1
|
Jia M, Wang J, Lin C, Zhang Q, Xue Y, Huang X, Ren Y, Chen C, Liu Y, Xu Y. Hydrogel Strategies for Female Reproduction Dysfunction. ACS NANO 2024; 18:30132-30152. [PMID: 39437800 DOI: 10.1021/acsnano.4c05634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Infertility is an important issue for human reproductive health, with over half of all cases of infertility associated with female factors. Dysfunction of the complex female reproductive system may cause infertility. In clinical practice, female infertility is often treated with oral medications and/or surgical procedures, and ultimately with assisted reproductive technologies. Owing to their excellent biocompatibility, low immunogenicity, and adjustable mechanical properties, hydrogels are emerging as valuable tools in the reconstruction of organ function, supplemented by tissue engineering techniques to increase their structure and functionality. Hydrogel-based female reproductive reconstruction strategies targeting the pathological mechanisms of female infertility may provide alternatives for the treatment of ovarian, endometrium/uterine, and fallopian tube dysfunction. In this review, we provide a general introduction to the basic physiology and pathology of the female reproductive system, the limitations of current infertility treatments, and the lack of translation from animal models to human reproductive physiology. We further provide an overview of the current and future potential applications of hydrogels in the treatment of female reproductive system dysfunction, highlighting the great prospects of hydrogel-based strategies in the field of translational medicine, along with the significant challenges to be overcome.
Collapse
Affiliation(s)
- Minxuan Jia
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
- GBA National Institute for Nanotechnology Innovation, Guangzhou, Guangdong 510535, China
- School of Biomedical Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Jiamin Wang
- Reproductive Medical Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- The Key Laboratory of Reproductive Medicine of Guangdong Province, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong 510080, China
| | - Chubing Lin
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
- GBA National Institute for Nanotechnology Innovation, Guangzhou, Guangdong 510535, China
- School of Biomedical Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Qingyan Zhang
- Reproductive Medical Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- The Key Laboratory of Reproductive Medicine of Guangdong Province, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong 510080, China
| | - Yueguang Xue
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
- GBA National Institute for Nanotechnology Innovation, Guangzhou, Guangdong 510535, China
- School of Biomedical Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Xin Huang
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
- GBA National Institute for Nanotechnology Innovation, Guangzhou, Guangdong 510535, China
- School of Biomedical Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Yan Ren
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Chunying Chen
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Ying Liu
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Yanwen Xu
- Reproductive Medical Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- The Key Laboratory of Reproductive Medicine of Guangdong Province, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong 510080, China
| |
Collapse
|
2
|
Goedegebuure M, Bury MI, Wang X, Sanfelice P, Cammarata F, Wang L, Sharma TT, Rajinikanth N, Karra V, Siddha V, Sharma AK, Ameer GA. A biodegradable microgrooved and tissue mechanocompatible citrate-based scaffold improves bladder tissue regeneration. Bioact Mater 2024; 41:553-563. [PMID: 39246838 PMCID: PMC11380464 DOI: 10.1016/j.bioactmat.2024.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 09/10/2024] Open
Abstract
Chronic bladder dysfunction due to bladder disease or trauma is detrimental to affected patients as it can lead to increased risk of upper urinary tract dysfunction. Current treatment options include surgical interventions that enlarge the bladder with autologous bowel tissue to alleviate pressure on the upper urinary tract. This highly invasive procedure, termed bladder augmentation enterocystoplasty (BAE), significantly increases the risk of patient morbidity and mortality due to the incompatibility between bowel and bladder tissue. Therefore, patients would significantly benefit from an alternative treatment strategy that can regenerate healthy tissue and restore overall bladder function. Previous research has demonstrated the potential of citrate-based scaffolds co-seeded with bone marrow-derived stem/progenitor cells as an alternative graft for bladder augmentation. Recognizing that contact guidance can potentially influence tissue regeneration, we hypothesized that microtopographically patterned scaffolds would modulate cell responses and improve overall quality of the regenerated bladder tissue. We fabricated microgrooved (MG) scaffolds using the citrate-based biomaterial poly (1,8-octamethylene-citrate-co-octanol) (POCO) and co-seeded them with human bone marrow-derived mesenchymal stromal cells (MSCs) and CD34+ hematopoietic stem/progenitor cells (HSPCs). MG POCO scaffolds supported MSC and HSPC attachment, and MSC alignment within the microgrooves. All scaffolds were characterized and assessed for bladder tissue regeneration in an established nude rat bladder augmentation model. In all cases, normal physiological function was maintained post-augmentation, even without the presence of stem/progenitor cells. Urodynamic testing at 4-weeks post-augmentation for all experimental groups demonstrated that bladder capacity increased and bladder compliance was normal. Histological evaluation of the regenerated tissue revealed that cell-seeded scaffolds restored normal bladder smooth muscle content and resulted in increased revascularization and peripheral nerve regeneration. The presence of microgrooves on the cell-seeded scaffolds increased microvasculature formation by 20 % and urothelial layer thickness by 25 % in the regenerating tissue. Thus, this work demonstrates that microtopography engineering can influence bladder tissue regeneration to improve overall anatomical structure and re-establish bladder physiology.
Collapse
Affiliation(s)
- Madeleine Goedegebuure
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Chicago, IL, USA
| | - Matthew I Bury
- Department of Surgery, Division of Urology, Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Stanley Manne Children's Research Institute, Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Xinlong Wang
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Chicago, IL, USA
| | - Pasquale Sanfelice
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Federico Cammarata
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Larry Wang
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Tiffany T Sharma
- Department of Surgery, Division of Urology, Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Stanley Manne Children's Research Institute, Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Nachiket Rajinikanth
- Department of Surgery, Division of Urology, Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Stanley Manne Children's Research Institute, Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Vikram Karra
- Department of Surgery, Division of Urology, Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Stanley Manne Children's Research Institute, Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Vidhika Siddha
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Arun K Sharma
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Department of Surgery, Division of Urology, Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Chicago, IL, USA
- Simpson Querrey Institute, Northwestern University, Chicago, IL, USA
- Stanley Manne Children's Research Institute, Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Guillermo A Ameer
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Chicago, IL, USA
- International Institute for Nanotechnology, Northwestern University, Chicago, IL, USA
- Simpson Querrey Institute, Northwestern University, Chicago, IL, USA
- Chemistry for Life Processes Institute, Northwestern University, Chicago, IL, USA
| |
Collapse
|
3
|
Diaz EC. Editorial commentary to "Assessing the effects of bladder decellularization protocols on extracellular matrix (ECM) structure, mechanics, and biology". J Pediatr Urol 2024; 20:851-852. [PMID: 39117516 DOI: 10.1016/j.jpurol.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024]
Affiliation(s)
- Edward C Diaz
- Division of Pediatric Urology, Children's Hospital Los Angeles, 4650 Sunset Blvd., #114, Los Angeles, CA, 90027, USA.
| |
Collapse
|
4
|
Fossum M. Editorial comments to "Assessing the effects of bladder decellularization protocols on extracellular matrix (ECM) structure, mechanics, and biology" (JPUROL-D-24-00006). J Pediatr Urol 2024; 20:855-856. [PMID: 39214746 DOI: 10.1016/j.jpurol.2024.07.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 09/04/2024]
Affiliation(s)
- Magdalena Fossum
- Department of Clinical Medicine, University of Copenhagen, 3B Blegdamsvej, DK-2200 Copenhagen N, Denmark; Department of Pediatric Surgery, Section 4272, Copenhagen University Hospital Rigshospitalet, 9 Blegdamsvej, DK-2100 Copenhagen, Denmark; Department of Women's and Children's Health, Biomedicum, Floor 4, Karolinska Institutet, SE 171 76 Stockholm, Sweden.
| |
Collapse
|
5
|
Czarnogórski MC, Koper K, Petrasz P, Vetterlein MW, Pokrywczyńska M, Juszczak K, Drewa T, Adamowicz J. Urinary bladder transplantation in humans - current status and future perspectives. Nat Rev Urol 2024:10.1038/s41585-024-00935-2. [PMID: 39304780 DOI: 10.1038/s41585-024-00935-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2024] [Indexed: 09/22/2024]
Abstract
Urinary bladder vascularized allograft transplantation in humans is currently extensively being investigated worldwide, owing to the theoretical potential of this approach as a therapeutic option for individuals with end-stage, non-oncological bladder conditions or congenital bladder pathologies. To date, a successful attempt at urinary bladder autotransplantation was carried out in a heart-beating brain-dead research human donor. The robot-assisted surgical technique was shown to be optimal for performing this procedure, achieving a good performance in terms of both bladder allograft collection as well as vascular, ureterovesical and vesicourethral anastomoses. The urinary bladder vascularized allograft would be an alternative to traditional urinary diversion methods that rely on the use of intestinal segments, potentially avoiding adverse effects associated with these approaches. However, different from ileal urinary diversion, bladder transplantation would require lifelong immune suppression. Clinical trials are in progress to assess the vascularized bladder allograft transplantation technique, as well as the safety of this procedure in oncological and non-oncological indications.
Collapse
Affiliation(s)
- Michał C Czarnogórski
- Department and Chair of Urology and Andrology, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland.
| | - Krzysztof Koper
- Department of Oncology, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Piotr Petrasz
- Department of Urology and Urological Oncology, Multidisciplinary Regional Hospital in Gorzów Wielkopolski, Gorzów Wielkopolski, Poland
| | - Malte W Vetterlein
- Department of Urology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Marta Pokrywczyńska
- Chair of Urology, Department of Regenerative Medicine, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Kajetan Juszczak
- Department and Chair of Urology and Andrology, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Tomasz Drewa
- Department and Chair of Urology and Andrology, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Jan Adamowicz
- Department and Chair of Urology and Andrology, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| |
Collapse
|
6
|
Gholami K, Deyhimfar R, Mirzaei A, Karimizadeh Z, Mashhadi R, Zahmatkesh P, Ghajar Azodian H, Aghamir SMK. Decellularized amniotic membrane hydrogel promotes mesenchymal stem cell differentiation into smooth muscle cells. FASEB J 2024; 38:e70004. [PMID: 39190010 DOI: 10.1096/fj.202302170rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 06/22/2024] [Accepted: 08/07/2024] [Indexed: 08/28/2024]
Abstract
Previous studies showed that the bladder extracellular matrix (B-ECM) could increase the differentiation efficiency of mesenchymal cells into smooth muscle cells (SMC). This study investigates the potential of human amniotic membrane-derived hydrogel (HAM-hydrogel) as an alternative to xenogeneic B-ECM for the myogenic differentiation of the rabbit adipose tissue-derived MSC (AD-MSC). Decellularized human amniotic membrane (HAM) and sheep urinary bladder (SUB) were utilized to create pre-gel solutions for hydrogel formation. Rabbit AD-MSCs were cultured on SUB-hydrogel or HAM-hydrogel-coated plates supplemented with differentiation media containing myogenic growth factors (PDGF-BB and TGF-β1). An uncoated plate served as the control. After 2 weeks, real-time qPCR, immunocytochemistry, flow cytometry, and western blot were employed to assess the expression of SMC-specific markers (MHC and α-SMA) at both protein and mRNA levels. Our decellularization protocol efficiently removed cell nuclei from the bladder and amniotic tissues, preserving key ECM components (collagen, mucopolysaccharides, and elastin) within the hydrogels. Compared to the control, the hydrogel-coated groups exhibited significantly upregulated expression of SMC markers (p ≤ .05). These findings suggest HAM-hydrogel as a promising xenogeneic-free alternative for bladder tissue engineering, potentially overcoming limitations associated with ethical concerns and contamination risks of xenogeneic materials.
Collapse
Affiliation(s)
- Keykavos Gholami
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Roham Deyhimfar
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Stem Cells Technology and Tissue Regeneration, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Akram Mirzaei
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Karimizadeh
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Rahil Mashhadi
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Zahmatkesh
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | | |
Collapse
|
7
|
Sardari S, Hheidari A, Ghodousi M, Rahi A, Pishbin E. Nanotechnology in tissue engineering: expanding possibilities with nanoparticles. NANOTECHNOLOGY 2024; 35:392002. [PMID: 38941981 DOI: 10.1088/1361-6528/ad5cfb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 06/28/2024] [Indexed: 06/30/2024]
Abstract
Tissue engineering is a multidisciplinary field that merges engineering, material science, and medical biology in order to develop biological alternatives for repairing, replacing, maintaining, or boosting the functionality of tissues and organs. The ultimate goal of tissue engineering is to create biological alternatives for repairing, replacing, maintaining, or enhancing the functionality of tissues and organs. However, the current landscape of tissue engineering techniques presents several challenges, including a lack of suitable biomaterials, inadequate cell proliferation, limited methodologies for replicating desired physiological structures, and the unstable and insufficient production of growth factors, which are essential for facilitating cell communication and the appropriate cellular responses. Despite these challenges, there has been significant progress made in tissue engineering techniques in recent years. Nanoparticles hold a major role within the realm of nanotechnology due to their unique qualities that change with size. These particles, which provide potential solutions to the issues that are met in tissue engineering, have helped propel nanotechnology to its current state of prominence. Despite substantial breakthroughs in the utilization of nanoparticles over the past two decades, the full range of their potential in addressing the difficulties within tissue engineering remains largely untapped. This is due to the fact that these advancements have occurred in relatively isolated pockets. In the realm of tissue engineering, the purpose of this research is to conduct an in-depth investigation of the several ways in which various types of nanoparticles might be put to use. In addition to this, it sheds light on the challenges that need to be conquered in order to unlock the maximum potential of nanotechnology in this area.
