1
|
Zhu B, Liang L, Hui L, Lu Y. Exploring the role of dermal sheath cells in wound healing and fibrosis. Wound Repair Regen 2024. [PMID: 39129718 DOI: 10.1111/wrr.13206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/13/2024]
Abstract
Wound healing is a complex, dynamic process involving the coordinated interaction of diverse cell types, growth factors, cytokines, and extracellular matrix components. Despite emerging evidence highlighting their importance, dermal sheath cells remain a largely overlooked aspect of wound healing research. This review explores the multifunctional roles of dermal sheath cells in various phases of wound healing, including modulating inflammation, aiding in proliferation, and contributing to extracellular matrix remodelling. Special attention is devoted to the paracrine effects of dermal sheath cells and their role in fibrosis, highlighting their potential in improving healing outcomes, especially in differentiating between hairy and non-hairy skin sites. By drawing connections between dermal sheath cells activity and wound healing outcomes, this work proposes new insights into the mechanisms of tissue regeneration and repair, marking a step forward in our understanding of wound healing processes.
Collapse
Affiliation(s)
- Bing Zhu
- Translational Medicine Engineering Research Center of Inner Mongolia Autonomous Region, affiliated with Baotou Central Hospital, Baotou, China
| | - Lu Liang
- Translational Medicine Engineering Research Center of Inner Mongolia Autonomous Region, affiliated with Baotou Central Hospital, Baotou, China
| | - Lihua Hui
- Burn Research Institute of Inner Mongolia Autonomous Region, affiliated with Inner Mongolia Baogang Hospital, Baotou, China
| | - Yaojun Lu
- Translational Medicine Engineering Research Center of Inner Mongolia Autonomous Region, affiliated with Baotou Central Hospital, Baotou, China
| |
Collapse
|
2
|
Zhang Z, Chang D, Zeng Z, Xu Y, Yu J, Fan C, Yang C, Chang J. CuCS/Cur composite wound dressings promote neuralized skin regeneration by rebuilding the nerve cell "factory" in deep skin burns. Mater Today Bio 2024; 26:101075. [PMID: 38736614 PMCID: PMC11087995 DOI: 10.1016/j.mtbio.2024.101075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/15/2024] [Accepted: 04/27/2024] [Indexed: 05/14/2024] Open
Abstract
Regenerating skin nerves in deep burn wounds poses a significant clinical challenge. In this study, we designed an electrospun wound dressing called CuCS/Cur, which incorporates copper-doped calcium silicate (CuCS) and curcumin (Cur). The unique wound dressing releases a bioactive Cu2+-Cur chelate that plays a crucial role in addressing this challenge. By rebuilding the "factory" (hair follicle) responsible for producing nerve cells, CuCS/Cur induces a high expression of nerve-related factors within the hair follicle cells and promotes an abundant source of nerves for burn wounds. Moreover, the Cu2+-Cur chelate activates the differentiation of nerve cells into a mature nerve cell network, thereby efficiently promoting the reconstruction of the neural network in burn wounds. Additionally, the Cu2+-Cur chelate significantly stimulates angiogenesis in the burn area, ensuring ample nutrients for burn wound repair, hair follicle regeneration, and nerve regeneration. This study confirms the crucial role of chelation synergy between bioactive ions and flavonoids in promoting the regeneration of neuralized skin through wound dressings, providing valuable insights for the development of new biomaterials aimed at enhancing neural repair.
Collapse
Affiliation(s)
- Zhaowenbin Zhang
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, People's Republic of China
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China
| | - Di Chang
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, People's Republic of China
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China
- Fudan University, Shanghai, 200433, People's Republic of China
| | - Zhen Zeng
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, People's Republic of China
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, People's Republic of China
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, People's Republic of China
| | - Yuze Xu
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China
| | - Jing Yu
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, People's Republic of China
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China
| | - Chen Fan
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, People's Republic of China
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China
| | - Chen Yang
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, People's Republic of China
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China
| | - Jiang Chang
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, People's Republic of China
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China
| |
Collapse
|
3
|
Han X, Ju L, Saengow C, Ren W, Ewoldt R, Fan T, Irudayaraj J. Nano oxygen chamber by cascade reaction for hypoxia mitigation and reactive oxygen species scavenging in wound healing. Bioact Mater 2024; 35:67-81. [PMID: 38312517 PMCID: PMC10835133 DOI: 10.1016/j.bioactmat.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/26/2023] [Accepted: 01/11/2024] [Indexed: 02/06/2024] Open
Abstract
Hypoxia, excessive reactive oxygen species (ROS), and impaired angiogenesis are prominent obstacles to wound healing following trauma and surgical procedures, often leading to the development of keloids and hypertrophic scars. To address these challenges, a novel approach has been proposed, involving the development of a cascade enzymatic reaction-based nanocarriers-laden wound dressing. This advanced technology incorporates superoxide dismutase modified oxygen nanobubbles and catalase modified oxygen nanobubbles within an alginate hydrogel matrix. The oxygen nano chamber functions through a cascade reaction between superoxide dismutase and catalase, wherein excessive superoxide in the wound environment is enzymatically decomposed into hydrogen peroxide, and this hydrogen peroxide is subsequently converted into oxygen by catalase. This enzymatic cascade effectively controls wound inflammation and hypoxia, mitigating the risk of keloid formation. Concurrently, the oxygen nanobubbles release oxygen continuously, thus providing a sustained supply of oxygen to the wound site. The oxygen release from this dynamic system stimulates fibroblast proliferation, fosters the formation of new blood vessels, and contributes to the overall wound healing process. In the rat full-thickness wound model, the cascade reaction-based nano oxygen chamber displayed a notable capacity to expedite wound healing without scarring. Furthermore, in the pilot study of porcine full-thickness wound healing, a notable acceleration of tissue repair was observed in the conceived cascade reaction-based gel treated group within the 3 days post-surgery, which represents the proliferation stage of healing process. These achievements hold significant importance in ensuring the complete functional recovery of tissues, thereby highlighting its potential as a promising approach for enhancing wound healing outcomes.
Collapse
Affiliation(s)
- Xiaoxue Han
- Department of Bioengineering, 1102 Everitt Lab, 1406 W. Green St., University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Biomedical Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL, 61801, USA
- Cancer Center at Illinois, Beckman Institute, Urbana, IL, 61801, USA
| | - Leah Ju
- Department of Bioengineering, 1102 Everitt Lab, 1406 W. Green St., University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Biomedical Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL, 61801, USA
| | - Chai Saengow
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Wen Ren
- Department of Bioengineering, 1102 Everitt Lab, 1406 W. Green St., University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Biomedical Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL, 61801, USA
- Cancer Center at Illinois, Beckman Institute, Urbana, IL, 61801, USA
| | - Randy Ewoldt
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Timothy Fan
- Cancer Center at Illinois, Beckman Institute, Urbana, IL, 61801, USA
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Joseph Irudayaraj
- Department of Bioengineering, 1102 Everitt Lab, 1406 W. Green St., University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Biomedical Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL, 61801, USA
- Cancer Center at Illinois, Beckman Institute, Urbana, IL, 61801, USA
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
4
|
Han X, Saengow C, Ju L, Ren W, Ewoldt RH, Irudayaraj J. Exosome-coated oxygen nanobubble-laden hydrogel augments intracellular delivery of exosomes for enhanced wound healing. Nat Commun 2024; 15:3435. [PMID: 38653959 PMCID: PMC11039765 DOI: 10.1038/s41467-024-47696-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 04/09/2024] [Indexed: 04/25/2024] Open
Abstract
Wound healing is an obvious clinical concern that can be hindered by inadequate angiogenesis, inflammation, and chronic hypoxia. While exosomes derived from adipose tissue-derived stem cells have shown promise in accelerating healing by carrying therapeutic growth factors and microRNAs, intracellular cargo delivery is compromised in hypoxic tissues due to activated hypoxia-induced endocytic recycling. To address this challenge, we have developed a strategy to coat oxygen nanobubbles with exosomes and incorporate them into a polyvinyl alcohol/gelatin hybrid hydrogel. This approach not only alleviates wound hypoxia but also offers an efficient means of delivering exosome-coated nanoparticles in hypoxic conditions. The self-healing properties of the hydrogel, along with its component, gelatin, aids in hemostasis, while its crosslinking bonds facilitate hydrogen peroxide decomposition, to ameliorate wound inflammation. Here, we show the potential of this multifunctional hydrogel for enhanced healing, promoting angiogenesis, facilitating exosome delivery, mitigating hypoxia, and inhibiting inflammation in a male rat full-thickness wound model.
Collapse
Affiliation(s)
- Xiaoxue Han
- Department of Bioengineering, 1102 Everitt Lab, 1406 W. Green St., University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Biomedical Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL, 61801, USA
- Cancer Center at Illinois, Beckman Institute, Urbana, IL, 61801, USA
- Holonyak Micro and Nanotechnology Laboratory, Carle R. Woese Institute for Genomic Biology, Urbana, IL, 61801, USA
| | - Chaimongkol Saengow
- Cancer Center at Illinois, Beckman Institute, Urbana, IL, 61801, USA
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Leah Ju
- Department of Bioengineering, 1102 Everitt Lab, 1406 W. Green St., University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Biomedical Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL, 61801, USA
| | - Wen Ren
- Department of Bioengineering, 1102 Everitt Lab, 1406 W. Green St., University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Biomedical Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL, 61801, USA
| | - Randy H Ewoldt
- Cancer Center at Illinois, Beckman Institute, Urbana, IL, 61801, USA
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Joseph Irudayaraj
- Department of Bioengineering, 1102 Everitt Lab, 1406 W. Green St., University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Biomedical Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL, 61801, USA.
- Cancer Center at Illinois, Beckman Institute, Urbana, IL, 61801, USA.
- Holonyak Micro and Nanotechnology Laboratory, Carle R. Woese Institute for Genomic Biology, Urbana, IL, 61801, USA.
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
5
|
Frech S, Lichtenberger BM. Modulating embryonic signaling pathways paves the way for regeneration in wound healing. Front Physiol 2024; 15:1367425. [PMID: 38434140 PMCID: PMC10904466 DOI: 10.3389/fphys.2024.1367425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/05/2024] [Indexed: 03/05/2024] Open
Abstract
Epithelial tissues, including the skin, are highly proliferative tissues with the capability to constant renewal and regeneration, a feature that is essential for survival as the skin forms a protective barrier against external insults and water loss. In adult mammalian skin, every injury will lead to a scar. The scar tissue that is produced to seal the wound efficiently is usually rigid and lacks elasticity and the skin's original resilience to external impacts, but also secondary appendages such as hair follicles and sebaceous glands. While it was long thought that hair follicles develop solely during embryogenesis, it is becoming increasingly clear that hair follicles can also regenerate within a wound. The ability of the skin to induce hair neogenesis following injury however declines with age. As fetal and neonatal skin have the remarkable capacity to heal without scarring, the recapitulation of a neonatal state has been a primary target of recent regenerative research. In this review we highlight how modulating dermal signaling or the abundance of specific fibroblast subsets could be utilized to induce de novo hair follicles within the wound bed, and thus to shift wound repair with a scar to scarless regeneration.
Collapse
|
6
|
Mohammed RN, Aziz Sadat SA, Hassan SMA, Mohammed HF, Ramzi DO. Combinatorial Influence of Bone Marrow Aspirate Concentrate (BMAC) and Platelet-Rich Plasma (PRP) Treatment on Cutaneous Wound Healing in BALB/c Mice. J Burn Care Res 2024; 45:59-69. [PMID: 37262317 PMCID: PMC11023107 DOI: 10.1093/jbcr/irad080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Indexed: 06/03/2023]
Abstract
Bone marrow, a soft spongy tissue, is containing mesenchymal stem cells, that are well-recognized according to their self-renewability and stemness. Therefore, we hypothesized that bone marrow aspirate concentrate (BMAC) could have a pivotal influence on the process of wound healing in particular when it is combined with platelet-rich plasma (PRP). Thirty-six albino mice (BALB/c) were used in the study and they were grouped as negative-control, PRP treated, BMAC treated and BMAC plus PRP treated. An incisional wound (1 cm2) was made at the back of mouse and their wounds were treated according to their treatment plan and group allocations. Later, the skin at the treated wound sites was collected on days 7, 14, and 21 for histopathological investigation. The results showed that there was a statistically significant difference in BMAC+PRP-treated wounds over the rest of the treated groups in the acceleration of wound healing throughout the experiment by increasing the rate of wound contraction, re-epithelization process, and granulation tissue intensity with fluctuated infiltration in the number of the neutrophils, macrophages, and lymphocytes, also restoration of the epidermal and dermal thickness with less scarring and hair follicle regeneration vs to the negative-control, PRP and BMAC only treated groups. Our findings indicated that BMAC containing mesenchymal stem cells is an efficient approach, which can be used to enhance a smooth and physiopathological healing process, especially when it is used in combination with PRP.
