1
|
Tan D, Guo J, Chen X, Liu J, Yang S, Wang D, Li W. Comparative study of chitosan-based liquid dressing and recombinant human epidermal growth factor on acute limb skin wound healing: A randomized controlled trial. JPRAS Open 2025; 44:379-389. [PMID: 40290458 PMCID: PMC12033393 DOI: 10.1016/j.jpra.2025.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 03/16/2025] [Indexed: 04/30/2025] Open
Abstract
Background Several traditional dressings may have limitation in treating wounds. A novel chitosan-based dressing designed for improved hemostasis, moisture, and sealing shows promise in wound healing. However, its efficacy and safety are yet to be sufficiently verified in patients. Methods This randomized controlled trial enrolled 40 patients suffering from acute skin wounds in the limbs from 12/2022 to 12/2023. They were randomly divided into two groups (20 vs. 20) and received regular treatments in the Shenzhen Second People's Hospital. The experimental group was treated with chitosan-based liquid dressing, whereas the control group was treated with traditional dressing with recombinant human epidermal growth factor (rhEGF). The therapeutic effects (scar area and pigment deposition), adverse events, visual analogue scale (VAS), healing time, cost, and the patient and observer scar assessment scale (POSAS) were evaluated on days 0, 7, 14, and 28. Results No adverse events were observed throughout the trial. On day 28, effective rate between groups were not statistically significant between the groups (70% vs. 85%, p = 0.256). Other parameters that were not significant included VAS (5.10 ± 1.62 vs. 6.35 ± 2.39, p = 0.06), healing time (8.45 ± 4.26 vs. 8.60 ± 5.44 days, p = 0.923), and cost (49.00 ± 22.48 vs. 57.40 ± 27.59, p = 0.298). However, on day 28, the patient- and observer-reported SAS of the chitosan (CS) group was significantly lower than that of the rhEGF group (12.00 vs. 9.50, z = 2.477, p = 0.013; 18.50 vs. 12.50, z = 2.209, p = 0.026; respectively), and the total POSAS (30.50 vs. 22.00, z = 2.374, p = 0.017). Conclusion Compared to rhEGF, the CS-based liquid dressing showed reliable safety and equivalent performance in treating acute limb skin wounds, as revealed by improvements in healing time and rate, pain relief, and costs. Moreover, liquid dressing significantly reduced scar formation, indicating its potential in wound therapy.
Collapse
Affiliation(s)
- Dunyong Tan
- Department of Hand and Foot Surgery, Shenzhen Second People’ s Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong, 518028, China
| | - Jiawei Guo
- Department of Hand and Foot Surgery, Shenzhen Second People’ s Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong, 518028, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Xiaoqiang Chen
- Department of Hand and Foot Surgery, Shenzhen Second People’ s Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong, 518028, China
| | - Jianquan Liu
- Department of Hand and Foot Surgery, Shenzhen Second People’ s Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong, 518028, China
| | - Siyao Yang
- The Medical Record Department, Shenzhen Second People’ s Hospital, Shenzhen, Guangdong, 518028, China
| | - Daping Wang
- Department of Hand and Foot Surgery, Shenzhen Second People’ s Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong, 518028, China
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wencui Li
- Department of Hand and Foot Surgery, Shenzhen Second People’ s Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong, 518028, China
| |
Collapse
|
2
|
Wu D, Lin Y, Wu H, Cai J. Trauma-induced corneal epithelial defects may lead to persistent epithelial defects exacerbated by prolonged use of bandage lenses. Eur J Ophthalmol 2025:11206721251333590. [PMID: 40232255 DOI: 10.1177/11206721251333590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
ObjectiveTo investigate the causes of corneal epithelial defects (CEDs) due to mechanical trauma and analyze the risk factors for progression to persistent epithelial defects (PEDs).MethodA retrospective analyze 241 patients (241 eyes) with CEDs caused by mechanical ocular trauma. All patients received initial treatment as outpatients at our hospital. Data collected included patients' basic information, injury causes, use of adjunctive treatments, improvement in symptoms and adverse reactions before and after treatment. Logistic regression analysis was used to explore the relationship between the causes of injury, the use of adjunctive treatments, and the occurrence of persistent corneal epithelial defects.ResultsThe study involved 241 patients: 164 males (68.1%) and 77 females (31.9%), averaging 38.06 ± 17.88 years old. The most common age groups were 31-40 years (24.1%), 41-50 years (19.9%), and 51-60 years (18.2%). The top five causes of injury were finger pokes (20.4%), impacts from plastic objects (14.6%), branch strikes (13.3%), paper cuts (8.8%), and metal scratches (8.3%). 164 patients used recombinant human growth factor (rhEGF) eye drops with an average healing time of 3.2 ± 1.3 days, while 77 did not use these drops, averaging 7.4 ± 2.2 days. Continuous use of bandage lenses was a risk factor for persistent epithelial defects (P < 0.001).ConclusionTreatment of CEDs caused by mechanical trauma should focus on managing ocular surface inflammation. The use of rhEGF eye drops can be an effective supplement treatment for CEDs. However, caution is needed regarding the use of bandage lenses.
Collapse
Affiliation(s)
- Donghai Wu
- Xiamen Eye Center and Eye Institute of Xiamen University, School of Medicine, Xiamen, China
- Xiamen Clinical Research Center for Eye Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Ophthalmology, Xiamen, Fujian, China
- Fujian Key Laboratory of Corneal & Ocular Surface Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Corneal & Ocular Surface Diseases, Xiamen, Fujian, China
- Translational Medicine Institute of Xiamen Eye Center of Xiamen University, Xiamen, Fujian, China
| | - Yuan Lin
- Xiamen Eye Center and Eye Institute of Xiamen University, School of Medicine, Xiamen, China
- Xiamen Clinical Research Center for Eye Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Ophthalmology, Xiamen, Fujian, China
- Fujian Key Laboratory of Corneal & Ocular Surface Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Corneal & Ocular Surface Diseases, Xiamen, Fujian, China
- Translational Medicine Institute of Xiamen Eye Center of Xiamen University, Xiamen, Fujian, China
| | - Huping Wu
- Xiamen Eye Center and Eye Institute of Xiamen University, School of Medicine, Xiamen, China
- Xiamen Clinical Research Center for Eye Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Ophthalmology, Xiamen, Fujian, China
- Fujian Key Laboratory of Corneal & Ocular Surface Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Corneal & Ocular Surface Diseases, Xiamen, Fujian, China
- Translational Medicine Institute of Xiamen Eye Center of Xiamen University, Xiamen, Fujian, China
| | - Jinhong Cai
- Xiamen Eye Center and Eye Institute of Xiamen University, School of Medicine, Xiamen, China
- Xiamen Clinical Research Center for Eye Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Ophthalmology, Xiamen, Fujian, China
- Fujian Key Laboratory of Corneal & Ocular Surface Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Corneal & Ocular Surface Diseases, Xiamen, Fujian, China
- Translational Medicine Institute of Xiamen Eye Center of Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
3
|
Song ZM, Wang YD, Chai F, Zhang J, Lv S, Wang JX, Xi Y. Estrogen enhances the proliferation, migration, and invasion of papillary thyroid carcinoma via the ERα/KRT19 signaling axis. J Endocrinol Invest 2025; 48:653-670. [PMID: 39453570 PMCID: PMC11876195 DOI: 10.1007/s40618-024-02473-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 09/29/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Estrogen is thought to be the reason for the higher prevalence of papillary thyroid carcinoma (PTC) in fertile women; however, more study is required to completely comprehend how estrogen affects PTC development at the cellular level. Therefore, we combined Oxford Nanopore Technologies (ONT) sequencing to explore molecular markers of PTC and to investigate the molecular mechanisms by which estrogen promotes PTC development. METHODS The expression levels of ESR1 (ERα) and KRT19 in normal thyroid tissues and cancer tissues as well as in different cancer stages, races, genders, age groups, histological subtypes and nodular metastasis status of the TCGA database were analyzed online by Ualcan; the relationship between ESR1, KRT19 and the survival of THCA patients was analyzed. A PTC xenograft tumor model was established. An ERα specific inhibitor (MPP) was administered and an EDU cell proliferation assay was used to verify the effect of estrogen on PTC proliferation. KRT19 was knocked down in KTC-1 cells, and the proliferation, migration, and invasion abilities of PTC cells were determined using CCK-8, immunofluorescence labeling, Western blot for EMT-related proteins, scratch assay, and Transwell assay. The role of ERα in relation to KRT19 was investigated by Western blot and immunofluorescence. The effects of ERα/KRT19 signaling axis on the proliferation, migration and invasion ability of PTC cells were evaluated using EDU cell proliferation assay and Transwell. Using ONT sequencing, 15 pairs of PTC tissue and paracancer tissue samples were collected. A PPI network was constructed to validate the differential expression of KRT19 in combination with biosignature analysis, and the protein interaction between KRT19 and ESR1 was verified using STRING. RESULTS Ualcan showed that the expression of ESR1 and KRT19 was higher in THCA tissues than in normal thyroid tissues. E2 activation of ERα promoted the growth of PTC cells and tissues. si-KRT19 inhibited the proliferation, migration and invasion of PTC cells. KRT19 together with ERα formed the ERα/KRT19 signaling axis. E2 activation of the ERα/KRT19 signaling axis promoted the proliferation, migration, and invasion of PTC cells. ONT sequencing and STRING website verified that KRT19 is significantly differentially expressed in PTC and that ESR1 and KRT19 have protein interactions and are related to the estrogen signaling pathway. CONCLUSIONS Using public databases, RNA sequencing, and bioinformatics, we discovered that E2 stimulates the ERα/KRT19 signaling axis to stimulate PTC proliferation, migration, and invasion.
Collapse
Affiliation(s)
- Z M Song
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Heping Road, Linghe District, Jinzhou, Liaoning Province, 121002, China
| | - Y D Wang
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Heping Road, Linghe District, Jinzhou, Liaoning Province, 121002, China
| | - F Chai
- Thyroid Surgery Department, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - J Zhang
- Department of Hematology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - S Lv
- Changchun Infection Disease Hospital, Changchun, China
| | - J X Wang
- Shenbei New District Health and Wellness Supervision Center, Shenyang, China
| | - Y Xi
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Heping Road, Linghe District, Jinzhou, Liaoning Province, 121002, China.
- Thyroid Surgery Department, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China.
| |
Collapse
|
4
|
Peake M, Dunnill C, Ibraheem K, Smith A, Clarke DJ, Georgopoulos NT. A novel method for the establishment of autologous skin cell suspensions: characterisation of cellular sub-populations, epidermal stem cell content and wound response-enhancing biological properties. Front Bioeng Biotechnol 2024; 12:1386896. [PMID: 38646012 PMCID: PMC11026634 DOI: 10.3389/fbioe.2024.1386896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 03/25/2024] [Indexed: 04/23/2024] Open
Abstract
Introduction: Autologous cell suspension (ACS)-based therapy represents a highly promising approach for burns and chronic wounds. However, existing technologies have not achieved the desired clinical success due to several limitations. To overcome practical and cost-associated obstacles of existing ACS methods, we have established a novel methodology for rapid, enzymatic disaggregation of human skin cells and their isolation using a procedure that requires no specialist laboratory instrumentation and is performed at room temperature. Methods: Cells were isolated using enzymatic disaggregation of split-thickness human skin followed by several filtration steps for isolation of cell populations, and cell viability was determined. Individual population recovery was confirmed in appropriate culture medium types, and the presence of epidermal stem cells (EpSCs) within keratinocyte sub-populations was defined by flow cytometry via detection of CD49 and CD71. Positive mediators of wound healing secreted by ACS-derived cultures established on a collagen-based wound-bed mimic were detected by proteome arrays and quantified by ELISA, and the role of such mediators was determined by cell proliferation assays. The effect of ACS-derived conditioned-medium on myofibroblasts was investigated using an in-vitro model of myofibroblast differentiation via detection of α-SMA using immunoblotting and immunofluorescence microscopy. Results: Our methodology permitted efficient recovery of keratinocytes, fibroblasts and melanocytes, which remained viable upon long-term culture. ACS-derivatives comprised sub-populations with the CD49-high/CD71-low expression profile known to demarcate EpSCs. Via secretion of mitogenic factors and wound healing-enhancing mediators, the ACS secretome accelerated keratinocyte proliferation and markedly curtailed cytodifferentiation of myofibroblasts, the latter being key mediators of fibrosis and scarring. Discussion: The systematic characterisation of the cell types within our ACS isolates provided evidence for their superior cell viability and the presence of EpSCs that are critical drivers of wound healing. We defined the biological properties of ACS-derived keratinocytes, which include ability to secrete positive mediators of wound healing as well as suppression of myofibroblast cytodifferentiation. Thus, our study provides several lines of evidence that the established ACS isolates comprise highly-viable cell populations which can physically support wound healing and possess biological properties that have the potential to enhance not only the speed but also the quality of wound healing.