Collapse
Affiliation(s)
- Sohrab Sardari
- School of Mechanical Engineering, Iran University of Science and Technology, Tehran 13114-16846, Iran
| | - Ali Hheidari
- Department of Mechanical Engineering, Islamic Azad University, Science and Research branch, Tehran, Iran
| | - Maryam Ghodousi
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA, United States of America
| | - Amid Rahi
- Pathology and Stem Cell Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Esmail Pishbin
- Bio-microfluidics Lab, Department of Electrical Engineering and Information Technology, Iranian Research Organization for Science and Technology, Tehran, Iran
| |
Collapse
|
8
|
Fonteles CSR, Steele JW, Idowu DI, Burgelin B, Finnell RH, Corradetti B. Amniotic fluid-derived stem cells: potential factories of natural and mimetic strategies for congenital malformations. RESEARCH SQUARE 2024:rs.3.rs-4325422. [PMID: 38883749 PMCID: PMC11177991 DOI: 10.21203/rs.3.rs-4325422/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Background Mesenchymal stem cells (MSCs) from gestational tissues represent promising strategies for in utero treatment of congenital malformations, but plasticity and required high-risk surgical procedures limit their use. Here we propose natural exosomes (EXOs) isolated from amniotic fluid-MSCs (AF-MSCs), and their mimetic counterparts (MIMs), as valid, stable, and minimally invasive therapeutic alternatives. Methods MIMs were generated from AF-MSCs by combining sequential filtration steps through filter membranes with different porosity and size exclusion chromatography columns. Physiochemical and molecular characterization was performed to compare them to EXOs released from the same number of cells. The possibility to exploit both formulations as mRNA-therapeutics was explored by evaluating cell uptake (using two different cell types, fibroblasts, and macrophages) and mRNA functionality overtime in an in vitro experimental setting as well as in an ex vivo, whole embryo culture using pregnant C57BL6 dams. Results Molecular and physiochemical characterization showed no differences between EXOs and MIMs, with MIMs determining a 3-fold greater yield. MIMs delivered a more intense and prolonged expression of mRNA encoding for green fluorescent protein (GFP) in macrophages and fibroblasts. An ex-vivo whole embryo culture demonstrated that MIMs mainly accumulate at the level of the yolk sac, while EXOs reach the embryo. Conclusions The present data confirms the potential application of EXOs for the prenatal repair of neural tube defects and proposes MIMs as prospective vehicles to prevent congenital malformations caused by in utero exposure to drugs.
Collapse
|
9
|
Zeng XX, Wu Y. Strategies of Bladder Reconstruction after Partial or Radical Cystectomy for Bladder Cancer. Mol Biotechnol 2024:10.1007/s12033-024-01163-0. [PMID: 38761327 DOI: 10.1007/s12033-024-01163-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/03/2024] [Indexed: 05/20/2024]
Abstract
The standard strategy is to reconstruct bladder by use of bowel segments as material in bladder cancer with radical cystectomy clinically. Both natural derived and non natural derived materials are investigated in bladder reconstruction. Studies on mechanical bladder, bladder transplantation and bladder xenotransplantation are currently limited although heart and kidney transplantation or xenotransplantation are successful to a certain extent, and bone prostheses are applied in clinical contexts. Earlier limited number of studies associated with bladder xenograft from animals to humans were not particular promising in results. Although there have been investigations on pig to human cardiac xenotransplantation with CRISPR Cas9 gene editing, the CRISPR Cas technique is not yet widely researched in porcine bladder related gene editing for the potential of human bladder replacement for bladder cancer. The advancement of technologies such as gene editing, bioprinting and induced pluripotent stem cells allow further research into partial or whole bladder replacement strategies. Porcine bladder is suggested as a potential source material for bladder reconstruction due to its alikeness to human bladder. Challenges that exist with all these approaches need to be overcome. This paper aims to review gene editing technology such as the CRISPR Cas systems as tools in bladder reconstruction, bladder xenotransplantation and hybrid bladder with technologies of induced pluripotent stem cells and genome editing, bioprinting for bladder replacement for bladder reconstruction and to restore normal bladder control function after cystectomy for bladder cancer.
Collapse
Affiliation(s)
- Xiao Xue Zeng
- Department of Health Management, Centre of General Practice, The Seventh Affiliated Hospital, Southern Medical University, No. 28, Desheng Road Section, Liguan Road, Lishui Town, Nanhai District, Foshan City, 528000, Guangdong Province, People's Republic of China.
- Benjoe Institute of Systems Bio-Engineering, High Technology Park, Changzhou, 213022, Jiangsu Province, People's Republic of China.
| | - Yuyan Wu
- Department of Health Management, Centre of General Practice, The Seventh Affiliated Hospital, Southern Medical University, No. 28, Desheng Road Section, Liguan Road, Lishui Town, Nanhai District, Foshan City, 528000, Guangdong Province, People's Republic of China
| |
Collapse
|
10
|
Alfei S, Giordani P, Zuccari G. Synthesis and Physicochemical Characterization of Gelatine-Based Biodegradable Aerogel-like Composites as Possible Scaffolds for Regenerative Medicine. Int J Mol Sci 2024; 25:5009. [PMID: 38732231 PMCID: PMC11084852 DOI: 10.3390/ijms25095009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/21/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Regenerative medicine is an interdisciplinary field aiming at restoring pathologically damaged tissues and whole organs by cell transplantation in combination with proper supporting scaffolds. Gelatine-based ones are very attractive due to their biocompatibility, rapid biodegradability, and lack of immunogenicity. Gelatine-based composite hydrogels, containing strengthening agents to improve their modest mechanical properties, have been demonstrated to act as extracellular matrices (ECMs), thus playing a critical role in "organ manufacturing". Inspired by the lysyl oxidase (LO)-mediated process of crosslinking, which occurs in nature to reinforce collagen, we have recently developed a versatile protocol to crosslink gelatine B (Gel B) in the presence or absence of LO, using properly synthesized polystyrene- and polyacrylic-based copolymers containing the amine or aldehyde groups needed for crosslinking reactions. Here, following the developed protocol with slight modifications, we have successfully crosslinked Gel B in different conditions, obtaining eight out of nine compounds in high yield (57-99%). The determined crosslinking degree percentage (CP%) evidenced a high CP% for compounds obtained in presence of LO and using the styrenic amine-containing (CP5/DMAA) and acrylic aldehyde-containing (CPMA/DMAA) copolymers as crosslinking agents. ATR-FTIR analyses confirmed the chemical structure of all compounds, while optical microscopy demonstrated cavernous, crater-like, and labyrinth-like morphologies and cavities with a size in the range 15-261 µm. An apparent density in the range 0.10-0.45 g/cm3 confirmed the aerogel-like structure of most samples. Although the best biodegradation profile was observed for the sample obtained using 10% CP5/DMAA (M3), high swelling and absorption properties, high porosity, and good biodegradation profiles were also observed for samples obtained using the 5-10% CP5/DMAA (M4, 5, 6) and 20% CPMA/DMAA (M9) copolymers. Collectively, in this work of synthesis and physicochemical characterization, new aerogel-like composites have been developed and, based on their characteristics, which fit well within the requirements for TE, five candidates (M3, M4, M5, M6, and M9) suitable for future biological experiments on cell adhesion, infiltration and proliferation, to confirm their effective functioning, have been identified.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy, University of Genoa, Viale Cembrano, 16148 Genoa, Italy
| | - Paolo Giordani
- Department of Pharmacy, University of Genoa, Viale Cembrano, 16148 Genoa, Italy
| | - Guendalina Zuccari
- Department of Pharmacy, University of Genoa, Viale Cembrano, 16148 Genoa, Italy
| |
Collapse
|
11
|
Arabzadeh Bahri R, Peisepar M, Maleki S, Esmaeilpur Abianeh F, A Basti F, Kolahdooz A. Current evidence regarding alternative techniques for enterocystoplasty using regenerative medicine methods: a systematic review. Eur J Med Res 2024; 29:163. [PMID: 38475865 PMCID: PMC10929228 DOI: 10.1186/s40001-024-01757-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Enterocystoplasty is the most commonly used treatment for bladder reconstruction. However, it has some major complications. In this study, we systematically reviewed the alternative techniques for enterocystoplasty using different scaffolds. A comprehensive search was conducted in PubMed, Embase, and Cochrane Library, and a total of 10 studies were included in this study. Five different scaffolds were evaluated, including small intestinal submucosa (SIS), biodegradable scaffolds seeded with autologous bladder muscle and urothelial cells, dura mater, human cadaveric bladder acellular matrix graft, and bovine pericardium. The overall results revealed that bladder reconstruction using regenerative medicine is an excellent alternative method to enterocystoplasty regarding the improvement of bladder capacity, bladder compliance, and maximum detrusor pressure; however, more large-scale studies are required.
Collapse
Affiliation(s)
- Razman Arabzadeh Bahri
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Maral Peisepar
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Saba Maleki
- School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Fatemeh Esmaeilpur Abianeh
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh A Basti
- Tehran Medical Branch, Islamic Azad University, Tehran, Iran
| | - Ali Kolahdooz
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
12
|
Gholami K, Seyedjafari E, Mahdavi FS, Naghdipoor M, Mesbah G, Zahmatkesh P, Akbarzadehmoallemkolaei M, Baghdadabad LZ, Pandian SK, Meilika KN, Aghamir SMK. The Effect of Multilayered Electrospun PLLA Nanofibers Coated with Human Amnion or Bladder ECM Proteins on Epithelialization and Smooth Muscle Regeneration in the Rabbit Bladder. Macromol Biosci 2024; 24:e2300308. [PMID: 37931180 DOI: 10.1002/mabi.202300308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/25/2023] [Indexed: 11/08/2023]
Abstract
Nanofibrous scaffolds have attracted much attention in bladder reconstruction approaches due to their excellent mechanical properties. In addition, their biological properties can be improved by combination with biological materials. Taking into account the advantages of nanofibrous scaffolds and decellularized extracellular matrix (dECM) in tissue engineering, scaffolds of poly-L-lactic acid (PLLA) coated with decellularized human amnion membrane (hAM) or sheep bladder (SB)-derived ECM proteins are developed (amECM-coated PLLA and sbECM-coated PLLA, respectively). The bladder regenerative potential of modified electrospun PLLA scaffolds is investigated in rabbits. The presence of ECM proteins is confirmed on the nanofibers' surface. Coating the surface of the PLLA nanofibers improves cell adhesion and proliferation. Histological and immunohistochemical evaluations show that rabbits subjected to cystoplasty with a multilayered PLLA scaffold show de novo formation and maturation of the multilayered urothelial layer. However, smooth muscle bundles (myosin heavy chain [MHC] and α-smooth muscle actin [α-SMA] positive) are detected only in ECM-coated PLLA groups. All groups show no evidence of a diverticulumor fistula in the urinary bladder. These results suggest that the biofunctionalization of electrospun PLLA nanofibers with ECM proteins can be a promising option for bladder tissue engineering. Furthermore, hAM can also replace animal-sourced ECM proteins in bladder tissue regeneration approaches.
Collapse
Affiliation(s)
- Keykavoos Gholami
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ehsan Seyedjafari
- Department of Biotechnology, College of Science, University of Tehran, Tehran, 1416753955, Iran
| | - Fatemeh Sadat Mahdavi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, 1416753955, Iran
| | - Mehdi Naghdipoor
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Mesbah
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
- AshianGanoTeb Biopharmaceutical Company, Golestan University of Medical Sciences, Gorgan, Iran
| | - Parisa Zahmatkesh
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | - Kirolos N Meilika
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, 1416753955, USA
| | | |
Collapse
|
13
|
Alfei S, Pintaudi F, Zuccari G. Synthesis and Characterization of Amine and Aldehyde-Containing Copolymers for Enzymatic Crosslinking of Gelatine. Int J Mol Sci 2024; 25:2897. [PMID: 38474144 DOI: 10.3390/ijms25052897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
In tissue engineering (TE), the support structure (scaffold) plays a key role necessary for cell adhesion and proliferation. The protein constituents of the extracellular matrix (ECM), such as collagen, its derivative gelatine, and elastin, are the most attractive materials as possible scaffolds. To improve the modest mechanical properties of gelatine, a strategy consists of crosslinking it, as naturally occurs for collagen, which is stiffened by the oxidative action of lysyl oxidase (LO). Here, a novel protocol to crosslink gelatine has been developed, not using the commonly employed crosslinkers, but based on the formation of imine bonds or on aldolic condensation reactions occurring between gelatine and properly synthesized copolymers containing amine residues via LO-mediated oxidation. Particularly, we first synthesized and characterized an amino butyl styrene monomer (5), its copolymers with dimethylacrylamide (DMAA), and its terpolymer with DMAA and acrylic acid (AA). Three acryloyl amidoamine monomers (11a-c) and their copolymers with DMAA were then prepared. A methacrolein (MA)/DMAA copolymer already possessing the needed aldehyde groups was finally developed to investigate the relevance of LO in the crosslinking process. Oxidation tests of amine copolymers with LO were performed to identify the best substrates to be used in experiments of gelatine reticulation. Copolymers obtained with 5, 11b, and 11c were excellent substrates for LO and were employed with MA/DMAA copolymers in gelatine crosslinking tests in different conditions. Among the amine-containing copolymers, that obtained with 5 (CP5/DMMA-43.1) afforded a material (M21) with the highest crosslinking percentage (71%). Cytotoxicity experiments carried out on two cell lines (IMR-32 and SH SY5Y) with the analogous (P5) of the synthetic constituent of M21 (CP5/DMAA) had evidenced no significant reduction in cell viability, but proliferation promotion, thus establishing the biocompatibility of M21 and the possibility to develop it as a new scaffold for TE, upon further investigations.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano, 4, 16148 Genoa, Italy
| | - Federica Pintaudi
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano, 4, 16148 Genoa, Italy
| | - Guendalina Zuccari
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano, 4, 16148 Genoa, Italy
| |
Collapse
|
14
|
Liu H, He L, Kuzmanović M, Huang Y, Zhang L, Zhang Y, Zhu Q, Ren Y, Dong Y, Cardon L, Gou M. Advanced Nanomaterials in Medical 3D Printing. SMALL METHODS 2024; 8:e2301121. [PMID: 38009766 DOI: 10.1002/smtd.202301121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/22/2023] [Indexed: 11/29/2023]
Abstract
3D printing is now recognized as a significant tool for medical research and clinical practice, leading to the emergence of medical 3D printing technology. It is essential to improve the properties of 3D-printed products to meet the demand for medical use. The core of generating qualified 3D printing products is to develop advanced materials and processes. Taking advantage of nanomaterials with tunable and distinct physical, chemical, and biological properties, integrating nanotechnology into 3D printing creates new opportunities for advancing medical 3D printing field. Recently, some attempts are made to improve medical 3D printing through nanotechnology, providing new insights into developing advanced medical 3D printing technology. With high-resolution 3D printing technology, nano-structures can be directly fabricated for medical applications. Incorporating nanomaterials into the 3D printing material system can improve the properties of the 3D-printed medical products. At the same time, nanomaterials can be used to expand novel medical 3D printing technologies. This review introduced the strategies and progresses of improving medical 3D printing through nanotechnology and discussed challenges in clinical translation.
