasamy
- King's College London, Sackler Institute of Pulmonary Pharmacology, School of Biomedical and Health Science, Pharmaceutical Science Research Division, Guy's Campus, London SE1 1UL, UK.
| | | |
Collapse
|
35
|
Braido F, Brandi S, Cauglia S, Canonica GW. Overview of novel therapeutic targets for asthma and chronic obstructive pulmonary disease. Expert Rev Clin Immunol 2010; 1:263-75. [PMID: 20476940 DOI: 10.1586/1744666x.1.2.263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Obstructive lung diseases, in particular asthma and chronic obstructive pulmonary disease, are a worldwide health problem that is increasing in incidence. While significant progress has been made in the control of symptoms, further advances must be made in modifying the clinical situation in terms of disease progression. Numerous pathogenetic studies have demonstrated that inflammatory responses play a crucial role in the development of chronic lung obstruction, while current molecular findings have provided a myriad of new and promising therapeutic targets. The aim of this article is to provide an overview of clinically and pharmacologically relevant targets for asthma and chronic obstructive pulmonary diseases, considering currently investigated therapeutic approaches.
Collapse
Affiliation(s)
- Fulvio Braido
- University of Genoa, Allergy & Respiratory Diseases, Department of Medical Specialties, San Martino Hospital, Italy.
| | | | | | | |
Collapse
|
36
|
Pruniaux MP, Lagente V, Ouaged M, Bertin B, Moreau F, Julien-Larose C, Rocher MN, Leportier C, Martin B, Bouget A, Dubuit JP, Burnouf C, Doherty AM, Bertrand CP. Relationship between phosphodiesterase type 4 inhibition and anti-inflammatory activity of CI-1044 in rat airways. Fundam Clin Pharmacol 2010; 24:73-82. [DOI: 10.1111/j.1472-8206.2009.00725.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
37
|
Penmatsa H, Zhang W, Yarlagadda S, Li C, Conoley VG, Yue J, Bahouth SW, Buddington RK, Zhang G, Nelson DJ, Sonecha MD, Manganiello V, Wine JJ, Naren AP. Compartmentalized cyclic adenosine 3',5'-monophosphate at the plasma membrane clusters PDE3A and cystic fibrosis transmembrane conductance regulator into microdomains. Mol Biol Cell 2010; 21:1097-110. [PMID: 20089840 PMCID: PMC2836961 DOI: 10.1091/mbc.e09-08-0655] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Formation of multiple-protein macromolecular complexes at specialized subcellular microdomains increases the specificity and efficiency of signaling in cells. In this study, we demonstrate that phosphodiesterase type 3A (PDE3A) physically and functionally interacts with cystic fibrosis transmembrane conductance regulator (CFTR) channel. PDE3A inhibition generates compartmentalized cyclic adenosine 3',5'-monophosphate (cAMP), which further clusters PDE3A and CFTR into microdomains at the plasma membrane and potentiates CFTR channel function. Actin skeleton disruption reduces PDE3A-CFTR interaction and segregates PDE3A from its interacting partners, thus compromising the integrity of the CFTR-PDE3A-containing macromolecular complex. Consequently, compartmentalized cAMP signaling is lost. PDE3A inhibition no longer activates CFTR channel function in a compartmentalized manner. The physiological relevance of PDE3A-CFTR interaction was investigated using pig trachea submucosal gland secretion model. Our data show that PDE3A inhibition augments CFTR-dependent submucosal gland secretion and actin skeleton disruption decreases secretion.
Collapse
Affiliation(s)
- Himabindu Penmatsa
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Wood AM, Tan SL, Stockley RA. Chronic obstructive pulmonary disease: towards pharmacogenetics. Genome Med 2009; 1:112. [PMID: 19951401 PMCID: PMC2808747 DOI: 10.1186/gm112] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a common problem worldwide, and it is recognized that the term encompasses overlapping sub-phenotypes of disease. The development of a sub-phenotype may be determined in part by an individual's genetics, which in turn may determine response to treatment. A growing understanding of the genetic factors that predispose to COPD and its sub-phenotypes and the pathophysiology of the condition is now leading to the suggestion of individualized therapy based on the patients' clinical phenotype and genotype. Pharmacogenetics is the study of variations in treatment response according to genotype and is perhaps the next direction for genetic research in COPD. Here, we consider how knowledge of the pathophysiology and genetic risk factors for COPD may inform future management strategies for affected individuals.