Collapse
Affiliation(s)
- Michael Peake
- School of Applied Sciences, University of Huddersfield, Huddersfield, United Kingdom
- Centre for Dermatology Research, Division of Musculoskeletal and Dermatological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, NIHR Manchester Biomedical Research Centre, Manchester, United Kingdom
| | - Chris Dunnill
- School of Applied Sciences, University of Huddersfield, Huddersfield, United Kingdom
| | - Khalidah Ibraheem
- School of Applied Sciences, University of Huddersfield, Huddersfield, United Kingdom
| | - Adrian Smith
- Department of General Surgery, Calderdale and Huddersfield NHS Foundation Trust, Huddersfield, United Kingdom
| | - Douglas J. Clarke
- School of Applied Sciences, University of Huddersfield, Huddersfield, United Kingdom
| | - Nikolaos T. Georgopoulos
- School of Applied Sciences, University of Huddersfield, Huddersfield, United Kingdom
- Biomolecular Sciences Research Centre, Industry and Innovation Research Institute, Sheffield Hallam University, Sheffield, United Kingdom
| |
Collapse
|
5
|
Sun Z, Zhou R, Dai J, Chen J, Liu Y, Wang M, Zhou R, Liu F, Zhang Q, Xu Y, Zhang T. KRT19 is a Promising Prognostic Biomarker and Associates with Immune Infiltrates in Serous Ovarian Cystadenocarcinoma. Int J Gen Med 2023; 16:4849-4862. [PMID: 37916194 PMCID: PMC10616674 DOI: 10.2147/ijgm.s419235] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/21/2023] [Indexed: 11/03/2023] Open
Abstract
Background Ovarian cancer (OV) is the highest prevalent gynecologic tumor with complicated pathogenesis; high-grade serous ovarian cystadenocarcinoma (HGSOC) is the most epidemiological and malignant subtype of OV. Keratin type I cytoskeleton 19 (KRT19) is an intermediate filament protein which plays essential roles in the maintenance of epithelial cells. However, its role in OV remains largely unknown. Methods Bioinformatic analysis with various databases was conducted in this study. In details, KRT19 expression was assessed using databases including The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), Gene Expression Omnibus (GEO) and Human Protein Atlas (HPA). GO-KEGG and GSEA analysis were performed by R packages. The biological function of KRT19 was analyzed based on the single-cell sequencing information from CancerSEA database. The association of KRT19 expression with immunomodulator and chemokine was predicted via the TISIDB database. Results The expression of KRT19 was significantly upregulated in ovarian samples compared with normal controls. KRT19 expression was negatively associated with prognosis in OV, and further analysis revealed that KRT19 had promising diagnostic significance in distinguishing OV cancer from normal samples. GO-KEGG and GSEA analysis indicated that KRT19 was associated with multiple biological functions and pathways including epidermis development, apical junction, inflammatory response, and epithelial mesenchymal transition. By using different GEO series, we found that KRT19 was differentially expressed in OV-associated tissues. Furthermore, the increased KRT19 expression was positively correlated with the immune infiltration levels of the most immune cells in OV. Conclusion This study demonstrated that KRT19 is a promising prognosis and diagnosis biomarker that determines cancer progression and is correlated with tumor immune cells infiltration in OV, suggesting being a molecular target for immunotherapies.
Collapse
Affiliation(s)
- Zhe Sun
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, People’s Republic of China
| | - Ruijie Zhou
- Institute of Biology and Medicine, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Jinjin Dai
- Institute of Biology and Medicine, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Jihua Chen
- Institute of Biology and Medicine, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Yu Liu
- Institute of Biology and Medicine, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Mengyi Wang
- Institute of Biology and Medicine, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Runlong Zhou
- Institute of Biology and Medicine, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Fengchen Liu
- Institute of Biology and Medicine, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Qinxing Zhang
- Wuhan Bio-Raid Biotechnology Co., Ltd, Wuhan, Hubei, People’s Republic of China
| | - Yao Xu
- Institute of Biology and Medicine, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Tongcun Zhang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, People’s Republic of China
- Institute of Biology and Medicine, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| |
Collapse
|
6
|
Ji S, Xiong M, Chen H, Liu Y, Zhou L, Hong Y, Wang M, Wang C, Fu X, Sun X. Cellular rejuvenation: molecular mechanisms and potential therapeutic interventions for diseases. Signal Transduct Target Ther 2023; 8:116. [PMID: 36918530 PMCID: PMC10015098 DOI: 10.1038/s41392-023-01343-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/16/2022] [Accepted: 01/19/2023] [Indexed: 03/16/2023] Open
Abstract
The ageing process is a systemic decline from cellular dysfunction to organ degeneration, with more predisposition to deteriorated disorders. Rejuvenation refers to giving aged cells or organisms more youthful characteristics through various techniques, such as cellular reprogramming and epigenetic regulation. The great leaps in cellular rejuvenation prove that ageing is not a one-way street, and many rejuvenative interventions have emerged to delay and even reverse the ageing process. Defining the mechanism by which roadblocks and signaling inputs influence complex ageing programs is essential for understanding and developing rejuvenative strategies. Here, we discuss the intrinsic and extrinsic factors that counteract cell rejuvenation, and the targeted cells and core mechanisms involved in this process. Then, we critically summarize the latest advances in state-of-art strategies of cellular rejuvenation. Various rejuvenation methods also provide insights for treating specific ageing-related diseases, including cellular reprogramming, the removal of senescence cells (SCs) and suppression of senescence-associated secretory phenotype (SASP), metabolic manipulation, stem cells-associated therapy, dietary restriction, immune rejuvenation and heterochronic transplantation, etc. The potential applications of rejuvenation therapy also extend to cancer treatment. Finally, we analyze in detail the therapeutic opportunities and challenges of rejuvenation technology. Deciphering rejuvenation interventions will provide further insights into anti-ageing and ageing-related disease treatment in clinical settings.
Collapse
Affiliation(s)
- Shuaifei Ji
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Mingchen Xiong
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Huating Chen
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Yiqiong Liu
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Laixian Zhou
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Yiyue Hong
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Mengyang Wang
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Chunming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, 999078, Macau SAR, China.
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China.
| | - Xiaoyan Sun
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China.
| |
Collapse
|
7
|
Pontiggia L, Ahuja AK, Yosef HK, Rütsche D, Reichmann E, Moehrlen U, Biedermann T. Human Basal and Suprabasal Keratinocytes Are Both Able to Generate and Maintain Dermo-Epidermal Skin Substitutes in Long-Term In Vivo Experiments. Cells 2022; 11:2156. [PMID: 35883599 PMCID: PMC9319791 DOI: 10.3390/cells11142156] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 11/16/2022] Open
Abstract
The basal layer of human interfollicular epidermis has been described to harbour both quiescent keratinocyte stem cells and a transit amplifying cell population that maintains the suprabasal epidermal layers. We performed immunofluorescence analyses and revealed that the main proliferative keratinocyte pool in vivo resides suprabasally. We isolated from the human epidermis two distinct cell populations, the basal and the suprabasal keratinocytes, according to the expression of integrin β4 (iβ4). We compared basal iβ4+ or suprabasal iβ4- keratinocytes with respect to their proliferation and colony-forming ability and their Raman spectral properties. In addition, we generated dermo-epidermal substitutes using freshly isolated and sorted basal iβ4+ or suprabasal iβ4- keratinocytes and transplanted them on immuno-compromised rats. We show that suprabasal iβ4- keratinocytes acquire a similar proliferative capacity as basal iβ4+ keratinocytes after two weeks of culture in vitro, with expression of high levels of iβ4 and downregulation of K10 expression. In addition, both basal iβ4+ and suprabasal iβ4- keratinocytes acquire authentic self-renewing properties during the in vitro 3D-culture phase and are able to generate and maintain a fully stratified epidermis for 16 weeks in vivo. Therefore, against the leading dogma, we propose that human suprabasal keratinocytes can retro-differentiate into true basal stem cells in a wound situation and/or when in contact with the basement membrane.
Collapse
Affiliation(s)
- Luca Pontiggia
- Tissue Biology Research Unit, Department of Pediatric Surgery, University Children’s Hospital Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland; (A.K.A.); (D.R.); (E.R.); (U.M.); (T.B.)
- Children’s Research Center, University Children’s Hospital Zurich, 8032 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, 8091 Zurich, Switzerland
| | - Akshay Kumar Ahuja
- Tissue Biology Research Unit, Department of Pediatric Surgery, University Children’s Hospital Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland; (A.K.A.); (D.R.); (E.R.); (U.M.); (T.B.)
- Children’s Research Center, University Children’s Hospital Zurich, 8032 Zurich, Switzerland
| | | | - Dominic Rütsche
- Tissue Biology Research Unit, Department of Pediatric Surgery, University Children’s Hospital Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland; (A.K.A.); (D.R.); (E.R.); (U.M.); (T.B.)
- Children’s Research Center, University Children’s Hospital Zurich, 8032 Zurich, Switzerland
| | - Ernst Reichmann
- Tissue Biology Research Unit, Department of Pediatric Surgery, University Children’s Hospital Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland; (A.K.A.); (D.R.); (E.R.); (U.M.); (T.B.)
- Children’s Research Center, University Children’s Hospital Zurich, 8032 Zurich, Switzerland
| | - Ueli Moehrlen
- Tissue Biology Research Unit, Department of Pediatric Surgery, University Children’s Hospital Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland; (A.K.A.); (D.R.); (E.R.); (U.M.); (T.B.)
- Children’s Research Center, University Children’s Hospital Zurich, 8032 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, 8091 Zurich, Switzerland
- Department of Pediatric Surgery, University Children’s Hospital Zurich, University of Zurich, 8032 Zurich, Switzerland
- Zurich Center for Fetal Diagnosis and Treatment, 8032 Zurich, Switzerland
| | - Thomas Biedermann
- Tissue Biology Research Unit, Department of Pediatric Surgery, University Children’s Hospital Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland; (A.K.A.); (D.R.); (E.R.); (U.M.); (T.B.)