Collapse
Affiliation(s)
- Haofan Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Liming He
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Maja Kuzmanović
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Yiting Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Li Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yi Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qi Zhu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ya Ren
- Huahang Microcreate Technology Co., Ltd, Chengdu, 610042, China
| | - Yinchu Dong
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Chengdu OrganoidMed Medical Laboratory, Chengdu, 610000, China
| | - Ludwig Cardon
- Centre for Polymer and Material Technologies, Department of Materials, Textiles and Chemical Engineering, Faculty of Engineering and Architecture, Ghent University, Ghent, 9159052, Belgium
| | - Maling Gou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
15
|
Lee SJ. Personalized Reconstruction with Three-dimensional Printed Urological Tissue Constructs. Eur Urol Focus 2024; 10:259-262. [PMID: 38326119 DOI: 10.1016/j.euf.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/28/2023] [Accepted: 01/15/2024] [Indexed: 02/09/2024]
Abstract
Three-dimensional (3D) bioprinting technology has emerged as a cutting-edge tool for the development of precise and reproducible patient-specific, personalized urological tissue constructs. This capability effectively addresses the existing translational limitations of biomanufacturing and offers extensive potential for urological applications. The revolutionary impact of this technology is poised to transform the treatment landscape for various urological conditions. To fully harness the potential of bioprinted tissue constructs in urological tissue engineering applications, it is essential to prioritize thorough investigations, proactively address potential challenges, and establish robust protocols. By addressing these issues, we can instill confidence in the viability and numerous benefits of bioprinting for urology and ultimately pave the way for better patient outcomes and personalized treatments. PATIENT SUMMARY: Three-dimensional (3D) printing using biological materials (bioprinting) is a revolutionary technology for tissue engineering therapies. This review highlights the latest advances in bioprinting of urological tissue constructs and their potential for application in patient-specific treatments.
Collapse
Affiliation(s)
- Sang Jin Lee
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
16
|
Willacy O, Juul N, Taouzlak L, Chamorro CI, Ajallouiean F, Fossum M. A perioperative layered autologous tissue expansion graft for hollow organ repair. Heliyon 2024; 10:e25275. [PMID: 38322882 PMCID: PMC10845913 DOI: 10.1016/j.heliyon.2024.e25275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/03/2024] [Accepted: 01/24/2024] [Indexed: 02/08/2024] Open
Abstract
Tissue engineering has not been widely adopted in clinical settings for several reasons, including technical challenges, high costs, and regulatory complexity. Here, we introduce the Perioperative Layered Autologous Tissue Expansion graft (PLATE graft), a composite biomaterial and collagen-reinforced construct with autologous epithelium on one side and smooth muscle tissue on the other. Designed to mimic the structure and function of natural hollow organs, the PLATE graft is unique in that it can be produced in a standard operating theatre and is cost-effective. In this proof-of-principle study, we test its regenerative performance in eight different organs, present biomechanical and permeability tests, and finally explore its in vivo performance in live rabbits.
Collapse
Affiliation(s)
- Oliver Willacy
- Laboratory of Tissue Engineering, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Division of Pediatric Surgery, Department of Surgery and Transplantation, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Nikolai Juul
- Laboratory of Tissue Engineering, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Division of Pediatric Surgery, Department of Surgery and Transplantation, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Loai Taouzlak
- Department of Health Technology, Technical University of Denmark, 2800: Kgs, Lyngby, Denmark
| | - Clara I. Chamorro
- Laboratory of Tissue Engineering, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Fatemeh Ajallouiean
- Department of Health Technology, Technical University of Denmark, 2800: Kgs, Lyngby, Denmark
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Ørsted Plads, 2800: Kgs, Lyngby, Denmark
| | - Magdalena Fossum
- Laboratory of Tissue Engineering, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Division of Pediatric Surgery, Department of Surgery and Transplantation, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Laboratory of Tissue Engineering, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
17
|
Zhao G, Dong Y, Ye Z, Yao S, Wang L, Zhao Y, Chen B, Liu D, Dai J, Hu Y. Vaginal reconstruction by collagen scaffolds loaded with vaginal epithelial and smooth muscle cells in pigs. Biomater Sci 2024; 12:1042-1054. [PMID: 38221811 DOI: 10.1039/d3bm01611k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
In women, a healthy and functional vagina is important for the maintenance of a good quality of life. Various factors, including congenital anomalies, cancer, trauma, infections, inflammation, or iatrogenic injuries, can lead to damage or loss of the vaginal structure, necessitating repair or replacement. Often, such reconstruction procedures involve the use of nonvaginal tissue substitutes, like segments of the large intestine or skin, which are less than ideal both anatomically and functionally. Therefore, there is an urgent need to develop new methods of vaginal reconstruction. In this study, we established a new method for isolation and expansion of vaginal epithelial and smooth muscle cells. Subsequently, collagen scaffolds designed for vaginal reconstruction were loaded with vaginal epithelial and smooth muscle cells in vitro and tested in vivo using the vaginal excision pig model. The results showed that the collagen scaffold loaded with vaginal epithelial and smooth muscle cells significantly promotes the reconstruction of the vagina compared with small intestinal submucosa (SIS) membrane or bare collagen scaffold. Notably, the reconstructed vaginal tissues exhibit remarkable similarity to their normal counterparts, encompassing not only the vaginal epithelium and smooth muscle but also the intricate networks of blood vessels and nerves. These compelling results underscore the feasibility of a tissue engineering approach in vaginal reconstruction, offering promising prospects for improving the quality of life in affected individuals.
Collapse
Affiliation(s)
- Guangfeng Zhao
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China.
| | - Yishan Dong
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing 210000, China
| | - Ziying Ye
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China.
| | - Simin Yao
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China.
| | - Limin Wang
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China.
| | - Yannan Zhao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 3 Nanyitiao, Zhongguancun, Beijing 100190, China.
| | - Bing Chen
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 3 Nanyitiao, Zhongguancun, Beijing 100190, China.
| | - Dan Liu
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China.
| | - Jianwu Dai
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 3 Nanyitiao, Zhongguancun, Beijing 100190, China.
| | - Yali Hu
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China.
| |
Collapse
|
18
|
Bury MI, Fuller NJ, Wang X, Chan YY, Sturm RM, Oh SS, Sofer LA, Arora HC, Sharma TT, Nolan BG, Feng W, Rabizadeh RR, Barac M, Edassery SS, Goedegebuure MM, Wang LW, Ganesh B, Halliday LC, Seniw ME, Edassery SL, Mahmud NB, Hofer MD, McKenna KE, Cheng EY, Ameer GA, Sharma AK. Multipotent bone marrow cell-seeded polymeric composites drive long-term, definitive urinary bladder tissue regeneration. PNAS NEXUS 2024; 3:pgae038. [PMID: 38344009 PMCID: PMC10855019 DOI: 10.1093/pnasnexus/pgae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 01/16/2024] [Indexed: 03/02/2024]
Abstract
To date, there are no efficacious translational solutions for end-stage urinary bladder dysfunction. Current surgical strategies, including urinary diversion and bladder augmentation enterocystoplasty (BAE), utilize autologous intestinal segments (e.g. ileum) to increase bladder capacity to protect renal function. Considered the standard of care, BAE is fraught with numerous short- and long-term clinical complications. Previous clinical trials employing tissue engineering approaches for bladder tissue regeneration have also been unable to translate bench-top findings into clinical practice. Major obstacles still persist that need to be overcome in order to advance tissue-engineered products into the clinical arena. These include scaffold/bladder incongruencies, the acquisition and utility of appropriate cells for anatomic and physiologic tissue recapitulation, and the choice of an appropriate animal model for testing. In this study, we demonstrate that the elastomeric, bladder biomechanocompatible poly(1,8-octamethylene-citrate-co-octanol) (PRS; synthetic) scaffold coseeded with autologous bone marrow-derived mesenchymal stem cells and CD34+ hematopoietic stem/progenitor cells support robust long-term, functional bladder tissue regeneration within the context of a clinically relevant baboon bladder augmentation model simulating bladder trauma. Partially cystectomized baboons were independently augmented with either autologous ileum or stem-cell-seeded small-intestinal submucosa (SIS; a commercially available biological scaffold) or PRS grafts. Stem-cell synergism promoted functional trilayer bladder tissue regeneration, including whole-graft neurovascularization, in both cell-seeded grafts. However, PRS-augmented animals demonstrated fewer clinical complications and more advantageous tissue characterization metrics compared to ileum and SIS-augmented animals. Two-year study data demonstrate that PRS/stem-cell-seeded grafts drive bladder tissue regeneration and are a suitable alternative to BAE.
Collapse
Affiliation(s)
- Matthew I Bury
- Division of Pediatric Urology, Department of Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Natalie J Fuller
- Division of Pediatric Urology, Department of Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Xinlong Wang
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Yvonne Y Chan
- Department of Urologic Surgery, University of California at Davis, Davis, CA 95817, USA
| | - Renea M Sturm
- Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Sang Su Oh
- Biologic Resources Laboratory, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Laurel A Sofer
- Department of Urology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Hans C Arora
- Division of Pediatric Urology, Department of Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Tiffany T Sharma
- Division of Pediatric Urology, Department of Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Bonnie G Nolan
- Division of Pediatric Urology, Department of Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Wei Feng
- Flow Cytometry Core, Research Resources Center, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Rebecca R Rabizadeh
- Division of Pediatric Urology, Department of Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Milica Barac
- Division of Pediatric Urology, Department of Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Sonia S Edassery
- Division of Pediatric Urology, Department of Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Madeleine M Goedegebuure
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Larry W Wang
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Balaji Ganesh
- Flow Cytometry Core, Research Resources Center, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Lisa C Halliday
- Biologic Resources Laboratory, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Mark E Seniw
- Simpson Querrey Institute, Northwestern University, Chicago, IL 60611, USA
| | - Seby L Edassery
- Center for Translational Research and Education, Loyola University Chicago, Chicago, IL 60153, USA
| | - Nadim B Mahmud
- Division of Hematology/Oncology, Department of Medicine, University of Illinois Cancer Center, Chicago, IL 60612, USA
| | | | - Kevin E McKenna
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60612, USA
| | - Earl Y Cheng
- Division of Pediatric Urology, Department of Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Simpson Querrey Institute, Northwestern University, Chicago, IL 60611, USA
- Stanley Manne Children's Research Institute, Louis A. Simpson and Kimberly K. Querrey Biomedical Research Center, Chicago, IL 60611, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Guillermo A Ameer
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA
- Simpson Querrey Institute, Northwestern University, Chicago, IL 60611, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL 60208, USA
- Vascular Surgery, Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60612, USA
| | - Arun K Sharma
- Division of Pediatric Urology, Department of Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Simpson Querrey Institute, Northwestern University, Chicago, IL 60611, USA
- Stanley Manne Children's Research Institute, Louis A. Simpson and Kimberly K. Querrey Biomedical Research Center, Chicago, IL 60611, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
19
|
Wang X, Liang Q, Luo Y, Ye J, Yu Y, Chen F. Engineering the next generation of theranostic biomaterials with synthetic biology. Bioact Mater 2024; 32:514-529. [PMID: 38026437 PMCID: PMC10660023 DOI: 10.1016/j.bioactmat.2023.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/06/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Biomaterials have evolved from inert materials to responsive entities, playing a crucial role in disease diagnosis, treatment, and modeling. However, their advancement is hindered by limitations in chemical and mechanical approaches. Synthetic biology enabling the genetically reprograming of biological systems offers a new paradigm. It has achieved remarkable progresses in cell reprogramming, engineering designer cells for diverse applications. Synthetic biology also encompasses cell-free systems and rational design of biological molecules. This review focuses on the application of synthetic biology in theranostics, which boost rapid development of advanced biomaterials. We introduce key fundamental concepts of synthetic biology and highlight frontier applications thereof, aiming to explore the intersection of synthetic biology and biomaterials. This integration holds tremendous promise for advancing biomaterial engineering with programable complex functions.