Collapse
Affiliation(s)
- Rebar N Mohammed
- Medical Laboratory Analysis Department, College of Health Sciences, Cihan University of Sulaimaniya, Kurdistan Region, Iraq
- Department of Microbiology, College of Veterinary Medicine, University of Sulaimnai, Suleimanyah, Iraq
| | - Sadat Abdulla Aziz Sadat
- Department of Microbiology, College of Veterinary Medicine, University of Sulaimnai, Suleimanyah, Iraq
| | - Snur M A Hassan
- Department of Anatomy and Pathology, College of Veterinary Medicine, University of Sulaimnai, Suleimanyah, Iraq
| | - Hawraz Farhad Mohammed
- Department of Microbiology, College of Veterinary Medicine, University of Sulaimnai, Suleimanyah, Iraq
| | - Derin Omer Ramzi
- Department of Basic sciences, College of Veterinary Medicine, University of Sulaimnai, Suleimanyah, Iraq
| |
Collapse
|
7
|
Adav SS, Ng KW. Recent omics advances in hair aging biology and hair biomarkers analysis. Ageing Res Rev 2023; 91:102041. [PMID: 37634889 DOI: 10.1016/j.arr.2023.102041] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/27/2023] [Accepted: 08/23/2023] [Indexed: 08/29/2023]
Abstract
Aging is a complex natural process that leads to a decline in physiological functions, which is visible in signs such as hair graying, thinning, and loss. Although hair graying is characterized by a loss of pigment in the hair shaft, the underlying mechanism of age-associated hair graying is not fully understood. Hair graying and loss can have a significant impact on an individual's self-esteem and self-confidence, potentially leading to mental health problems such as depression and anxiety. Omics technologies, which have applications beyond clinical medicine, have led to the discovery of candidate hair biomarkers and may provide insight into the complex biology of hair aging and identify targets for effective therapies. This review provides an up-to-date overview of recent omics discoveries, including age-associated alterations of proteins and metabolites in the hair shaft and follicle, and highlights the significance of hair aging and graying biomarker discoveries. The decline in hair follicle stem cell activity with aging decreased the regeneration capacity of hair follicles. Cellular senescence, oxidative damage and altered extracellular matrix of hair follicle constituents characterized hair follicle and hair shaft aging and graying. The review attempts to correlate the impact of endogenous and exogenous factors on hair aging. We close by discussing the main challenges and limitations of the field, defining major open questions and offering an outlook for future research.
Collapse
Affiliation(s)
- Sunil S Adav
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Kee Woei Ng
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore; Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141, Singapore.
| |
Collapse
|
8
|
Sumathy B, Velayudhan S. Fabrication and evaluation of a bi-layered gelatin based scaffold with arrayed micro-pits for full-thickness skin construct. Int J Biol Macromol 2023; 251:126360. [PMID: 37591428 DOI: 10.1016/j.ijbiomac.2023.126360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/17/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
There is an unmet need for a reliable and reproducible method for incorporating hair follicle derived stem cells in tissue engineered skin models to reconstitute hair follicles. This study discloses a novel method for introducing hair follicle derived stem cells in microneedle embossed micro-pits of a bilayer skin equivalent fabricated from a gelatin based scaffold. The microneedles are hard and strong enough to penetrate the upper layer of the bilayer gelatin based scaffold that corresponds to the epidermis and permeates down to lower layer that corresponds to dermal layer. This strategic location will mimic the natural niche of hair follicle stem cells for picking up signals from both the epidermis and dermis. Hair follicle stem cells are trapped in to these micro-pits by vacuum assisted cell seeding. The bilayer system consists of two distinct electrospun layers in a single processing step, representing outer epidermal layer and inner dermal layer with hair follicle stem cells in embedded pits, resulting in the formation of a closed representation of a complete skin.
Collapse
Affiliation(s)
- Babitha Sumathy
- Department of Tissue Engineering and Regeneration Technologies, Department of Applied Biology, Biomedical Technology wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum 695 012, India.
| | - Shiny Velayudhan
- Division of Dental Products, Department of Biomaterials Science and Technology, Biomedical Technology wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum 695 012, India.
| |
Collapse
|
9
|
Ma J, Qin C, Wu J, Zhuang H, Du L, Xu J, Wu C. 3D multicellular micropatterning biomaterials for hair regeneration and vascularization. MATERIALS HORIZONS 2023; 10:3773-3784. [PMID: 37409407 DOI: 10.1039/d3mh00528c] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Hair loss caused by the abnormal functions of hair follicles in skin can seriously impact the quality of an individual's life. The development of sophisticated skin tissue-engineered constructs is required to enable the function recovery of hair follicles. However, effective hair regrowth in skin substitutes still remains a great challenge. In this study, a 3D multicellular micropattern was successfully fabricated by arranging the hair follicle-related cells orderly distributed in the interval of vascular-cell networks via bioprinting technology. By combining the stable biomimetic micropattern structure and the bio-inducing substrate incorporated with magnesium silicate (MS) nanomaterials, the 3D multicellular micropattern possessed significant follicular potential and angiogenic capacity in vitro. Furthermore, the 3D multicellular micropattern with MS incorporation contributed to efficient hair regrowth during skin tissue regeneration in both immunodeficient mice and androgenetic alopecia (AGA) mice models. Thus, this study proposes a novel 3D micropatterned multicellular system assembling a biomimetic micro-structure and modulating the cell-cell interaction for hair regeneration during skin reconstruction.
Collapse
Affiliation(s)
- Jingge Ma
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.
- Institute of Respiratory Medicine, Tongji University School of Medicine, Shanghai 200433, P. R. China
| | - Chen Qin
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jinfu Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hui Zhuang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Lin Du
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jinfu Xu
- Institute of Respiratory Medicine, Tongji University School of Medicine, Shanghai 200433, P. R. China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
10
|
Yoshida Y, Takahashi M, Yamanishi H, Nakazawa Y, Kishimoto J, Ohyama M. Changes in the Expression of Smooth Muscle Cell–Related Genes in Human Dermal Sheath Cup Cells Associated with the Treatment Outcome of Autologous Cell–Based Therapy for Male and Female Pattern Hair Loss. Int J Mol Sci 2022; 23:ijms23137125. [PMID: 35806129 PMCID: PMC9266963 DOI: 10.3390/ijms23137125] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 02/04/2023] Open
Abstract
In a clinical study of autologous cell–based therapy using dermal sheath cup (DSC) cells, the treatment of hair loss showed improvements. However, the outcomes were variable. Here, correlations between marker gene expression in DSC cells and treatment outcomes were assessed to predict therapeutic efficacy. Overall, 32 DSC cell lines were used to evaluate correlations between marker gene expression and treatment outcomes. Correlations between vascular pericyte and preadipocyte marker expression and treatment outcomes were inconsistent. As smooth muscle cell markers, MYOCD correlated negatively with treatment outcomes and SRF consistently demonstrated an inverse correlation. Additionally, CALD1 correlated negatively and ACTA2 correlated inversely with treatment outcomes. DSC cell lines were divided into good and moderate/poor responders to further investigate the correlations. SRF and CALD1 were lower in a good responder compared with a moderate responder. Next, DSC cells were differentiated toward dermal papilla cells. Dermal papilla markers SOX2 and LEF1 before differentiation had moderate positive and inverse correlations with the treatment outcome, respectively. SOX2 after differentiation more consistently demonstrated a positive correlation. Significant downregulation of smooth muscle–related genes was also observed after differentiation. These findings revealed putative markers for preclinical evaluation of DSC cells to improve hair loss.
Collapse
Affiliation(s)
- Yuzo Yoshida
- Regenerative Medicine Research & Business Development Section, Shiseido FS Innovation Center, Yokohama 220-0011, Japan; (M.T.); (H.Y.); (Y.N.); (J.K.)
- Correspondence: (Y.Y.); (M.O.)
| | - Miki Takahashi
- Regenerative Medicine Research & Business Development Section, Shiseido FS Innovation Center, Yokohama 220-0011, Japan; (M.T.); (H.Y.); (Y.N.); (J.K.)
| | - Haruyo Yamanishi
- Regenerative Medicine Research & Business Development Section, Shiseido FS Innovation Center, Yokohama 220-0011, Japan; (M.T.); (H.Y.); (Y.N.); (J.K.)
| | - Yosuke Nakazawa
- Regenerative Medicine Research & Business Development Section, Shiseido FS Innovation Center, Yokohama 220-0011, Japan; (M.T.); (H.Y.); (Y.N.); (J.K.)
| | - Jiro Kishimoto
- Regenerative Medicine Research & Business Development Section, Shiseido FS Innovation Center, Yokohama 220-0011, Japan; (M.T.); (H.Y.); (Y.N.); (J.K.)
| | - Manabu Ohyama
- Department of Dermatology, Kyorin University Faculty of Medicine, Tokyo 181-8611, Japan
- Correspondence: (Y.Y.); (M.O.)
| |
Collapse
|
11
|
Markiewicz E, Jerome J, Mammone T, Idowu OC. Anti-Glycation and Anti-Aging Properties of Resveratrol Derivatives in the in-vitro 3D Models of Human Skin. Clin Cosmet Investig Dermatol 2022; 15:911-927. [PMID: 35615726 PMCID: PMC9126233 DOI: 10.2147/ccid.s364538] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/03/2022] [Indexed: 01/03/2023]
Abstract
Purpose Human skin undergoes modifications affecting its structural properties and barrier functions involved in protection against age-related damage. Glycation is a non-enzymatic reaction between macromolecules and sugars causing alterations to the elastic fibers and premature aging of the skin. Glycation can be prevented by a range of bioactive molecules; however, at present only a few of them are validated for inclusion in cosmetic products. There is also a demand for reproducible in-vitro assays demonstrating the anti-aging effect of compounds on the skin. This study aimed to define the potential targets for screening and validation of anti-glycation activity of novel cosmetic candidates from natural products and to provide a plausible mechanism for their anti-aging potential based on 3D skin models. Methods Dermal fibroblasts and 3D skin models were treated with glycation agent and topical applications of Resveratrol derivatives. The samples were analyzed for advanced glycation end products (AGEs) alongside an organization of elastic fibers and expression of proliferative, senescence, and oxidative stress markers by autofluorescence, immunocytochemistry and quantitative assays. Results Accumulation of AGEs in the 3D skin model is associated with reduced stratification of the epidermis and re-organization of the collagen in the upper, cell-dense layer of the dermis. Treatment of dermal fibroblasts with Resveratrol, OxyResveratrol, Piceatannol, and Triacetyl Resveratrol ameliorates the effects of glycation consistent with cellular aging. Subsequent topical application of the compounds in skin models results in a reduction in glycation-induced AGEs, an increase in collagen expression and a stratification of the epidermis. Conclusion Glycation could result in age-related alterations in the structural and cellular organizations of the superficial layers of the skin, which can be restored by Resveratrol derivatives, pointing to their promising capacities as bioactive ingredients in cosmetic products. Insight into the potential parameters affected by skin glycation could also serve as a reference for screening the bioactive molecules for cosmetic purposes.
Collapse
Affiliation(s)
- Ewa Markiewicz
- Hexis Lab Limited, The Catalyst, Newcastle Helix, Newcastle upon Tyne, UK
| | - Jaimie Jerome
- Estee Lauder Research Laboratories, Melville, NY, USA
| | | | - Olusola C Idowu
- Hexis Lab Limited, The Catalyst, Newcastle Helix, Newcastle upon Tyne, UK
| |
Collapse
|
12
|
Xue M, Zhao R, March L, Jackson C. Dermal Fibroblast Heterogeneity and Its Contribution to the Skin Repair and Regeneration. Adv Wound Care (New Rochelle) 2022; 11:87-107. [PMID: 33607934 DOI: 10.1089/wound.2020.1287] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Significance: Dermal fibroblasts are the major cell type in the skin's dermal layer. These cells originate from distinct locations of the embryo and reside in unique niches in the dermis. Different dermal fibroblasts exhibit distinct roles in skin development, homeostasis, and wound healing. Therefore, these cells are becoming attractive candidates for cell-based therapies in wound healing. Recent Advances: Human skin dermis comprises multiple fibroblast subtypes, including papillary, reticular, and hair follicle-associated fibroblasts, and myofibroblasts after wounding. Recent studies reveal that these cells play distinct roles in wound healing and contribute to diverse healing outcomes, including nonhealing chronic wound or excessive scar formation, such as hypertrophic scars (HTS) and keloids, with papillary fibroblasts having antiscarring and reticular fibroblast scar-forming properties. Critical Issues: The identities and functions of dermal fibroblast subpopulations in many respects remain unknown. In this review, we summarize the current understanding of dermal fibroblast heterogeneity, including their defined cell markers and dermal niches, dynamic changes, and contributions to skin wound healing, with the emphasis on scarless healing, healing with excessive scars (HTS and keloids), chronic wounds, and the potential application of this heterogeneity for developing cell-based therapies that allow wounds to heal faster with less scarring. Future Directions: Heterogeneous dermal fibroblast populations and their functions are poorly characterized. Refining and advancing our understanding of dermal fibroblast heterogeneity and their participation in skin homeostasis and wound healing may create potential therapeutic applications for nonhealing chronic wounds or wounds that heal with excessive scarring.
