1
|
Chang JW, Tang CH. The role of macrophage polarization in rheumatoid arthritis and osteoarthritis: Pathogenesis and therapeutic strategies. Int Immunopharmacol 2024; 142:113056. [PMID: 39217882 DOI: 10.1016/j.intimp.2024.113056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/17/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Rheumatoid arthritis (RA) and osteoarthritis (OA) are common and debilitating joint disorders affecting millions of individuals worldwide. Despite their distinct pathological features, both conditions share a crucial role of macrophages in disease progression. Macrophages exhibit remarkable plasticity, polarizing into pro-inflammatory M1 or anti-inflammatory M2 phenotypes in response to environmental cues. An imbalance in macrophage polarization, particularly a shift towards the M1 phenotype, contributes to chronic inflammation and joint damage in RA and OA. This review explores the complex interplay between macrophages and various cell types, including T cells, B cells, synovial fibroblasts, osteoclasts, chondrocytes, and adipocytes, in the pathogenesis of these diseases. We discuss the current understanding of macrophage polarization in RA and OA, highlighting the molecular mechanisms involved. Furthermore, we provide an overview of potential therapeutic strategies targeting macrophage polarization, such as disease-modifying anti-rheumatic drugs, traditional Chinese medicine, nanomedicines, proteins, chemical compounds, and physical therapies. By elucidating the precise mechanisms governing macrophage polarization and its interactions with other cells in the joint microenvironment, researchers can identify novel therapeutic targets and develop targeted interventions to alleviate disease progression and improve patient outcomes in RA and OA.
Collapse
Affiliation(s)
- Jun-Way Chang
- The Ph.D. Program of Biotechnology and Biomedical Industry, China Medical University, Taichung, Taiwan
| | - Chih-Hsin Tang
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan; Chinese Medicine Research Center, China Medical University, Taichung, Taiwan; Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan; Department of Medical Research, China Medical University Hsinchu Hospital, Hsinchu, Taiwan.
| |
Collapse
|
2
|
Juhlin J, Sernert N, Åhlund K. Pre-operative gluteus medius tendon degeneration and its impact on strength and functional ability one year after total hip replacement. Ann Med 2024; 56:2388701. [PMID: 39140369 PMCID: PMC11328601 DOI: 10.1080/07853890.2024.2388701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/06/2024] [Accepted: 04/10/2024] [Indexed: 08/15/2024] Open
Abstract
OBJECTIVE Hip osteoarthritis is a common cause of disability and surgery is often unavoidable. Patient satisfaction is high and functional ability improves after surgery. However, residual impairment and pain are common. Degenerative changes in tendons and muscles are probable causes. The aim of this study is to investigate gluteus medius (GMED) tendon degeneration in relation to muscle strength, physical function and walking distance before and one year after total hip replacement. MATERIAL AND METHODS In total, 18 patients were examined pre- and post-operatively, of whom 15 were available in the final analysis. Muscle strength, physical function and walking distance were assessed. Tendon biopsies were assessed microscopically, and the total degeneration score (TDS) was calculated. RESULTS A correlation between the TDS and muscle strength was found for the hamstrings, GMED and quadriceps pre- or post-operatively. No correlations were found between the TDS and functional ability. Functional ability and muscle strength improved significantly after surgery. CONCLUSION Our results indicate a correlation between tendon degeneration and the muscle strength of the hip and knee in patients with hip OA and one year after THR. To minimise post-operative residual discomfort, rehabilitation programs should probably be modified over time to match the pre- and post-operative needs. Further studies are needed.This study was registered at https://www.researchweb.org/is/vgr/project/279039 (in Swedish).