Collapse
Affiliation(s)
- Xiang Wang
- Center for Materials Synthetic Biology, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Qianyi Liang
- Center for Materials Synthetic Biology, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yixuan Luo
- Center for Materials Synthetic Biology, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jianwen Ye
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Yin Yu
- Center for Materials Synthetic Biology, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Fei Chen
- Center for Materials Synthetic Biology, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
20
|
Ameer G, Keate R, Bury M, Mendez-Santos M, Gerena A, Goedegebuure M, Rivnay J, Sharma A. Cell-free biodegradable electroactive scaffold for urinary bladder regeneration. RESEARCH SQUARE 2024:rs.3.rs-3817836. [PMID: 38352487 PMCID: PMC10862962 DOI: 10.21203/rs.3.rs-3817836/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Tissue engineering heavily relies on cell-seeded scaffolds to support the complex biological and mechanical requirements of a target organ. However, in addition to safety and efficacy, translation of tissue engineering technology will depend on manufacturability, affordability, and ease of adoption. Therefore, there is a need to develop scalable biomaterial scaffolds with sufficient bioactivity to eliminate the need for exogenous cell seeding. Herein, we describe synthesis, characterization, and implementation of an electroactive biodegradable elastomer for urinary bladder tissue engineering. To create an electrically conductive and mechanically robust scaffold to support bladder tissue regeneration, we developed a phase-compatible functionalization method wherein the hydrophobic conductive polymer poly(3,4-ethylenedioxythiophene) (PEDOT) was polymerized in situ within a similarly hydrophobic citrate-based elastomer poly(octamethylene-citrate-co-octanol) (POCO) film. We demonstrate the efficacy of this film as a scaffold for bladder augmentation in athymic rats, comparing PEDOT-POCO scaffolds to mesenchymal stromal cell-seeded POCO scaffolds. PEDOT-POCO recovered bladder function and anatomical structure comparably to the cell-seeded POCO scaffolds and significantly better than non-cell seeded POCO scaffolds. This manuscript reports: (1) a new phase-compatible functionalization method that confers electroactivity to a biodegradable elastic scaffold, and (2) the successful restoration of the anatomy and function of an organ using a cell-free electroactive scaffold.
Collapse
|
21
|
Liu B, Jin M, Ma C, Zhang Z, Ma L, Zhang Y, Wang DA. An engineered lymph node comprising porous collagen scaffold with hybridized biological signals embedded in B cell membrane coatings. Biomaterials 2024; 304:122420. [PMID: 38048743 DOI: 10.1016/j.biomaterials.2023.122420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 12/06/2023]
Abstract
Complications can arise from damaging or removing lymph nodes after surgeries for malignant tumours. Our team has developed an innovative solution to recreate lymph nodes via an engineering approach. Using a Type II collagen scaffold coated with B cell membranes for the sake of attracting T cells in different regions, we could mimic the thymus-dependent and thymus-independent areas in vitro. This engineering strategy based on biophysical mimicry has a great potential for clinical applications. By further conjugating biological signals, anti-CD3/28, onto the scaffold coated with the B cell membrane, we achieved an 11.6-fold expansion of T cells within 14 days of in vitro culture while ensuring their activity, phenotype homeostasis, and differentiation capacity kept intact. Artificial lymph nodes had excellent biocompatibility and caused no pathological or physiological adverse effects after implantation into C57BL6 mice. In vivo assays also demonstrated that this artificial lymph node system positively adhered to omental tissues, creating an environment that fostered T cell growth and prevented cellular failure and death. Additionally, it induced vascular and lymphatic vessel invasion, which was beneficial to the migration and circulation of T cells between this system and peripheral blood. Due to the porous collagen fibre structure, it also facilitated the infiltration of host immune cells. This work opens new avenues to immune organ regeneration via a tissue engineering approach.
Collapse
Affiliation(s)
- Bangheng Liu
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region of China; Karolinska Institutet Ming Wai Lau Centre for Reparative Medicine, HKSTP, Sha Tin, Hong Kong Special Administrative Region of China
| | - Min Jin
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region of China; Karolinska Institutet Ming Wai Lau Centre for Reparative Medicine, HKSTP, Sha Tin, Hong Kong Special Administrative Region of China
| | - Cheng Ma
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region of China; Karolinska Institutet Ming Wai Lau Centre for Reparative Medicine, HKSTP, Sha Tin, Hong Kong Special Administrative Region of China
| | - Zhen Zhang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region of China
| | - Liang Ma
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region of China
| | - Yi Zhang
- School of Integrated Circuit Science and Engineering, University of Electronic Science and Engineering of China, Chengdu, Sichuan, PR China.
| | - Dong-An Wang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region of China; Karolinska Institutet Ming Wai Lau Centre for Reparative Medicine, HKSTP, Sha Tin, Hong Kong Special Administrative Region of China; Shenzhen Research Institute, City University of Hong Kong, Shenzhen, PR China.
| |
Collapse
|
22
|
Yang B, Yang G, Zhao F, Yao X, Xu L, Zhou L. Autologous Endothelial Progenitor Cells and Bioactive Factors Improve Bladder Regeneration. Tissue Eng Part C Methods 2024; 30:15-26. [PMID: 37756374 DOI: 10.1089/ten.tec.2023.0079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023] Open
Abstract
Insufficient vascularization is still a challenge that impedes bladder tissue engineering and results in unsatisfied smooth muscle regeneration. Since bladder regeneration is a complex articulated process, the aim of this study is to investigate whether combining multiple pathways by exploiting a combination of biomaterials, cells, and bioactive factors, contributes to the improvements of smooth muscle regeneration and vascularization in tissue-engineered bladder. Autologous endothelial progenitor cells (EPCs) and bladder smooth muscle cells (BSMCs) are cultured and incorporated into our previously prepared porcine bladder acellular matrix (BAM) for bladder augmentation in rabbits. Simultaneously, exogenous vascular endothelial growth factor (VEGF) and platelet-derived growth factor BB (PDGF-BB) mixed with Matrigel were injected around the implanted cells-BAM complex. In the results, compared with control rabbits received bladder augmentation with porcine BAM seeded with BSMCs, the experimental animals showed significantly improved smooth muscle regeneration and vascularization, along with more excellent functional recovery of tissue-engineered bladder, due to the additional combination of autologous EPCs and bioactive factors, including VEGF and PDGF-BB. Furthermore, cell tracking suggested that the seeded EPCs could be directly involved in neovascularization. Therefore, it may be an effective method to combine multiple pathways for tissue-engineering urinary bladder.
Collapse
Affiliation(s)
- Bin Yang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guanjie Yang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Feng Zhao
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xudong Yao
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Luwei Xu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Liuhua Zhou
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
23
|
Zhao J, Yang T, Zhou L, Liu J, Mao L, Jia R, Zhao F. Porous gelatin microspheres implanted with adipose mesenchymal stromal cells promote angiogenesis via protein kinase B/endothelial nitric oxide synthase signaling pathway in bladder reconstruction. Cytotherapy 2023; 25:1317-1330. [PMID: 37804283 DOI: 10.1016/j.jcyt.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 10/09/2023]
Abstract
BACKGROUND AIMS Cell failure and angiogenesis are the key to bladder wall regeneration. Three-dimensional (3D) culture using porous gelatin microspheres (GMs) as a vehicle promotes stem cell proliferation and improves the paracrine capacity of cells. This study aimed to evaluate the therapeutic potential of GMs constructed from adipose-derived mesenchymal stromal cells (ADSCs) (ADSC-GMs) combined with bladder acellular matrix (BAM) in tissue-engineered bladders. METHODS Isolation of ADSCs, flow cytometry, scanning electron microscopy and cell counting kit-8, β-galactosidase and enzyme-linked immunosorbent assays were performed in vitro to compare two-dimensional (2D) and 3D cultures. In the in vivo study, male Sprague-Dawley rats were randomly divided into three groups: the BAM replacement alone (BAM) group, ADSCs grown on BAM in replacement (ADSC) group and ADSC-GMs combined with BAM followed by replacement (ADSC-GM) group. Bladder function assessed by urodynamics after 12 weeks of bladder replacement, and the rats were sacrificed at 4 and 12 weeks for further experiments. RESULTS The in vitro results showed that GM culture promoted ADSC proliferation, inhibited apoptosis and delayed senescence compared with those in the 2D culture. In addition, ADSC-GMs increased the secretion of the angiogenic factors vascular endothelial growth factor, platelet-derived growth factor-BB, and basal fibroblast growth factor. In vivo experiments revealed that ADSC-GMs adhered to the BAM for longer than ADSCs. Moreover, ADSC-GMs significantly promoted the regeneration of bladder vessels and smooth muscle, thereby facilitating the recovery of bladder function. The expression of phosphorylated protein kinase B (AKT) and phosphorylated endothelial nitric oxide synthase (eNOS) was significantly greater in the ADSC-GMs group compared with the BAM and ADSCs groups. CONCLUSIONS ADSC-GMs increased retention of ADSCs on the BAM, thereby promoting the regeneration and functional recovery of the bladder tissue. ADSC-GMs promoted angiogenesis by activating the AKT/eNOS pathway.
Collapse
Affiliation(s)
- Jun Zhao
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Tianli Yang
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Liuhua Zhou
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jingyu Liu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Liang Mao
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Ruipeng Jia
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| | - Feng Zhao
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
24
|
St-Laurent MP, Chavez-Munoz C, Black PC. Is Engineered Tissue the Future of Bladder Reconstruction: Con. Eur Urol Focus 2023:S2405-4569(23)00225-0. [PMID: 37872081 DOI: 10.1016/j.euf.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 10/11/2023] [Indexed: 10/25/2023]
Abstract
Tissue engineering, once promising, faces significant technical challenges. Current limitations impede progression of the field, as evidenced by clinical trial failures over the past decades. Existing established surgical techniques remain the only proven, successful, and durable methods for bladder reconstruction.
Collapse
Affiliation(s)
- Marie-Pier St-Laurent
- Department of Urologic Sciences, University of British Columbia, Vancouver, Canada; Vancouver Prostate Centre, Vancouver, Canada
| | - Claudia Chavez-Munoz
- Vancouver Prostate Centre, Vancouver, Canada; Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Peter C Black
- Department of Urologic Sciences, University of British Columbia, Vancouver, Canada; Vancouver Prostate Centre, Vancouver, Canada.
| |
Collapse
|
25
|
Ashna M, Senthilkumar N, Sanpui P. Human Hair Keratin-Based Hydrogels in Regenerative Medicine: Current Status and Future Directions. ACS Biomater Sci Eng 2023; 9:5527-5547. [PMID: 37734053 DOI: 10.1021/acsbiomaterials.3c00883] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Regenerative medicine (RM) is a multidisciplinary field that utilizes the inherent regenerative potential of human cells to generate functionally and physiologically acceptable human cells, tissues, and organs in vivo or ex vivo. An appropriate biomaterial scaffold with desired physicochemical properties constitutes an important component of a successful RM approach. Among various forms of biomaterials explored until the present day, hydrogels have emerged as a versatile candidate for tissue engineering and regenerative medicine (TERM) applications such as scaffolds for spatial patterning and delivering therapeutic agents, or substrates to enhance cell growth, differentiation, and migration. Although hydrogels can be prepared from a variety of synthetic polymers as well as biopolymers, the latter are preferred for their inherent biocompatibility. Specifically, keratins are fibrous proteins that have been recently explored for constructing hydrogels useful for RM purposes. The present review discusses the suitability of keratin-based biomaterials in RM, with a particular focus on human hair keratin hydrogels and their use in various RM applications.
Collapse
Affiliation(s)
- Mymuna Ashna
- Department of Biotechnology, BITS Pilani Dubai Campus, Dubai International Academic City, Dubai, United Arab Emirates
| | - Neeharika Senthilkumar
- Department of Biotechnology, BITS Pilani Dubai Campus, Dubai International Academic City, Dubai, United Arab Emirates
| | - Pallab Sanpui
- Department of Biotechnology, BITS Pilani Dubai Campus, Dubai International Academic City, Dubai, United Arab Emirates
| |
Collapse
|
26
|
Agarwal P, Arora G, Panwar A, Mathur V, Srinivasan V, Pandita D, Vasanthan KS. Diverse Applications of Three-Dimensional Printing in Biomedical Engineering: A Review. 3D PRINTING AND ADDITIVE MANUFACTURING 2023; 10:1140-1163. [PMID: 37886418 PMCID: PMC10599440 DOI: 10.1089/3dp.2022.0281] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
A three-dimensional (3D) printing is a robotically controlled state-of-the-art technology that is promising for all branches of engineering with a meritorious emphasis to biomedical engineering. The purpose of 3D printing (3DP) is to create exact superstructures without any framework in a brief period with high reproducibility to create intricate and complex patient-tailored structures for organ regeneration, drug delivery, imaging processes, designing personalized dose-specific tablets, developing 3D models of organs to plan surgery and to understand the pathology of disease, manufacturing cost-effective surgical tools, and fabricating implants and organ substitute devices for prolonging the lives of patients, etc. The formulation of bioinks and programmed G codes help to obtain precise 3D structures, which determines the stability and functioning of the 3D-printed structures. Three-dimensional printing for medical applications is ambitious and challenging but made possible with the culmination of research expertise from various fields. Exploring and expanding 3DP for biomedical and clinical applications can be life-saving solutions. The 3D printers are cost-effective and eco-friendly, as they do not release any toxic pollutants or waste materials that pollute the environment. The sampling requirements and processing parameters are amenable, which further eases the production. This review highlights the role of 3D printers in the health care sector, focusing on their roles in tablet development, imaging techniques, disease model development, and tissue regeneration.
Collapse
Affiliation(s)
- Prachi Agarwal
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Gargi Arora
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Science and Research University, Government of NCT of Delhi, New Delhi, India
| | - Amit Panwar
- Institute of Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, New Territories, Hong Kong
| | - Vidhi Mathur
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | | | - Deepti Pandita
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Science and Research University, Government of NCT of Delhi, New Delhi, India
- Centre for Advanced Formulation and Technology (CAFT), Delhi Pharmaceutical Sciences and Research University, PushpVihar, Government of NCT of Delhi, New Delhi, India
| | - Kirthanashri S. Vasanthan
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
27
|
Ghaffar U, Terlecki R, Yoo JJ, Breyer BN. Safety and Feasibility Study of Autologous Engineered Urethral Constructs for the Treatment of Strictures: Clinical Trial Update. Eur Urol Focus 2023:S2405-4569(23)00209-2. [PMID: 37775398 DOI: 10.1016/j.euf.2023.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 09/17/2023] [Indexed: 10/01/2023]
Abstract
Autologous engineered urethral constructs are a promising treatment option for definitive management of long and complex urethral strictures, with the prospect of eliminating stricture recurrence.