Collapse
Affiliation(s)
- Meilang Xue
- Sutton Arthritis Research Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, The University of Sydney at Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Ruilong Zhao
- Sutton Arthritis Research Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, The University of Sydney at Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Lyn March
- Sutton Arthritis Research Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, The University of Sydney at Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Christopher Jackson
- Sutton Arthritis Research Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, The University of Sydney at Royal North Shore Hospital, St Leonards, New South Wales, Australia
| |
Collapse
|
13
|
Camões SP, Bulut O, Yazar V, Gaspar M, Simões S, Ferreira R, Vitorino R, Santos JM, Gursel I, Miranda JP. 3D-MSCs A151 ODN-Loaded Exosomes Are Immunomodulatory And Reveal A Proteomic Cargo That Sustains Wound Resolution. J Adv Res 2022; 41:113-128. [PMID: 36328741 PMCID: PMC9637564 DOI: 10.1016/j.jare.2022.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/10/2022] [Accepted: 01/26/2022] [Indexed: 11/25/2022] Open
Abstract
The MSC-derived secretome from 3D cultures enhances fibroblast and keratinocyte mitogenic and motogenic capacity in vitro, respectively. The cargo of the 3D MSC-derived exosomes (Exo3D) reveals wound healing-related proteins and promotes wound resolution in a wound healing in vivo model. Loading MSC-derived exosomes with A151 ODN further reduces the systemic levels of IL-6 and TNF-α pro-inflammatory cytokines at the late stage of wound healing in vivo, crucial for a full regenerated tissue. A151-loaded Exo3D have a great potential as a noncellular off-the-shelf therapy for non-healing wound treatment.
Introduction Non-healing wounds remain a major burden due to the lack of effective treatments. Mesenchymal stem cell-derived exosomes (MSC-Exo) have emerged as therapeutic options given their pro-regenerative and immunomodulatory features. Still, little is known on the exact mechanisms mediated by MSC-Exo. Importantly, modulation of their efficacy through 3D-physiologic cultures together with loading strategies continues underexplored. Objectives To uncover the MSC-Exo-mediated mechanism via proteomic analyses, and to use 3D-culture and loading technologies to expand MSC-Exo efficacy for cutaneous wound healing. Methods MSC-Exo were produced in either 3D or 2D cultures (Exo3D/Exo2D) and loaded with an exogenous immunosuppressive oligodeoxynucleotide (A151 ODN). Both, loaded and naïve exosomes were characterised regarding size, morphology and the presence of specific protein markers; while IPA analyses enabled to correlate their protein content with the effects observed in vitro and in vivo. The Exo3D/Exo2D regenerative potential was evaluated in vitro by assessing keratinocyte and fibroblast mitogenicity, motogenicity, and cytokine secretion as well as using an in vivo wound splinting model. Accordingly, the modulation of inflammatory and immune responses by A151-loaded Exo3D/Exo2D was also assessed. Results Exo3D stimulated mitogenically and motogenically keratinocytes and fibroblasts in vitro, with upregulation of IL-1α and VEGF-α or increased secretion of TGF-β, TNF-α and IL-10. In vivo, Exo3D reduced the granulation tissue area and promoted complete re-epithelization of the wound. These observations were sustained by the proteomic profiling of the Exo3D cargo that identified wound healing-related proteins, such as TGF-β, ITGA1-3/5, IL-6, CDC151, S100A10 and Wnt5α. Moreover, when loaded with A151 ODN, Exo3D differentially mediated wound healing-related trophic factors reducing the systemic levels of IL-6 and TNF-α at the late stage of wound healing in vivo. Conclusion Our results support the potential of A151-loaded Exo3D for the treatment of chronic wounds by promoting skin regeneration, while modulating the systemic levels of the pro-inflammatory cytokines.
Collapse
|
14
|
Marofi F, Alexandrovna KI, Margiana R, Bahramali M, Suksatan W, Abdelbasset WK, Chupradit S, Nasimi M, Maashi MS. MSCs and their exosomes: a rapidly evolving approach in the context of cutaneous wounds therapy. Stem Cell Res Ther 2021; 12:597. [PMID: 34863308 PMCID: PMC8642895 DOI: 10.1186/s13287-021-02662-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/14/2021] [Indexed: 12/18/2022] Open
Abstract
Currently, mesenchymal stem/stromal stem cell (MSC) therapy has become a promising option for accelerating cutaneous wound healing. In vivo reports have outlined the robust competences of MSCs to offer a solid milieu by inhibition of inflammatory reactions, which in turn, enables skin regeneration. Further, due to their great potential to stimulate angiogenesis and also facilitate matrix remodeling, MSCs hold substantial potential as future therapeutic strategies in this context. The MSCs-induced wound healing is thought to mainly rely on the secretion of a myriad of paracrine factors in addition to their direct differentiation to skin-resident cells. Besides, MSCs-derived exosomes as nanoscale and closed membrane vesicles have recently been suggested as an effective and cell-free approach to support skin regeneration, circumventing the concerns respecting direct application of MSCs. The MSCs-derived exosomes comprise molecular components including lipid, proteins, DNA, microRNA, and also mRNA, which target molecular pathways and also biological activities in recipient cells (e.g., endothelial cell, keratinocyte, and fibroblast). The secreted exosome modifies macrophage activation, stimulates angiogenesis, and instigates keratinocytes and dermal fibroblast proliferations as well as migrations concurrently regulate inherent potential of myofibroblast for adjustment of turnover of the ECM. In the present review, we will focus on the recent findings concerning the application of MSCs and their derivative exosome to support wound healing and skin regeneration, with special focus on last decade in vivo reports.
Collapse
Affiliation(s)
- Faroogh Marofi
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Ria Margiana
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Master’s Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Mahta Bahramali
- Biotechnology Department, University of Tehran, Tehran, Iran
| | - Wanich Suksatan
- Faculty of Nursing, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, 10210 Thailand
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
- Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Supat Chupradit
- Department of Occupational Therapy, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200 Thailand
| | | | - Marwah Suliman Maashi
- Stem Cells and Regenerative Medicine Unit at King Fahad Medical Research Centre, Jeddah, Saudi Arabia
| |
Collapse
|
15
|
Yu N, Luo X, Wei T, Zhang Q, Yu J, Wu L, Su J, Chen M, Huang K, Li F, Xie Y, Fang F, Zhang L, He R, Chen X, Zhao S, Bu W. Dermabrasion combined with photodynamic therapy: a new option for the treatment of non-melanoma skin cancer. Lasers Med Sci 2021; 37:1255-1263. [PMID: 34365550 DOI: 10.1007/s10103-021-03381-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 07/16/2021] [Indexed: 12/01/2022]
Abstract
Non-melanoma skin cancer (NMSC) is the most common malignancy. Photodynamic therapy (PDT) is effective for the treatment of certain NMSCs. However, the clinical response rates of some NMSCs to single PDT are still far from ideal. The reason may be that PDT has shown limited efficacy in managing thicker NMSCs. To explore the efficacy and safety of dermabrasion combined with PDT (D-PDT) for the treatment of NMSCs. This was a retrospective, single-arm, multi-centre study. In total, 172 tumours from 40 patients were treated with D-PDT during the study period. The mean follow-up period was 40 months (range 15-110 months). D-PDT was performed with 633-nm red light at 80 m W/cm2 after lesion dermabrasion and 4 h of photosensitizer exposure. Six nodular basal cell carcinomas (nBCCs) from 6 patients, 9 squamous cell carcinomas (SCCs) from 9 patients, 17 Bowen diseases (BDs) from 10 patients and 140 actinic keratoses (AKs) from 15 patients treated with D-PDT were examined in this study. Only two patients with three AKs experienced recurrence over 12 months. The mean final follow-up periods of patients with AKs, BDs, nBCCs and SCCs were 30, 33, 45 and 60 months, respectively. Thirty-four of the 40 patients treated with D-PDT reported excellent or good cosmetic results. The mean Dermatology Life Quality Index (DLQI) scores of the patients improved significantly after treatment (estimated MD 9.72 [95% CI 8.69 to 10.75]; p < 0.001). D-PDT is a safe, cosmetic and effective treatment that could be a new candidate therapeutic for NMSC.
Collapse
Affiliation(s)
- Nianzhou Yu
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, 87 Xiangya Road, Kaifu District, Changsha, Hunan Province, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xi Luo
- Department of Dermatology, Shanghai Dermatology Hospital, Shanghai, 200443, China
| | - Tianhong Wei
- Department of UltrasoundXiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Qian Zhang
- Department of Dermatologic Surgery, Hospital of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Jing Yu
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, 111 Xiangya Road, Changsha, 410078, Hunan, China
| | - Lisha Wu
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, 87 Xiangya Road, Kaifu District, Changsha, Hunan Province, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Juan Su
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, 87 Xiangya Road, Kaifu District, Changsha, Hunan Province, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Mingliang Chen
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, 87 Xiangya Road, Kaifu District, Changsha, Hunan Province, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Kai Huang
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, 87 Xiangya Road, Kaifu District, Changsha, Hunan Province, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Fangfang Li
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, 87 Xiangya Road, Kaifu District, Changsha, Hunan Province, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yang Xie
- Department of Dermatology, The 3rd Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Fang Fang
- Department of UltrasoundXiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Liang Zhang
- Department of Dermatology, Wuhan First People's Hospital, Wuhan, 430022, Hubei, China
| | - Renliang He
- Department of Dermatologic Surgery, Dermatology Hospital of Southern Medical University, Guangzhou, 510091, Guangdong, China
| | - Xiang Chen
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, 87 Xiangya Road, Kaifu District, Changsha, Hunan Province, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Shuang Zhao
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, 87 Xiangya Road, Kaifu District, Changsha, Hunan Province, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - WenBo Bu
- Department of Dermatologic Surgery, Hospital of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China.
| |
Collapse
|
16
|
Jimenez F, Alam M, Vogel JE, Avram M. Hair Transplantation: Basic Overview. J Am Acad Dermatol 2021; 85:803-814. [PMID: 33905785 DOI: 10.1016/j.jaad.2021.03.124] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 03/02/2021] [Accepted: 03/16/2021] [Indexed: 10/21/2022]
Abstract
Modern hair restoration surgery is based on a technique known as follicular unit transplantation in which follicular units (FUs) are the exclusive structures used as hair grafts. In Part 1 of this two-part review, we describe how the techniques employed in hair transplantation have evolved into their present forms. Anatomic concepts of specific relevance for dermatologists are discussed, including the distribution and ex-vivo morphology of scalp FUs. Male androgenetic alopecia and female pattern hair loss are the most common reasons for hair loss consultations with dermatologists and will be the primary focus of this review. However, as not all hair disorders are suitable for transplantation, this review will also describe which scalp conditions are amenable to surgery and which are not. In addition, guidelines are provided to help dermatologists better define good or bad candidates for hair transplantation. Finally, other conditions for which hair transplantation surgery is indicated are reviewed.
Collapse
Affiliation(s)
- Francisco Jimenez
- Mediteknia Dermatology and Hair Transplant Clinic, Universidad Fernando Pessoa Canarias, Gran Canaria, Spain.
| | - Majid Alam
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar, Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - James E Vogel
- Associate Professor of Surgery, Department of Plastic Surgery, The Johns Hopkins Hospital and School of Medicine, Baltimore, MD, USA
| | - Marc Avram
- Clinical Professor of Dermatology Weill Cornell Medical School; Private practice, New York, NY, USA
| |
Collapse
|
17
|
Toygar I, Tureyen A, Demir D, Cetinkalp S. Effect of allicin on wound healing: an experimental diabetes model. J Wound Care 2021; 29:388-392. [PMID: 32654608 DOI: 10.12968/jowc.2020.29.7.388] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE The aim of this study was to investigate the effect of allicin on wound healing in an experimental diabetes model. METHOD In this randomised controlled study, 50 Wistar albino rats (25 females, 25 males) each weighing 200-300g were used. To develop the diabetes model, 30 rats were induced with 50mg/kg streptozotocin (STZ); 20 rats were not induced in order to compare diabetic and nondiabetic rats. The diabetic rats were divided into three groups, according to dressing material used (allicin, physiological serum and control, where no dressing was used), and the nondiabetic rats were divided into two groups (allicin and control, where no dressing was used). The wound area was calculated and recorded on days 0, 7, 14 and 21. In addition, biopsies were taken from the wound area on days 0, 7, 14 and 21 and used for microscopic examination. Day 0 was used as a reference to calculate wound healing percentage. RESULTS On days 7 and 14, there were statistically significant differences between groups. Wound surface areas were smaller in the allicin group than in other groups on days 7 and 14. There were no statistically significant differences between the groups on day 21. In addition, it was determined that neutrophil, mononuclear cell, intraepithelial oedema and dermal oedema density were lower and fibroblast, angiogenesis and collagen density were higher in the allicin groups on days 7 and 14. CONCLUSION In this study, allicin was found to be potentially effective on wound healing. Future research should be conducted in order to clarify how it affects wound healing.