Collapse
Affiliation(s)
- Johanna Juhlin
- Department of Physiotherapy, NU Hospital Group, Trollhättan/Uddevalla, Sweden
- Institute of Clinical Science, Department of Orthopaedics, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ninni Sernert
- Institute of Clinical Science, Department of Orthopaedics, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Research and Development, NU Hospital Group, Trollhättan/Uddevalla, Sweden
| | - Kristina Åhlund
- Institute of Clinical Science, Department of Orthopaedics, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Research and Development, NU Hospital Group, Trollhättan/Uddevalla, Sweden
- Department of Health Sciences, University West, Trollhättan, Sweden
| |
Collapse
|
3
|
Kitami M, Kaku M, Thant L, Maeda T. A loss of primary cilia by a reduction in mTOR signaling correlates with age-related deteriorations in condylar cartilage. GeroScience 2024; 46:5995-6007. [PMID: 38526843 PMCID: PMC11493995 DOI: 10.1007/s11357-024-01143-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/16/2024] [Indexed: 03/27/2024] Open
Abstract
Age-related deterioration of condylar cartilage is an etiological factor in temporomandibular joint-osteoarthritis (TMJ-OA). However, its underlying mechanism remains unknown. Therefore, we examined age-related changes and the relationship between mTOR signaling and primary cilia in condylar cartilage to determine the intrinsic mechanisms of age-related TMJ-OA. Age-related morphological changes were analyzed using micro-computed tomography and safranin O-stained histological samples of the mandibular condyle of C57BL/6J mice (up to 78 weeks old). Immunohistochemistry was used to assess the activity of mTOR signaling, primary cilia frequency, and Golgi size of condylar chondrocytes. Four-week-old mice receiving an 11-week series of intraperitoneal injections of rapamycin, a potent mTOR signaling inhibitor, were used for the histological evaluation of the condylar cartilage. The condylar cartilage demonstrated an age-related reduction in cartilage area, including chondrocyte size, cell density, and cell size distribution. The Golgi size, primary cilia frequency, and mTOR signaling also decreased with age. Rapamycin injections resulted in both diminished cartilage area and cell size, resembling the phenotypes observed in aged mice. Rapamycin-injected mice also exhibited a smaller Golgi size and lower primary cilia frequency in condylar cartilage. We demonstrated that a loss of primary cilia due to a decline in mTOR signaling was correlated with age-related deteriorations in condylar cartilage. Our findings provide new insights into the tissue homeostasis of condylar cartilage, contributing to understanding the etiology of age-related TMJ-OA.
Collapse
Affiliation(s)
- Megumi Kitami
- Division of Dental Pharmacology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.
- Center for Advanced Oral Science, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.
| | - Masaru Kaku
- Division of Bio-Prosthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.
| | - Lay Thant
- Division of Dental Pharmacology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
- Center for Advanced Oral Science, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Takeyasu Maeda
- Center for Advanced Oral Science, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| |
Collapse
|
4
|
Zimmerman BK, Maas SA, Weiss JA, Ateshian GA. Modeling Fatigue Failure of Cartilage and Fibrous Biological Tissues Using Constrained Reactive Mixture Theory. J Biomech Eng 2024; 146:121001. [PMID: 39152721 PMCID: PMC11500809 DOI: 10.1115/1.4066219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 08/19/2024]
Abstract
Fatigue failure in biological soft tissues plays a critical role in the etiology of chronic soft tissue injuries and diseases such as osteoarthritis (OA). Understanding failure mechanisms is hindered by the decades-long timescales over which damage takes place. Analyzing the factors contributing to fatigue failure requires the help of validated computational models developed for soft tissues. This study presents a framework for fatigue failure of fibrous biological tissues based on reaction kinetics, where the composition of intact and fatigued material regions can evolve via degradation and breakage over time, in response to energy-based fatigue and damage criteria. Using reactive constrained mixture theory, material region mass fractions are governed by the axiom of mass balance. Progression of fatigue is controlled by an energy-based reaction rate, with user-selected probability functions defining the damage propensity of intact and fatigued material regions. Verification of this reactive theory, which is implemented in the open-source FEBio finite element software, is provided in this study. Validation is also demonstrated against experimental data, showing that predicted damage can be linked to results from biochemical assays. The framework is also applied to study fatigue failure during frictional contact of cartilage. Simulating previous experiments suggests that frictional effects slightly increase fatigue progression, but the main driver is cyclic compressive contact loading. This study demonstrated the ability of theoretical models to complement and extend experimental findings, advancing our understanding of the time progression of fatigue in biological tissues.