- Children’s Research Center, University Children’s Hospital Zurich, 8032 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, 8091 Zurich, Switzerland
| |
Collapse
|
8
|
Wang J, He J, Zhu M, Han Y, Yang R, Liu H, Xu X, Chen X. Cellular Heterogeneity and Plasticity of Skin Epithelial Cells in Wound Healing and Tumorigenesis. Stem Cell Rev Rep 2022; 18:1912-1925. [PMID: 35143021 PMCID: PMC9391238 DOI: 10.1007/s12015-021-10295-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2021] [Indexed: 12/20/2022]
Abstract
Cellular differentiation, the fundamental hallmark of cells, plays a critical role in homeostasis. And stem cells not only regulate the process where embryonic stem cells develop into a complete organism, but also replace ageing or damaged cells by proliferation, differentiation and migration. In characterizing distinct subpopulations of skin epithelial cells, stem cells show large heterogeneity and plasticity for homeostasis, wound healing and tumorigenesis. Epithelial stem cells and committed progenitors replenish each other or by themselves owing to the remarkable plasticity and heterogeneity of epidermal cells under certain circumstance. The development of new assay methods, including single-cell RNA sequence, lineage tracing assay, intravital microscopy systems and photon-ablation assay, highlight the plasticity of epidermal stem cells in response to injure and tumorigenesis. However, the critical mechanisms and key factors that regulate cellular plasticity still need for further exploration. In this review, we discuss the recent insights about the heterogeneity and plasticity of epithelial stem cells in homeostasis, wound healing and skin tumorigenesis. Understanding how stem cells collaborate together to repair injury and initiate tumor will offer new solutions for relevant diseases. Schematic abstract of cellular heterogeneity and plasticity of skin epithelial cells in wound healing and tumorigenesis.
Collapse
Affiliation(s)
- Jingru Wang
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Department of Burn Surgery, First People's Hospital of Foshan, Foshan, China
| | - Jia He
- Department of Burn Surgery, First People's Hospital of Foshan, Foshan, China.,School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Meishu Zhu
- Department of Burn and Plastic Surgery, Second People's Hospital of Shenzhen, First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Yan Han
- The Yonghe Medical Group Limited Company, George Town, Cayman Islands
| | - Ronghua Yang
- Department of Burn Surgery, First People's Hospital of Foshan, Foshan, China
| | - Hongwei Liu
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| | - Xuejuan Xu
- Endocrinology Department, First People's Hospital of Foshan, Foshan, China.
| | - Xiaodong Chen
- Department of Burn Surgery, First People's Hospital of Foshan, Foshan, China.
| |
Collapse
|
9
|
Li B, Tang H, Bian X, Ma K, Chang J, Fu X, Zhang C. Calcium silicate accelerates cutaneous wound healing with enhanced re-epithelialization through EGF/EGFR/ERK-mediated promotion of epidermal stem cell functions. BURNS & TRAUMA 2021; 9:tkab029. [PMID: 34604395 PMCID: PMC8484206 DOI: 10.1093/burnst/tkab029] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/23/2020] [Accepted: 06/16/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND Human epidermal stem cells (hESCs) play an important role in re-epithelialization and thereby in facilitating wound healing, while an effective way to activate hESCs remains to be explored. Calcium silicate (CS) is a form of bioceramic that can alter cell behavior and promote tissue regeneration. Here, we have observed the effect of CS on hESCs and investigated its possible mechanism. METHODS Using a mouse full-thickness skin excision model, we explored the therapeutic effect of CS on wound healing and re-epithelialization. In vitro, hESCs were cultured with diluted CS ion extracts (CSIEs), and the proliferation, migration ability and stemness of hESCs were evaluated. The effects of CS on the epidermal growth factor (EGF), epidermal growth factor receptor (EGFR) and extracellular signal-related kinase (ERK) signaling pathway were also explored. RESULTS In vivo, CS accelerated wound healing and re-epithelialization. Immunohistochemistry demonstrated that CS upregulated cytokeratin 19 and integrin β1 expression, indicating that CS improved hESCs stemness. In vitro studies confirmed that CS improved the biological function of hESCs. And the possible mechanism could be due to the activation of the EGF/EGFR/ERK signaling pathway. CONCLUSION CS can promote re-epithelialization and improve the biological functions of hESCs via activating the EGF/EGFR/ERK signaling pathway.
Collapse
Affiliation(s)
- Bingmin Li
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Division and Fourth Medical Center of Chinese PLA General Hospital, 100048, Beijing, China
- Department of Dermatology, Fourth Medical Center of Chinese PLA General Hospital, 100048, Beijing, China
| | - Haowen Tang
- Faculty of Hepato-Biliary-Pancreatic Surgery, Chinese PLA General Hospital, 100853, Beijing, China
| | - Xiaowei Bian
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Division and Fourth Medical Center of Chinese PLA General Hospital, 100048, Beijing, China
| | - Kui Ma
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Division and Fourth Medical Center of Chinese PLA General Hospital, 100048, Beijing, China
| | - Jiang Chang
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, 200050, Shanghai, China
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Division and Fourth Medical Center of Chinese PLA General Hospital, 100048, Beijing, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 100048, Beijing, China
| | - Cuiping Zhang
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Division and Fourth Medical Center of Chinese PLA General Hospital, 100048, Beijing, China
| |
Collapse
|
10
|
Storer MA, Miller FD. A finger on the pulse of regeneration: insights into the cellular mechanisms of adult digit tip regeneration. Curr Opin Genet Dev 2021; 70:1-6. [PMID: 34044269 DOI: 10.1016/j.gde.2021.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/11/2021] [Accepted: 04/15/2021] [Indexed: 11/16/2022]
Abstract
In mammals, multi-tissue regeneration is largely restricted to the distal portion of the digit tip and involves the formation of a blastema, a transient, proliferating cell mass that reforms the diverse tissues of the digit. Historically little was known about the mammalian blastema but with recent advances in single cell transcriptomic approaches and genetic lineage tracing, a more precise understanding of this critical structure has begun to emerge. In this review we summarise the cellular mechanisms underlying adult mammalian digit tip regeneration. We posit that understanding how some mammals naturally regenerate complex tissues will lead to strategies for enhancing regenerative abilities in humans.
Collapse
Affiliation(s)
- Mekayla A Storer
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Freda D Miller
- Michael Smith Laboratories, University of British Columbia, Vancouver, V6T 1Z4 Canada; Department of Medical Genetics, University of British Columbia, Vancouver, V6T 1Z4 Canada; School of Biomedical Engineering, University of British Columbia, Vancouver, V6T 1Z4 Canada.
| |
Collapse
|
11
|
Haensel D, Jin S, Sun P, Cinco R, Dragan M, Nguyen Q, Cang Z, Gong Y, Vu R, MacLean AL, Kessenbrock K, Gratton E, Nie Q, Dai X. Defining Epidermal Basal Cell States during Skin Homeostasis and Wound Healing Using Single-Cell Transcriptomics. Cell Rep 2021; 30:3932-3947.e6. [PMID: 32187560 PMCID: PMC7218802 DOI: 10.1016/j.celrep.2020.02.091] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 01/07/2020] [Accepted: 02/25/2020] [Indexed: 01/17/2023] Open
Abstract
Our knowledge of transcriptional heterogeneities in epithelial stem and progenitor cell compartments is limited. Epidermal basal cells sustain cutaneous tissue maintenance and drive wound healing. Previous studies have probed basal cell heterogeneity in stem and progenitor potential, but a comprehensive dissection of basal cell dynamics during differentiation is lacking. Using single-cell RNA sequencing coupled with RNAScope and fluorescence lifetime imaging, we identify three non-proliferative and one proliferative basal cell state in homeostatic skin that differ in metabolic preference and become spatially partitioned during wound re-epithelialization. Pseudotemporal trajectory and RNA velocity analyses predict a quasi-linear differentiation hierarchy where basal cells progress from Col17a1Hi/Trp63Hi state to early-response state, proliferate at the juncture of these two states, or become growth arrested before differentiating into spinous cells. Wound healing induces plasticity manifested by dynamic basal-spinous interconversions at multiple basal transcriptional states. Our study provides a systematic view of epidermal cellular dynamics, supporting a revised “hierarchical-lineage” model of homeostasis. Haensel et al. performed a comprehensive dissection of the cellular makeup of skin during homeostasis and wound healing and the molecular heterogeneity and cellular dynamics within its stem-cell-containing epidermal basal layer. Their work provides insights and stimulates further investigation into the mechanism of skin maintenance and repair.
Collapse
Affiliation(s)
- Daniel Haensel
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697, USA
- The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA 92627, USA
- These authors contributed equally
| | - Suoqin Jin
- Department of Mathematics, University of California, Irvine, CA 92697, USA
- These authors contributed equally
| | - Peng Sun
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697, USA
| | - Rachel Cinco
- Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA
| | - Morgan Dragan
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697, USA
- The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA 92627, USA
| | - Quy Nguyen
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697, USA
| | - Zixuan Cang
- The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA 92627, USA
- Department of Mathematics, University of California, Irvine, CA 92697, USA
| | - Yanwen Gong
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697, USA
- Center for Complex Biological Systems, University of California, Irvine, CA 92697, USA
| | - Remy Vu
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697, USA
- The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA 92627, USA
| | - Adam L. MacLean
- Department of Mathematics, University of California, Irvine, CA 92697, USA
| | - Kai Kessenbrock
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697, USA
| | - Enrico Gratton
- Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA
| | - Qing Nie
- The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA 92627, USA
- Department of Mathematics, University of California, Irvine, CA 92697, USA
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
- Correspondence: (Q.N.), (X.D.)
| | - Xing Dai
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697, USA
- The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA 92627, USA
- Lead Contact
- Correspondence: (Q.N.), (X.D.)
| |
Collapse
|
12
|
Zhang Y, Hu W, Ma K, Zhang C, Fu X. Reprogramming of Keratinocytes as Donor or Target Cells Holds Great Promise for Cell Therapy and Regenerative Medicine. Stem Cell Rev Rep 2020; 15:680-689. [PMID: 31197578 DOI: 10.1007/s12015-019-09900-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
One of the most crucial branches of regenerative medicine is cell therapy, in which cellular material is injected into the patient to initiate the regenerative process. Cells obtained by reprogramming of the patient's own cells offer ethical and clinical advantages could provide a new source of material for therapeutic applications. Studies to date have shown that only a subset of differentiated cell types can be reprogrammed. Among these, keratinocytes, which are the most abundant proliferating cell type in the epidermis, have gained increasing attention as both donor and target cells for reprogramming and have become a new focus of regenerative medicine. As target cells for the treatment of skin defects, keratinocytes can be differentiated or reprogrammed from embryonic stem cells, induced pluripotent stem cells, fibroblasts, adipose tissue stem cells, and mesenchymal cells. As donor cells, keratinocytes can be reprogrammed or direct reprogrammed into a number of cell types, including induced pluripotent stem cells, neural cells, and Schwann cells. In this review, we discuss recent advances in keratinocyte reprogramming, focusing on the induction methods, potential molecular mechanisms, conversion efficiency, and safety for clinical applications. Graphical Abstract KCs as target cells can be reprogrammed or differentiated from fibroblasts, iPSCs, ATSCs, and mesenchymal cells. And as donor cells, KCs can be reprogrammed or directly reprogrammded into iPSCs, neural cells, Schwann cells, and epidermal stem cells.