Collapse
Affiliation(s)
- Ismail Toygar
- Ege University, Nursing Faculty, Department of Internal Medicine Nursing, Turkey
| | - Aynur Tureyen
- Ege University, Nursing Faculty, Department of Internal Medicine Nursing, Turkey
| | - Derya Demir
- Faculty of Medicine, Department of Pathology, Ege University, Turkey
| | - Sevki Cetinkalp
- Faculty of Medicine, Department of Endocrinology and Metabolic Diseases, Ege University, Turkey
| |
Collapse
|
18
|
Martino PA, Heitman N, Rendl M. The dermal sheath: An emerging component of the hair follicle stem cell niche. Exp Dermatol 2021; 30:512-521. [PMID: 33006790 PMCID: PMC8016715 DOI: 10.1111/exd.14204] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/15/2020] [Accepted: 09/20/2020] [Indexed: 12/17/2022]
Abstract
Hair follicles cyclically regenerate throughout adult mammalian life, owing to a resident population of epithelial hair follicle stem cells. Stem cell (SC) activity drives bouts of follicle growth, which are periodically interrupted by follicle regression and rest. These phases and the transitions between them are tightly spatiotemporally coordinated by signalling crosstalk between stem/progenitor cells and the various cell types of the microenvironment, or niche. The dermal papilla (DP) is a cluster of specialized mesenchymal cells that have long been recognized for important niche roles in regulating hair follicle SC activation, as well as progenitor proliferation and differentiation during follicle growth. In addition to the DP, the mesenchyme of the murine pelage follicle is also comprised of a follicle-lining smooth muscle known as the dermal sheath (DS), which has been far less studied than the DP yet may be equally specialized and important for hair cycling. In this review, we define the murine pelage DS in comparison with human DS and discuss recent work that highlights the emergent importance of the DS in the hair follicle SC niche. Last, we examine potential therapeutic applications for the DS in hair regeneration and wound healing.
Collapse
Affiliation(s)
- Pieter A. Martino
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020; 1428 Madison Ave, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020; 1428 Madison Ave, New York, NY 10029, USA
| | - Nicholas Heitman
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020; 1428 Madison Ave, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020; 1428 Madison Ave, New York, NY 10029, USA
| | - Michael Rendl
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020; 1428 Madison Ave, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020; 1428 Madison Ave, New York, NY 10029, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020; 1428 Madison Ave, New York, NY 10029, USA
| |
Collapse
|
19
|
Williams R, Westgate GE, Pawlus AD, Sikkink SK, Thornton MJ. Age-Related Changes in Female Scalp Dermal Sheath and Dermal Fibroblasts: How the Hair Follicle Environment Impacts Hair Aging. J Invest Dermatol 2020; 141:1041-1051. [PMID: 33326808 DOI: 10.1016/j.jid.2020.11.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 01/01/2023]
Abstract
In women, aging leads to reduced hair density and thinner fibers and can result in female-pattern hair loss. However, the impact of the aging dermal environment on female scalp hair follicles remains unclear. In this study, we document in situ changes in 22 women (aged 19-81 years) and primary cultures of dermal fibroblast and dermal sheath cells. In situ, the papillary reticular boundary was indistinguishable in the young scalp but prominent in the scalp of those aged >40 years, accompanied by reduced podoplanin (PDPN) expression, increased versican expression, and changes in collagen organization. Hair follicles were shorter, not reaching the adipose layer. Hyaluronic acid synthase 2 was highly expressed, whereas matrix metalloproteinase 1 was elevated in the dermal papilla and dermal sheath in situ. Primary dermal fibroblast cultures confirmed that matrix metalloproteinase 1 mRNA, MMP1, increased with aging, whereas in dermal sheath cells, hyaluronic acid synthase 2, HAS2, and PDPN increased and α-smooth muscle actin αSMA mRNA decreased. Both exhibited increased cartilage oligomeric protein, COMP mRNA expression. Proteomics revealed an increase in dermal sheath proteins in the dermal fibroblast secretome with aging. In summary, aging female scalp shows striking structural and biological changes in the hair follicle environment that may impact hair growth.
Collapse
Affiliation(s)
- Rachael Williams
- The Centre for Skin Sciences, Faculty of Life Sciences, The University of Bradford, Bradford, United Kingdom
| | - Gillian E Westgate
- The Centre for Skin Sciences, Faculty of Life Sciences, The University of Bradford, Bradford, United Kingdom
| | - Alison D Pawlus
- R&D, Hair Innovation & Technology, Aveda, Minneapolis, Minnesota, USA; R&D, The Estée Lauder Companies, Melville, New York, USA
| | - Stephen K Sikkink
- The Centre for Skin Sciences, Faculty of Life Sciences, The University of Bradford, Bradford, United Kingdom
| | - M Julie Thornton
- The Centre for Skin Sciences, Faculty of Life Sciences, The University of Bradford, Bradford, United Kingdom.
| |
Collapse
|
20
|
Hosio M, Jaks V, Lagus H, Vuola J, Ogawa R, Kankuri E. Primary Ciliary Signaling in the Skin-Contribution to Wound Healing and Scarring. Front Cell Dev Biol 2020; 8:578384. [PMID: 33282860 PMCID: PMC7691485 DOI: 10.3389/fcell.2020.578384] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/08/2020] [Indexed: 12/21/2022] Open
Abstract
Primary cilia (PC) are solitary, post-mitotic, microtubule-based, and membrane-covered protrusions that are found on almost every mammalian cell. PC are specialized cellular sensory organelles that transmit environmental information to the cell. Signaling through PC is involved in the regulation of a variety of cellular processes, including proliferation, differentiation, and migration. Conversely, defective, or abnormal PC signaling can contribute to the development of various pathological conditions. Our knowledge of the role of PC in organ development and function is largely based on ciliopathies, a family of genetic disorders with mutations affecting the structure and function of PC. In this review, we focus on the role of PC in their major signaling pathways active in skin cells, and their contribution to wound healing and scarring. To provide comprehensive insights into the current understanding of PC functions, we have collected data available in the literature, including evidence across cell types, tissues, and animal species. We conclude that PC are underappreciated subcellular organelles that significantly contribute to both physiological and pathological processes of the skin development and wound healing. Thus, PC assembly and disassembly and PC signaling may serve as attractive targets for antifibrotic and antiscarring therapies.
Collapse
Affiliation(s)
- Mayu Hosio
- Faculty of Medicine, Department of Pharmacology, University of Helsinki, Helsinki, Finland
| | - Viljar Jaks
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
- Dermatology Clinic, Tartu University Hospital, Tartu, Estonia
| | - Heli Lagus
- Department of Plastic Surgery and Wound Healing Centre, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Jyrki Vuola
- Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Rei Ogawa
- Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School, Tokyo, Japan
| | - Esko Kankuri
- Faculty of Medicine, Department of Pharmacology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
21
|
Lim YS, Harland DP, Dawson TL. Wanted, dead and alive: Why a multidisciplinary approach is needed to unlock hair treatment potential. Exp Dermatol 2020; 28:517-527. [PMID: 30706973 DOI: 10.1111/exd.13898] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/24/2019] [Accepted: 01/25/2019] [Indexed: 12/21/2022]
Abstract
Human recorded history is littered with attempts to improve the perceived appearance of scalp hair. Throughout history, treatments have included both biological and chemical interventions. Hair "quality" or "perceived appearance" is regulated by multiple biological intervention opportunities: adding more hairs by flipping follicles from telogen to anagen, or delaying anagen follicles transiting into catagen; altering hair "apparent amount" by modulating shaft diameter or shape; or, in principle, altering shaft physical properties changing its synthesis. By far the most common biological intervention strategy today is to increase the number of hairs, but to date this has proven difficult and has yielded minimal benefits. Chemical intervention primarily consists of active material surface deposition to improve shaft shine, fibre-fibre interactions and strength. Real, perceptible benefits will best be achieved by combining opportunity areas across the three primary sciences: biology, chemistry and physics. Shaft biogenesis begins with biology: proliferation in the germinative matrix, then crossing "Auber's Critical Line" and ceasing proliferation to synthesize shaft components. Biogenesis then shifts to oxidative chemistry, where previously synthesized components are organized and cross-linked into a shaft. We herein term the crossing point from biology to chemistry as "The Orwin Threshold." Historically, hair biology and chemistry have been conducted in different fields, with biological manipulation residing in biomedical communities and hair shaft chemistry and physics within the consumer care industry, with minimal cross-fertilization. Detailed understanding of hair shaft biogenesis should enable identification of factors necessary for optimum hair shaft production and new intervention opportunities.
Collapse
Affiliation(s)
- Yi Shan Lim
- Skin Research Institute Singapore, Singapore
| | - Duane P Harland
- Food and Bio-based Products Group, AgResearch, Crown Research Institute, Lincoln, New Zealand
| | - Thomas L Dawson
- Skin Research Institute Singapore, Singapore.,Department of Drug Discovery, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
22
|
Abbasi S, Sinha S, Labit E, Rosin NL, Yoon G, Rahmani W, Jaffer A, Sharma N, Hagner A, Shah P, Arora R, Yoon J, Islam A, Uchida A, Chang CK, Stratton JA, Scott RW, Rossi FMV, Underhill TM, Biernaskie J. Distinct Regulatory Programs Control the Latent Regenerative Potential of Dermal Fibroblasts during Wound Healing. Cell Stem Cell 2020; 27:396-412.e6. [PMID: 32755548 DOI: 10.1016/j.stem.2020.07.008] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/25/2020] [Accepted: 07/09/2020] [Indexed: 01/12/2023]
Abstract
Dermal fibroblasts exhibit considerable heterogeneity during homeostasis and in response to injury. Defining lineage origins of reparative fibroblasts and regulatory programs that drive fibrosis or, conversely, promote regeneration will be essential for improving healing outcomes. Using complementary fate-mapping approaches, we show that hair follicle mesenchymal progenitors make limited contributions to wound repair. In contrast, extrafollicular progenitors marked by the quiescence-associated factor Hic1 generated the bulk of reparative fibroblasts and exhibited functional divergence, mediating regeneration in the center of the wound neodermis and scar formation in the periphery. Single-cell RNA-seq revealed unique transcriptional, regulatory, and epithelial-mesenchymal crosstalk signatures that enabled mesenchymal competence for regeneration. Integration with scATAC-seq highlighted changes in chromatin accessibility within regeneration-associated loci. Finally, pharmacological modulation of RUNX1 and retinoic acid signaling or genetic deletion of Hic1 within wound-activated fibroblasts was sufficient to modulate healing outcomes, suggesting that reparative fibroblasts have latent but modifiable regenerative capacity.
Collapse
Affiliation(s)
- Sepideh Abbasi
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Sarthak Sinha
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Elodie Labit
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Nicole L Rosin
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Grace Yoon
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Waleed Rahmani
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Arzina Jaffer
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Nilesh Sharma
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Andrew Hagner
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Prajay Shah
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Rohit Arora
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Jessica Yoon
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Anowara Islam
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Aya Uchida
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Chih Kai Chang
- Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Jo Anne Stratton
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - R Wilder Scott
- Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Fabio M V Rossi
- Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - T Michael Underhill
- Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Jeff Biernaskie
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada; Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
23
|
Kanayama K, Takada H, Saito N, Kato H, Kinoshita K, Shirado T, Mashiko T, Asahi R, Mori M, Tashiro K, Sunaga A, Kurisaki A, Yoshizato K, Yoshimura K. Hair Regeneration Potential of Human Dermal Sheath Cells Cultured Under Physiological Oxygen. Tissue Eng Part A 2020; 26:1147-1157. [PMID: 32408803 DOI: 10.1089/ten.tea.2019.0329] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We investigated the effect of oxygen tension on the proliferation and hair-inductive capacity of human dermal papilla cells (DPCs) and dermal sheath cells (DSCs). DPCs and DSCs were separately obtained from human hair follicles and each cultured under atmospheric/hyperoxic (20% O2), physiological/normoxic (6% O2), or hypoxic (1% O2) conditions. Proliferation of DPCs and DSCs was highest under normoxia. Compared with hyperoxia, hypoxia inhibited proliferation of DPCs, but enhanced that of DSCs. In DPCs, hypoxia downregulated the expression of hair-inductive capacity-related genes, including BMP4, LEF1, SOX2, and VCAN. In DSCs, both normoxia and hypoxia upregulated SOX2 expression, whereas hypoxia downregulated BMP4 expression. Microarray analysis revealed that normoxia increased the expression of pluripotency-related genes, including SPRY, NR0B1, MSX2, IFITM1, and DAZL, compared with hyperoxia. In an in vivo hair follicle reconstitution assay, cultured DPCs and DSCs were transplanted with newborn mouse epidermal keratinocytes into nude mice using a chamber method. In this experiment, normoxia resulted in the most efficient induction of DPC hair follicles, whereas hypoxia caused the most efficient induction and maturation of DSC hair follicles. These results suggest that application of physiological/hypoxic oxygen tension to cultured human DSCs enhances proliferation and maintenance of hair inductivity for skin engineering and clinical applications. Impact statement Dermal sheath cells (DSCs) and dermal papilla cells (DPCs) are useful cell sources for cell-based regenerative therapy. This is the first report to describe that low-oxygen conditions are better for DSCs. Normoxic and hypoxic culture of DSCs is beneficial for expanding these hair follicular cells and advancing development of cell-based therapy for both wound healing and hair regeneration. The current study supports that optimized oxygen tension can be applied to use expanded human DPCs and DSCs for skin engineering and clinical applications.