Collapse
Affiliation(s)
- Brandon K Zimmerman
- Department of Mechanical Engineering, Columbia University, New York, NY 10027
| | - Steve A Maas
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112
| | - Jeffrey A Weiss
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112
| | - Gerard A Ateshian
- Department of Mechanical Engineering, Columbia University, New York, NY 10027
| |
Collapse
|
5
|
Lavikainen J, Stenroth L, Vartiainen P, Alkjær T, Karjalainen PA, Henriksen M, Korhonen RK, Liukkonen M, Mononen ME. Predicting Knee Joint Contact Force Peaks During Gait Using a Video Camera or Wearable Sensors. Ann Biomed Eng 2024; 52:3280-3294. [PMID: 39097542 PMCID: PMC11561138 DOI: 10.1007/s10439-024-03594-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 07/26/2024] [Indexed: 08/05/2024]
Abstract
PURPOSE Estimating loading of the knee joint may be helpful in managing degenerative joint diseases. Contemporary methods to estimate loading involve calculating knee joint contact forces using musculoskeletal modeling and simulation from motion capture (MOCAP) data, which must be collected in a specialized environment and analyzed by a trained expert. To make the estimation of knee joint loading more accessible, simple input predictors should be used for predicting knee joint loading using artificial neural networks. METHODS We trained feedforward artificial neural networks (ANNs) to predict knee joint loading peaks from the mass, height, age, sex, walking speed, and knee flexion angle (KFA) of subjects using their existing MOCAP data. We also collected an independent MOCAP dataset while recording walking with a video camera (VC) and inertial measurement units (IMUs). We quantified the prediction accuracy of the ANNs using walking speed and KFA estimates from (1) MOCAP data, (2) VC data, and (3) IMU data separately (i.e., we quantified three sets of prediction accuracy metrics). RESULTS Using portable modalities, we achieved prediction accuracies between 0.13 and 0.37 root mean square error normalized to the mean of the musculoskeletal analysis-based reference values. The correlation between the predicted and reference loading peaks varied between 0.65 and 0.91. This was comparable to the prediction accuracies obtained when obtaining predictors from motion capture data. DISCUSSION The prediction results show that both VCs and IMUs can be used to estimate predictors that can be used in estimating knee joint loading outside the motion laboratory. Future studies should investigate the usability of the methods in an out-of-laboratory setting.
Collapse
Affiliation(s)
- Jere Lavikainen
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland.
- Diagnostic Imaging Centre, Kuopio University Hospital, Kuopio, Finland.
| | - Lauri Stenroth
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| | - Paavo Vartiainen
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| | - Tine Alkjær
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Parker Institute, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Pasi A Karjalainen
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| | - Marius Henriksen
- The Parker Institute, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Rami K Korhonen
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| | - Mimmi Liukkonen
- Diagnostic Imaging Centre, Kuopio University Hospital, Kuopio, Finland
| | - Mika E Mononen
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
6
|
Yu B, Zeng A, Liu H, Yang Z, Gu C, Luo X, Fu M. LncRNA HOXA11-AS intercepts the POU2F2-mediated downregulation of SLC3A2 in osteoarthritis to suppress ferroptosis. Cell Signal 2024; 124:111399. [PMID: 39251054 DOI: 10.1016/j.cellsig.2024.111399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/27/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND Osteoarthritis (OA) is a prevalent ailment characterized by the gradual degradation of joints, resulting in discomfort and restricted movement. The recently proposed mechanism of ferroptosis is intricately associated with the initiation and progression of OA. Our study found that the long non-coding RNA HOXA11-AS reduces ferroptosis by increasing the expression of SLC3A2 through the transcription factor POU2F2. MATERIALS AND METHODS HOXA11-AS was identified through lncRNA microarray analysis, and its impact on chondrocytes and extracellular matrix was assessed using real-time quantitative PCR, western blotting, and CCK8 assays. Subsequently, overexpression of HOXA11-AS in the knee joints of mice confirmed its protective efficacy on chondrocyte phenotype in the OA model. The involvement of HOXA11-AS in regulating ferroptosis via SLC3A2 was further validated through RNA sequencing analysis of mouse cartilage and the assessment of malondialdehyde levels and glutathione peroxidase activity. Finally, a combination of RNA sequencing, pull-down assays, mass spectrometry (MS), and chromatin immunoprecipitation (ChIP) techniques was employed to identify POU2F2 as the crucial transcription factor responsible for repressing the expression of SLC3A2, which can be effectively inhibited by HOXA11-AS. RESULTS Our study demonstrated that HOXA11-AS effectively enhanced the metabolic homeostasis of chondrocytes, and alleviated the progression of OA in vitro and in vivo experiments. Furthermore, HOXA11-AS was found to enhance SLC3A2 expression, a key regulator of ferroptosis, by interacting with the transcriptional repressor POU2F2. CONCLUSIONS HOXA11-AS promotes SLC3A2 expression and inhibits chondrocyte ferroptosis, by binding to the transcriptional repressor POU2F2, offering a promising and innovative therapeutic approach for OA.