Collapse
Affiliation(s)
- Alice M Wood
- University of Birmingham, Birmingham, B15 2TT, UK
| | | | | |
Collapse
|
39
|
Affiliation(s)
- Paul M O'Byrne
- Firestone Institute for Respiratory Health, and Department of Medicine, McMaster University Medical Center, Hamilton, ON L8N 3Z5, Canada.
| | | |
Collapse
|
40
|
Abstract
Tobacco smoking is the dominant risk factor for chronic obstructive pulmonary disease (COPD), but viral and bacterial infections are the major causes of exacerbations in later stages of disease. Reactive oxygen species (ROS), pathogen-associated molecular patterns (PAMPs), and damage-associated molecular patterns (DAMPs) activate families of pattern recognition receptors (PRRs) that include the toll-like receptors (TLRs). This understanding has led to the hypothesis that COPD is an archetypal disease of innate immunity. COPD is characterised by abnormal response to injury, with altered barrier function of the respiratory tract, an acute phase reaction, and excessive activation of macrophages, neutrophils, and fibroblasts in the lung. The activated non-specific immune system then mediates the processes of inflammation and repair, fibrosis, and proteolysis. COPD is also associated with corticosteroid resistance, abnormal macrophage and T-cell populations in the airway, autoinflammation and autoimmunity, aberrant fibrosis, accelerated ageing, systemic and concomitant disease, and defective regeneration. Such concepts have been used to generate a range of molecular targets, and clinical trials are taking place to identify effective drugs for the prevention and treatment of COPD exacerbations.
Collapse
Affiliation(s)
- Trevor T Hansel
- National Heart and Lung Institute, Imperial College, London, UK.
| | | |
Collapse
|
41
|
|
42
|
Davis TG, Peterson JJ, Kou JP, Capper-Spudich EA, Ball D, Nials AT, Wiseman J, Solanke YE, Lucas FS, Williamson RA, Ferrari L, Wren P, Knowles RG, Barnette MS, Podolin PL. The identification of a novel phosphodiesterase 4 inhibitor, 1-ethyl-5-{5-[(4-methyl-1-piperazinyl)methyl]-1,3,4-oxadiazol-2-yl}-N-(tetrahydro-2H-pyran-4-yl)-1H-pyrazolo[3,4-b]pyridin-4-amine (EPPA-1), with improved therapeutic index using pica feeding in rats as a measure of emetogenicity. J Pharmacol Exp Ther 2009; 330:922-31. [PMID: 19498103 DOI: 10.1124/jpet.109.152454] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Clinical utility of phosphodiesterase 4 (PDE4) inhibitors as anti-inflammatory agents has, to date, been limited by adverse effects including nausea and emesis, making accurate assessment of emetic versus anti-inflammatory potencies critical to the development of inhibitors with improved therapeutic indices. In the present study we determined the in vitro and in vivo anti-inflammatory potencies of the first-generation PDE4 inhibitor, rolipram, the second-generation inhibitors, roflumilast and cilomilast, and a novel third generation inhibitor, 1-ethyl-5-{5-[(4-methyl-1-piperazinyl)methyl]-1,3,4-oxadiazol-2-yl}-N-(tetrahydro-2H-pyran-4-yl)-1H-pyrazolo[3,4-b]pyridin-4-amine (EPPA-1). The rank-order potency against lipopolysaccharide (LPS)-induced tumor necrosis factor-alpha production by human peripheral blood mononuclear cells was roflumilast (IC(50) = 5 nM) > EPPA-1 (38) > rolipram (269) > cilomilast (389), and against LPS-induced pulmonary neutrophilia in the rat was EPPA-1 (D(50) = 0.042 mg/kg) > roflumilast (0.24) > rolipram (3.34) > cilomilast (4.54). Pica, the consumption of non-nutritive substances in response to gastrointestinal stress, was used as a surrogate measure for emesis, giving a rank-order potency of rolipram (D(50) = 0.495 mg/kg) > roflumilast (1.6) > cilomilast (6.4) > EPPA-1 (24.3). The low and high emetogenic activities of EPPA-1 and rolipram, respectively, detected in the pica model were confirmed in a second surrogate model of emesis, reversal of alpha(2)-adrenoceptor-mediated anesthesia in the mouse. The rank order of therapeutic indices derived in the rat [(pica D(50))/(neutrophilia D(50))] was EPPA-1 (578) > roflumilast (6.4) > cilomilast (1.4) > rolipram (0.15), consistent with the rank order derived in the ferret [(emesis D(50))/(neutrophilia D(50))]. These data validate rat pica feeding as a surrogate for PDE4 inhibitor-induced emesis in higher species, and identify EPPA-1 as a novel PDE4 inhibitor with an improved therapeutic index.