Collapse
Affiliation(s)
- Umar Ghaffar
- Department of Urology, University of California-San Francisco, San Francisco, CA, USA.
| | - Ryan Terlecki
- Department of Urology, Atrium Health Wake Forest Baptist, Winston-Salem, NC, USA
| | - James J Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Benjamin N Breyer
- Department of Urology, University of California-San Francisco, San Francisco, CA, USA; Department of Epidemiology and Biostatistics, University of California-San Francisco, San Francisco, CA, USA
| |
Collapse
|
28
|
Zhu L, Hou Q, Yan M, Gao W, Tang G, Liu Z. Flexible Fabrication and Hybridization of Bioactive Hydrogels with Robust Osteogenic Potency. Pharmaceutics 2023; 15:2384. [PMID: 37896145 PMCID: PMC10610325 DOI: 10.3390/pharmaceutics15102384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/19/2023] [Accepted: 09/23/2023] [Indexed: 10/29/2023] Open
Abstract
Osteogenic scaffolds reproducing the natural bone composition, structures, and properties have represented the possible frontier of artificially orthopedic implants with the great potential to revolutionize surgical strategies against the bone-related diseases. However, it is difficult to achieve an all-in-one formula with the simultaneous requirement of favorable biocompatibility, flexible adhesion, high mechanical strength, and osteogenic effects. Here in this work, an osteogenic hydrogel scaffold fabricated by inorganic-in-organic integration between amine-modified bioactive glass (ABG) nanoparticles and poly(ethylene glycol) succinimidyl glutarate-polyethyleneimine (TSG-PEI) network was introduced as an all-in-one tool to flexibly adhere onto the defective tissue and subsequently accelerate the bone formation. Since the N-hydroxysuccinimide (NHS)-ester of tetra-PEG-SG polymer could quickly react with the NH2-abundant polyethyleneimine (PEI) polymer and ABG moieties, the TSG-PEI@ABG hydrogel was rapidly formed with tailorable structures and properties. Relying on the dense integration between the TSG-PEI network and ABG moieties on a nano-scale level, this hydrogel expressed powerful adhesion to tissue as well as durable stability for the engineered scaffolds. Therefore, its self-endowed biocompatibility, high adhesive strength, compressive modulus, and osteogenic potency enabled the prominent capacities on modulation of bone marrow mesenchymal stem cell (BMSCs) proliferation and differentiation, which may propose a potential strategy on the simultaneous scaffold fixation and bone regeneration promotion for the tissue engineering fields.
Collapse
Affiliation(s)
- Liang Zhu
- Department of Orthopedics, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou 412001, China; (L.Z.); (W.G.)
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai 200080, China;
| | - Qian Hou
- Department of Nutrition, Xiangya Hospital, Central South University, Changsha 410008, China;
| | - Meijun Yan
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai 200080, China;
| | - Wentao Gao
- Department of Orthopedics, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou 412001, China; (L.Z.); (W.G.)
| | - Guoke Tang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai 200080, China;
- Department of Nutrition, Xiangya Hospital, Central South University, Changsha 410008, China;
| | - Zhiqing Liu
- Department of Orthopedics, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou 412001, China; (L.Z.); (W.G.)
| |
Collapse
|
29
|
Huang Y, Zhao H, Wang Y, Bi S, Zhou K, Li H, Zhou C, Wang Y, Wu W, Peng B, Tang J, Pan B, Wang B, Chen Z, Li Z, Zhang Z. The application and progress of tissue engineering and biomaterial scaffolds for total auricular reconstruction in microtia. Front Bioeng Biotechnol 2023; 11:1089031. [PMID: 37811379 PMCID: PMC10556751 DOI: 10.3389/fbioe.2023.1089031] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 04/21/2023] [Indexed: 10/10/2023] Open
Abstract
Microtia is a congenital deformity of the ear with an incidence of about 0.8-4.2 per 10,000 births. Total auricular reconstruction is the preferred treatment of microtia at present, and one of the core technologies is the preparation of cartilage scaffolds. Autologous costal cartilage is recognized as the best material source for constructing scaffold platforms. However, costal cartilage harvest can lead to donor-site injuries such as pneumothorax, postoperative pain, chest wall scar and deformity. Therefore, with the need of alternative to autologous cartilage, in vitro and in vivo studies of biomaterial scaffolds and cartilage tissue engineering have gradually become novel research hot points in auricular reconstruction research. Tissue-engineered cartilage possesses obvious advantages including non-rejection, minimally invasive or non-invasive, the potential of large-scale production to ensure sufficient donors and controllable morphology. Exploration and advancements of tissue-engineered cartilaginous framework are also emerging in aspects including three-dimensional biomaterial scaffolds, acquisition of seed cells and chondrocytes, 3D printing techniques, inducing factors for chondrogenesis and so on, which has greatly promoted the research process of biomaterial substitute. This review discussed the development, current application and research progress of cartilage tissue engineering in auricular reconstruction, particularly the usage and creation of biomaterial scaffolds. The development and selection of various types of seed cells and inducing factors to stimulate chondrogenic differentiation in auricular cartilage were also highlighted. There are still confronted challenges before the clinical application becomes widely available for patients, and its long-term effect remains to be evaluated. We hope to provide guidance for future research directions of biomaterials as an alternative to autologous cartilage in ear reconstruction, and finally benefit the transformation and clinical application of cartilage tissue engineering and biomaterials in microtia treatment.
Collapse
Affiliation(s)
- Yeqian Huang
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Hanxing Zhao
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
- Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Yixi Wang
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Siwei Bi
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Kai Zhou
- Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Hairui Li
- Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Changchun Zhou
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Yudong Wang
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Wenqing Wu
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Bo Peng
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
- Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Jun Tang
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
- Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Bo Pan
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Baoyun Wang
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
- Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Zhixing Chen
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
- Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Zhengyong Li
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
- Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Zhenyu Zhang
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
- Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
30
|
Franchi-Mendes T, Silva M, Cartaxo AL, Fernandes-Platzgummer A, Cabral JMS, da Silva CL. Bioprocessing Considerations towards the Manufacturing of Therapeutic Skeletal and Smooth Muscle Cells. Bioengineering (Basel) 2023; 10:1067. [PMID: 37760170 PMCID: PMC10525286 DOI: 10.3390/bioengineering10091067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Tissue engineering approaches within the muscle context represent a promising emerging field to address the current therapeutic challenges related with multiple pathological conditions affecting the muscle compartments, either skeletal muscle or smooth muscle, responsible for involuntary and voluntary contraction, respectively. In this review, several features and parameters involved in the bioprocessing of muscle cells are addressed. The cell isolation process is depicted, depending on the type of tissue (smooth or skeletal muscle), followed by the description of the challenges involving the use of adult donor tissue and the strategies to overcome the hurdles of reaching relevant cell numbers towards a clinical application. Specifically, the use of stem/progenitor cells is highlighted as a source for smooth and skeletal muscle cells towards the development of a cellular product able to maintain the target cell's identity and functionality. Moreover, taking into account the need for a robust and cost-effective bioprocess for cell manufacturing, the combination of muscle cells with biomaterials and the need for scale-up envisioning clinical applications are also approached.
Collapse
Affiliation(s)
- Teresa Franchi-Mendes
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (T.F.-M.); (M.S.); (A.L.C.); (A.F.-P.); (J.M.S.C.)
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Marília Silva
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (T.F.-M.); (M.S.); (A.L.C.); (A.F.-P.); (J.M.S.C.)
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Ana Luísa Cartaxo
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (T.F.-M.); (M.S.); (A.L.C.); (A.F.-P.); (J.M.S.C.)
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Ana Fernandes-Platzgummer
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (T.F.-M.); (M.S.); (A.L.C.); (A.F.-P.); (J.M.S.C.)
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Joaquim M. S. Cabral
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (T.F.-M.); (M.S.); (A.L.C.); (A.F.-P.); (J.M.S.C.)
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Cláudia L. da Silva
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (T.F.-M.); (M.S.); (A.L.C.); (A.F.-P.); (J.M.S.C.)
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
31
|
Oleksy M, Dynarowicz K, Aebisher D. Advances in Biodegradable Polymers and Biomaterials for Medical Applications-A Review. Molecules 2023; 28:6213. [PMID: 37687042 PMCID: PMC10488517 DOI: 10.3390/molecules28176213] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/16/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
The introduction of new materials for the production of various types of constructs that can connect directly to tissues has enabled the development of such fields of science as medicine, tissue, and regenerative engineering. The implementation of these types of materials, called biomaterials, has contributed to a significant improvement in the quality of human life in terms of health. This is due to the constantly growing availability of new implants, prostheses, tools, and surgical equipment, which, thanks to their specific features such as biocompatibility, appropriate mechanical properties, ease of sterilization, and high porosity, ensure an improvement of living. Biodegradation ensures, among other things, the ideal rate of development for regenerated tissue. Current tissue engineering and regenerative medicine strategies aim to restore the function of damaged tissues. The current gold standard is autografts (using the patient's tissue to accelerate healing), but limitations such as limited procurement of certain tissues, long operative time, and donor site morbidity have warranted the search for alternative options. The use of biomaterials for this purpose is an attractive option and the number of biomaterials being developed and tested is growing rapidly.
Collapse
Affiliation(s)
- Małgorzata Oleksy
- Students English Division Science Club, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland;
| | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland;
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland
| |
Collapse
|
32
|
Xu R, Li T, Li Z, Kong W, Wang T, Zhang X, Luo J, Li W, Jiao L. Knowledge fields and emerging trends about extracellular matrix in carotid artery disease from 1990 to 2021: analysis of the scientific literature. Eur J Med Res 2023; 28:284. [PMID: 37587506 PMCID: PMC10428572 DOI: 10.1186/s40001-023-01259-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 08/01/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Stroke is a heavy burden in modern society, and carotid artery disease is a major cause. The role of the extracellular matrix (ECM) in the development and progression of carotid artery disease has become a popular research focus. However, there is no published bibliometric analysis to derive the main publication features and trends in this scientific area. We aim to conduct a bibliometric analysis to reveal current status of ECM in carotid artery disease and to predict future hot spots. METHODS We searched and downloaded articles from the Web of Science Core Collection with "Carotid" and "Extracellular Matrix" as subject words from 1990 to 2021. The complete bibliographic data were analyzed by Bibliometrics, BICOMB, gCLUTO and CiteSpace softwares. RESULTS Since 1990, the United States has been the leader in the number of publications in the field of ECM in carotid artery disease, followed by China, Japan and Germany. Among institutions, Institut National De La Sante Et De La Recherche Medicale Inserm, University of Washington Seattle and Harvard University are in the top 3. "Arteriosclerosis Thrombosis and Vascular Biology" is the most popular journal and "Circulation" is the most cited journal. "Clowes AW", "Hedin Ulf" and "Nilsson Jan" are the top three authors of published articles. Finally, we investigated the frontiers through the strongest citation bursts, conducted keyword biclustering analysis, and discovered five clusters of research hotspots. Our research provided a comprehensive analysis of the fundamental data, knowledge organization, and dynamic evolution of research about ECM in carotid artery disease. CONCLUSIONS The field of ECM in carotid artery disease has received increasing attention. We summarized the history of the field and predicted five future hotspots through bibliometric analysis. This study provided a reference for researchers in this fields, and the methodology can be extended to other fields.
Collapse
Affiliation(s)
- Ran Xu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Tianhua Li
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Zhiqing Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, China
| | - Wei Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, China
| | - Tao Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Xiao Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Jichang Luo
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Wenjing Li
- Laboratory of Computational Biology and Machine Intelligence, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Liqun Jiao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
- China International Neuroscience Institute (China-INI), Beijing, China.
- Department of Interventional Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
33
|
Wei J, Baptista-Hon DT, Wang Z, Li G, Herrler T, Dai C, Liu K, Yu B, Chen X, Yang M, Han D, Gao Y, Huang RL, Guo L, Zhang K, Li Q. Bioengineered human tissue regeneration and repair using endogenous stem cells. Cell Rep Med 2023; 4:101156. [PMID: 37586324 PMCID: PMC10439273 DOI: 10.1016/j.xcrm.2023.101156] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 04/30/2023] [Accepted: 07/19/2023] [Indexed: 08/18/2023]
Abstract
We describe a general approach to produce bone and cartilaginous structures utilizing the self-regenerative capacity of the intercostal rib space to treat a deformed metacarpophalangeal joint and microtia. Anatomically precise 3D molds were positioned on the perichondro-periosteal or perichondral flap of the intercostal rib without any other exogenous elements. We find anatomically precise metacarpal head and auricle constructs within the implanted molds after 6 months. The regenerated metacarpal head was used successfully to surgically repair the deformed metacarpophalangeal joint. Auricle reconstructive surgery in five unilateral microtia patients yielded good aesthetic and functional results. Long-term follow-up revealed the auricle constructs were safe and stable. Single-cell RNA sequencing analysis reveal early infiltration of a cell population consistent with mesenchymal stem cells, followed by IL-8-stimulated differentiation into chondrocytes. Our results demonstrate the repair and regeneration of tissues using only endogenous factors and a viable treatment strategy for bone and tissue structural defects.