Collapse
Affiliation(s)
- Baoxi Yu
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, PR China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China.
| | - Anyu Zeng
- Department of Bone and Soft Tissue Surgery, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China.
| | - Hailong Liu
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, PR China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China; Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China.
| | - Zhijian Yang
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, PR China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China.
| | - Cheng Gu
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, PR China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China.
| | - Xuming Luo
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, PR China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China.
| | - Ming Fu
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, PR China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China.
| |
Collapse
|
7
|
Giorgino R, Alessandri Bonetti M, Migliorini F, Nannini A, Vaienti L, Peretti GM, Mangiavini L. Management of hip osteoarthritis: harnessing the potential of mesenchymal stem cells-a systematic review. EUROPEAN JOURNAL OF ORTHOPAEDIC SURGERY & TRAUMATOLOGY : ORTHOPEDIE TRAUMATOLOGIE 2024; 34:3847-3857. [PMID: 39254726 PMCID: PMC11519189 DOI: 10.1007/s00590-024-04089-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 08/25/2024] [Indexed: 09/11/2024]
Abstract
INTRODUCTION Hip osteoarthritis (OA) is a prevalent and debilitating condition, necessitating effective and safe treatment options. This systematic review aims to explore the potential of intra-articular mesenchymal stem cell (MSC) infiltrations as a therapeutic approach for hip OA. METHODS Following PRISMA guidelines, a systematic review was conducted, encompassing PubMed, Embase, and Cochrane Library databases. Inclusion criteria involved studies focusing on intra-articular MSC injections in patients with hip OA and reporting pain relief as an outcome measure. Quality assessment utilized the Newcastle-Ottawa scale and methodological index for non-randomized studies. RESULTS Ten studies were included in the review, exhibiting varied designs and sample sizes (316 patients). Outcome measures consisted of cartilage repair assessed through MRI and radiographies, pain scores (WOMAC, VAS, NRS), and functional improvements (HOS-ADL, OHS, FRI, PDQQ, LEFS). The studies reported favorable improvements in functional scores, pain relief, and cartilage repair/radiographic findings, with minimal reported adverse events. CONCLUSIONS Intra-articular MSC infiltrations demonstrate promise as an effective and safe therapeutic intervention for managing hip OA, offering pain relief and functional enhancements. Nevertheless, limited high-quality studies and outcome measure variations underscore the need for further research to establish definitive treatment guidelines. Future investigations should address optimal MSC utilization, long-term outcomes, and potential complications to ensure the success of MSC-based therapies for hip OA management, ultimately improving patient outcomes. The findings provide valuable insights into the potential of MSC-based treatments for hip OA, advocating further rigorous research in this field. TRIAL REGISTRATION The protocol was registered on PROSPERO database (CRD42023436973).
Collapse
Affiliation(s)
- Riccardo Giorgino
- Residency Program in Orthopaedics and Traumatology, University of Milan, 20161, Milan, Italy.
- I.R.C.C.S. Istituto Ortopedico Galeazzi, 20161, Milan, Italy.