Collapse
Affiliation(s)
- Koji Kanayama
- Department of Plastic Surgery, Jichi Medical University, Shimotsuke City, Japan.,Department of Plastic Surgery, The University of Tokyo School of Medicine, Tokyo, Japan
| | - Hitomi Takada
- Laboratory of Stem Cell Technology, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma City, Japan
| | - Natsumi Saito
- Department of Plastic Surgery, Jichi Medical University, Shimotsuke City, Japan
| | - Harunosuke Kato
- Department of Plastic Surgery, Jichi Medical University, Shimotsuke City, Japan
| | - Kahori Kinoshita
- Department of Plastic Surgery, The University of Tokyo School of Medicine, Tokyo, Japan
| | - Takako Shirado
- Department of Plastic Surgery, Jichi Medical University, Shimotsuke City, Japan
| | - Takanobu Mashiko
- Department of Plastic Surgery, Jichi Medical University, Shimotsuke City, Japan.,Department of Plastic Surgery, The University of Tokyo School of Medicine, Tokyo, Japan
| | - Rintaro Asahi
- Department of Plastic Surgery, Jichi Medical University, Shimotsuke City, Japan
| | - Masanori Mori
- Department of Plastic Surgery, Jichi Medical University, Shimotsuke City, Japan
| | - Kensuke Tashiro
- Department of Plastic Surgery, Jichi Medical University, Shimotsuke City, Japan
| | - Ataru Sunaga
- Department of Plastic Surgery, Jichi Medical University, Shimotsuke City, Japan
| | - Akira Kurisaki
- Laboratory of Stem Cell Technology, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma City, Japan
| | - Katsutoshi Yoshizato
- Department of Plastic Surgery, Jichi Medical University, Shimotsuke City, Japan.,Synthetic Biology Laboratory, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Kotaro Yoshimura
- Department of Plastic Surgery, Jichi Medical University, Shimotsuke City, Japan
| |
Collapse
|
24
|
Hoang DH, Nguyen TD, Nguyen HP, Nguyen XH, Do PTX, Dang VD, Dam PTM, Bui HTH, Trinh MQ, Vu DM, Hoang NTM, Thanh LN, Than UTT. Differential Wound Healing Capacity of Mesenchymal Stem Cell-Derived Exosomes Originated From Bone Marrow, Adipose Tissue and Umbilical Cord Under Serum- and Xeno-Free Condition. Front Mol Biosci 2020; 7:119. [PMID: 32671095 PMCID: PMC7327117 DOI: 10.3389/fmolb.2020.00119] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/22/2020] [Indexed: 12/13/2022] Open
Abstract
Exosomes are nano-scale and closed membrane vesicles which are promising for therapeutic applications due to exosome-enclosed therapeutic molecules such as DNA, small RNAs, proteins and lipids. Recently, it has been demonstrated that mesenchymal stem cell (MSC)-derived exosomes have capacity to regulate many biological events associated with wound healing process, such as cell proliferation, cell migration and blood vessel formation. This study investigated the regenerative potentials for cutaneous tissue, in regard to growth factors associated with wound healing and skin cell proliferation and migration, by exosomes released from primary MSCs originated from bone marrow (BM), adipose tissue (AD), and umbilical cord (UC) under serum- and xeno-free condition. We found crucial wound healing-mediated growth factors, such as vascular endothelial growth factor A (VEGF-A), fibroblast growth factor 2 (FGF-2), hepatocyte growth factor (HGF), and platelet-derived growth factor BB (PDGF-BB) in exosomes derived from all three MSC sources. However, expression levels of these growth factors in exosomes were influenced by MSC origins, especially transforming growth factor beta (TGF-β) was only detected in UCMSC-derived exosomes. All exosomes released by three MSCs sources induced keratinocyte and fibroblast proliferation and migration; and, the induction of cell migration is a dependent manner with the higher dose of exosomes was used (20 μg), the faster migration rate was observed. Additionally, the influences of exosomes on cell proliferation and migration was associated with exosome origins and also target cells of exosomes that the greatest induction of primary dermal fibroblasts belongs to BMMSC-derived exosomes and keratinocytes belongs to UCMSC-derived exosomes. Data from this study indicated that BMMSCs and UCMSCs under clinical condition secreted exosomes are promising to develop into therapeutic products for wound healing treatment.
Collapse
Affiliation(s)
- Diem Huong Hoang
- Vinmec Research Institute of Stem Cell and Gene Technology (VRISG), Vinmec Health Care System, Hanoi, Vietnam.,College of Health Sciences, Vin University, Hanoi, Vietnam
| | - Tu Dac Nguyen
- Vinmec Research Institute of Stem Cell and Gene Technology (VRISG), Vinmec Health Care System, Hanoi, Vietnam.,Vinmec Hightech Center, Vinmec Healthcare System, Hanoi, Vietnam
| | - Hoang-Phuong Nguyen
- Vinmec Research Institute of Stem Cell and Gene Technology (VRISG), Vinmec Health Care System, Hanoi, Vietnam.,College of Health Sciences, Vin University, Hanoi, Vietnam
| | - Xuan-Hung Nguyen
- Vinmec Research Institute of Stem Cell and Gene Technology (VRISG), Vinmec Health Care System, Hanoi, Vietnam.,College of Health Sciences, Vin University, Hanoi, Vietnam
| | - Phuong Thi Xuan Do
- Vinmec Research Institute of Stem Cell and Gene Technology (VRISG), Vinmec Health Care System, Hanoi, Vietnam.,University of Science, Viet Nam University, Hanoi, Vietnam
| | - Van Duc Dang
- Vinmec Research Institute of Stem Cell and Gene Technology (VRISG), Vinmec Health Care System, Hanoi, Vietnam.,University of Science, Viet Nam University, Hanoi, Vietnam
| | - Phuong Thi Minh Dam
- Vinmec Research Institute of Stem Cell and Gene Technology (VRISG), Vinmec Health Care System, Hanoi, Vietnam.,College of Health Sciences, Vin University, Hanoi, Vietnam
| | - Hue Thi Hong Bui
- Vinmec Research Institute of Stem Cell and Gene Technology (VRISG), Vinmec Health Care System, Hanoi, Vietnam.,College of Health Sciences, Vin University, Hanoi, Vietnam
| | - Mai Quynh Trinh
- Vinmec Research Institute of Stem Cell and Gene Technology (VRISG), Vinmec Health Care System, Hanoi, Vietnam.,College of Health Sciences, Vin University, Hanoi, Vietnam
| | - Duc Minh Vu
- Vinmec Research Institute of Stem Cell and Gene Technology (VRISG), Vinmec Health Care System, Hanoi, Vietnam.,College of Health Sciences, Vin University, Hanoi, Vietnam
| | - Nhung Thi My Hoang
- Vinmec Research Institute of Stem Cell and Gene Technology (VRISG), Vinmec Health Care System, Hanoi, Vietnam.,University of Science, Viet Nam University, Hanoi, Vietnam
| | - Liem Nguyen Thanh
- Vinmec Research Institute of Stem Cell and Gene Technology (VRISG), Vinmec Health Care System, Hanoi, Vietnam.,College of Health Sciences, Vin University, Hanoi, Vietnam
| | - Uyen Thi Trang Than
- Vinmec Research Institute of Stem Cell and Gene Technology (VRISG), Vinmec Health Care System, Hanoi, Vietnam.,College of Health Sciences, Vin University, Hanoi, Vietnam
| |
Collapse
|
25
|
Williams R, Pawlus AD, Thornton MJ. Getting under the skin of hair aging: the impact of the hair follicle environment. Exp Dermatol 2020; 29:588-597. [DOI: 10.1111/exd.14109] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 01/24/2020] [Accepted: 04/25/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Rachael Williams
- The Centre for Skin Sciences Faculty of Life Sciences The University of Bradford Bradford UK
| | - Alison D Pawlus
- Aveda, Hair Innovation and Technology Blaine Minneapolis USA
| | - M Julie Thornton
- The Centre for Skin Sciences Faculty of Life Sciences The University of Bradford Bradford UK
| |
Collapse
|
26
|
Betriu N, Jarrosson-Moral C, Semino CE. Culture and Differentiation of Human Hair Follicle Dermal Papilla Cells in a Soft 3D Self-Assembling Peptide Scaffold. Biomolecules 2020; 10:biom10050684. [PMID: 32354097 PMCID: PMC7277435 DOI: 10.3390/biom10050684] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/19/2020] [Accepted: 04/24/2020] [Indexed: 01/28/2023] Open
Abstract
Hair follicle dermal papilla cells (HFDPC) are a specialized cell population located in the bulge of the hair follicle with unique characteristics such as aggregative behavior and the ability to induce new hair follicle formation. However, when expanded in conventional 2D monolayer culture, their hair inductive potency is rapidly lost. Different 3D culture techniques, including cell spheroid formation, have been described to restore, at least partially, their original phenotype, and therefore, their hair inductive ability once transplanted into a recipient skin. Moreover, hair follicle dermal papilla cells have been shown to differentiate into all mesenchymal lineages, but their differentiation potential has only been tested in 2D cultures. In the present work, we have cultured HFDPC in the 3D self-assembling peptide scaffold RAD16-I to test two different tissue engineering scenarios: restoration of HFDPC original phenotype after cell expansion and osteogenic and adipogenic differentiation. Experimental results showed that the 3D environment provided by RAD16-I allowed the restoration of HFDPC signature markers such as alkaline phosphatase, versican and corin. Moreover, RAD16-I supported, in the presence of chemical inductors, three-dimensional osteogenic and adipogenic differentiation. Altogether, this study suggests a potential 3D culture platform based on RAD16-I suitable for the culture, original phenotype recovery and differentiation of HFDPC.
Collapse
|
27
|
Tissue Engineering and Regenerative Medicine in Craniofacial Reconstruction and Facial Aesthetics. J Craniofac Surg 2020; 31:15-27. [PMID: 31369496 DOI: 10.1097/scs.0000000000005840] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The craniofacial region is anatomically complex and is of critical functional and cosmetic importance, making reconstruction challenging. The limitations of current surgical options highlight the importance of developing new strategies to restore the form, function, and esthetics of missing or damaged soft tissue and skeletal tissue in the face and cranium. Regenerative medicine (RM) is an expanding field which combines the principles of tissue engineering (TE) and self-healing in the regeneration of cells, tissues, and organs, to restore their impaired function. RM offers many advantages over current treatments as tissue can be engineered for specific defects, using an unlimited supply of bioengineered resources, and does not require immunosuppression. In the craniofacial region, TE and RM are being increasingly used in preclinical and clinical studies to reconstruct bone, cartilage, soft tissue, nerves, and blood vessels. This review outlines the current progress that has been made toward the engineering of these tissues for craniofacial reconstruction and facial esthetics.