Collapse
Affiliation(s)
- T Gregg Davis
- Respiratory Center of Excellence for Drug Discovery, GlaxoSmithKline, King of Prussia, Pennsylvania 19406, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Rennard S, Knobil K, Rabe KF, Morris A, Schachter N, Locantore N, Canonica WG, Zhu Y, Barnhart F. The efficacy and safety of cilomilast in COPD. Drugs 2009; 68 Suppl 2:3-57. [PMID: 19105585 DOI: 10.2165/0003495-200868002-00002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The aim of this review is to present the clinical data on the efficacy and safety of cilomilast in patients with chronic obstructive pulmonary disease (COPD). Over 6000 COPD patients received cilomilast during an extensive clinical development programme performed by GlaxoSmithKline (GSK).Five phase III randomized, double-blind, placebo-controlled, parallel-group pivotal studies were conducted in poorly reversible patients (<15% or <200 mL improvement over baseline in forced expiratory volume in 1 second (FEV(1)) after salbutamol). Patients were randomized to receive oral cilomilast 15 mg (n = 2088) or placebo (n = 1408) twice daily for 24 weeks. The co-primary efficacy variables were changes from baseline in trough (predose) FEV(1) and in total score of the St George's Respiratory Questionnaire (SGRQ).Additional studies were performed to investigate the anti-inflammatory actions of cilomilast by measuring inflammatory cells and mediators in biopsies and induced sputum; to assess the long-term effects of cilomilast; to assess the cardiac safety of cilomilast; and to assess the efficacy of cilomilast on hyperinflation. Results from one of the phase III and from one supportive study have been previously published.In the phase III pivotal studies, when averaged over 24 weeks, the mean change from baseline in FEV(1) in the cilomilast group showed improvement compared with placebo in all studies (range 24-44 mL treatment difference). When averaged over 24 weeks, there was a similar improvement in the mean total SGRQ score in both treatment groups with a decrease ranging from -1.8 to -4.2 units in the cilomilast group and 0.4 to -4.9 units in the placebo group. Only one study, however, showed both a statistically and clinically meaningful difference between the two treatment groups (treatment difference -4.1 units; p < 0.001). Although cilomilast was shown to reduce COPD exacerbations in some of these studies, there was no effect on the incidence of COPD exacerbations in a study specifically powered to detect a difference compared with placebo.No significant change was found in the primary endpoints of the anti-inflammatory studies, although some anti-inflammatory activity was detected, including a reduction in tissue CD8+ T lymphocytes and CD68+ macrophages in airway biopsies. In addition, studies did not demonstrate a consistent significant effect of cilomilast on hyperinflation.In all studies, adverse events associated with the gastrointestinal body system were reported more frequently in the cilomilast group than the placebo group and predominantly occurred within the first 2 weeks of initiating cilomilast therapy.During the cilomilast development programme a number of different endpoints were investigated to characterize the efficacy and safety of this second-generation phosphodiesterase 4 inhibitor. Safety assessments throughout the late-phase programme did not reveal any evidence of serious safety concerns with the use of cilomilast. Previous studies in phase II and early phase III had shown improvements in efficacy endpoints and some evidence of an anti-inflammatory mechanism of action. However, subsequent phase III studies failed to definitively confirm the earlier programme results, which led to termination of the development of cilomilast.
Collapse
Affiliation(s)
- Stephen Rennard
- University of Nebraska Medical Center, Omaha, 68198-5885, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Wood AM, Stockley RA. Editorial: Unifying the genetics, co-morbidities and management of COPD. Ther Adv Respir Dis 2008; 2:113-7. [DOI: 10.1177/1753465808092282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Alice M. Wood
- Lung Investigation Unit, University Hospitals Birmingham, Birmingham, B15 2TH, UK,
| | - Robert A. Stockley
- Department of Medical Sciences, University of Birmingham, Birmingham, B15 2TT, UK,
| |
Collapse
|
45
|
Currie GP, Butler CA, Anderson WJ, Skinner C. Phosphodiesterase 4 inhibitors in chronic obstructive pulmonary disease: a new approach to oral treatment. Br J Clin Pharmacol 2008; 65:803-10. [PMID: 18341675 PMCID: PMC2485219 DOI: 10.1111/j.1365-2125.2008.03155.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Accepted: 01/29/2008] [Indexed: 11/28/2022] Open
Abstract
Chronic obstructive pulmonary disease represents a major global health care burden for both primary and secondary care providers and is the most common respiratory condition necessitating hospital admission. Short-acting bronchodilators play a vital role in immediate relief of symptoms, while inhaled long-acting bronchodilators and inhaled corticosteroids are advocated for regular use in individuals with persistent symptoms and exacerbations. Theophylline is a nonspecific phosphodiesterase inhibitor and is usually reserved for patients with ongoing symptoms despite optimum inhaled bronchodilator treatment or when difficulty is encountered with inhaler devices. However, it is often not widely used mainly due to frequency of dose-related adverse effects, numerous drug interactions and narrow therapeutic index. This in turn has lead to the development of more selective phosphodiesterase inhibitors in an attempt to create a drug which patients can use with beneficial effects but without the problems associated with theophylline. Current data do indicate that phosphodiesterase 4 inhibitors confer some benefits in chronic obstructive pulmonary disease when compared to placebo in terms of lung function, quality of life and exacerbations. They are also generally well tolerated. Further studies are required to determine fully their long-term beneficial and adverse effect profiles and ultimately where they might comfortably sit in management algorithms.