Collapse
Affiliation(s)
- Yuehou Zhang
- School of Medicine, NanKai University, 94 Wei Jin Road, NanKai District, Tianjin, 300071, People's Republic of China.,Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center of General Hospital of PLA, 51 Fu Cheng Road, HaiDian District, Beijing, 100048, People's Republic of China
| | - Wenzhi Hu
- Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center of General Hospital of PLA, 51 Fu Cheng Road, HaiDian District, Beijing, 100048, People's Republic of China
| | - Kui Ma
- Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center of General Hospital of PLA, 51 Fu Cheng Road, HaiDian District, Beijing, 100048, People's Republic of China
| | - Cuiping Zhang
- Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center of General Hospital of PLA, 51 Fu Cheng Road, HaiDian District, Beijing, 100048, People's Republic of China.
| | - Xiaobing Fu
- Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center of General Hospital of PLA, 51 Fu Cheng Road, HaiDian District, Beijing, 100048, People's Republic of China.
| |
Collapse
|
13
|
Weng T, Wu P, Zhang W, Zheng Y, Li Q, Jin R, Chen H, You C, Guo S, Han C, Wang X. Regeneration of skin appendages and nerves: current status and further challenges. J Transl Med 2020; 18:53. [PMID: 32014004 PMCID: PMC6996190 DOI: 10.1186/s12967-020-02248-5] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/28/2020] [Indexed: 12/14/2022] Open
Abstract
Tissue-engineered skin (TES), as an analogue of native skin, is promising for wound repair and regeneration. However, a major drawback of TES products is a lack of skin appendages and nerves to enhance skin healing, structural integrity and skin vitality. Skin appendages and nerves are important constituents for fully functional skin. To date, many studies have yielded remarkable results in the field of skin appendages reconstruction and nerve regeneration. However, patients often complain about a loss of skin sensation and even cutaneous chronic pain. Restoration of pain, temperature, and touch perceptions should now be a major challenge to solve in order to improve patients’ quality of life. Current strategies to create skin appendages and sensory nerve regeneration are mainly based on different types of seeding cells, scaffold materials, bioactive factors and involved signaling pathways. This article provides a comprehensive overview of different strategies for, and advances in, skin appendages and sensory nerve regeneration, which is an important issue in the field of tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Tingting Weng
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou, 310009, China
| | - Pan Wu
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou, 310009, China
| | - Wei Zhang
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou, 310009, China
| | - Yurong Zheng
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - Qiong Li
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou, 310009, China
| | - Ronghua Jin
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou, 310009, China
| | - Haojiao Chen
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou, 310009, China
| | - Chuangang You
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou, 310009, China
| | - Songxue Guo
- Department of Plastic Surgery, Second Affiliated Hospital of Zhejiang University, Hangzhou, 310009, China
| | - Chunmao Han
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou, 310009, China
| | - Xingang Wang
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou, 310009, China.
| |
Collapse
|
14
|
Growth factor regulatory system: a new system for not truly recognized organisms. SCIENCE CHINA-LIFE SCIENCES 2020; 63:443-446. [PMID: 31942686 DOI: 10.1007/s11427-019-1590-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 11/26/2019] [Indexed: 12/23/2022]
|
15
|
Yang R, Liu F, Wang J, Chen X, Xie J, Xiong K. Epidermal stem cells in wound healing and their clinical applications. Stem Cell Res Ther 2019; 10:229. [PMID: 31358069 PMCID: PMC6664527 DOI: 10.1186/s13287-019-1312-z] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The skin has important barrier, sensory, and immune functions, contributing to the health and integrity of the organism. Extensive skin injuries that threaten the entire organism require immediate and effective treatment. Wound healing is a natural response, but in severe conditions, such as burns and diabetes, this process is insufficient to achieve effective treatment. Epidermal stem cells (EPSCs) are a multipotent cell type and are committed to the formation and differentiation of the functional epidermis. As the contributions of EPSCs in wound healing and tissue regeneration have been increasingly attracting the attention of researchers, a rising number of therapies based on EPSCs are currently under development. In this paper, we review the characteristics of EPSCs and the mechanisms underlying their functions during wound healing. Applications of EPSCs are also discussed to determine the potential and feasibility of using EPSCs clinically in wound healing.
Collapse
Affiliation(s)
- Ronghua Yang
- Department of Burn Surgery, The First People’s Hospital of Foshan, Foshan, 528000 China
| | - Fengxia Liu
- Department of Human Anatomy, School of Basic Medical Science, Xinjiang Medical University, Urumqi, 830001 China
| | - Jingru Wang
- Department of Burn Surgery, The First People’s Hospital of Foshan, Foshan, 528000 China
| | - Xiaodong Chen
- Department of Burn Surgery, The First People’s Hospital of Foshan, Foshan, 528000 China
| | - Julin Xie
- Department of Burn Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 512100 China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Morphological Sciences Building, Central South University, 172 Tongzi Po Road, Changsha, 410013 Hunan China
| |
Collapse
|
16
|
Zhang Y, Liu Y, Cai B, Luo C, Li D, Wang S, Sun Z, Luo S. Improvement of Surgical Scars by Early Intervention With Carbon Dioxide Fractional Laser. Lasers Surg Med 2019; 52:137-148. [DOI: 10.1002/lsm.23129] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2019] [Indexed: 01/02/2023]
Affiliation(s)
- Yunsong Zhang
- Department of Plastic and Reconstructive SurgeryGuangdong Second Provincial General Hospital466 Middle Xin Gang Road Guangzhou City Guangdong Province 510317 China
| | - Yanhua Liu
- Department of Plastic and Reconstructive SurgeryGuangdong Second Provincial General Hospital466 Middle Xin Gang Road Guangzhou City Guangdong Province 510317 China
| | - Bing Cai
- Department of Plastic and Reconstructive SurgeryGuangdong Second Provincial General Hospital466 Middle Xin Gang Road Guangzhou City Guangdong Province 510317 China
| | - Chengen Luo
- Department of Plastic and Reconstructive SurgeryGuangdong Second Provincial General Hospital466 Middle Xin Gang Road Guangzhou City Guangdong Province 510317 China
| | - Dongni Li
- Department of Plastic and Reconstructive SurgeryGuangdong Second Provincial General Hospital466 Middle Xin Gang Road Guangzhou City Guangdong Province 510317 China
| | - Suijiang Wang
- Department of Plastic and Reconstructive SurgeryGuangdong Second Provincial General Hospital466 Middle Xin Gang Road Guangzhou City Guangdong Province 510317 China
| | - Zhongsheng Sun
- Department of Plastic and Reconstructive SurgeryGuangdong Second Provincial General Hospital466 Middle Xin Gang Road Guangzhou City Guangdong Province 510317 China
| | - Sheng‐Kang Luo
- Department of Plastic and Reconstructive SurgeryGuangdong Second Provincial General Hospital466 Middle Xin Gang Road Guangzhou City Guangdong Province 510317 China
| |
Collapse
|
17
|
MicroRNA-mediated regulation of BM-MSCs differentiation into sweat gland-like cells: targeting NF-κB. J Mol Histol 2019; 50:155-166. [PMID: 30783857 DOI: 10.1007/s10735-019-09814-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 01/14/2019] [Indexed: 12/27/2022]
Abstract
Sweat gland regeneration is important for patients with an extensive deep burn injury. In previous study, we reported that bone marrow-mesenchymal stem cells (BM-MSCs) could differentiate into sweat gland-like cells (SGLCs), but the underlying molecular mechanism remains unclear. Recently, microRNAs (miRNAs or miRs) are reported to manipulate many biological processes. However, whether the process of MSCs differentiation into sweat gland cells (SGCs) is regulated by miRNAs has not been reported. In this study, BM-MSCs were induced into SGLCs by co-culturing with SGCs. Differential expressions of miRNAs between BM-MSC and SGLCs were determined through miRNAs microarray and 68 miRNAs were found significantly changed in miRNA profile including hsa-miR-138-5p. Bioinformatics analysis showed that hsa-miR-138-5p targeted a group of nuclear factor-κB (NF-κB) related genes which play an important role in skin appendage development. As expected, hsa-miR-138-5p inhibitor transfected into BM-MSCs partly mimicked the effects of co-culture and increased the number of SGLCs by increasing the expression of NF-κB related genes. These results suggest that hsa-miR-138-5p and NF-κB are involved in the regulation of BM-MSCs differentiation into SGLCs. This study may also offer a new approach to yield SGCs for burn patients.
Collapse
|
18
|
Dekoninck S, Blanpain C. Stem cell dynamics, migration and plasticity during wound healing. Nat Cell Biol 2019; 21:18-24. [PMID: 30602767 PMCID: PMC7615151 DOI: 10.1038/s41556-018-0237-6] [Citation(s) in RCA: 248] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/24/2018] [Indexed: 12/11/2022]
Abstract
Tissue repair is critical for animal survival. The skin epidermis is particularly exposed to injuries, which necessitates rapid repair. The coordinated action of distinct epidermal stem cells recruited from various skin regions together with other cell types, including fibroblasts and immune cells, is required to ensure efficient and harmonious wound healing. A complex crosstalk ensures the activation, migration and plasticity of these cells during tissue repair.
Collapse
Affiliation(s)
- Sophie Dekoninck
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles, Brussels, Belgium
| | - Cédric Blanpain
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles, Brussels, Belgium.
- WELBIO, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
19
|
Chen XD, Ruan SB, Lin ZP, Zhou Z, Zhang FG, Yang RH, Xie JL. Effects of porcine acellular dermal matrix treatment on wound healing and scar formation: Role of Jag1 expression in epidermal stem cells. Organogenesis 2018; 14:25-35. [PMID: 29420128 DOI: 10.1080/15476278.2018.1436023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Skin wound healing involves Notch/Jagged1 signaling. However, little is known how Jag1 expression level in epidermal stem cells (ESCs) contributes to wound healing and scar formation. We applied multiple cellular and molecular techniques to examine how Jag1 expression in ESCs modulates ESCs differentiation to myofibroblasts (MFB) in vitro, interpret how Jag1 expression in ESCs is involved in wound healing and scar formation in mice, and evaluate the effects of porcine acellular dermal matrix (ADM) treatment on wound healing and scar formation. We found that Jag1, Notch1 and Hes1 expression was up-regulated in the wound tissue during the period of wound healing. Furthermore, Jag1 expression level in the ESCs was positively associated with the level of differentiation to MFB. ESC-specific knockout of Jag1 delayed wound healing and promoted scar formation in vivo. In addition, we reported that porcine ADM treatment after skin incision could accelerate wound closure and reduce scar formation in vivo. This effect was associated with decreased expression of MFB markers, including α-SMA Col-1 and Col-III in wound tissues. Finally, we confirmed that porcine ADM treatment could increase Jag1, Notch1 and Hesl expression in wound tissues. Taken together, our results suggested that ESC-specific Jag1 expression levels are critical for wound healing and scar formation, and porcine ADM treatment would be beneficial in promoting wound healing and preventing scar formation by enhancing Notch/Jagged1 signaling pathway in ESCs.
Collapse
Affiliation(s)
- Xiao-Dong Chen
- a Department of Burn Surgery , The First People's Hospital of Foshan , Foshan , Guangdong , China
| | - Shu-Bin Ruan
- a Department of Burn Surgery , The First People's Hospital of Foshan , Foshan , Guangdong , China
| | - Ze-Peng Lin
- a Department of Burn Surgery , The First People's Hospital of Foshan , Foshan , Guangdong , China
| | - Ziheng Zhou
- b Department of Burn Surgery , First Affiliated Hospital of Sun Yat-Sen University , Guangzhou , Guangdong , China
| | - Feng-Gang Zhang
- a Department of Burn Surgery , The First People's Hospital of Foshan , Foshan , Guangdong , China
| | - Rong-Hua Yang
- a Department of Burn Surgery , The First People's Hospital of Foshan , Foshan , Guangdong , China
| | - Ju-Lin Xie
- b Department of Burn Surgery , First Affiliated Hospital of Sun Yat-Sen University , Guangzhou , Guangdong , China
| |
Collapse
|
20
|
Tang X, Qin H, Gu X, Fu X. China’s landscape in regenerative medicine. Biomaterials 2017; 124:78-94. [DOI: 10.1016/j.biomaterials.2017.01.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 01/24/2017] [Accepted: 01/28/2017] [Indexed: 12/15/2022]
|
21
|
Aragona M, Dekoninck S, Rulands S, Lenglez S, Mascré G, Simons BD, Blanpain C. Defining stem cell dynamics and migration during wound healing in mouse skin epidermis. Nat Commun 2017; 8:14684. [PMID: 28248284 PMCID: PMC5339881 DOI: 10.1038/ncomms14684] [Citation(s) in RCA: 267] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 01/23/2017] [Indexed: 12/15/2022] Open
Abstract
Wound healing is essential to repair the skin after injury. In the epidermis, distinct stem cells (SCs) populations contribute to wound healing. However, how SCs balance proliferation, differentiation and migration to repair a wound remains poorly understood. Here, we show the cellular and molecular mechanisms that regulate wound healing in mouse tail epidermis. Using a combination of proliferation kinetics experiments and molecular profiling, we identify the gene signatures associated with proliferation, differentiation and migration in different regions surrounding the wound. Functional experiments show that SC proliferation, migration and differentiation can be uncoupled during wound healing. Lineage tracing and quantitative clonal analysis reveal that, following wounding, progenitors divide more rapidly, but conserve their homoeostatic mode of division, leading to their rapid depletion, whereas SCs become active, giving rise to new progenitors that expand and repair the wound. These results have important implications for tissue regeneration, acute and chronic wound disorders. Wound healing is essential to repair the skin after injury and distinct stem cells in the epidermis are known to contribute to the process. Here the authors perform molecular, functional and clonal analysis and reveal the individual contribution of stem cells coming from different epidermal compartments to the wound-healing process in mice.