Collapse
|
28
|
Joseph A, Baiju I, Bhat IA, Pandey S, Bharti M, Verma M, Pratap Singh A, Ansari MM, Chandra V, Saikumar G, Amarpal, Taru Sharma G. Mesenchymal stem cell-conditioned media: A novel alternative of stem cell therapy for quality wound healing. J Cell Physiol 2020; 235:5555-5569. [PMID: 31960454 DOI: 10.1002/jcp.29486] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/03/2020] [Indexed: 12/16/2022]
Abstract
Mesenchymal stem cells-conditioned media (MSCs-CM) contains several growth factors and cytokines, thus may be used as a better alternative to stem cell therapy, which needs to be elucidated. The present study was conducted to evaluate the therapeutic potential of caprine, canine, and guinea pig bone marrow-derived MSCs-CM in excision wound healing in a guinea pig model. MSCs were obtained from bone marrow, expanded ex vivo and characterized as per ISCT criteria. CM was collected assayed by western blot to ascertain the presence of important secretory biomolecules. Quantitative estimation by enzyme-linked immunosorbent assay was done for a vascular epidermal growth factor (VEGF) and interleukin-6 (IL-6) in caprine MSCs-CM and optimum time for collection of CM was decided as 72 hr. CM from all the species was lyophilized by freeze-drying method. Full-thickness (2 × 2 cm2 ) excision skin wounds were created in guinea pigs (six animals in each group) and respective lyophilized CM mixed with laminin gel was applied topically at weekly interval. On Day 28, histopathological examinations of healed skin were done by hemotoxylin and eosin staining. MSCs were found to secrete important growth factors and cytokines (i.e., VEGF, transforming growth factor-β1, fibroblast growth factor-2, insulin-like growth factor-1, stem cell factor, and IL-6) as demonstrated by immunohistochemistry and western blot assay. It was found that allogenic and xenogenic application of CM significantly improved quality wound healing with minimal scar formation. Thus, MSCs-CM can be used allogenically as well as xenogenically for quality wound healing.
Collapse
Affiliation(s)
- Anand Joseph
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Indu Baiju
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Irfan A Bhat
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Sriti Pandey
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Mukesh Bharti
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Megha Verma
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Anuj Pratap Singh
- Division of Veterinary Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Matin M Ansari
- ICAR-National Research Center on Camel, Jorebeer, Bikaner, Rajasthan, India
| | - Vikash Chandra
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Gutulla Saikumar
- Division of Veterinary Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Amarpal
- Division of Veterinary Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Gutulla Taru Sharma
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| |
Collapse
|
29
|
Abstract
The establishment of primary cells from fresh tissue is a widely used method for investigating human tissue in vitro. The skin harbors different cell populations in the dermis and the hair follicle, which can be isolated for downstream analysis. Here we describe the isolation of four dermal fibroblast populations from human haired skin and their maintenance in culture. The four cell populations for which isolation is described are papillary dermal fibroblast cells, reticular dermal fibroblast cells, hair follicle dermal sheath cells, and hair follicle dermal papilla cells.
Collapse
|
30
|
Zhou Q, Song Y, Zheng Q, Han R, Cheng H. Expression profile analysis of dermal papilla cells mRNA in response to WNT10B treatment. Exp Ther Med 2019; 19:1017-1023. [PMID: 32010264 PMCID: PMC6966109 DOI: 10.3892/etm.2019.8287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 10/10/2019] [Indexed: 02/07/2023] Open
Abstract
Dermal papilla cells (DPCs) are associated with the development of hair follicles (HFs) and the regulation of the hair growth cycle. Previous studies have shown that Wnt family member 10B (WNT10B) plays an important role in the proliferation and survival of DPCs in vitro, and promotes the growth of HFs. However, the underlying mechanisms have not been fully elucidated. The present study evaluated the role of WNT10B in regulating HF morphogenesis by characterizing the differential gene expression profiles between WNT10B-treated DPCs and control DPCs using RNA-sequencing (RNA-seq). A total of 1,073 and 451 genes were upregulated and downregulated, respectively. The RNA-seq data was subsequently validated by reverse-transcription quantitative PCR. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that 442 GO terms and 21 KEGG pathways were significantly enriched. Further functional analysis revealed that WNT10B decreased translation initiation, elongation and termination, and RNA metabolic processes in cultured DPCs compared with controls in vitro. Human signaling networks were compared using pathway analysis, and treatment of DPCs with WNT10B was revealed to downregulate the ribosome biogenesis pathway and decrease protein synthesis in vitro. KEGG pathway analysis showed that WNT10B upregulated the phosphoinositide 3-kinase/protein kinase B signaling pathway. The present study analyzed the expression of mRNA in WNT10B-treated DPCs using next-generation sequencing and uncovered mechanisms regulating the induction of HFs.
Collapse
Affiliation(s)
- Qiang Zhou
- Department of Dermatology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, P.R. China
| | - Yinjing Song
- Department of Dermatology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, P.R. China
| | - Qiaoli Zheng
- Department of Dermatology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, P.R. China
| | - Rui Han
- Department of Dermatology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, P.R. China
| | - Hao Cheng
- Department of Dermatology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, P.R. China
| |
Collapse
|
31
|
Markiewicz E, Idowu OC. DNA damage in human skin and the capacities of natural compounds to modulate the bystander signalling. Open Biol 2019; 9:190208. [PMID: 31847786 PMCID: PMC6936251 DOI: 10.1098/rsob.190208] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/19/2019] [Indexed: 12/20/2022] Open
Abstract
Human skin is a stratified organ frequently exposed to sun-generated ultraviolet radiation (UVR), which is considered one of the major factors responsible for DNA damage. Such damage can be direct, through interactions of DNA with UV photons, or indirect, mainly through enhanced production of reactive oxygen species that introduce oxidative changes to the DNA. Oxidative stress and DNA damage also associate with profound changes at the cellular and molecular level involving several cell cycle and signal transduction factors responsible for DNA repair or irreversible changes linked to ageing. Crucially, some of these factors constitute part of the signalling known for the induction of biological changes in non-irradiated, neighbouring cells and defined as the bystander effect. Network interactions with a number of natural compounds, based on their known activity towards these biomarkers in the skin, reveal the capacity to inhibit both the bystander signalling and cell cycle/DNA damage molecules while increasing expression of the anti-oxidant enzymes. Based on this information, we discuss the likely polypharmacology applications of the natural compounds and next-generation screening technologies in improving the anti-oxidant and DNA repair capacities of the skin.
Collapse
|
32
|
Kazi T, Niibe I, Nishikawa A, Matsuzaki T. Optimal stimulation toward the dermal papilla lineage can be promoted by combined use of osteogenic and adipogenic inducers. FEBS Open Bio 2019; 10:197-210. [PMID: 31730301 PMCID: PMC6996385 DOI: 10.1002/2211-5463.12763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 04/01/2019] [Accepted: 11/13/2019] [Indexed: 11/22/2022] Open
Abstract
Dermal papilla cells (DPCs) play crucial roles in hair regeneration, but they readily lose their hair‐forming ability during in vitro culture. Although the formation of spheroids partially restores the ability, shrinkage of the spheroids makes it difficult to maintain cellular viability. To address this problem, we stimulated DPCs with factors known to induce adipogenic and/or osteogenic differentiation, because DPCs share unique gene expression profiles with adipocytes and osteocytes. We isolated DPCs from versican (vcan)–GFP mice, in which GFP is expressed under the control of a vcan promoter, which is strongly active in DPCs of anagen hair follicles. GFP fluorescence was most intense when the spheroids were made from DPCs cultured in a half‐diluted combination of adipogenic and osteogenic media (CAO1/2), a Dulbecco’s modified Eagle’s medium‐based medium that contains 10% FBS, 275 nm dexamethasone, 2.5 mm β‐glycerol phosphate, 12.5 µg·mL−1 ascorbic acid, 0.125 µm isobutylmethylxanthine and 2.5 ng·mL−1 insulin. The dose of each additive used was less than the optimal dose for adipogenic or osteogenic differentiation, and shrinkage of the spheroids was avoided through the addition of fibroblast growth factor 2 and platelet‐derived growth factor‐AA to CAO1/2. In addition, the gene and protein expression of vcan, osteopontin, alkaline phosphatase and α‐smooth muscle actin in the spheroids were augmented to levels similar to those of the intact dermal papillae, which exhibited restored hair‐forming activity. In conclusion, a combination of certain adipogenic and osteogenic inducers, together with fibroblast growth factor 2 and platelet‐derived growth factor‐AA, can promote differentiation toward the DPC lineage.
Collapse
Affiliation(s)
- Taheruzzaman Kazi
- Bioscience and Biotechnology, The United Graduate School of Agricultural Sciences, Tottori University, Japan
| | - Ichitaro Niibe
- Department of Biological Science, Faculty of Life and Environment Science, Shimane University, Japan
| | - Akio Nishikawa
- Bioscience and Biotechnology, The United Graduate School of Agricultural Sciences, Tottori University, Japan.,Department of Biological Science, Faculty of Life and Environment Science, Shimane University, Japan
| | - Takashi Matsuzaki
- Bioscience and Biotechnology, The United Graduate School of Agricultural Sciences, Tottori University, Japan.,Department of Biological Science, Faculty of Life and Environment Science, Shimane University, Japan
| |
Collapse
|
33
|
Distinct Patterns of Hair Graft Survival After Transplantation Into 2 Nonhealing Ulcers: Is Location Everything? Dermatol Surg 2019; 45:557-565. [PMID: 30608290 DOI: 10.1097/dss.0000000000001748] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Studies highlighting the role of hair follicles (HFs) in wound healing have raised the challenge of bringing this knowledge to clinical applications. A successful translation is the transplantation of scalp HFs into chronic wounds to promote healing. OBJECTIVE To characterize scar formation and hair growth in nonhealing ulcers after transplantation. PATIENTS AND METHODS Nonhealing ulcers were treated with hair transplantation to promote wound healing. Hair follicles were harvested from the patient's scalp and inserted into the wound bed. Wound repair and hair growth were assessed clinically. Further analyses were performed in situ, using biopsies from the central and peripheral scar. RESULTS Rapid wound closure and differences of scar quality and hair growth between the central and peripheral wound areas were observed: the periphery healed with no hair shaft survival and an almost scarless appearance, the center healed with a fibrotic scar, with some hair shaft growth. In situ analyses revealed differences in dermal remodeling and collagen formation between central and peripheral scar areas. CONCLUSION Besides confirming the effectiveness of this therapy to promote wound healing in human skin, location-dependent disparities in scar quality and hair growth raise the intriguing question whether they are due to clinically important differences in mechanical forces and/or wound microenvironments between ulcer center and periphery.
Collapse
|
34
|
Coentro JQ, Pugliese E, Hanley G, Raghunath M, Zeugolis DI. Current and upcoming therapies to modulate skin scarring and fibrosis. Adv Drug Deliv Rev 2019; 146:37-59. [PMID: 30172924 DOI: 10.1016/j.addr.2018.08.009] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 07/08/2018] [Accepted: 08/26/2018] [Indexed: 12/12/2022]
Abstract
Skin is the largest organ of the human body. Being the interface between the body and the outer environment, makes it susceptible to physical injury. To maintain life, nature has endowed skin with a fast healing response that invariably ends in the formation of scar at the wounded dermal area. In many cases, skin remodelling may be impaired, leading to local hypertrophic scars or keloids. One should also consider that the scarring process is part of the wound healing response, which always starts with inflammation. Thus, scarring can also be induced in the dermis, in the absence of an actual wound, during chronic inflammatory processes. Considering the significant portion of the population that is subject to abnormal scarring, this review critically discusses the state-of-the-art and upcoming therapies in skin scarring and fibrosis.
Collapse
Affiliation(s)
- João Q Coentro
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI, Galway), Galway, Ireland; Science Foundation Ireland (SFI), Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI, Galway), Galway, Ireland
| | - Eugenia Pugliese
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI, Galway), Galway, Ireland; Science Foundation Ireland (SFI), Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI, Galway), Galway, Ireland
| | - Geoffrey Hanley
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI, Galway), Galway, Ireland; Science Foundation Ireland (SFI), Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI, Galway), Galway, Ireland
| | - Michael Raghunath
- Center for Cell Biology and Tissue Engineering, Institute for Chemistry and Biotechnology (ICBT), Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI, Galway), Galway, Ireland; Science Foundation Ireland (SFI), Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI, Galway), Galway, Ireland.
| |
Collapse
|
35
|
Murray RZ, West ZE, Cowin AJ, Farrugia BL. Development and use of biomaterials as wound healing therapies. BURNS & TRAUMA 2019; 7:2. [PMID: 30701184 PMCID: PMC6346526 DOI: 10.1186/s41038-018-0139-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 12/12/2018] [Indexed: 12/14/2022]
Abstract
There is a vast number of treatments on the market for the management of wounds and burns, representing a multi-billion dollar industry worldwide. These include conventional wound dressings, dressings that incorporate growth factors to stimulate and facilitate the wound healing process, and skin substitutes that incorporate patient-derived cells. This article will review the more established, and the recent advances in the use of biomaterials for wound healing therapies, and their future direction.