Collapse
Affiliation(s)
- Jiao Wei
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Daniel T Baptista-Hon
- University Hospital and Center for Biomedicine and Innovations, Faculty of Medicine, Macau University of Science and Technology, Taipa 999078, Macau, China; Zhuhai International Eye Center, Zhuhai People's Hospital and the First Affiliated Hospital of Faculty of Medicine, Macau University of Technology, Zhuhai, Guangdong, China; Department of Bioinformatics and AI, Guangzhou Laboratory, Guangzhou, China; School of Medicine, University of Dundee, Dundee, UK
| | - Zi Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Gen Li
- Department of Bioinformatics and AI, Guangzhou Laboratory, Guangzhou, China; Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Tanja Herrler
- Department of Hand Surgery, Trauma Center Murnau, 82418 Murnau, Germany
| | - Chuanchang Dai
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Kai Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Baofu Yu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Xiaoxue Chen
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Mei Yang
- Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Dong Han
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yuanxu Gao
- University Hospital and Center for Biomedicine and Innovations, Faculty of Medicine, Macau University of Science and Technology, Taipa 999078, Macau, China
| | - Ru-Lin Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Lifei Guo
- Division of Plastic Surgery, Lahey Hospital and Medical Center, Burlington, VT 01808, USA.
| | - Kang Zhang
- University Hospital and Center for Biomedicine and Innovations, Faculty of Medicine, Macau University of Science and Technology, Taipa 999078, Macau, China; Zhuhai International Eye Center, Zhuhai People's Hospital and the First Affiliated Hospital of Faculty of Medicine, Macau University of Technology, Zhuhai, Guangdong, China; Department of Bioinformatics and AI, Guangzhou Laboratory, Guangzhou, China.
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| |
Collapse
|
34
|
Topoliova K, Harsanyi S, Danisovic L, Ziaran S. Tissue Engineering and Stem Cell Therapy in Neurogenic Bladder Dysfunction: Current and Future Perspectives. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1416. [PMID: 37629705 PMCID: PMC10456466 DOI: 10.3390/medicina59081416] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/21/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023]
Abstract
Tissue engineering (TE) is a rapidly evolving biomedical discipline that can play an important role in treating neurogenic bladder dysfunction and compensating for current conventional options' shortcomings. This review aims to analyze the current status of preclinical and clinical trials and discuss what could be expected in the future based on the current state of the art. Although most preclinical studies provide promising results on the effectiveness of TE and stem cell therapies, the main limitations are mainly the very slow translation of preclinical trials to clinical trials, lack of quality research on neurogenic preconditions of neurogenic bladder dysfunction outside of the spinal cord injury and varying therapeutic methods of the existing research that lacks a standardized approach.
Collapse
Affiliation(s)
- Katarina Topoliova
- National Institute of Rheumatic Diseases, Nabrezie I. Krasku 4, 921 12 Piestany, Slovakia; (K.T.); (S.H.); (S.Z.)
- Department of Urology, Faculty of Medicine, Comenius University in Bratislava, Limbova 5, 833 05 Bratislava, Slovakia
| | - Stefan Harsanyi
- National Institute of Rheumatic Diseases, Nabrezie I. Krasku 4, 921 12 Piestany, Slovakia; (K.T.); (S.H.); (S.Z.)
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Lubos Danisovic
- National Institute of Rheumatic Diseases, Nabrezie I. Krasku 4, 921 12 Piestany, Slovakia; (K.T.); (S.H.); (S.Z.)
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia
- Regenmed Ltd., Medena 29, 811 02 Bratislava, Slovakia
| | - Stanislav Ziaran
- National Institute of Rheumatic Diseases, Nabrezie I. Krasku 4, 921 12 Piestany, Slovakia; (K.T.); (S.H.); (S.Z.)
- Department of Urology, Faculty of Medicine, Comenius University in Bratislava, Limbova 5, 833 05 Bratislava, Slovakia
| |
Collapse
|
35
|
Aitken KJ, Yadav P, Sidler M, Thanabalasingam T, Ahmed T, Aggarwal P, Yip ST, Jeffrey N, Jiang JX, Siebenaller A, Sotiropoulos C, Huang R, Le DMQ, Delgado-Olguin P, Bagli D. Spontaneous urinary bladder regeneration after subtotal cystectomy increases YAP/WWTR1 signaling and downstream BDNF expression: Implications for smooth muscle injury responses. PLoS One 2023; 18:e0287205. [PMID: 37494380 PMCID: PMC10370683 DOI: 10.1371/journal.pone.0287205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 06/01/2023] [Indexed: 07/28/2023] Open
Abstract
Rodents have the capacity for spontaneous bladder regeneration and bladder smooth muscle cell (BSMC) migration following a subtotal cystectomy (STC). YAP/WWTR1 and BDNF (Brain-derived neurotrophic factor) play crucial roles in development and regeneration. During partial bladder outlet obstruction (PBO), excessive YAP/WWTR1 signaling and BDNF expression increases BSMC hypertrophy and dysfunction. YAP/WWTR1 and expression of BDNF and CYR61 were examined in models of regeneration and wound repair. Live cell microscopy was utilized in an ex vivo model of STC to visualize cell movement and division. In Sprague-Dawley female rats, STC was performed by resection of the bladder dome sparing the trigone, followed by closure of the bladder. Smooth muscle migration and downstream effects on signaling and expression were also examined after scratch wound of BSMC with inhibitors of YAP and BDNF signaling. Sham, PBO and incision (cystotomy) were comparators for the STC model. Scratch wound in vitro increased SMC migration and expression of BDNF, CTGF and CYR61 in a YAP/WWTR1-dependent manner. Inhibition of YAP/WWTR1 and BDNF signaling reduced scratch-induced migration. BDNF and CYR61 expression was elevated during STC and PBO. STC induces discrete genes associated with endogenous de novo cell regeneration downstream of YAP/WWTR1 activation.
Collapse
Affiliation(s)
- Karen J Aitken
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Priyank Yadav
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Urology and Renal Transplantation, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
- Urology Division, Department of Surgery, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Martin Sidler
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Urology Division, Department of Surgery, Hospital for Sick Children, Toronto, Ontario, Canada
- Division Chief, Paediatric and Neonatal Surgeon, University Hospital Ulm, Ulm, Baden-Württemberg, Germany
| | - Thenuka Thanabalasingam
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Human Biology Programme, Faculty of Arts and Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Tabina Ahmed
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Human Biology Programme, Faculty of Arts and Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Prateek Aggarwal
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Human Biology Programme, Faculty of Arts and Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Shing Tai Yip
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Nefateri Jeffrey
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jia-Xin Jiang
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Aliza Siebenaller
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Chris Sotiropoulos
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Human Biology Programme, Faculty of Arts and Sciences, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ryan Huang
- Human Biology Programme, Faculty of Arts and Sciences, University of Toronto, Toronto, Ontario, Canada
| | - David Minh Quynh Le
- Human Biology Programme, Faculty of Arts and Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Paul Delgado-Olguin
- Translational Medicine Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Darius Bagli
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Urology Division, Department of Surgery, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
36
|
Martier AT, Maurice YV, Conrad KM, Mauvais-Jarvis F, Mondrinos MJ. Sex-specific actions of estradiol and testosterone on human fibroblast and endothelial cell proliferation, bioenergetics, and vasculogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.23.550236. [PMID: 37546849 PMCID: PMC10402012 DOI: 10.1101/2023.07.23.550236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Progress toward the development of sex-specific tissue engineered systems has been hampered by the lack of research efforts to define the effects of sex-specific hormone concentrations on relevant human cell types. Here, we investigated the effects of defined concentrations of estradiol (E2) and dihydrotestosterone (DHT) on primary human dermal and lung fibroblasts (HDF and HLF), and human umbilical vein endothelial cells (HUVEC) from female (XX) and male (XY) donors in both 2D expansion cultures and 3D stromal vascular tissues. Sex-matched E2 and DHT stimulation in 2D expansion cultures significantly increased the proliferation index, mitochondrial membrane potential, and the expression of genes associated with bioenergetics (Na+/K+ ATPase, somatic cytochrome C) and beneficial stress responses (chaperonin) in all cell types tested. Notably, cross sex hormone stimulation, i.e., DHT treatment of XX cells in the absence of E2 and E2 stimulation of XY cells in the absence of DHT, decreased bioenergetic capacity and inhibited cell proliferation. We used a microengineered 3D vasculogenesis assay to assess hormone effects on tissue scale morphogenesis. E2 increased metrics of vascular network complexity compared to vehicle in XX tissues. Conversely, and in line with results from 2D expansion cultures, E2 potently inhibited vasculogenesis compared to vehicle in XY tissues. DHT did not significantly alter vasculogenesis in XX or XY tissues but increased the number of non-participating endothelial cells in both sexes. This study establishes a scientific rationale and adaptable methods for using sex hormone stimulation to develop sex-specific culture systems.
Collapse
Affiliation(s)
- Ashley T. Martier
- Department of Biomedical Engineering, Tulane University School of Science & Engineering, New Orleans, LA, USA
| | - Yasmin V. Maurice
- Department of Biomedical Engineering, Tulane University School of Science & Engineering, New Orleans, LA, USA
| | - K. Michael Conrad
- Department of Biomedical Engineering, Tulane University School of Science & Engineering, New Orleans, LA, USA
| | - Franck Mauvais-Jarvis
- Tulane Center for Excellence in Sex-based Biology and Medicine, New Orleans, LA, USA
- Section of Endocrinology, Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
- Southeast Louisiana VA Medical Center, New Orleans, LA, USA
| | - Mark J. Mondrinos
- Department of Biomedical Engineering, Tulane University School of Science & Engineering, New Orleans, LA, USA
- Tulane Center for Excellence in Sex-based Biology and Medicine, New Orleans, LA, USA
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
37
|
Li C, Liu Y, Weng T, Yang M, Wang X, Chai W. Fabrication of Injectable Kartogenin-Conjugated Composite Hydrogel with a Sustained Drug Release for Cartilage Repair. Pharmaceutics 2023; 15:1949. [PMID: 37514135 PMCID: PMC10385945 DOI: 10.3390/pharmaceutics15071949] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/02/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Cartilage tissue engineering has attracted great attention in defect repair and regeneration. The utilization of bioactive scaffolds to effectively regulate the phenotype and proliferation of chondrocytes has become an elemental means for cartilage tissue regeneration. On account of the simultaneous requirement of mechanical and biological performances for tissue-engineered scaffolds, in this work we prepared a naturally derived hydrogel composed of a bioactive kartogenin (KGN)-linked chitosan (CS-KGN) and an aldehyde-modified oxidized alginate (OSA) via the highly efficient Schiff base reaction and multifarious physical interactions in mild conditions. On the basis of the rigid backbones and excellent biocompatibility of these two natural polysaccharides, the composite hydrogel demonstrated favorable morphology, easy injectability, good mechanical strength and tissue adhesiveness, low swelling ratio, long-term sustainable KGN release, and facilitated bone marrow mesenchymal stem cell activity, which could simultaneously provide the mechanical and biological supports to promote chondrogenic differentiation and repair the articular cartilage defects. Therefore, we believe this work can offer a designable consideration and potential alternative candidate for cartilage and other soft tissue implants.
Collapse
Affiliation(s)
- Chao Li
- Senior Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, Beijing 100048, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100853, China
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yubo Liu
- Senior Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, Beijing 100048, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100853, China
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Tujun Weng
- Senior Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, Beijing 100048, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100853, China
| | - Muyuan Yang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wei Chai
- Senior Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, Beijing 100048, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100853, China
| |
Collapse
|
38
|
Doganay MT, Chelliah CJ, Tozluyurt A, Hujer AM, Obaro SK, Gurkan U, Patel R, Bonomo RA, Draz M. 3D Printed Materials for Combating Antimicrobial Resistance. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2023; 67:371-398. [PMID: 37790286 PMCID: PMC10545363 DOI: 10.1016/j.mattod.2023.05.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Three-dimensional (3D) printing is a rapidly growing technology with a significant capacity for translational applications in both biology and medicine. 3D-printed living and non-living materials are being widely tested as a potential replacement for conventional solutions for testing and combating antimicrobial resistance (AMR). The precise control of cells and their microenvironment, while simulating the complexity and dynamics of an in vivo environment, provides an excellent opportunity to advance the modeling and treatment of challenging infections and other health conditions. 3D-printing models the complicated niches of microbes and host-pathogen interactions, and most importantly, how microbes develop resistance to antibiotics. In addition, 3D-printed materials can be applied to testing and delivering antibiotics. Here, we provide an overview of 3D printed materials and biosystems and their biomedical applications, focusing on ever increasing AMR. Recent applications of 3D printing to alleviate the impact of AMR, including developed bioprinted systems, targeted bacterial infections, and tested antibiotics are presented.