| | | | - Filippo Migliorini
- Department of Orthopaedic and Trauma Surgery, Academic Hospital of Bolzano (SABES-ASDAA), 39100, Bolzano, Italy
- Department of Life Sciences, Health, and Health Professions, Link Campus University, 00165, Rome, Italy
| | - Alessandra Nannini
- Residency Program in Orthopaedics and Traumatology, University of Milan, 20161, Milan, Italy
- I.R.C.C.S. Istituto Ortopedico Galeazzi, 20161, Milan, Italy
| | - Luca Vaienti
- Department of Plastic Surgery, University of Milan, 20161, Milan, Italy
| | - Giuseppe Michele Peretti
- I.R.C.C.S. Istituto Ortopedico Galeazzi, 20161, Milan, Italy
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, 20122, Milan, Italy
| | - Laura Mangiavini
- I.R.C.C.S. Istituto Ortopedico Galeazzi, 20161, Milan, Italy
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, 20122, Milan, Italy
| |
Collapse
|
8
|
DiMartino SJ, Gao H, Neogi T, Fuerst T, Zaim S, Eng S, Ho T, Manvelian G, Braunstein N, Geba GP, Dakin P. Prevalence of preexisting articular bone pathology in patients with osteoarthritis screened for fasinumab clinical trials identified by X-ray or magnetic resonance imaging. Osteoarthritis Cartilage 2024; 32:1601-1609. [PMID: 39004211 DOI: 10.1016/j.joca.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/27/2024] [Accepted: 07/06/2024] [Indexed: 07/16/2024]
Abstract
OBJECTIVE To examine the prevalence of preexisting articular bone pathology in patients with hip or knee pain due to osteoarthritis (OA) screened for fasinumab clinical trials. METHOD This post-hoc analysis included patients with OA screened for three phase 3 fasinumab studies (NCT02683239, NCT03161093, NCT03304379). During screening, participants who met other clinical inclusion/exclusion criteria underwent radiography of knees, hips, and shoulders. Those with Kellgren-Lawrence grade (KLG) ≥ 2 for index joint and without an exclusionary finding proceeded to magnetic resonance imaging (MRI) of index, contralateral, and KLG ≥ 3 joints. Exclusionary findings included bone fragmentation/collapse, bone loss/resorption, osteonecrosis, and fracture, by either X-ray or MRI. Participants with extensive subchondral cysts were also excluded. Prevalence of abnormalities on radiographs and MRIs are reported. RESULTS Of 27,633 participants screened, 21,997 proceeded to imaging. Of these, 1203 (5.5%) were excluded due to the presence of ≥ 1 joint with severe articular bone pathology (X-ray or MRI): bone fragmentation/collapse (2.60%), subchondral insufficiency fracture (SIF; 1.67%), osteonecrosis (1.11%), and significant bone loss (0.32%). Additionally, 3.13% screen-failed due to extensive subchondral cysts. More than half of the exclusions due to bone fragmentation/collapse (386/572), osteonecrosis (141/245) and significant bone loss (59/71), and approximately one third of SIF (133/367) and extensive subchondral cysts (229/689) were evident on X-rays. CONCLUSIONS Approximately one in 20 participants with OA who met the clinical screening criteria for fasinumab phase 3 trials were later excluded due to preexisting severe articular bone pathology findings by X-ray or MRI.
Collapse
Affiliation(s)
| | - Haitao Gao
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | - Tuhina Neogi
- Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | | | | | - Simon Eng
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | - Tina Ho
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | | | | | | | - Paula Dakin
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| |
Collapse
|
9
|
Henriques J, Berenbaum F, Mobasheri A. Obesity-induced fibrosis in osteoarthritis: Pathogenesis, consequences and novel therapeutic opportunities. OSTEOARTHRITIS AND CARTILAGE OPEN 2024; 6:100511. [PMID: 39483440 PMCID: PMC11525450 DOI: 10.1016/j.ocarto.2024.100511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/26/2024] [Accepted: 08/12/2024] [Indexed: 11/03/2024] Open
Abstract
Osteoarthritis (OA) is a significant global burden, affecting more than half a billion people across the world. It is characterized by degeneration and loss of articular cartilage, synovial inflammation, and subchondral bone sclerosis, leading to pain and functional impairment. After age, obesity is a major modifiable risk factor for OA, and it has recently been identified as a chronic disease by the World Health Organization (WHO). Obesity is associated with high morbidity and mortality, imposing a significant cost on individuals and society. Obesity increases the risk of knee OA through increased joint loading, altered body composition, and elevated pro-inflammatory adipokines in the systemic circulation. Moreover, obesity triggers fibrotic processes in different organs and tissues, including those involved in OA. Fibrosis in OA refers to the abnormal accumulation of fibrous tissue within and around the joints. It can be driven by increased adiposity, low-grade inflammation, oxidative stress, and metabolic alterations. However, the clinical outcomes of fibrosis in OA are unclear. This review focuses on the link between obesity and OA, explores the mechanism of obesity-driven fibrosis, and examines potential therapeutic opportunities for targeting fibrotic processes in OA.