Collapse
Affiliation(s)
- Rachael Zoe Murray
- 1The Institute for Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4059 Australia
| | - Zoe Elizabeth West
- 1The Institute for Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4059 Australia
| | - Allison June Cowin
- 2Future Industries Institute, University of South Australia, Adelaide, SA 5095 Australia
| | - Brooke Louise Farrugia
- 3Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052 Australia
| |
Collapse
|
36
|
Hu P, Yang Q, Wang Q, Shi C, Wang D, Armato U, Prà ID, Chiarini A. Mesenchymal stromal cells-exosomes: a promising cell-free therapeutic tool for wound healing and cutaneous regeneration. BURNS & TRAUMA 2019; 7:38. [PMID: 31890717 PMCID: PMC6933895 DOI: 10.1186/s41038-019-0178-8] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 11/19/2019] [Indexed: 04/13/2023]
Abstract
Cutaneous regeneration at the wound site involves several intricate and dynamic processes which require a series of coordinated interactions implicating various cell types, growth factors, extracellular matrix (ECM), nerves, and blood vessels. Mesenchymal stromal cells (MSCs) take part in all the skin wound healing stages playing active and beneficial roles in animal models and humans. Exosomes, which are among the key products MSCs release, mimic the effects of parental MSCs. They can shuttle various effector proteins, messenger RNA (mRNA) and microRNAs (miRNAs) to modulate the activity of recipient cells, playing important roles in wound healing. Moreover, using exosomes avoids many risks associated with cell transplantation. Therefore, as a novel type of cell-free therapy, MSC-exosome -mediated administration may be safer and more efficient than whole cell. In this review, we provide a comprehensive understanding of the latest studies and observations on the role of MSC-exosome therapy in wound healing and cutaneous regeneration. In addition, we address the hypothesis of MSCs microenvironment extracellular vesicles (MSCs-MEVs) or MSCs microenvironment exosomes (MSCs-MExos) that need to take stock of and solved urgently in the related research about MSC-exosomes therapeutic applications. This review can inspire investigators to explore new research directions of MSC-exosome therapy in cutaneous repair and regeneration.
Collapse
Affiliation(s)
- Peng Hu
- Department of Burns & Plastic Surgery, The Affiliated Hospital of ZunYi Medical University, Dalian Road 149, ZunYi City, 563000 Gui Zhou Province China
| | - Qinxin Yang
- Department of Burns & Plastic Surgery, The Affiliated Hospital of ZunYi Medical University, Dalian Road 149, ZunYi City, 563000 Gui Zhou Province China
| | - Qi Wang
- Department of Burns & Plastic Surgery, The Affiliated Hospital of ZunYi Medical University, Dalian Road 149, ZunYi City, 563000 Gui Zhou Province China
| | - Chenshuo Shi
- Department of Burns & Plastic Surgery, The Affiliated Hospital of ZunYi Medical University, Dalian Road 149, ZunYi City, 563000 Gui Zhou Province China
| | - Dali Wang
- Department of Burns & Plastic Surgery, The Affiliated Hospital of ZunYi Medical University, Dalian Road 149, ZunYi City, 563000 Gui Zhou Province China
| | - Ubaldo Armato
- Human Histology and Embryology Unit, University of Verona Medical School, Strada Le Grazie 8, 37134 Verona, Italy
| | - Ilaria Dal Prà
- Human Histology and Embryology Unit, University of Verona Medical School, Strada Le Grazie 8, 37134 Verona, Italy
| | - Anna Chiarini
- Human Histology and Embryology Unit, University of Verona Medical School, Strada Le Grazie 8, 37134 Verona, Italy
| |
Collapse
|
37
|
Markiewicz E, Idowu OC. Involvement of the nuclear structural proteins in aging-related responses of human skin to the environmental stress. Clin Cosmet Investig Dermatol 2018; 11:297-307. [PMID: 29928140 PMCID: PMC6003287 DOI: 10.2147/ccid.s163792] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Human skin is a stratified endocrine organ with primary roles in protection against detrimental biochemical and biophysical factors in the environment. Environmental stress causes gradual accumulation of the macromolecular damage and clinical manifestations consistent with chronic inflammatory conditions and premature aging of the skin. Structural proteins of cell nucleus, the nuclear lamins and lamina-associated proteins, play an important role in the regulation of a number of signal transduction pathways associated with stress. The nuclear lamina proteins have been implicated in a number of degenerative disorders with frequent clinical manifestations of the skin conditions related to premature aging. Analysis of the molecular signatures in response of the skin to a range of damaging factors not only points at the likely involvement of the nuclear lamina in transmission of the signals between the environment and cell nucleus but also defines skin's sensitivity to stress, and therefore the capacities to counteract external damage in aging.
Collapse
Affiliation(s)
- Ewa Markiewicz
- Hexis Lab, Science Central, The Core, Newcastle upon Tyne, UK
| | | |
Collapse
|
38
|
Silva WN, Prazeres PHDM, Paiva AE, Lousado L, Turquetti AOM, Barreto RSN, de Alvarenga EC, Miglino MA, Gonçalves R, Mintz A, Birbrair A. Macrophage-derived GPNMB accelerates skin healing. Exp Dermatol 2018; 27:630-635. [PMID: 29505115 PMCID: PMC6013359 DOI: 10.1111/exd.13524] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2018] [Indexed: 12/22/2022]
Abstract
Healing is a vital response important for the re-establishment of the skin integrity following injury. Delayed or aberrant dermal wound healing leads to morbidity in patients. The development of therapies to improve dermal healing would be useful. Currently, the design of efficient treatments is stalled by the lack of detailed knowledge about the cellular and molecular mechanisms involved in wound healing. Recently, using state-of-the-art technologies, it was revealed that macrophages signal via GPNMB to mesenchymal stem cells, accelerating skin healing. Strikingly, transplantation of macrophages expressing GPNMB improves skin healing in GPNMB-mutant mice. Additionally, topical treatment with recombinant GPNMB restored mesenchymal stem cells recruitment and accelerated wound closure in the diabetic skin. From a drug development perspective, this GPNMB is a new candidate for skin healing.
Collapse
Affiliation(s)
- Walison N. Silva
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Ana E. Paiva
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luiza Lousado
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Anaelise O. M. Turquetti
- Anatomy of Domestic and Wild Animals Program, Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | - Rodrigo S. N. Barreto
- Anatomy of Domestic and Wild Animals Program, Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | - Erika Costa de Alvarenga
- Department of Natural Sciences, Federal University of São João del Rei, São João Del Rey, MG, Brazil
| | - Maria A. Miglino
- Anatomy of Domestic and Wild Animals Program, Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | - Ricardo Gonçalves
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Akiva Mintz
- Department of Radiology, Columbia University Medical Center, New York, NY, USA
| | - Alexander Birbrair
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
- Anatomy of Domestic and Wild Animals Program, Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
39
|
Mesenchymal Stromal Cells and Cutaneous Wound Healing: A Comprehensive Review of the Background, Role, and Therapeutic Potential. Stem Cells Int 2018; 2018:6901983. [PMID: 29887893 PMCID: PMC5985130 DOI: 10.1155/2018/6901983] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/09/2018] [Indexed: 12/13/2022] Open
Abstract
Cutaneous wound repair is a highly coordinated cascade of cellular responses to injury which restores the epidermal integrity and its barrier functions. Even under optimal healing conditions, normal wound repair of adult human skin is imperfect and delayed healing and scarring are frequent occurrences. Dysregulated wound healing is a major concern for global healthcare, and, given the rise in diabetic and aging populations, this medicoeconomic disease burden will continue to rise. Therapies to reliably improve nonhealing wounds and reduce scarring are currently unavailable. Mesenchymal stromal cells (MSCs) have emerged as a powerful technique to improve skin wound healing. Their differentiation potential, ease of harvest, low immunogenicity, and integral role in native wound healing physiology make MSCs an attractive therapeutic remedy. MSCs promote cell migration, angiogenesis, epithelialization, and granulation tissue formation, which result in accelerated wound closure. MSCs encourage a regenerative, rather than fibrotic, wound healing microenvironment. Recent translational research efforts using modern bioengineering approaches have made progress in creating novel techniques for stromal cell delivery into healing wounds. This paper discusses experimental applications of various stromal cells to promote wound healing and discusses the novel methods used to increase MSC delivery and efficacy.
Collapse
|
40
|
Ghetti M, Topouzi H, Theocharidis G, Papa V, Williams G, Bondioli E, Cenacchi G, Connelly JT, Higgins CA. Subpopulations of dermal skin fibroblasts secrete distinct extracellular matrix: implications for using skin substitutes in the clinic. Br J Dermatol 2018; 179:381-393. [PMID: 29266210 PMCID: PMC6175479 DOI: 10.1111/bjd.16255] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2017] [Indexed: 12/22/2022]
Abstract
Background While several commercial dermoepidermal scaffolds can promote wound healing of the skin, the achievement of complete skin regeneration still represents a major challenge. Objectives To perform biological characterization of self‐assembled extracellular matrices (ECMs) from three different subpopulations of fibroblasts found in human skin: papillary fibroblasts (Pfi), reticular fibroblasts (Rfi) and dermal papilla fibroblasts (DPfi). Methods Fibroblast subpopulations were cultured with ascorbic acid to promote cell‐assembled matrix production for 10 days. Subsequently, cells were removed and the remaining matrices characterized. Additionally, in another experiment, keratinocytes were seeded on the top of cell‐depleted ECMs to generate epidermal‐only skin constructs. Results We found that the ECM self‐assembled by Pfi exhibited randomly oriented fibres associated with the highest interfibrillar space, reflecting ECM characteristics that are physiologically present within the papillary dermis. Mass spectrometry followed by validation with immunofluorescence analysis showed that thrombospondin 1 is preferentially expressed within the DPfi‐derived matrix. Moreover, we observed that epidermal constructs grown on DPfi or Pfi matrices exhibited normal basement membrane formation, whereas Rfi matrices were unable to support membrane formation. Conclusions We argue that inspiration can be taken from these different ECMs, to improve the design of therapeutic biomaterials in skin engineering applications. What's already known about this topic? There are several types of skin fibroblasts within the dermis that can be defined by their spatial location: papillary fibroblasts (Pfi), reticular fibroblasts (Rfi) and dermal papilla fibroblasts (DPfi). Extracellular matrix (ECM) composition is distinct with regard to composition and architecture within the papillary, reticular and hair follicle dermis in vivo. When skin is injured, dermal replacement substitutes used for tissue repair do not reflect the heterogeneity observed within the skin dermis.
What does this study add? Self‐assembled ECMs from different subpopulations of skin fibroblasts can be generated in vitro. Cell‐assembled ECMs made in vitro from Pfi, Rfi and DPfi reflect dermal heterogeneity seen in vivo and are morphologically, functionally and compositionally distinct from one another. Inspiration should be taken from cell‐assembled ECMs from distinct fibroblast subpopulations, to improve the design of therapeutic biomaterials in skin engineering applications.
What is the translational message? Cell‐assembled ECMs from DPfi and Pfi, but not Rfi, can support formation of a basement membrane in adjacent keratinocytes in vitro. Inspiration should be taken from cell‐assembled ECMs from distinct fibroblast subpopulations, to improve the design of therapeutic biomaterials in skin engineering applications.
Linked Comment: https://doi.org/10.1111/bjd.16773. https://doi.org/10.1111/bjd.16946 available online https://goo.gl/Uqv3dl
Collapse
Affiliation(s)
- M Ghetti
- Biomedical and Neuromotor Sciences Department, University of Bologna, Bologna, Italy.,Burns Centre and Emilia Romagna Regional Skin Bank, Cesena, Italy.,Department of Bioengineering, Imperial College London, London, U.K
| | - H Topouzi
- Department of Bioengineering, Imperial College London, London, U.K
| | - G Theocharidis
- Centre for Cell Biology and Cutaneous Research, Barts and the London School of Medicine and Dentistry, Queen Mary University London, London, U.K
| | - V Papa
- Biomedical and Neuromotor Sciences Department, University of Bologna, Bologna, Italy
| | | | - E Bondioli
- Burns Centre and Emilia Romagna Regional Skin Bank, Cesena, Italy
| | - G Cenacchi
- Biomedical and Neuromotor Sciences Department, University of Bologna, Bologna, Italy
| | - J T Connelly
- Centre for Cell Biology and Cutaneous Research, Barts and the London School of Medicine and Dentistry, Queen Mary University London, London, U.K
| | - C A Higgins
- Department of Bioengineering, Imperial College London, London, U.K
| |
Collapse
|
41
|
Agabalyan NA, Rosin NL, Rahmani W, Biernaskie J. Hair follicle dermal stem cells and skin-derived precursor cells: Exciting tools for endogenous and exogenous therapies. Exp Dermatol 2018; 26:505-509. [PMID: 28418596 DOI: 10.1111/exd.13359] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2017] [Indexed: 12/11/2022]
Abstract
Understanding the cellular interactions and molecular signals underlying hair follicle (HF) regeneration may have significant implications for restorative therapies for skin disease that diminish hair growth, whilst also serving to provide fundamental insight into the mechanisms underlying adult tissue regeneration. One of the major, yet underappreciated, players in this process is the underlying HF mesenchyme. Here, we provide an overview of a mesenchymal progenitor pool referred to as hair follicle dermal stem cells (hfDSCs), discuss their potential functions within the skin and their relationship to skin-derived precursors (SKPs), and consider unanswered questions about the function of these specialized fibroblasts. We contend that dermal stem cells provide an important reservoir of renewable dermal progenitors that may enable development of novel restorative therapies following hair loss, skin injury or disease.