Collapse
Affiliation(s)
- Graeme P Currie
- Department of Respiratory Medicine, Aberdeen Royal Infirmary, Foresterhill, Aberdeen, Scotland, UK.
| | | | | | | |
Collapse
|
46
|
Agusti A. The efficacy and safety of cilomilast in COPD. Forward. Drugs 2008; 68 Suppl 2:1-2. [PMID: 19105584 DOI: 10.2165/0003495-200868002-00001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Alvar Agusti
- Hospital Universitari Son Dureta, Palma de Mallorca, Spain
| |
Collapse
|
47
|
Halpin DMG. ABCD of the phosphodiesterase family: interaction and differential activity in COPD. Int J Chron Obstruct Pulmon Dis 2008; 3:543-61. [PMID: 19281073 PMCID: PMC2650605 DOI: 10.2147/copd.s1761] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Phosphodiesterases (PDEs) are important enzymes that hydrolyze the cyclic nucleotides adenosine 3'5'-cyclic monophosphate (cAMP) and guanosine 3'5'-cyclic monophosphate (cGMP) to their inactive 5' monophosphates. They are highly conserved across species and as well as their role in signal termination, they also have a vital role in intra-cellular localization of cyclic nucleotide signaling and integration of the cyclic nucleotide pathways with other signaling pathways. Because of their pivotal role in intracellular signaling, they are now of considerable interest as therapeutic targets in a wide variety diseases, including COPD where PDE inhibitors may have bronchodilator, anti-inflammatory and pulmonary vasodilator actions. This review examines the diversity and cellular localization of the isoforms of PDE, the known and speculative relevance of this to the treatment of COPD, and the range of PDE inhibitors in development together with a discussion of their possible role in treating COPD.
Collapse
|
48
|
Defective apoptotic cell clearance in asthma and COPD--a new drug target for statins? Trends Pharmacol Sci 2007; 29:6-11. [PMID: 18054798 DOI: 10.1016/j.tips.2007.11.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Revised: 10/08/2007] [Accepted: 11/19/2007] [Indexed: 10/22/2022]
Abstract
Asthma and chronic obstructive pulmonary disease represent increasingly common respiratory conditions with a clear unmet need for more effective and safer therapy. Airway inflammation is key to both asthma pathogenesis and exacerbations of symptoms in chronic obstructive pulmonary disease. Several lines of evidence are now emerging implicating the increased persistence of apoptotic cells in patients with chronic inflammatory lung diseases and that this is largely due to a combination of inhibition of, or defects in, the apoptotic process and/or impaired apoptotic cell removal mechanisms.