Collapse
Affiliation(s)
- João Henriques
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Francis Berenbaum
- Sorbonne University, Paris, France
- Department of Rheumatology, Saint-Antoine Hospital, Assistance Publique-Hopitaux de Paris, Paris, France
- INSERM CRSA, Paris, France
| | - Ali Mobasheri
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- World Health Organization Collaborating Center for Public Health Aspects of Musculoskeletal Health and Aging, Université de Liège, Liège, Belgium
| |
Collapse
|
10
|
Wu Q, Xu Z, Ma X, Li J, Du J, Ji J, Ling X, Kan J, Zhao M. Association of low muscle mass index and sarcopenic obesity with knee osteoarthritis: a systematic review and meta-analysis. J Int Soc Sports Nutr 2024; 21:2352393. [PMID: 38775452 PMCID: PMC11123550 DOI: 10.1080/15502783.2024.2352393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Sarcopenia and knee osteoarthritis are common age-related diseases that have become important public health issues worldwide. Few studies have reported the association between muscle mass loss and knee osteoarthritis. This may be due to the high level of heterogeneity between studies stemming from different definitions of muscle mass loss. METHODS The systematic searches were carried out in PubMed and Web of Science from the inception of the databases until 13 January 2023, by two independent researchers. Pooled odds ratios (ORs) for overall and subgroup analyses were obtained using either a random effects model (I2 >50%) or fixed effects model (I2 ≤50%) in Stata. RESULTS Of the 1,606 studies identified, we ultimately included 12 articles on the association between muscle mass and knee osteoarthritis (prospective: n = 5; cross-sectional: n = 7). Low-quality evidence indicated that low muscle mass index and sarcopenic obesity increase the odds of knee osteoarthritis (low muscle mass index OR: 1.36, 95% CI: 1.13-1.64; sarcopenic obesity OR: 1.78, 95% CI: 1.35-2.34). However, no association was observed between general sarcopenia or low muscle mass with knee osteoarthritis. CONCLUSION This systematic review and meta-analysis revealed that low muscle mass index and sarcopenic obesity were associated with an increased risk of developing knee osteoarthritis.
Collapse
Affiliation(s)
- Qiming Wu
- Nutrilite Health Institute, Shanghai, China
| | - Zhuyan Xu
- Shandong University, Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Jinan, China
| | - Xiaomin Ma
- Shandong University, Experimental center for public health and Preventive Medicine, School of Public Health, Cheeloo College of Medicine, Jinan, Shandong, China
| | - Juan Li
- Shandong University, Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Jinan, China
| | - Jun Du
- Nutrilite Health Institute, Shanghai, China
| | - Jing Ji
- Shandong University, Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Jinan, China
| | - Xiaomeng Ling
- Shandong University, Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Jinan, China
| | - Juntao Kan
- Nutrilite Health Institute, Shanghai, China
| | - Min Zhao
- Shandong University, Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Jinan, China
| |
Collapse
|
11
|
He C, Zeng Z, Yang Y, Ye S, Wu Q, Liu X, Liu C, Zeng W, Liu S. Silencing of CircTRIM25/miR-138-5p/CREB1 axis promotes chondrogenesis in osteoarthritis. Autoimmunity 2024; 57:2361749. [PMID: 39007896 DOI: 10.1080/08916934.2024.2361749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/26/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Dysregulated circular RNAs (circRNAs) are involved in osteoarthritis (OA) progression. OBJECTIVE We aimed to explore the effect of hsa_circ_0044719 (circTRIM25) on the ferroptosis of chondrocytes. METHODS Chondrocytes were treated with interleukin (IL)-1β to generate cell model. Cellular behaviours were measured using cell counting kit-8, enzyme-linked immunosorbent assay, relevant kits, propidium iodide staining, and immunofluorescence assay. Quantitative real-time polymerase chain reaction was performed to examine the expression of circTRIM25, miR-138-5p, and cAMP responsive element binding protein 1 (CREB1), and their interactions were assessed using luciferase reporter analysis and RNA pull-down assay. RESULTS CircTRIM25 was upregulated in OA tissues and IL-1β-stimulated chondrocytes. Knockdown of circTRIM25 facilitated the viability and suppressed ferroptosis and inflammation of IL-1β-induced cells. CircTRIM25 served as a sponge of miR-138-5p, which directly targets CREB1. Downregulation of miR-138-5p abrogated the effect induced by knockdown of circTRIM25. Furthermore, enforced CREB1 reversed the miR-138-5p induced effect. Moreover, knockdown of circTRIM25 attenuated cartilage injury in vivo. CONCLUSION Silencing of circTRIM25 inhibited ferroptosis of chondrocytes via the miR-138-5p/CREB axis and thus attenuated OA progression.