Collapse
Affiliation(s)
| | | | - Steffen Rulands
- Cavendish Laboratory, Department of Physics, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, UK
| | | | - Guilhem Mascré
- Université Libre de Bruxelles, IRIBHM, Brussels B-1070, Belgium
| | - Benjamin D Simons
- Cavendish Laboratory, Department of Physics, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, UK.,The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK.,Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK
| | - Cédric Blanpain
- Université Libre de Bruxelles, IRIBHM, Brussels B-1070, Belgium.,WELBIO, Université Libre de Bruxelles, Brussels B-1070, Belgium
| |
Collapse
|
22
|
Ning X, Du Y, Ben Q, Huang L, He X, Gong Y, Gao J, Wu H, Man X, Jin J, Xu M, Li Z. Bulk pancreatic cancer cells can convert into cancer stem cells(CSCs) in vitro and 2 compounds can target these CSCs. Cell Cycle 2016; 15:403-12. [PMID: 26709750 DOI: 10.1080/15384101.2015.1127471] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Increasing evidence has confirmed the existence of cancer stem cells (CSCs) in both hematological malignancies and solid tumors. However, the origin of CSCs is still uncertain, and few agents have been capable of eliminating CSCs till now. The aim of this study was to investigate whether bulk pancreatic cancer cells could convert into CSCs under certain conditions and explore whether metformin and curcumin can kill pancreatic CSCs. Aspc1, Bxpc3 and Panc1 pancreatic cancer cells were cultured in stem cell culture medium (serum-free Dulbecco's modified Eagle medium/Nutrient Mixture F-12 containing basic fibroblast growth factor, epidermal growth factor, B27 and insulin) for 5 days and it was found that all the pancreatic cancer cells aggregated into spheres and expressed pancreatic cancer stem cell surface markers. Then characteristics of Panc1 sphere cells were analyzed and cytotoxicity assays were performed. The results show that Panc1 sphere cells exhibited CSC characteristics and were more resistant to conventional chemotherapy and more sensitive to metformin and curcumin than their parent cells. These findings suggested that bulk pancreatic cancer cells could acquire CSC characteristics under certain conditions, which may support the "yin-yang" model of CSCs (interconversion between bulk cancer cells and CSCs). These results also showed that metformin and curcumin could be candidate drugs for targeting pancreatic CSCs.
Collapse
Affiliation(s)
- Xiaoyan Ning
- a Department of Gastroenterology , Changhai Hospital, Second Military Medical University , Shanghai , China.,b Department of Gastroenterology , Guangdong No.2 Provincial People' s Hospital , Guangzhou, China
| | - Yiqi Du
- a Department of Gastroenterology , Changhai Hospital, Second Military Medical University , Shanghai , China
| | - Qiwen Ben
- a Department of Gastroenterology , Changhai Hospital, Second Military Medical University , Shanghai , China
| | - Ling Huang
- a Department of Gastroenterology , Changhai Hospital, Second Military Medical University , Shanghai , China
| | - Xiaoping He
- a Department of Gastroenterology , Changhai Hospital, Second Military Medical University , Shanghai , China
| | - Yanfang Gong
- a Department of Gastroenterology , Changhai Hospital, Second Military Medical University , Shanghai , China
| | - Jun Gao
- a Department of Gastroenterology , Changhai Hospital, Second Military Medical University , Shanghai , China
| | - Hongyu Wu
- a Department of Gastroenterology , Changhai Hospital, Second Military Medical University , Shanghai , China
| | - Xiaohua Man
- a Department of Gastroenterology , Changhai Hospital, Second Military Medical University , Shanghai , China
| | - Jing Jin
- a Department of Gastroenterology , Changhai Hospital, Second Military Medical University , Shanghai , China
| | - Ming Xu
- b Department of Gastroenterology , Guangdong No.2 Provincial People' s Hospital , Guangzhou, China
| | - Zhaoshen Li
- a Department of Gastroenterology , Changhai Hospital, Second Military Medical University , Shanghai , China
| |
Collapse
|
23
|
Huang C, Du Y, Nabzdyk CS, Ogawa R, Koyama T, Orgill DP, Fu X. Regeneration of hair and other skin appendages: A microenvironment-centric view. Wound Repair Regen 2016; 24:759-766. [PMID: 27256925 DOI: 10.1111/wrr.12451] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 04/20/2016] [Accepted: 05/28/2016] [Indexed: 12/19/2022]
Abstract
Advances in skin regeneration have resulted in techniques and products that have allowed regeneration of both the dermis and epidermis. Yet complete skin regeneration requires the adnexal skin structures. Thus it is crucial to understand the regenerative potential of hair follicles where genetic, nutritional, and hormonal influences have important effects and are critical for skin regeneration. The follicular stem cell niche serves as an anatomical compartment, a structural unit, a functional integrator, and a dynamic regulator necessary to sustain internal homeostasis and respond to outside stimuli. In particular, mechanics such as pressure, compression, friction, traction, stretch, shear, and mechanical wounding can influence hair loss or growth. Relevant niche signaling pathways such as Wnt, bone morphogenetic protein, fibroblast growth factor, Shh, and Notch may yield potential targets for therapeutic interventions.
Collapse
Affiliation(s)
- Chenyu Huang
- Department of Plastic, Reconstructive and Aesthetic Surgery, Beijing Tsinghua Changgung Hospital, Medical Center, Tsinghua University, Beijing, China
| | - Yanan Du
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Christoph S Nabzdyk
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Rei Ogawa
- Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School, Tokyo, Japan
| | | | - Dennis P Orgill
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Xiaobing Fu
- Institute of Basic Medical Science, The General Hospital of PLA, Beijing, China.
| |
Collapse
|
24
|
Yang C, Jiang J, Yang X, Wang H, Du J. Stem/progenitor cells in endogenous repairing responses: new toolbox for the treatment of acute lung injury. J Transl Med 2016; 14:47. [PMID: 26865361 PMCID: PMC4750219 DOI: 10.1186/s12967-016-0804-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 01/27/2016] [Indexed: 02/07/2023] Open
Abstract
The repair of organs and tissues has stepped into a prospective era of regenerative medicine. However, basic research and clinical practice in the lung regeneration remains crawling. Owing to the complicated three dimensional structures and above 40 types of pulmonary cells, the regeneration of lung tissues becomes a great challenge. Compelling evidence has showed that distinct populations of intrapulmonary and extrapulmonary stem/progenitor cells can regenerate epithelia as well as endothelia in various parts of the respiratory tract. Recently, the discovery of human lung stem cells and their relevant studies has opened the door of hope again, which might put us on the path to repair our injured body parts, lungs on demand. Herein, we emphasized the role of endogenous and exogenous stem/progenitor cells in lungs as well as artificial tissue repair for the injured lungs, which constitute a marvelous toolbox for the treatment of acute lung injury. Finally, we further discussed the potential problems in the pulmonary remodeling and regeneration.
Collapse
Affiliation(s)
- Ce Yang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Changjiang Zhilu, Daping, 400042, Chongqing, China.
| | - Jianxin Jiang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Changjiang Zhilu, Daping, 400042, Chongqing, China.
| | - Xuetao Yang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Changjiang Zhilu, Daping, 400042, Chongqing, China.
| | - Haiyan Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Changjiang Zhilu, Daping, 400042, Chongqing, China.
| | - Juan Du
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Changjiang Zhilu, Daping, 400042, Chongqing, China.
| |
Collapse
|
25
|
Guo R, Pan F, Tian Y, Li H, Li S, Cao C. Down-Regulation of ClC-3 Expression Reduces Epidermal Stem Cell Migration by Inhibiting Volume-Activated Chloride Currents. J Membr Biol 2016; 249:281-92. [DOI: 10.1007/s00232-015-9867-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 12/30/2015] [Indexed: 01/10/2023]
|
26
|
Cheng B, Lu SL, Fu XB. Regenerative medicine in China: main progress in different fields. Mil Med Res 2016; 3:24. [PMID: 27547444 PMCID: PMC4990848 DOI: 10.1186/s40779-016-0096-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 08/02/2016] [Indexed: 11/25/2022] Open
Abstract
Regenerative medicine (RM) is an emerging interdisciplinary field of research and China has developed the research quickly and impressed the world with numerous research findings in stem cells, tissue engineering, active molecules and gene therapy. Important directions are induced differentiation of induced pluripotent stem and embryo stem cells as well as somatic stem cell differentiation potential and their application in trauma, burns, diseases of aging and nerve regeneration. The products ActivSkin and bone repair scaffolds have been approved and are applied in the clinic, and similar products are being studied. About 10 engineered growth-factor drugs for repair and regeneration have been approved and are used in the clinic. Gene therapy, therapeutic cloning and xenotransplantation are some of the strategies being studied. However, China needs to develop standards, regulations and management practices suitable for the healthy development of RM. Aspects that should be strengthened include sound administrative systems, laws, and technical specifications and guidelines; conservation of stem cell resources; emphasis on training and retention of talented stem cell researchers; and reasonable allocation of resources, diversification of investment and breakthroughs in key areas. Finally, broad and deep international cooperation is necessary.
Collapse
Affiliation(s)
- Biao Cheng
- Medical College of PLA, General Hospital of PLA, College of Life Sciences, Beijing, 100853 China ; The Key Laboratory of Trauma Treatment & Tissue Repair of Tropical Area of PLA, Guangzhou, 510010 China
| | - Shu-Liang Lu
- Shanghai Burns Institute, Ruijing Hospital, Shanghai Jiaotong University, Shanghai, 200025 China
| | - Xiao-Bing Fu
- Medical College of PLA, General Hospital of PLA, College of Life Sciences, Beijing, 100853 China
| |
Collapse
|
27
|
Zhao A, Yang L, Ma K, Sun M, Li L, Huang J, Li Y, Zhang C, Li H, Fu X. Overexpression of cyclin D1 induces the reprogramming of differentiated epidermal cells into stem cell-like cells. Cell Cycle 2016; 15:644-53. [PMID: 26890246 PMCID: PMC4845944 DOI: 10.1080/15384101.2016.1146838] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 01/04/2016] [Accepted: 01/20/2016] [Indexed: 02/05/2023] Open
Abstract
It has been reported that Wnt/β-catenin is critical for dedifferentiation of differentiated epidermal cells. Cyclin D1 (CCND1) is a β-catenin target gene. In this study, we provide evidence that overexpression of CCND1 induces reprogramming of epidermal cells into stem cell-like cells. After introducing CCND1 gene into differentiated epidermal cells, we found that the large flat-shaped cells with a small nuclear-cytoplasmic ratio changed into small round-shaped cells with a large nuclear-cytoplasmic ratio. The expressions of CK10, β1-integrin, Oct4 and Nanog in CCND1 induced cells were remarkably higher than those in the control group (P < 0.01). In addition, the induced cells exhibited a high colony-forming ability and a long-term proliferative potential. When the induced cells were implanted into a wound of laboratory animal model, the wound healing was accelerated. These results suggested that overexpression of CCND1 induced the reprogramming of differentiated epidermal cells into stem cell-like cells. This study may also offer a new approach to yield epidermal stem cells for wound repair and regeneration.