Collapse
Affiliation(s)
- Mert Tunca Doganay
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Cyril John Chelliah
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Abdullah Tozluyurt
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Andrea M Hujer
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
| | | | - Umut Gurkan
- Mechanical and Aerospace Engineering Department, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Robin Patel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology and Division of Public Health, Infectious Diseases, and Occupational medicine, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Robert A Bonomo
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
- Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES) Cleveland, OH, USA
| | - Mohamed Draz
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
- Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH 44106, USA
| |
Collapse
|
39
|
Zhao F, Yang T, Zhou L, Zhao J, Liu J, Ping W, Zhou C, Qin Z, Jia R. Construction of tissue-engineered bladders using an artificial acellular nanocomposite scaffold loaded with stromal vascular fraction secretome. Acta Biomater 2023:S1742-7061(23)00304-5. [PMID: 37390857 DOI: 10.1016/j.actbio.2023.05.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 07/02/2023]
Abstract
Tissue engineering approaches offer promising alternative strategies for reconstructing bladder tissue; however, the low retention of transplanted cells and the possible risk of rejection limit their therapeutic efficacy. Clinical applicability is further limited by the lack of suitable scaffold materials to support the needs of various cell types. In the present study, we developed an artificial nanoscaffold system consisting of stromal vascular fraction (SVF) secretome (Sec) loaded onto zeolitic imidazolate framework-8 (ZIF-8) nanoparticles, which were then incorporated into bladder acellular matrix. This artificial acellular nanocomposite scaffold (ANS) can achieve gradient degradation and slowly release SVF-Sec to promote tissue regeneration. Furthermore, even after long-term cryopreservation, this completely acellular bladder nanoscaffold material still maintains its efficacy. In a rat bladder replacement model, ANS transplantation demonstrated potent proangiogenic ability and induced M2 macrophage polarization to promote tissue regeneration and restore bladder function. Our study demonstrates the safety and efficacy of the ANS, which can play a stem cell-like role while avoiding the disadvantages of cell therapy. Furthermore, the ANS can replace the bladder regeneration model based on cell-binding scaffold materials and has the potential for clinical application. STATEMENT OF SIGNIFICANCE: This study aimed to develop a gradient-degradable artificial acellular nanocomposite scaffold (ANS) loaded with stromal vascular fraction (SVF) secretome for rehabilitating bladders. Using various in vitro methods as well as rat- and zebrafish-based in vivo models, the developed ANS was assessed for efficacy and safety. Results indicated that the ANS achieved gradient degradation and slowly released the SVF secretome to promote tissue regeneration, even after long-term cryopreservation. Furthermore, ANS transplantation demonstrated a potent pro-angiogenic ability and induced M2 macrophage polarization to promote tissue regeneration and restore bladder function in a bladder replacement model. Our study demonstrates that ANS may replace bladder regeneration models based on cell-binding scaffold materials and have potential clinical application.
Collapse
Affiliation(s)
- Feng Zhao
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China
| | - Tianli Yang
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China
| | - Liuhua Zhou
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China
| | - Jun Zhao
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China
| | - Jingyu Liu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China
| | - Wenwen Ping
- Department of Rheumatology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China
| | - Changcheng Zhou
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China
| | - Zhiqiang Qin
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China
| | - Ruipeng Jia
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China.
| |
Collapse
|
40
|
Merotto E, Pavan PG, Piccoli M. Three-Dimensional Bioprinting of Naturally Derived Hydrogels for the Production of Biomimetic Living Tissues: Benefits and Challenges. Biomedicines 2023; 11:1742. [PMID: 37371837 DOI: 10.3390/biomedicines11061742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/07/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Three-dimensional bioprinting is the process of manipulating cell-laden bioinks to fabricate living structures. Three-dimensional bioprinting techniques have brought considerable innovation in biomedicine, especially in the field of tissue engineering, allowing the production of 3D organ and tissue models for in vivo transplantation purposes or for in-depth and precise in vitro analyses. Naturally derived hydrogels, especially those obtained from the decellularization of biological tissues, are promising bioinks for 3D printing purposes, as they present the best biocompatibility characteristics. Despite this, many natural hydrogels do not possess the necessary mechanical properties to allow a simple and immediate application in the 3D printing process. In this review, we focus on the bioactive and mechanical characteristics that natural hydrogels may possess to allow efficient production of organs and tissues for biomedical applications, emphasizing the reinforcement techniques to improve their biomechanical properties.
Collapse
Affiliation(s)
- Elena Merotto
- Tissue Engineering Lab, Istituto di Ricerca Pediatrica Città della Speranza, Corso Statu Uniti 4, 35127 Padova, Italy
- Department of Industrial Engineering, University of Padova, Via Gradenigo 6a, 35129 Padova, Italy
| | - Piero G Pavan
- Tissue Engineering Lab, Istituto di Ricerca Pediatrica Città della Speranza, Corso Statu Uniti 4, 35127 Padova, Italy
- Department of Industrial Engineering, University of Padova, Via Gradenigo 6a, 35129 Padova, Italy
| | - Martina Piccoli
- Tissue Engineering Lab, Istituto di Ricerca Pediatrica Città della Speranza, Corso Statu Uniti 4, 35127 Padova, Italy
| |
Collapse
|
41
|
Zhu H, Zheng J, Oh XY, Chan CY, Low BQL, Tor JQ, Jiang W, Ye E, Loh XJ, Li Z. Nanoarchitecture-Integrated Hydrogel Systems toward Therapeutic Applications. ACS NANO 2023; 17:7953-7978. [PMID: 37071059 DOI: 10.1021/acsnano.2c12448] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Hydrogels, as one of the most feasible soft biomaterials, have gained considerable attention in therapeutic applications by virtue of their tunable properties including superior patient compliance, good biocompatibility and biodegradation, and high cargo-loading efficiency. However, hydrogel application is still limited by some challenges like inefficient encapsulation, easy leakage of loaded cargoes, and the lack of controllability. Recently, nanoarchitecture-integrated hydrogel systems were found to be therapeutics with optimized properties, extending their bioapplication. In this review, we briefly presented the category of hydrogels according to their synthetic materials and further discussed the advantages in bioapplication. Additionally, various applications of nanoarchitecture hybrid hydrogels in biomedical engineering are systematically summarized, including cancer therapy, wound healing, cardiac repair, bone regeneration, diabetes therapy, and obesity therapy. Last, the current challenges, limitations, and future perspectives in the future development of nanoarchitecture-integrated flexible hydrogels are addressed.
Collapse
Affiliation(s)
- Houjuan Zhu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Jie Zheng
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Xin Yi Oh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Chui Yu Chan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Beverly Qian Ling Low
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Jia Qian Tor
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Wenbin Jiang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Enyi Ye
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Zibiao Li
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Republic of Singapore
| |
Collapse
|
42
|
Hsiung T, James L, Chang SH, Geraci TC, Angel LF, Chan JCY. Advances in lung bioengineering: Where we are, where we need to go, and how to get there. FRONTIERS IN TRANSPLANTATION 2023; 2:1147595. [PMID: 38993882 PMCID: PMC11235378 DOI: 10.3389/frtra.2023.1147595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/27/2023] [Indexed: 07/13/2024]
Abstract
Lung transplantation is the only potentially curative treatment for end-stage lung failure and successfully improves both long-term survival and quality of life. However, lung transplantation is limited by the shortage of suitable donor lungs. This discrepancy in organ supply and demand has prompted researchers to seek alternative therapies for end-stage lung failure. Tissue engineering (bioengineering) organs has become an attractive and promising avenue of research, allowing for the customized production of organs on demand, with potentially perfect biocompatibility. While breakthroughs in tissue engineering have shown feasibility in practice, they have also uncovered challenges in solid organ applications due to the need not only for structural support, but also vascular membrane integrity and gas exchange. This requires a complex engineered interaction of multiple cell types in precise anatomical locations. In this article, we discuss the process of creating bioengineered lungs and the challenges inherent therein. We summarize the relevant literature for selecting appropriate lung scaffolds, creating decellularization protocols, and using bioreactors. The development of completely artificial lung substitutes will also be reviewed. Lastly, we describe the state of current research, as well as future studies required for bioengineered lungs to become a realistic therapeutic modality for end-stage lung disease. Applications of bioengineering may allow for earlier intervention in end-stage lung disease and have the potential to not only halt organ failure, but also significantly reverse disease progression.
Collapse
Affiliation(s)
- Tiffany Hsiung
- Department of Cardiothoracic Surgery, NYU Langone Health, New York, NY, United States
| | - Les James
- Department of Cardiothoracic Surgery, NYU Langone Health, New York, NY, United States
| | - Stephanie H Chang
- Department of Cardiothoracic Surgery, NYU Langone Health, New York, NY, United States
- Department of Cardiothoracic Surgery, NYU Transplant Institute, NYU Langone Health, New York, NY, United States
| | - Travis C Geraci
- Department of Cardiothoracic Surgery, NYU Langone Health, New York, NY, United States
- Department of Cardiothoracic Surgery, NYU Transplant Institute, NYU Langone Health, New York, NY, United States
| | - Luis F Angel
- Department of Cardiothoracic Surgery, NYU Langone Health, New York, NY, United States
- Department of Cardiothoracic Surgery, NYU Transplant Institute, NYU Langone Health, New York, NY, United States
| | - Justin C Y Chan
- Department of Cardiothoracic Surgery, NYU Langone Health, New York, NY, United States
- Department of Cardiothoracic Surgery, NYU Transplant Institute, NYU Langone Health, New York, NY, United States
| |
Collapse
|
43
|
Deguchi K, Zambaiti E, De Coppi P. Regenerative medicine: current research and perspective in pediatric surgery. Pediatr Surg Int 2023; 39:167. [PMID: 37014468 PMCID: PMC10073065 DOI: 10.1007/s00383-023-05438-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/01/2023] [Indexed: 04/05/2023]
Abstract
The field of regenerative medicine, encompassing several disciplines including stem cell biology and tissue engineering, continues to advance with the accumulating research on cell manipulation technologies, gene therapy and new materials. Recent progress in preclinical and clinical studies may transcend the boundaries of regenerative medicine from laboratory research towards clinical reality. However, for the ultimate goal to construct bioengineered transplantable organs, a number of issues still need to be addressed. In particular, engineering of elaborate tissues and organs requires a fine combination of different relevant aspects; not only the repopulation of multiple cell phenotypes in an appropriate distribution but also the adjustment of the host environmental factors such as vascularisation, innervation and immunomodulation. The aim of this review article is to provide an overview of the recent discoveries and development in stem cells and tissue engineering, which are inseparably interconnected. The current status of research on tissue stem cells and bioengineering, and the possibilities for application in specific organs relevant to paediatric surgery have been specifically focused and outlined.
Collapse
Affiliation(s)
- Koichi Deguchi
- Stem Cells and Regenerative Medicine Section, University College London Great Ormond Street Institute of Child Health, London, UK
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Elisa Zambaiti
- Stem Cells and Regenerative Medicine Section, University College London Great Ormond Street Institute of Child Health, London, UK
- UOC Chirurgia Pediatrica, Ospedale Infantile Regina Margherita, Turin, Italy
| | - Paolo De Coppi
- Stem Cells and Regenerative Medicine Section, University College London Great Ormond Street Institute of Child Health, London, UK.
- NIHR BRC SNAPS Great Ormond Street Hospitals, London, UK.
- Stem Cells and Regenerative Medicine Section, Faculty of Population Health Sciences, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK.
| |
Collapse
|
44
|
Mariniello MD, Ghilli M, Favati B, Gerges I, Colizzi L, Tamplenizza M, Tocchio A, Martello F, Ghilardi M, Cossu MC, Danti S, Roncella M. Cell-free biomimetic polyurethane-based scaffold for breast reconstruction following non-malignant lesion resection. A first-in-human study. Breast Cancer 2023:10.1007/s12282-023-01446-5. [PMID: 36977972 DOI: 10.1007/s12282-023-01446-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/27/2023] [Indexed: 03/30/2023]
Abstract
BACKGROUND Based on the volume of tissue removed, conservative surgery (BCS) cannot always guarantee satisfactory cosmetic results, unless resorting to more complex oncoplastic approaches. Investigating an alternative to optimize aesthetic outcomes minimizing surgical complexity, was the purpose of this study. We assessed an innovative surgical procedure based on the use of a biomimetic polyurethane-based scaffold intended for regenerating soft-tissue resembling fat, in patients undergoing BCS for non-malignant breast lesions. Safety and performance of the scaffold, and safety and feasibility of the entire implant procedure were evaluated. METHODS A volunteer sample of 15 female patients underwent lumpectomy with immediate device positioning, performing seven study visits with six-month follow-up. We evaluated incidence of adverse events (AEs), changes in breast appearance (using photographs and anthropomorphic measurements), interference with ultrasound and MRI (assessed by two independent investigators), investigator's satisfaction (through a VAS scale), patient's pain (through a VAS scale) and quality of life (QoL) (using the BREAST-Q© questionnaire). Data reported are the results of the interim analysis on the first 5 patients. RESULTS No AEs were device related nor serious. Breast appearance was unaltered and the device did not interference with imaging. High investigator's satisfaction, minimal post-operative pain and positive impact on QoL were also detected. CONCLUSIONS Albeit on a limited number of patients, data showed positive outcomes both in terms of safety and performance, paving the way to an innovative breast reconstructive approach with a potential remarkable impact on clinical application of tissue engineering. TRIAL REGISTRATION ClinicalTrials.gov (NCT04131972, October 18, 2019).
Collapse
Affiliation(s)
| | - Matteo Ghilli
- Breast Cancer Center, University Hospital of Pisa, Via Roma 57, 56126, Pisa, Italy
| | - Benedetta Favati
- Breast Radiology, Breast Cancer Center, University Hospital of Pisa, Via Roma 57, 56126, Pisa, Italy
| | | | - Livio Colizzi
- Breast Cancer Center, University Hospital of Pisa, Via Roma 57, 56126, Pisa, Italy
| | | | | | | | - Maria Ghilardi
- Breast Cancer Center, University Hospital of Pisa, Via Roma 57, 56126, Pisa, Italy
| | - Maria Cristina Cossu
- Breast Radiology, Breast Cancer Center, University Hospital of Pisa, Via Roma 57, 56126, Pisa, Italy
| | - Serena Danti
- Department of Civil and Industrial Engineering, University of Pisa, Largo L. Lazzarino 2, 56122, Pisa, Italy
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Manuela Roncella
- Breast Cancer Center, University Hospital of Pisa, Via Roma 57, 56126, Pisa, Italy
| |
Collapse
|
45
|
Wierzbicka A, Krakos M, Wilczek P, Bociaga D. A comprehensive review on hydrogel materials in urology: Problems, methods, and new opportunities. J Biomed Mater Res B Appl Biomater 2023; 111:730-756. [PMID: 36237176 DOI: 10.1002/jbm.b.35179] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/07/2022] [Accepted: 09/22/2022] [Indexed: 01/21/2023]
Abstract
Hydrogel materials provide an extremely promising group of materials that can find an increasingly wide range of use in treating urinary system conditions due to their unique properties. The present review describes achievements to date in terms of the use and development prospects of hydrogel materials applications in the treatment and reconstruction of the urinary system organs, which among others include: hydrogel systems of intravesical drug delivery, ureteral stents design, treatment of vesicoureteral reflux, urinary bladder and urethral defects reconstruction, design of modern urinary catheters and also solutions applied in urinary incontinence therapy (Figure 4). In addition, hydrogel materials find increasingly growing applications in the construction of educational simulation models of organs and specific conditions of the urinary system, which enable the education of medical personnel. Numerous research efforts are underway to expand the existing treatment methods and reconstruction of the urinary system based on hydrogel materials. After conducting the further necessary research, many of the innovative solutions developed to date have high application potential.