Collapse
|
49
|
Michel O, Dentener M, Cataldo D, Cantinieaux B, Vertongen F, Delvaux C, Murdoch RD. Evaluation of oral corticosteroids and phosphodiesterase-4 inhibitor on the acute inflammation induced by inhaled lipopolysaccharide in human. Pulm Pharmacol Ther 2007; 20:676-83. [PMID: 17045826 DOI: 10.1016/j.pupt.2006.08.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Revised: 06/22/2006] [Accepted: 08/22/2006] [Indexed: 11/18/2022]
Abstract
BACKGROUND Endotoxins are pro-inflammatory substances present in the environment. In man, inhalation of its purified derivative lipopolysaccharide (LPS) induces inflammation related to macrophages and neutrophils. Corticosteroids and phosphodiesterase (PDE)-4 inhibitors have inhibiting effects on macrophages and neutrophils, respectively. This study investigated the effect of prednisolone and of the PDE-4 inhibitor cilomilast on the LPS-induced acute inflammation. METHODS The study was a placebo-controlled, double-blind crossover design. On three occasions, at 2 weeks interval, 16 healthy subjects inhaled 50 microg LPS after a 6-day treatment with cilomilast (15 mg bd), prednisolone (10 mg bd) or placebo. For the assessment of the inflammatory response, induced sputum was obtained before inclusion and 6h post-LPS while blood samples were collected before, 6 and 24 h post-LPS. RESULTS Inhaled LPS induced an increase in sputum neutrophils (p<0.0001), logMMP-9 (p<0.05), logMMP-9/TIMP-1 (p<0.01) and logTNF-alpha (p<0.02). At the blood level there were significant rise in neutrophilia (p<0.001), E-selectin (p<0.02), C-reactive protein (CRP) (p<0.001) and LPS-binding protein (p<0.001). There was both a slight, but not significant, increase in body temperature and decrease in forced expiratory volume in 1 s (FEV(1)). Neither prednisolone nor cilomilast had protective effect on the LPS-induced airways' inflammation. The LPS-induced CRP acute-phase protein of inflammation (0.58+/-0.13 and 3.52+/-0.41 mg/dL, before and after LPS, respectively) was significantly inhibited by a pre-treatment with prednisolone (1.39+/-0.32 mg/dL, p<0.01) and attenuated (2.65+/-0.30 mg/dL, p=0.09) with cilomilast. CONCLUSION In healthy subjects, while the LPS-induced airways' inflammation was not modified either by oral prednisolone or by PDE-4 inhibitor cilomilast (at actual dosage), the LPS-induced acute phase of blood inflammation was reduced by prednisolone.
Collapse
Affiliation(s)
- Olivier Michel
- Clinics of Allergology and Respiratory Diseases, CHU Saint-Pierre (ULB-CP404), Rue Haute 322, B-1000 Brussels, Belgium.
| | | | | | | | | | | | | |
Collapse
|
50
|
Mori H, Nose T, Ishitani K, Kasagi S, Souma S, Akiyoshi T, Kodama Y, Mori T, Kondo M, Sasaki S, Iwase A, Takahashi K, Fukuchi Y, Seyama K. Phosphodiesterase 4 inhibitor GPD-1116 markedly attenuates the development of cigarette smoke-induced emphysema in senescence-accelerated mice P1 strain. Am J Physiol Lung Cell Mol Physiol 2007; 294:L196-204. [PMID: 17993591 DOI: 10.1152/ajplung.00173.2007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Phosphodiesterase 4 (PDE4) is an intracellular enzyme specifically degrading cAMP, a second messenger exerting inhibitory effects on many inflammatory cells. To investigate whether GPD-1116 (a PDE4 inhibitor) prevents murine lungs from developing cigarette smoke-induced emphysema, the senescence-accelerated mouse (SAM) P1 strain was exposed to either fresh air or cigarette smoke for 8 wk with or without oral administration of GPD-1116. We confirmed the development of smoke-induced emphysema in SAMP1 [air vs. smoke (means +/- SE); the mean linear intercepts (MLI), 52.9 +/- 0.8 vs. 68.4 +/- 4.2 microm, P < 0.05, and destructive index (DI), 4.5% +/- 1.3% vs. 16.0% +/- 0.4%, P < 0.01]. Emphysema was markedly attenuated by GPD-1116 (MLI = 57.0 +/- 1.4 microm, P < 0.05; DI = 8.2% +/- 0.6%, P < 0.01) compared with smoke-exposed SAMP1 without GPD-1116. Smoke-induced apoptosis of lung cells were also reduced by administration of GPD-1116. Matrix metalloproteinase (MMP)-12 activity in bronchoalveolar lavage fluid (BALF) was increased by smoke exposure (air vs. smoke, 4.1 +/- 1.1 vs. 40.5 +/- 16.2 area/microg protein; P < 0.05), but GPD-1116 significantly decreased MMP-12 activity in smoke-exposed mice (5.3 +/- 2.1 area/microg protein). However, VEGF content in lung tissues and BALF decreased after smoke exposure, and the decrease was not markedly restored by oral administration of GPD-1116. Our study suggests that GPD-1116 attenuates smoke-induced emphysema by inhibiting the increase of smoke-induced MMP-12 activity and protecting lung cells from apoptosis, but is not likely to alleviate cigarette smoke-induced decrease of VEGF in SAMP1 lungs.
Collapse
Affiliation(s)
- Hiroaki Mori
- Department of Respiratory Medicine, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo 113-8421, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|