Collapse
Affiliation(s)
- Along Zhao
- Key Research Laboratory of Tissue Repair and Regeneration of PLA, and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, First Hospital Affiliated to the Chinese PLA General Hospital, Beijing, P.R. China
- Tianjin Medical University, Tianjin, PR China
| | - Leilei Yang
- Institute of Radiation Medicine, Academy of Military Medical Sciences, Beijing, P.R. China
| | - Kui Ma
- Key Research Laboratory of Tissue Repair and Regeneration of PLA, and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, First Hospital Affiliated to the Chinese PLA General Hospital, Beijing, P.R. China
| | - Mengli Sun
- Key Research Laboratory of Tissue Repair and Regeneration of PLA, and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, First Hospital Affiliated to the Chinese PLA General Hospital, Beijing, P.R. China
| | - Lei Li
- Key Research Laboratory of Tissue Repair and Regeneration of PLA, and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, First Hospital Affiliated to the Chinese PLA General Hospital, Beijing, P.R. China
| | - Jin Huang
- Key Research Laboratory of Tissue Repair and Regeneration of PLA, and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, First Hospital Affiliated to the Chinese PLA General Hospital, Beijing, P.R. China
| | - Yang Li
- Institute of Radiation Medicine, Academy of Military Medical Sciences, Beijing, P.R. China
| | - Cuiping Zhang
- Key Research Laboratory of Tissue Repair and Regeneration of PLA, and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, First Hospital Affiliated to the Chinese PLA General Hospital, Beijing, P.R. China
- CONTACT Cuiping Zhang Research Laboratory of Tissue Repair and Regeneration, First Hospital Affiliated to the Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, P.R. China
| | - Haihong Li
- Burn and Plastic Surgery, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong Province, P.R. China
- Haihong Li Burn and Plastic Surgery, The Second Affiliated Hospital, Shantou University Medical College, North Dongxia Road, Shantou, Guangdong Province, P.R. China, 515041
| | - Xiaobing Fu
- Key Research Laboratory of Tissue Repair and Regeneration of PLA, and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, First Hospital Affiliated to the Chinese PLA General Hospital, Beijing, P.R. China
- Xiaobing Fu Research Laboratory of Tissue Repair and Regeneration, First Hospital Affiliated to the Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, P.R. China
| |
Collapse
|
28
|
Abd-Allah SH, El-Shal AS, Shalaby SM, Abd-Elbary E, Mazen NF, Abdel Kader RR. The role of placenta-derived mesenchymal stem cells in healing of induced full-thickness skin wound in a mouse model. IUBMB Life 2015; 67:701-9. [PMID: 26315141 DOI: 10.1002/iub.1427] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 08/05/2015] [Accepted: 08/14/2015] [Indexed: 12/24/2022]
Abstract
We examined the effect of placenta-derived MSCs (PDMSCs) injection intraregionally and intraperitoneally on healing of induced full thickness mice skin wounds; moreover, the mechanisms by which MSCs exert their effects were also studied. Sixty female mice were divided into three groups after induction of full thickness skin wound; untreated group, wounded mice were injected with MSCs derived from human placenta intraperitoneally or intraregionally. Skin biopsies were obtained 7 and 12 days after wound incision for histological examinations, detection of vascular endothelial growth factor (VEGF) by ELISA, and estimation of expression of mouse ICAM-1, Integrin β1, Integrin β3 genes and human albumin and GAPDH genes by reverse transcription polymerase chain reaction. Human placenta derived-MSCs treated groups showed accelerated wound healing than non-treated group. VEGF, Integrin β1, and Integrin β3 levels were significantly increased in the intraregionally and intraperitoneally treated mice as compared to non-treated group at day 7 after wound induction. ICAM-1 showed significant decrease in its expression in treated groups compared with non-treated group. Interestingly, the intraperitoneal MSCs injections showed better results than intraregional one. PDMSCs accelerate full thickness skin wound healing and the intraperitoneal MSCs injections are more effective than intraregional one. MSCs promote wound healing through release of proangiogenic factors as VEGF, increase healing promoting factors as integrin β1 and β3, and decrease proinflammatory cytokines as ICAM-1.
Collapse
Affiliation(s)
- Somia H Abd-Allah
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Amal S El-Shal
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Sally M Shalaby
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Eman Abd-Elbary
- Pathology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Nehad F Mazen
- Histology and Cell Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Rania R Abdel Kader
- Physiology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
29
|
Guo R, Chai L, Chen L, Chen W, Ge L, Li X, Li H, Li S, Cao C. Stromal cell-derived factor 1 (SDF-1) accelerated skin wound healing by promoting the migration and proliferation of epidermal stem cells. In Vitro Cell Dev Biol Anim 2015; 51:578-85. [PMID: 25636237 DOI: 10.1007/s11626-014-9862-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 12/18/2014] [Indexed: 12/15/2022]
Abstract
Epidermal stem cells could contribute to skin repair through the migration of cells from the neighboring uninjured epidermis, infundibulum, hair follicle, or sebaceous gland. However, little is known about the factors responsible for the complex biological processes in wound healing. Herein, we will show that the attracting chemokine, SDF-1/CXCR4, is a major regulator involved in the migration of epidermal stem cells during wound repair. We found that the SDF-1 levels were markedly increased at the wound margins following injury and CXCR4 expressed in epidermal stem cells and proliferating epithelial cells. Blocking the SDF-1/CXCR4 axis resulted in a significant reduction in epidermal stem cell migration toward SDF-1 in vitro and delayed wound healing in vivo, while an SDF-1 treatment enhanced epidermal stem cell migration and proliferation and accelerated wound healing. These results provide direct evidence that SDF-1 promotes epidermal stem cell migration, accelerates skin regeneration, and makes the development of new regenerative therapeutic strategies for wound healing possible.
Collapse
Affiliation(s)
- Rui Guo
- Department of Plastic and Reconstructive Surgery, Southwestern Hospital, Third Military Medical University, Chongqing, 400038, China
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Zhang C, Chen Y, Fu X. Sweat gland regeneration after burn injury: is stem cell therapy a new hope? Cytotherapy 2014; 17:526-35. [PMID: 25533933 DOI: 10.1016/j.jcyt.2014.10.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 10/06/2014] [Accepted: 10/21/2014] [Indexed: 11/25/2022]
Abstract
Stem cells are the seeds of tissue repair and regeneration and a promising source for novel therapies. The skin of patients with an extensive deep burn injury is repaired by a hypertrophic scar without regeneration of sweat glands and therefore loses the function of perspiration. Stem cell therapy provides the possibility of sweat gland regeneration. In particular, recent studies have reported the reprogramming of mesenchymal stromal cells into sweat gland-like (SGL) cells. We present an overview of recent researches into sweat gland regeneration with stem cells. Difficulties of sweat gland regeneration after deep burns have been elaborated. The advantage and disadvantage of several stem cell types in sweat gland regeneration have been discussed. Additionally, the possible mechanisms for reprogramming stem cells to SGL cells are summarized. A brief discussion on clinical application of stem cell-derived SGL cells is also presented. This review may possibly provide some implications for sweat gland regeneration.
Collapse
Affiliation(s)
- Cuiping Zhang
- Stem Cell and Tissue Regeneration Laboratory, The First Affiliated Hospital, General Hospital of PLA, Beijing, PR China.
| | - Yan Chen
- Department of Pharmacy, General Hospital of Beijing Military Region, Beijing, PR China
| | - Xiaobing Fu
- Stem Cell and Tissue Regeneration Laboratory, The First Affiliated Hospital, General Hospital of PLA, Beijing, PR China
| |
Collapse
|
31
|
Tsao CT, Leung M, Chang JYF, Zhang M. A simple material model to generate epidermal and dermal layers in vitro for skin regeneration. J Mater Chem B 2014; 2:5256-5264. [PMID: 25147728 PMCID: PMC4136534 DOI: 10.1039/c4tb00614c] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
There is an urgent need for a rationally-designed, cellularized skin graft capable of reproducing the micro-environmental cues necessary to promote skin healing and regeneration. To address this need, we developed a composite scaffold, namely, CA/C-PEG, composing of a porous chitosan-alginate (CA) structure impregnated with a thermally reversible chitosan-poly(ethylene glycol) (C-PEG) gel to incorporate skin cells as a bi-layered skin equivalent. Fibroblasts were encapsulated in C-PEG to simulate the dermal layer while the keratinocytes were seeded on the top of CA/C-PEG composite scaffold to mimic the epidermal layer. The CA scaffold provided mechanical support for the C-PEG gel and the C-PEG gel physically segregated the keratinocytes from fibroblasts in the construct. Three different tissue culture micro-environments were tested: CA scaffolds without C-PEG cultured in cell culture medium without air-liquid interface (-gel-interface), CA scaffolds impregnated with C-PEG and cultured in cell culture medium without air-liquid interface (-gel-interface), and CA scaffolds impregnated with C-PEG cultured in cell culture medium with air-liquid interface (-gel- interface). We found that the presence of C-PEG increased the cellular proliferation rates of both keratinocytes and fibroblasts, and the air-liquid interface induced keratinocyte maturation. This CA/C-PEG composite scaffold design is able to recapitulate micro-environments relevant to skin tissue engineering, and may be a useful tool for future skin tissue engineering applications.
Collapse
Affiliation(s)
- Ching-Ting Tsao
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Matthew Leung
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Julia Yu-Fong Chang
- Department of Oral & Maxillofacial Surgery, University of Washington, Seattle, WA 98195, USA
| | - Miqin Zhang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
32
|
Abstract
Trauma, tissue repair, and regeneration are frontier research areas in China and a team led by Professor Xiaobing Fu has become an important unit in this field in China. Over the past years, this team has played a key role in wound prevention, management, and some regulation making at the state level. The works on functions of growth factor and the action of these functions in regulating wound healing, stem cell biology, and its application for sweat gland regeneration, education, or training and prevention for chronic skin wounds are outstanding.
Collapse
Affiliation(s)
- Xiaobing Fu
- The First Affiliated Hospital, Chinese PLA General Hospital, Beijing, P. R. China
- The College of Life Sciences, Chinese PLA General Hospital, Beijing, P. R. China
| |
Collapse
|
33
|
Moore K, Ghatnekar G, Gourdie RG, Potts JD. Impact of the controlled release of a connexin 43 peptide on corneal wound closure in an STZ model of type I diabetes. PLoS One 2014; 9:e86570. [PMID: 24466155 PMCID: PMC3900565 DOI: 10.1371/journal.pone.0086570] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 12/12/2013] [Indexed: 12/20/2022] Open
Abstract
The alpha-carboxy terminus 1 (αCT1) peptide is a synthetically produced mimetic modified from the DDLEI C-terminus sequence of connexin 43 (Cx43). Previous research using various wound healing models have found promising therapeutic effects when applying the drug, resulting in increased wound healing rates and reduced scarring. Previous data suggested a rapid metabolism rate in vitro, creating an interest in long term release. Using a streptozotocin (STZ) type I diabetic rat model with a surgically induced corneal injury, we delivered αCT1 both directly, in a pluronic gel solution, and in a sustained system, using polymeric alginate-poly-l-ornithine (A-PLO) microcapsules (MC). Fluorescent staining of wound area over a 5 day period indicated a significant increase in wound closure rates for both αCT1 and αCT1 MC treated groups, withαCT1 MC groups showing the most rapid wound closure overall. Analysis of inflammatory reaction to the treatment groups indicated significantly lower levels of both Interferon Inducible T-Cell Alpha Chemoattractant (ITAC) and Tumor Necrosis Factor Alpha (TNFα) markers using confocal quantification and ELISA assays. Additional analysis examining genes selected from the EMT pathway using RT-PCR and Western blotting suggested αCT1 modification of Transforming Growth Factor Beta 2 (TGFβ2), Keratin 8 (Krt8), Estrogen Receptor 1 (Esr1), and Glucose Transporter 4 (Glut4) over a 14 day period. Combined, this data indicated a possible suppression of the inflammatory response by αCT1, leading to increased wound healing rates.