Collapse
Affiliation(s)
- Chunlei He
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | | | - Yadong Yang
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Shanshan Ye
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Qiang Wu
- Gannan Medical University, Ganzhou, China
| | - Xunzhi Liu
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Chenghong Liu
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Wanhui Zeng
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Sheng Liu
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
12
|
Canalis E, Schilling L, Denker E. TNFα has differential effects on the transcriptome profile of selected populations in murine cartilage. OSTEOARTHRITIS AND CARTILAGE OPEN 2024; 6:100528. [PMID: 39494399 PMCID: PMC11530803 DOI: 10.1016/j.ocarto.2024.100528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/04/2024] [Indexed: 11/05/2024] Open
Abstract
Objective To further our understanding of the role of tumor necrosis factor (TNF)α on the inflammatory response in chondrocytes. Design We explored the effects of TNFα on the transcriptome of epiphyseal chondrocytes from newborn C57BL/6 mice at the total and single cell (sc) resolution. Results Gene set enrichment analysis of total RNA-Seq from TNFα-treated chondrocytes revealed enhanced response to biotic stimulus, defense and immune response and cytokine signaling and suppressed cartilage and skeletal morphogenesis and development. scRNA-Seq analyzed 14,239 cells and 24,320 genes and distinguished 16 cell clusters. The more prevalent ones were constituted by limb bud and chondrogenic cells and fibroblasts comprising ∼73 % of the cell population. Genes expressed by joint fibroblasts were detected in 5 clusters comprising ∼45 % of the cells isolated. Pseudotime trajectory finding revealed an association between fibroblast and chondrogenic clusters which was not modified by TNFα. TNFα decreased the total cells recovered by 18.5 % and the chondrogenic, limb bud and mesenchymal clusters by 32 %, 27 % and 7 %, respectively. TNFα had profound effects on the insulin-like growth factor (IGF) axis decreasing Igf1, Igf2 and Igfbp4 and inducing Igfbp3 and Igfbp5, explaining an inhibition of collagen biosynthesis, cartilage and skeletal morphogenesis. Ingenuity Pathway Analysis of scRNA-Seq data revealed that TNFα enhanced the osteoarthritis, rheumatoid arthritis, pathogen induced cytokine storm and interleukin 6 signaling pathways and suppressed fibroblast growth factor signaling. Conclusions Epiphyseal chondrocytes are constituted by diverse cell populations distinctly regulated by TNFα to promote inflammation and suppression of matrix biosynthesis and growth.
Collapse
Affiliation(s)
- Ernesto Canalis
- Departments of Orthopaedic Surgery, UConn Health, Farmington, CT 06030, USA
- Departments of Medicine, UConn Health, Farmington, CT 06030, USA
- UConn Musculoskeletal Institute, UConn Health, Farmington, CT 06030, USA
| | - Lauren Schilling
- UConn Musculoskeletal Institute, UConn Health, Farmington, CT 06030, USA
| | - Emily Denker
- UConn Musculoskeletal Institute, UConn Health, Farmington, CT 06030, USA
| |
Collapse
|
13
|
Tang J, Boel F, van Buuren MMA, Riedstra NS, Runhaar J, Bierma-Zeinstra S, Agricola R. The different subtypes of cam morphology as defined by statistical shape modeling and their relationship with the development of hip osteoarthritis: A nationwide prospective cohort study (CHECK) with 10 years follow-up. Osteoarthritis Cartilage 2024; 32:1647-1654. [PMID: 39127346 DOI: 10.1016/j.joca.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
OBJECTIVE To determine if subtypes of cam morphology on anteroposterior radiographs exist using statistical shape modeling (SSM), and to assess their association with incident radiographic hip osteoarthritis (RHOA) within 10 years. DESIGN The nationwide prospective Cohort Hip and Cohort Knee (CHECK) study included 1002 participants aged 45-65 years with 10-year follow-up. Subtypes of cam morphology were defined as SSM-based shape variations of femoral head-neck junction that are associated with baseline cam morphology (alpha angle ≥60°). The association between each subtype in hips free of osteoarthritis at baseline (Kellgren & Lawrence (KL) grade <2) and incident RHOA (KL grade≥2, or a total hip replacement) was estimated using logistic regression at 10-year follow-up and stratified by sex. RESULTS In sex-combined group, but also for males and females separately, cam morphology subtypes were captured in modes 1, 3, 4, and 5 with odds ratios (ORs) ranging from 0.39 (0.27-0.58) to 2.25 (1.64-3.10). For sex-combined group, only mode 3, a flattened head-neck junction, was associated with incident RHOA (OR:1.14, 1.02-1.27). Males' modes 1 and 3 and females' modes 3 and 4 were associated with RHOA. Notably, the female mode 4, a slightly flattened neck but with subtle curvature, was significantly protective for RHOA (OR:0.88, 0.80-0.98). CONCLUSIONS We identified four distinct morphological subtypes of cam morphology defined by alpha angle. Only some subtypes were found acting as risk factors for RHOA at 10-year follow-up, which differed between males and females. This highlights the need to study cam morphology beyond the alpha angle alone.