Collapse
Affiliation(s)
- Natacha A Agabalyan
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Nicole L Rosin
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Waleed Rahmani
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Jeff Biernaskie
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
42
|
Topouzi H, Logan NJ, Williams G, Higgins CA. Methods for the isolation and 3D culture of dermal papilla cells from human hair follicles. Exp Dermatol 2018; 26:491-496. [PMID: 28418608 PMCID: PMC5519926 DOI: 10.1111/exd.13368] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2017] [Indexed: 12/18/2022]
Abstract
The dermal papilla is a cluster of mesenchymal cells located at the base of the hair follicle which have a number of important roles in the regulation of hair growth. As a consequence, in vitro models of these cells are widely used to study the molecular mechanisms which underlie hair follicle induction, growth and maintenance. While dermal papilla from rodent hair follicles can be digested prior to cell isolation, the unique extracellular matrix composition found in human dermal papilla renders enzymes such as trypsin and collagenase insufficient for digestion of the dermal papilla into a single cell suspension. As such, to grow human dermal papilla cells in vitro, the papilla has to first be isolated via a micro-dissection approach from the follicle. In this article we describe the micro-dissection and culture methods, which we use within our laboratory, for the study of human dermal papilla cells.
Collapse
Affiliation(s)
- Helena Topouzi
- Department of Bioengineering, Imperial College London, London, UK
| | - Niall J Logan
- Department of Bioengineering, Imperial College London, London, UK
| | | | - Claire A Higgins
- Department of Bioengineering, Imperial College London, London, UK
| |
Collapse
|
43
|
Kiani MT, Higgins CA, Almquist BD. The Hair Follicle: An Underutilized Source of Cells and Materials for Regenerative Medicine. ACS Biomater Sci Eng 2018; 4:1193-1207. [PMID: 29682604 PMCID: PMC5905671 DOI: 10.1021/acsbiomaterials.7b00072] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The hair follicle is one of only two structures within the adult body that selectively degenerates and regenerates, making it an intriguing organ to study and use for regenerative medicine. Hair follicles have been shown to influence wound healing, angiogenesis, neurogenesis, and harbor distinct populations of stem cells; this has led to cells from the follicle being used in clinical trials for tendinosis and chronic ulcers. In addition, keratin produced by the follicle in the form of a hair fiber provides an abundant source of biomaterials for regenerative medicine. In this review, we provide an overview of the structure of a hair follicle, explain the role of the follicle in regulating the microenvironment of skin and the impact on wound healing, explore individual cell types of interest for regenerative medicine, and cover several applications of keratin-based biomaterials.
Collapse
Affiliation(s)
- Mehrdad T Kiani
- Department of Bioengineering, Royal School of Mines, Imperial College London, London SW7 2AZ UK
- Department of Materials Science, 496 Lomita Mall, Stanford University, Stanford CA 94305 USA
| | - Claire A Higgins
- Department of Bioengineering, Royal School of Mines, Imperial College London, London SW7 2AZ UK
| | - Benjamin D Almquist
- Department of Bioengineering, Royal School of Mines, Imperial College London, London SW7 2AZ UK
| |
Collapse
|
44
|
Wang Y, Pati S, Schreiber M. Cellular therapies and stem cell applications in trauma. Am J Surg 2018; 215:963-972. [PMID: 29502858 DOI: 10.1016/j.amjsurg.2018.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/02/2018] [Accepted: 02/02/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND As the leading cause of mortality in the United States, trauma management have improved drastically over the past few decades with improved resuscitation and hemorrhage control. Stem cells are being used in an attempt to augment healing from trauma. DATA SOURCES PubMed and ClinicalTrials.gov were searched for published and registered pre-clinical and clinical trials for the application of stem cells to AKI, ARDS, shock, infection, TBI, wound healing, and bone healing. CONCLUSIONS Stem cell therapy for augmentation of healing traumatic injuries appears safe, as demonstrated by completed phase I/II trials. Further large scale studies are needed to assess the clinical efficacy.
Collapse
Affiliation(s)
- Yuxuan Wang
- Oregon Health and Science University, Department of Trauma, Surgical Critical Care, and Acute Care Surgery, USA.
| | - Shibani Pati
- University of California, San Francisco, Department of Laboratory Medicine, USA
| | - Martin Schreiber
- Oregon Health and Science University, Department of Trauma, Surgical Critical Care, and Acute Care Surgery, USA
| |
Collapse
|
45
|
Lee JY, Oh N, Park KS. Ell3 Modulates the Wound Healing Activity of Conditioned Medium of Adipose-derived Stem Cells. Dev Reprod 2017; 21:335-342. [PMID: 29082349 PMCID: PMC5651700 DOI: 10.12717/dr.2017.21.3.335] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 09/25/2017] [Accepted: 09/26/2017] [Indexed: 01/09/2023]
Abstract
While adipose-derived stem cell-conditioned medium (ADSC-CM) has been
demonstrated to promote skin wound healing, the mechanism regulating this effect
remains unelucidated. In this study, we aimed to investigate the role of Ell3 in
the wound healing activity of ADSC-CM. In vitro analysis
revealed that Ell3 suppression in ADSCs impairs the promotive activity of
ADSC-CM on the proliferation and migration of mouse embryonic fibroblasts (MEF)
and normal human dermal fibroblasts (NHDF). Consistently, the expression of MMP
family genes, which regulate cell proliferation and migration, was significantly
suppressed in MEF and NHDF treated with siEll3-transfected ADSC-CM.
Proinflammatory cytokines, such as interleukin-1 and interleukin-6, were highly
expressed in MEF treated with siEll3-transfected ADSC-CM. The wound healing
activity of siEll3-transfected ADSC-CM was significantly lower than that of the
control in vivo. Our results suggest that Ell3 may contribute
to the inhibition of inflammatory response during skin wound healing.
Collapse
Affiliation(s)
- Jae-Yong Lee
- Department of Biomedical Science, College of Life Science, CHA University, Seoul, Korea
| | - Nuri Oh
- Department of Biomedical Science, College of Life Science, CHA University, Seoul, Korea
| | - Kyung-Soon Park
- Department of Biomedical Science, College of Life Science, CHA University, Seoul, Korea
| |
Collapse
|
46
|
Martínez MM, Travesedo EE, Acosta FJ. Hair-follicle Transplant Into Chronic Ulcers: A New Graft Concept. ACTAS DERMO-SIFILIOGRAFICAS 2017. [DOI: 10.1016/j.adengl.2017.05.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
47
|
Trasplante de folículos pilosos en úlceras crónicas: un nuevo concepto de injerto. ACTAS DERMO-SIFILIOGRAFICAS 2017; 108:524-531. [DOI: 10.1016/j.ad.2017.02.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 01/29/2017] [Accepted: 02/26/2017] [Indexed: 01/24/2023] Open
|
48
|
Affiliation(s)
- F. Jimenez
- Mediteknia Dermatology Clinic, and Research Associate of the Medical Pathology Group; Instituto de Investigación Biosanitaria; Universidad de Las Palmas de Gran Canaria; Gran Canaria Canary Islands Spain
| |
Collapse
|
49
|
Martínez ML, Escario E, Poblet E, Sánchez D, Buchón FF, Izeta A, Jimenez F. Hair follicle-containing punch grafts accelerate chronic ulcer healing: A randomized controlled trial. J Am Acad Dermatol 2017; 75:1007-1014. [PMID: 27745629 DOI: 10.1016/j.jaad.2016.02.1161] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 02/03/2016] [Accepted: 02/09/2016] [Indexed: 01/02/2023]
Abstract
BACKGROUND A prominent role of hair follicle-derived cells in epidermal wound closure is now well established but clinical translation of basic research findings is scarce. Although skin punch grafts have been used as a therapeutic intervention to improve healing of chronic leg ulcers, they are normally harvested from nonhairy areas, thus not taking advantage of the reported role of the hair follicle as a wound-healing promoter. OBJECTIVE We sought to substantiate the role of hair follicles in venous leg ulcer healing by transplanting hair follicle-containing versus nonhairy punch grafts. METHODS This was a randomized controlled trial with intraindividual comparison of hair follicle scalp grafts and nonhairy skin grafts transplanted in parallel into 2 halves of the same ulcer. RESULTS Ulcer healing measured as the average percentage reduction 18 weeks postintervention was significantly increased (P = .002) in the hair follicle group with a 75.15% (SD 23.03) ulcer area reduction compared with 33.07% (SD 46.17) in the control group (nonhairy grafts). LIMITATIONS Sample size was small (n = 12). CONCLUSION Autologous transplantation of terminal hair follicles by scalp punch grafts induces better healing than punch grafts harvested from nonhairy areas. Hair punch grafting is a minimally invasive surgical procedure that appears to be effective as a therapeutic tool for chronic venous leg ulcers.
Collapse
Affiliation(s)
| | - Eduardo Escario
- Department of Dermatology, Hospital General Universitario de Albacete and Universidad de Castilla La Mancha, Albacete, Spain
| | - Enrique Poblet
- Department of Pathology, Hospital General Universitario Reina Sofía de Murcia and Universidad de Murcia, Murcia, Spain
| | - David Sánchez
- Department of Ingeniería Cartográfica, Geodesia y Fotogrametría, Universidad Politécnica de Valencia, Valencia, Spain
| | - Fernando-Francisco Buchón
- Department of Ingeniería Cartográfica, Geodesia y Fotogrametría, Universidad Politécnica de Valencia, Valencia, Spain
| | - Ander Izeta
- Instituto Biodonostia, Hospital Universitario Donostia, San Sebastian, Spain
| | - Francisco Jimenez
- Mediteknia Dermatology Clinic, Medical Pathology Group, University of Las Palmas de Gran Canaria, Gran Canaria, Spain.
| |
Collapse
|
50
|
Higgins CA, Roger MF, Hill RP, Ali-Khan AS, Garlick JA, Christiano AM, Jahoda CAB. Multifaceted role of hair follicle dermal cells in bioengineered skins. Br J Dermatol 2017; 176:1259-1269. [PMID: 27679975 DOI: 10.1111/bjd.15087] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2016] [Indexed: 01/16/2023]
Abstract
BACKGROUND The method of generating bioengineered skin constructs was pioneered several decades ago; nowadays these constructs are used regularly for the treatment of severe burns and nonhealing wounds. Commonly, these constructs are comprised of skin fibroblasts within a collagen scaffold, forming the skin dermis, and stratified keratinocytes overlying this, forming the skin epidermis. In the past decade there has been a surge of interest in bioengineered skins, with researchers seeking alternative cell sources, or scaffolds, from which constructs can be established, and for more biomimetic equivalents with skin appendages. OBJECTIVES To evaluate whether human hair follicle dermal cells can act as an alternative cell source for engineering the dermal component of engineered skin constructs. METHODS We established in vitro skin constructs by incorporating into the collagenous dermal compartment: (i) primary interfollicular dermal fibroblasts, (ii) hair follicle dermal papilla cells or (iii) hair follicle dermal sheath cells. In vivo skins were established by mixing dermal cells and keratinocytes in chambers on top of immunologically compromised mice. RESULTS All fibroblast subtypes were capable of supporting growth of overlying epithelial cells, both in vitro and in vivo. However, we found hair follicle dermal sheath cells to be superior to fibroblasts in their capacity to influence the establishment of a basal lamina. CONCLUSIONS Human hair follicle dermal cells can be readily interchanged with interfollicular fibroblasts and used as an alternative cell source for establishing the dermal component of engineered skin both in vitro and in vivo.
Collapse
Affiliation(s)
- C A Higgins
- Department of Dermatology, Columbia University, New York, NY, U.S.A.,Department of Bioengineering, Imperial College London, London, U.K
| | - M F Roger
- School of Biological and Biomedical Sciences, Durham University, Durham, U.K
| | - R P Hill
- School of Biological and Biomedical Sciences, Durham University, Durham, U.K
| | - A S Ali-Khan
- Department of Plastic Surgery, University Hospital of Durham, Durham, U.K
| | - J A Garlick
- Sackler Graduate School of Biomedical Sciences, Tufts University, Boston, MA, U.S.A
| | - A M Christiano
- Department of Dermatology, Columbia University, New York, NY, U.S.A.,Department of Genetics and Development, Columbia University, New York, NY, U.S.A
| | - C A B Jahoda
- School of Biological and Biomedical Sciences, Durham University, Durham, U.K
| |
Collapse
|