Collapse
Affiliation(s)
- Keith Moore
- University of South Carolina School of Medicine, Columbia, South Carolina, United States of America
- * E-mail:
| | - Gautam Ghatnekar
- FirstString Research Inc., Mount Pleasant, South Carolina, United States of America
- Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Robert G. Gourdie
- Virginia Polytechnic and State University Carilion, Roanoke, Virginia, United States of America
| | - Jay D. Potts
- University of South Carolina School of Medicine, Columbia, South Carolina, United States of America
| |
Collapse
|
34
|
Lin H, Yang Y, Wang Y, Wang L, Zhou X, Liu J, Peng D. Effect of mixed transplantation of autologous and allogeneic microskin grafts on wound healing in a rat model of acute skin defect. PLoS One 2014; 9:e85672. [PMID: 24465646 PMCID: PMC3897459 DOI: 10.1371/journal.pone.0085672] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 12/01/2013] [Indexed: 01/04/2023] Open
Abstract
The treatment of extensive thermal injuries with insufficient autologous skin remains a great challenge to burn surgeons. In this study, we investigated the influence of the ratio of autologous and allogeneic tissue in mixed microskin grafts on wound healing in order to develop an effective method for using limited donor skin to cover a large open wound. Four different mixtures were tested: autologous microskin at an area expansion ratio of 10∶1 with allogeneic microskin at an area expansion ratio of 10∶1 or 10∶3 and autologous microskin at an expansion ratio of 20∶1 with allogeneic microskin at an expansion ratio of 20∶3 or 20∶6. Wound healing, wound contraction, and integrin β1 expression were measured. Mixed microskin grafting facilitated wound healing substantially. The mixture of autologous microskin at an expansion ratio of 10∶1 with the same amount of allogeneic microskin achieved the most satisfactory wound healing among the 4 tested mixtures. Histological examination revealed the presence of obviously thickened epidermis and ectopic integrin β1 expression. Keratinocytes expressing integrin β1 were scattered in the suprabasal layer. Higher levels of integrin β1 expression were associated with faster wound healing, implying that ectopic expression of integrin β1 in keratinocytes may play a pivotal role in wound healing. In conclusion, this study proves that this new skin grafting technique may improve wound healing.
Collapse
Affiliation(s)
- Heng Lin
- Institute of Burn Research, Southwest Hospital, Third Military Medical University, Chongqing, China
- Tissue Engineering Research Unit, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, China
| | - Yanni Yang
- Institute of Burn Research, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yong Wang
- Institute of Burn Research, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Lihua Wang
- Institute of Burn Research, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xin Zhou
- Institute of Burn Research, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jing Liu
- Institute of Burn Research, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Daizhi Peng
- Institute of Burn Research, Southwest Hospital, Third Military Medical University, Chongqing, China
- Tissue Engineering Research Unit, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, China
- * E-mail:
| |
Collapse
|
35
|
Wang MX, Li YJ, Lai PY, Chan CK. Model on cell movement, growth, differentiation and de-differentiation: reaction-diffusion equation and wave propagation. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2013; 36:65. [PMID: 23807466 DOI: 10.1140/epje/i2013-13065-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 04/17/2013] [Accepted: 06/04/2013] [Indexed: 06/02/2023]
Abstract
We construct a model for cell proliferation with differentiation into different cell types, allowing backward de-differentiation and cell movement. With different cell types labeled by state variables, the model can be formulated in terms of the associated transition probabilities between various states. The cell population densities can be described by coupled reaction-diffusion partial differential equations, allowing steady wavefront propagation solutions. The wavefront profile is calculated analytically for the simple pure growth case (2-states), and analytic expressions for the steady wavefront propagating speeds and population growth rates are obtained for the simpler cases of 2-, 3- and 4-states systems. These analytic results are verified by direct numerical solutions of the reaction-diffusion PDEs. Furthermore, in the absence of de-differentiation, it is found that, as the mobility and/or self-proliferation rate of the down-lineage descendant cells become sufficiently large, the propagation dynamics can switch from a steady propagating wavefront to the interesting situation of propagation of a faster wavefront with a slower waveback. For the case of a non-vanishing de-differentiation probability, the cell growth rate and wavefront propagation speed are both enhanced, and the wavefront speeds can be obtained analytically and confirmed by numerical solution of the reaction-diffusion equations.
Collapse
Affiliation(s)
- Mao-Xiang Wang
- Department of Physics, Graduate Institute of Biophysics, and Center for Complex Systems, National Central University, Chungli, Taiwan, 320, ROC
| | | | | | | |
Collapse
|
36
|
Lu G, Huang S. Bioengineered skin substitutes: key elements and novel design for biomedical applications. Int Wound J 2012; 10:365-71. [PMID: 23095109 DOI: 10.1111/j.1742-481x.2012.01105.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Significant progress has been made in the development of in vitro-engineered skin substitutes that mimic human skin, either to be used for the replacement of lost skin or for the establishment of in vitro skin research models. However, at the present time, there are no models of bioengineered skin that completely replicate the nature of uninjured skin. Obviously, there is still much room for improvement of the components of bioengineered skin and their interplay. This review summarises the important new discoveries in key elements of engineering of tissue-engineered skin including cell sources, biomaterials and growth factors, etc. Furthermore, basic and clinical applications for engineered skin substitutes in cell therapy, tissue engineering, and biomedical research continue to drive design improvements premised on these structure and function-based engineering paradigms.
Collapse
Affiliation(s)
- Gang Lu
- Department of Burn and Plastic Surgery, General Hospital of Beijing PLA Military Region, Beijing, PR China
| | | |
Collapse
|
37
|
Nie J, Fu X, Han W. Microenvironment-dependent homeostasis and differentiation of epidermal basal undifferentiated keratinocytes and their clinical applications in skin repair. J Eur Acad Dermatol Venereol 2012; 27:531-5. [PMID: 23030703 DOI: 10.1111/j.1468-3083.2012.04704.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Skin homeostasis is maintained by controlling the balance between proliferation and differentiation of epidermal stem cells. The microenvironment, including extrinsic stresses, growth factors, soluble molecules, cell-ECM and cell-cell communications, plays an important role in cell fate determination in vivo and in vitro. In response to external signals, keratinocytes cooperate with other cell types to modulate and facilitate the wound microenvironment during wound healing; however, the aberrant signals or conjunctions in the environment will lead to pathologic abnormalities. In addition, despite some drawbacks, the epidermal stem-cellbased bioengineered skin substitutes have greatly improved the quality of cutaneous repair. Thus, exploring the characteristics and regulation mechanisms of microenvironment-dependent homeostasis and differentiation of epidermal basal undifferentiated keratinocytes is necessary to understand skin development and wound repair and to design novel therapeutic strategies for skin wound healing.
Collapse
Affiliation(s)
- J Nie
- Department of Molecular Biology, Institute of Basic Medical Science, PLA General Hospital, Beijing, China
| | | | | |
Collapse
|
38
|
Chang JY, Lai PY. Uncontrolled growth resulting from dedifferentiation in a skin cell proliferation model. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:041926. [PMID: 22680517 DOI: 10.1103/physreve.85.041926] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 03/20/2012] [Indexed: 06/01/2023]
Abstract
By introducing a small backward dedifferentiation probability of postmitotic cells to progenitor cells in a recently proposed skin cell proliferation model, the homeostasis of the system can be disrupted resulting in uncontrolled growth. It is found that when the dedifferentiation probability exceeds a small critical value, the stable fixed point of the system vanishes leading to unlimited cell growth resembling scenarios in carcinogenesis. Explicit expression for the critical dedifferentiation probability and phase diagram are calculated analytically and the associated nonlinear dynamics is analyzed. In the presence of stochastic fluctuations, our model predicts that the escape rate from homeostatic growth to uncontrolled growth is greatly enhanced by a small but finite dedifferentiation probability. These results are verified by numerical solutions of the dynamical system and chemical Langevin equations.
Collapse
Affiliation(s)
- J Y Chang
- Department of Physics, Graduate Institute of Biophysics and Center for Complex Systems, National Central University, Chungli, Taiwan 320, Republic of China
| | | |
Collapse
|
39
|
Zhang C, Chen P, Fei Y, Liu B, Ma K, Fu X, Zhao Z, Sun T, Sheng Z. Wnt/β-catenin signaling is critical for dedifferentiation of aged epidermal cells in vivo and in vitro. Aging Cell 2012; 11:14-23. [PMID: 21967252 DOI: 10.1111/j.1474-9726.2011.00753.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Aged epidermal cells have the capacity to dedifferentiate into stem cell-like cells. However, the signals that regulate the dedifferentiation of aged epidermal cells remain unclear. Here, we provide evidence that Wnt/β-catenin is critical for aged epidermal cell dedifferentiation in vivo and in vitro. Some aged epidermal cells in human ultrathin epidermal sheets lacking basal stem cells transplanted onto wounds dedifferentiated into stem cell-like cells that were positive for CK19 and β1 integrin but negative for CK10. In addition, Wnt/β-catenin pathway was activated during this process. There was increased expression of Wnt-1, Wnt-4, Wnt-7a, β-catenin, cyclin D1, and c-myc. Secreted frizzled-related protein 1, a Wnt/β-catenin pathway inhibitor, blocked dedifferentiation in vivo. Then, the activator, a highly specific glycogen synthase kinase (GSK)-3β inhibitor, of Wnt/β-catenin pathway was added to the culture medium of aged epidermal cells. Surprisingly, we found that the activator induced higher expression of CK19, β1 integrin, Oct4, and Nanog proteins. The induced aged epidermal cells exhibited high colony-forming efficiency, long-term proliferative potential and could regenerate a skin equivalent (as do epidermal stem cells). These results suggested that activation of Wnt/β-catenin pathway induced the dedifferentiation of aged epidermal cells, which suggest a new approach to generate epidermal stem cell-like cells.
Collapse
Affiliation(s)
- Cuiping Zhang
- Wound Healing and Cell Biology Laboratory, Burns Institute, The First Affiliated Hospital, General Hospital of PLA, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Zhao Z, Zhang C, Fu X, Yang R, Peng C, Gu T, Sui Z, Wang C, Liu C. Differentiated Epidermal Cells Regain the Ability to Regenerate a Skin Equivalent by Increasing the Level of �-Catenin in the Cells. Cells Tissues Organs 2012; 196:353-61. [DOI: 10.1159/000335474] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2011] [Indexed: 01/21/2023] Open
|
41
|
Sun X, Fu X, Han W, Zhao Y, Liu H, Sheng Z. Dedifferentiation of human terminally differentiating keratinocytes into their precursor cells induced by basic fibroblast growth factor. Biol Pharm Bull 2011; 34:1037-45. [PMID: 21720010 DOI: 10.1248/bpb.34.1037] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Reprogramming differentiated cells toward stem cells may have long-term applications in stem-cell research and regenerative medicine. Here we report on the dedifferentiation of human epidermal keratinocytes into their precursor cells in vitro with basic fibroblast growth factor (bFGF) but not external gene intervention. After incubation of human terminally differentiating keratinocytes, some of the surviving keratinocytes reverted from a differentiated to a dedifferentiated state, as evidenced by re-expression of biological markers of native keratinocyte stem cells (nKSCs), including β(1)-integrin, CK19 and CK14. Moreover, these dedifferentiation-derived KSCs (dKSCs) showed an ability for high colony formation correlated with cell cycle analysis showing a marked accumulation in S phases, acquired a similar regional distribution of both α(6)-integrin and CD71 expression at the ultrastructural level, and had a increased proliferative capacity by releasing telomerase from nucleolar sites to nucleoplasmic distribution. However, on comparing dKSCs with nKSCs, 2 points seem noteworthy: (1) the proportion of transit amplifying cells in dKSCs treated with bFGF is much higher than that in nKSCs and (2) regional differences exist in the subcellular localization of telomerase in nKSCs and dKSCs. Most nKSCs showed a prominent nucleolar concentration of human telomerase reverse transcriptase expression, whereas most dKSCs showed a more diffuse intranuclear distribution of telomerase or even signal depletion at nucleoli relative to the general nucleoplasm. These results indicate that bFGF could induce the terminally differentiating epidermal keratinocytes to convert into their precursor cells, which offers a new approach for generating residual healthy stem cells for wound repair and regeneration.