Collapse
Affiliation(s)
- Adrianna Wierzbicka
- Faculty of Mechanical Engineering, Institute of Materials Science and Engineering, Lodz University of Technology, Lodz, Poland
| | - Marek Krakos
- Department of Pediatric Surgery and Urology, Hospital of J. Korczak, Lodz, Poland.,Department of Pediatric Nephrology, Polish Mother's Memorial Hospital Research Institute, Lodz, Poland
| | - Piotr Wilczek
- Faculty of Health Sciences, Calisia University, Kalisz, Poland.,Heart Prostheses Institute, Prof. Z. Religa Foundation of Cardiac Surgery Development, Zabrze, Poland
| | - Dorota Bociaga
- Faculty of Mechanical Engineering, Institute of Materials Science and Engineering, Lodz University of Technology, Lodz, Poland
| |
Collapse
|
46
|
Chan JCY, Chaban R, Chang SH, Angel LF, Montgomery RA, Pierson RN. Future of Lung Transplantation: Xenotransplantation and Bioengineering Lungs. Clin Chest Med 2023; 44:201-214. [PMID: 36774165 PMCID: PMC11078107 DOI: 10.1016/j.ccm.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Xenotransplantation promises to alleviate the issue of donor organ shortages and to decrease waiting times for transplantation. Recent advances in genetic engineering have allowed for the creation of pigs with up to 16 genetic modifications. Several combinations of genetic modifications have been associated with extended graft survival and life-supporting function in experimental heart and kidney xenotransplants. Lung xenotransplantation carries specific challenges related to the large surface area of the lung vascular bed, its innate immune system's intrinsic hyperreactivity to perceived 'danger', and its anatomic vulnerability to airway flooding after even localized loss of alveolocapillary barrier function. This article discusses the current status of lung xenotransplantation, and challenges related to immunology, physiology, anatomy, and infection. Tissue engineering as a feasible alternative to develop a viable lung replacement solution is discussed.
Collapse
Affiliation(s)
- Justin C Y Chan
- NYU Transplant Institute, New York University, 530 1st Avenue, Suite 7R, New York, NY 10016, USA.
| | - Ryan Chaban
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA; Department of Cardiovascular Surgery, University Hospital of Johannes Gutenberg University, Langenbeckstr. 1, Bau 505, 5. OG55131 Mainz, Germany
| | - Stephanie H Chang
- NYU Transplant Institute, New York University, 530 1st Avenue, Suite 7R, New York, NY 10016, USA
| | - Luis F Angel
- NYU Transplant Institute, New York University, 530 1st Avenue, Suite 7R, New York, NY 10016, USA
| | - Robert A Montgomery
- NYU Transplant Institute, New York University, 530 1st Avenue, Suite 7R, New York, NY 10016, USA
| | - Richard N Pierson
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| |
Collapse
|
47
|
Electrically conductive scaffolds mimicking the hierarchical structure of cardiac myofibers. Sci Rep 2023; 13:2863. [PMID: 36804588 PMCID: PMC9938142 DOI: 10.1038/s41598-023-29780-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 02/10/2023] [Indexed: 02/19/2023] Open
Abstract
Electrically conductive scaffolds, mimicking the unique directional alignment of muscle fibers in the myocardium, are fabricated using the 3D printing micro-stereolithography technique. Polyethylene glycol diacrylate (photo-sensitive polymer), Irgacure 819 (photo-initiator), curcumin (dye) and polyaniline (conductive polymer) are blended to make the conductive ink that is crosslinked using free radical photo-polymerization reaction. Curcumin acts as a liquid filter and prevents light from penetrating deep into the photo-sensitive solution and plays a central role in the 3D printing process. The obtained scaffolds demonstrate well defined morphology with an average pore size of 300 ± 15 μm and semi-conducting properties with a conductivity of ~ 10-6 S/m. Cyclic voltammetry analyses detect the electroactivity and highlight how the electron transfer also involve an ionic diffusion between the polymer and the electrolyte solution. Scaffolds reach their maximum swelling extent 30 min after immersing in the PBS at 37 °C and after 4 weeks they demonstrate a slow hydrolytic degradation rate typical of polyethylene glycol network. Conductive scaffolds display tunable conductivity and provide an optimal environment to the cultured mouse cardiac progenitor cells.
Collapse
|
48
|
Sueters J, Groenman FA, Bouman MB, Roovers JPW, de Vries R, Smit TH, Huirne JAF. Tissue Engineering Neovagina for Vaginoplasty in Mayer-Rokitansky-Küster-Hauser Syndrome and Gender Dysphoria Patients: A Systematic Review. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:28-46. [PMID: 35819292 DOI: 10.1089/ten.teb.2022.0067] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Background: Vaginoplasty is a surgical solution to multiple disorders, including Mayer-Rokitansky-Küster-Hauser syndrome and male-to-female gender dysphoria. Using nonvaginal tissues for these reconstructions is associated with many complications, and autologous vaginal tissue may not be sufficient. The potential of tissue engineering for vaginoplasty was studied through a systematic bibliography search. Cell types, biomaterials, and signaling factors were analyzed by investigating advantages, disadvantages, complications, and research quantity. Search Methods: A systematic search was performed in Medline, EMBASE, Web of Science, and Scopus until March 8, 2022. Term combinations for tissue engineering, guided tissue regeneration, regenerative medicine, and tissue scaffold were applied, together with vaginoplasty and neovagina. The snowball method was performed on references and a Google Scholar search on the first 200 hits. Original research articles on human and/or animal subjects that met the inclusion (reconstruction of vaginal tissue and tissue engineering method) and no exclusion criteria (not available as full text; written in foreign language; nonoriginal study article; genital surgery other than neovaginal reconstruction; and vaginal reconstruction with autologous or allogenic tissue without tissue engineering or scaffold) were assessed. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) checklist, the Newcastle-Ottawa Scale, and the Gold Standard Publication Checklist were used to evaluate article quality and bias. Outcomes: A total of 31 out of 1569 articles were included. Data extraction was based on cell origin and type, biomaterial nature and composition, host species, number of hosts and controls, neovaginal size, replacement fraction, and signaling factors. An overview of used tissue engineering methods for neovaginal formation was created, showing high variance of cell types, biomaterials, and signaling factors and the same topics were rarely covered multiple times. Autologous vaginal cells and extracellular matrix-based biomaterials showed preferential properties, and stem cells carry potential. However, quality confirmation of orthotopic cell-seeded acellular vaginal matrix by clinical trials is needed as well as exploration of signaling factors for vaginoplasty. Impact statement General article quality was weak to sufficient due to unreported cofounders and incomplete animal study descriptions. Article quality and heterogenicity made identification of optimal cell types, biomaterials, or signaling factors unreliable. However, trends showed that autologous cells prevent complications and compatibility issues such as healthy cell destruction, whereas stem cells prevent cross talk (interference of signaling pathways by signals from other cell types) and rejection (but need confirmation testing beyond animal trials). Natural (orthotopic) extracellular matrix biomaterials have great preferential properties that encourage future research, and signaling factors for vascularization are important for tissue engineering of full-sized neovagina.
Collapse
Affiliation(s)
- Jayson Sueters
- Department of Gynaecology and Amsterdam Reproduction and Development, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| | - Freek A Groenman
- Department of Obstetrics and Gynecology, Amsterdam Reproduction and Development, Amsterdam UMC location VUmc, Amsterdam, The Netherlands.,Centre of Expertise on Gender Dysphoria, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| | - Mark-Bram Bouman
- Centre of Expertise on Gender Dysphoria, Amsterdam UMC location VUmc, Amsterdam, The Netherlands.,Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| | - Jan Paul W Roovers
- Department of Obstetrics and Gynecology, Amsterdam Reproduction and Development, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| | - Ralph de Vries
- Medical Library, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Theo H Smit
- Department of Gynaecology and Amsterdam Reproduction and Development, Amsterdam UMC location VUmc, Amsterdam, The Netherlands.,Department of Medical Biology, Amsterdam UMC location AMC, Amsterdam, The Netherlands
| | - Judith A F Huirne
- Department of Gynaecology and Amsterdam Reproduction and Development, Amsterdam UMC location VUmc, Amsterdam, The Netherlands.,Research Institute Reproduction and Development, Amsterdam UMC location AMC, Amsterdam, The Netherlands
| |
Collapse
|
49
|
Xu B, Ye J, Fan BS, Wang X, Zhang JY, Song S, Song Y, Jiang WB, Wang X, Yu JK. Protein-spatiotemporal partition releasing gradient porous scaffolds and anti-inflammatory and antioxidant regulation remodel tissue engineered anisotropic meniscus. Bioact Mater 2023; 20:194-207. [PMID: 35702607 PMCID: PMC9160676 DOI: 10.1016/j.bioactmat.2022.05.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 01/02/2023] Open
Abstract
Meniscus is a wedge-shaped fibrocartilaginous tissue, playing important roles in maintaining joint stability and function. Meniscus injuries are difficult to heal and frequently progress into structural breakdown, which then leads to osteoarthritis. Regeneration of heterogeneous tissue engineering meniscus (TEM) continues to be a scientific and translational challenge. The morphology, tissue architecture, mechanical strength, and functional applications of the cultivated TEMs have not been able to meet clinical needs, which may due to the negligent attention on the importance of microenvironment in vitro and in vivo. Herein, we combined the 3D (three-dimensional)-printed gradient porous scaffolds, spatiotemporal partition release of growth factors, and anti-inflammatory and anti-oxidant microenvironment regulation of Ac2-26 peptide to prepare a versatile meniscus composite scaffold with heterogeneous bionic structures, excellent biomechanical properties and anti-inflammatory and anti-oxidant effects. By observing the results of cell activity and differentiation, and biomechanics under anti-inflammatory and anti-oxidant microenvironments in vitro, we explored the effects of anti-inflammatory and anti-oxidant microenvironments on construction of regional and functional heterogeneous TEM via the growth process regulation, with a view to cultivating a high-quality of TEM from bench to bedside. A polycaprolactone meniscus scaffold with the gradient porous architecture. Spatiotemporal partition release of two growth factors to promote heterogeneous phenotypes. Anti-inflammatory and antioxidant regulation by Ac2-26 peptide. Scaffold with biomimetic morphology, biomechanics, heterogeneity of native meniscus.
Collapse
|
50
|
Zhou E, Xiang D, Yu B, Yao H, Sun C, Wang Y. Ovarian tissue transplantation ameliorates osteoporosis and dyslipidaemia in ovariectomised mice. J Ovarian Res 2022; 15:139. [PMID: 36578058 PMCID: PMC9798584 DOI: 10.1186/s13048-022-01083-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 12/16/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Ovarian insufficiency frequently renders postmenopausal women susceptible to osteoporosis and dyslipidaemia. Postmenopausal transplant women are at a higher risk developing osteoporosis and dyslipidaemia due to the concomitant application of glucocorticoids and immunosuppressants after solid organ transplantation. Thus, this study aimed to explore the feasibility of ovarian tissue transplantation (OTT) as an alternative to Hormone replacement therapy (HRT) for postmenopausal women with solid organ transplant needs. RESULTS Sixty mice were randomly divided into four groups: sham operation, ovariectomised (OVX group), ovariectomy plus oestrogen (E2 group), and ovariectomy plus OTT (OTT group). The inhibin levels in the OTT group were increased and the follicle stimulating hormone and luteinizing hormone were suppressed to normal levels, which could not be achieved in the E2 group. The femoral bone mineral density in the OTT group was significantly increased than the E2 group (P < 0.05), and the probability of fracture was reduced by 1.4-2.6 times. Additionally, the high-density lipoprotein cholesterol levels were higher in the OTT group than in the E2 group and the triglyceride levels were lower in the OTT group than in the E2 group (P < 0.05). CONCLUSION OTT not only achieves certain endocrine effects by participating in the regulation of the hypothalamic-pituitary-ovarian feedback control loop, but also ameliorates osteoporosis and dyslipidaemia, which may be an alternative to traditional HRT for postmenopausal women with solid organ transplant needs.
Collapse
Affiliation(s)
- Encheng Zhou
- grid.413247.70000 0004 1808 0969Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, 430071 Wuhan, China
| | - Du Xiang
- grid.413247.70000 0004 1808 0969Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, 430071 Wuhan, China
| | - Bin Yu
- grid.413247.70000 0004 1808 0969Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, 430071 Wuhan, China
| | - Hanlin Yao
- grid.413247.70000 0004 1808 0969Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, 430071 Wuhan, China
| | - Chao Sun
- grid.413247.70000 0004 1808 0969Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, 430071 Wuhan, China
| | - Yanfeng Wang
- grid.413247.70000 0004 1808 0969Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, 430071 Wuhan, China
| |
Collapse
|