Collapse
Affiliation(s)
- Xiaoyan Sun
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Trauma Center of Postgraduate Medical School, Chinese PLA General Hospital, Beijing 100853, PR China
| | | | | | | | | | | |
Collapse
|
42
|
Rinkevich B. Cell cultures from marine invertebrates: new insights for capturing endless stemness. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2011; 13:345-354. [PMID: 21213116 DOI: 10.1007/s10126-010-9354-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2010] [Accepted: 12/13/2010] [Indexed: 05/28/2023]
Abstract
Despite several decades of extensive research efforts, there is yet no single permanent cell line available from marine invertebrates as these cells stop dividing in vitro within 24-72 h after their isolation, starting cellular quiescence. This ubiquitous quiescent state should be modified in a way that at least some of the quiescent cells will become pluripotent, so they will have the ability to divide and become immortal. Following the above need, this essay introduces the rationale that the discipline of marine invertebrates' cell culture should gain from applying of two research routes, relevant to mammalian systems but less explored in the marine arena. The first is the use of adult stem cells (ASC) from marine organisms. Many marine invertebrate taxa maintain large pools of ASC in adulthood. Ample evidence attests that these cells from sponges, cnidarians, flatworms, crustaceans, mollusks, echinoderms, and ascidians play important roles in maintenance, regeneration, and asexual cloning, actively proliferating in vivo, resembling the vertebrates' cancer stem cells features. The second route is to target resting somatic cell constituents, manipulating them in the same way as has recently been performed on mammalian induced pluripotent stem (iPS) cells. While "iPS cells" are the outcome of an experimental manipulation, ASC are natural and rather frequent in a number of marine invertebrates. Above two cell categories reveal that there are more than a few types of seeds (cells) waiting to be sowed in the right soil (in vitro environmental conditions) for acquiring stemness and immortality. This rationale carries the potential to revolutionize the discipline of marine invertebrate cell cultures. When cultured "correctly," ASC and "iPS cells" from marine invertebrates may stay in their primitive stage and proliferate without differentiating into cells lineages, harnessing the stem cell's inherent abilities of self-replication versus differentiated progenies, toward the development of immortal cell lines.
Collapse
Affiliation(s)
- Baruch Rinkevich
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Tel-Shikmona, P.O. Box 8030, Haifa, 31080, Israel.
| |
Collapse
|
43
|
Zhang C, Fu X, Chen P, Bao X, Li F, Sun X, Lei Y, Cai S, Sun T, Sheng Z. Dedifferentiation derived cells exhibit phenotypic and functional characteristics of epidermal stem cells. J Cell Mol Med 2010; 14:1135-45. [PMID: 19426155 PMCID: PMC3822750 DOI: 10.1111/j.1582-4934.2009.00765.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Differentiated epidermal cells can dedifferentiate into stem cells or stem cell-like cells in vivo. In this study, we report the isolation and characterization of dedifferentiation-derived cells. Epidermal sheets eliminated of basal stem cells were transplanted onto the skin wounds in 47 nude athymic (BALB/c-nu/nu) mice. After 5 days, cells negative for CK10 but positive for CK19 and β1-integrin emerged at the wound-neighbouring side of the epidermal sheets. Furthermore, the percentages of CK19 and β1-integrin+ cells detected by flow cytometric analysis were increased after grafting (P < 0.01) and CK10+ cells in grafted sheets decreased (P < 0.01). Then we isolated these cells on the basis of rapid adhesion to type IV collagen and found that there were 4.56% adhering cells (dedifferentiation-derived cells) in the grafting group within 10 min. The in vitro phenotypic assays showed that the expressions of CK19, β1-integrin, Oct4 and Nanog in dedifferentiation-derived cells were remarkably higher than those in the control group (differentiated epidermal cells) (P < 0.01). In addition, the results of the functional investigation of dedifferentiation-derived cells demonstrated: (1) the numbers of colonies consisting of 5–10 cells and greater than 10 cells were increased 5.9-fold and 6.7-fold, respectively, as compared with that in the control (P < 0.01); (2) more cells were in S phase and G2/M phase of the cell cycle (proliferation index values were 21.02% in control group, 45.08% in group of dedifferentiation); (3) the total days of culture (28 days versus 130 days), the passage number of cells (3 passages versus 20 passages) and assumptive total cell output (1 × 105 cells versus 1 × 1012 cells) were all significantly increased and (4) dedifferentiation-derived cells, as well as epidermal stem cells, were capable of regenerating a skin equivalent, but differentiated epidermal cells could not. These results suggested that the characteristics of dedifferentiation-derived cells cultured in vitro were similar to epidermal stem cells. This study may also offer a new approach to yield epidermal stem cells for wound repair and regeneration.
Collapse
Affiliation(s)
- Cuiping Zhang
- Wound Healing and Cell Biology Laboratory, Burns Institute, The First Affiliated Hospital, General Hospital of PLA, Trauma Center of Postgraduate Medical College, Beijing, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Sun X, Fu X, Han W, Zhao Y, Liu H. Can controlled cellular reprogramming be achieved using microRNAs? Ageing Res Rev 2010; 9:475-83. [PMID: 20601195 DOI: 10.1016/j.arr.2010.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 06/10/2010] [Accepted: 06/10/2010] [Indexed: 12/21/2022]
Abstract
Since a technique was reported for generating induced pluripotent stem cells (iPSCs), various groups worldwide have reprogrammed human and mouse somatic cells into iPSCs using a range of techniques and pluripotency genes. Progress in iPSC research has opened up a novel avenue in autologous regenerative medicine, whereby patient-specific pluripotent cells could potentially be derived from adult somatic cells. However, several limitations currently prohibit their use in clinical settings, including the viral DNA delivery system and the exogenous overexpression of pluripotency genes. New strategies are therefore needed to ensure the safe and efficient production of iPSCs, and to guide their differentiation into the desired lineages required to repair damaged tissue and treat disease. Here, we present an overview of recent research into cellular reprogramming. We focus on the feasibility of microRNA-based strategies for reprogramming somatic cells into pluripotent stem cells, thus obviating the need to introduce viruses or DNA into donor cells, and therefore ameliorating the risks associated with reprogramming techniques. In light of the critical roles of microRNAs in maintaining the pluripotent state and in regulating cell-lineage specification and epigenetic modifications of chromatin, we also discuss the potential role of microRNAs as candidates for controlled cellular reprogramming and induction of cell fate conversion beyond lineages without reversion to a pluripotent state. Further research into the microRNAs involved in iPSC reprogramming and their potential roles in controlled cellular reprogramming will add another dimension to our understanding of the molecular mechanisms involved in cellular reprogramming.
Collapse
Affiliation(s)
- Xiaoyan Sun
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Trauma Center of Postgraduate Medical School, Chinese PLA General Hospital, 28 Fu Xing Road, Beijing 100853, PR China
| | | | | | | | | |
Collapse
|
45
|
|
46
|
Sa C, Yu P, Xiaobing F, Yonghong L, Tongzhu S, Jun W, Zhiyong S. Dedifferentiation of Human Epidermal Keratinocytes Induced by UV In Vitro. ACTA ACUST UNITED AC 2009. [DOI: 10.1248/jhs.55.709] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Cai Sa
- Department of Histology and Embryology, Faculty of Medicine, Shen Zhen University
- Burns Institute, The First Affiliated Hospital, Chinese PLA General Hospital, Trauma Center of Postgraduate Medical College
| | - Pan Yu
- Department of Immunology and Microbiology, Guangzhou Medical College
| | - Fu Xiaobing
- Burns Institute, The First Affiliated Hospital, Chinese PLA General Hospital, Trauma Center of Postgraduate Medical College
| | - Lei Yonghong
- Burns Institute, The First Affiliated Hospital, Chinese PLA General Hospital, Trauma Center of Postgraduate Medical College
| | - Sun Tongzhu
- Burns Institute, The First Affiliated Hospital, Chinese PLA General Hospital, Trauma Center of Postgraduate Medical College
| | - Wang Jun
- Burns Institute, The First Affiliated Hospital, Chinese PLA General Hospital, Trauma Center of Postgraduate Medical College
| | - Sheng Zhiyong
- Burns Institute, The First Affiliated Hospital, Chinese PLA General Hospital, Trauma Center of Postgraduate Medical College
| |
Collapse
|
47
|
Abstract
Stem cells are defined by their capacity of self-renewal and multilineage differentiation, which make them uniquely situated to treat a broad spectrum of human diseases. Based on a series of remarkable studies in several fields of regenerative medicine, their application is not too far from the clinical practice. Full-thickness burns and severe traumas can injure skin and its appendages, which protect animals from water loss, temperature change, radiation, trauma and infection. In adults, the normal outcome of repair of massive full-thickness burns is fibrosis and scarring without any appendages, such as hair follicles, sweat and sebaceous glands. Perfect skin regeneration has been considered impossible due to the limited regenerative capacity of epidermal keratinocytes, which are generally thought to be the key source of the epidermis and skin appendages. Currently, researches on stem cells, such as epidermal stem cells, dermal stem cells, mesenchymal stem cells from bone marrow, and embryonic stem cells, bring promise to functional repair of skin after severe burn injury, namely, complete regeneration of skin and its appendages. In this study, we present an overview of the most recent advances in skin repair and regeneration by using stem cells.
Collapse
|
48
|
|
49
|
|
50
|
Fu X, Jiang D, Chen W, Sun Bs T, Sheng Z. Pseudoepitheliomatous hyperplasia formation after skin injury. Wound Repair Regen 2007; 15:39-46. [PMID: 17244318 DOI: 10.1111/j.1524-475x.2006.00183.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pseudoepitheliomatous hyperplasia (PEH) is characteristic of reactive epithelial downward proliferation into the dermis. To explore the mechanism of PEH formation, we investigated the cause, clinical characteristics, histopathologic change, and clinical treatment of PEH, the expression characteristics of stem cell factor (SCF), and its receptor c-Kit in PEH and normal skin of PEH edge (PEH-N). The clinical data of 11 patients with PEH were reviewed, and biopsy examination and bacterial cultures were performed. The histological features of PEH and expression levels of SCF, c-Kit were examined with the pathological method and immunohistochemical methods. The results showed that in each case, histological examination revealed epidermal hyperplasia with irregular cords of epithelial cells extending into the dermis. The bacteria could be cultured and isolated from all PEH biopsies. These bacteria were resistant to several antibiotics, except vancomycin. Radical excision and daily dressing with vancomycin could cure PEH. SCF protein was expressed at stronger levels in sweat gland epithelial cells and interstitial cells of the PEH group vs. the PEH-N group. c-Kit was more strongly expressed by interstitial cells in PEH than in PEH-N. It was concluded that the improper management of cutaneous wounds might cause PEH formation, which can be cured by surgical excision and administration of effective antibiotics. SCF and c-Kit might be involved in the epidermal hyperplasia observed in PEH.
Collapse
Affiliation(s)
- Xiaobing Fu
- Wound Healing and Cell Biology Laboratory, The First Affiliated Hospital (304th Hospital), Beijing, China.
| | | | | | | | | |
Collapse
|