Collapse
Affiliation(s)
- Jinchi Tang
- Erasmus MC University Medical Center Rotterdam, Department of Orthopaedics and Sports Medicine, the Netherlands.
| | - Fleur Boel
- Erasmus MC University Medical Center Rotterdam, Department of Orthopaedics and Sports Medicine, the Netherlands.
| | - Michiel M A van Buuren
- Erasmus MC University Medical Center Rotterdam, Department of Orthopaedics and Sports Medicine, the Netherlands.
| | - Noortje S Riedstra
- Erasmus MC University Medical Center Rotterdam, Department of Orthopaedics and Sports Medicine, the Netherlands.
| | - Jos Runhaar
- Erasmus MC University Medical Center Rotterdam, Department of General Practice, the Netherlands.
| | - Sita Bierma-Zeinstra
- Erasmus MC University Medical Center Rotterdam, Department of Orthopaedics and Sports Medicine, the Netherlands; Erasmus MC University Medical Center Rotterdam, Department of General Practice, the Netherlands.
| | - Rintje Agricola
- Erasmus MC University Medical Center Rotterdam, Department of Orthopaedics and Sports Medicine, the Netherlands.
| |
Collapse
|
14
|
Choi M, Min JS, Moon SW, Jeon J, Do HK, Kim W. Mitoregulin modulates inflammation in osteoarthritis: Insights from synovial transcriptomics and cellular studies. Biochem Biophys Res Commun 2024; 734:150652. [PMID: 39245029 DOI: 10.1016/j.bbrc.2024.150652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/10/2024]
Abstract
Osteoarthritis is a prevalent musculoskeletal disease that involves cartilage degradation, subchondral bone remodeling, and synovial inflammation and ultimately causes physical disability. Common risk factors for osteoarthritis include age, sex, obesity, and genetic predispositions. Treatment includes nonpharmaceutical and pharmacological approaches; however, disease-modifying osteoarthritis drugs remain undeveloped. We aimed to identify key regulatory factors underlying the etiology of osteoarthritis. We studied alterations of the inflammatory responses after manipulating the expression of MTLN, which we selected after sequencing and transcriptomics of the patients' synovial tissues. MTLN expression was increased in synovial tissues of patients and in SW982 human synovial sarcoma cells following inflammatory stimuli. We found that MTLN overexpression or knockout respectively decreased or increased expression of the inflammation-associated genes, including IL-6, IL-8, and TNF-α. Thus, high levels of MTLN in osteoarthritis may protect tissues against excessive inflammation, thereby offering therapeutic potentials.
Collapse
Affiliation(s)
- Minjeong Choi
- Department of Biochemistry, Department of Convergence Medical Science, and Institute of Medical Science, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
| | - Ju-Sik Min
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
| | - Sang Won Moon
- Department of Orthopedic Surgery, Inje University Haeundae Paik Hospital, Busan, Republic of Korea
| | - Jaewan Jeon
- Department of Radiation Oncology, Inje University Haeundae Paik Hospital, Busan, Republic of Korea
| | - Hwan-Kwon Do
- Department of Physical Medicine and Rehabilitation, Dongnam Institute of Radiological & Medical Sciences, Busan, Republic of Korea
| | - Wanil Kim
- Department of Biochemistry, Department of Convergence Medical Science, and Institute of Medical Science, Gyeongsang National University School of Medicine, Jinju, Republic of Korea.
| |
Collapse
|
15
|
Moon J, Cho KH, Jhun J, Choi J, Na HS, Lee JS, Lee SY, Min JK, Shetty A, Park SH, Kim SJ, Cho ML. Small heterodimer partner-interacting leucine zipper protein suppresses pain and cartilage destruction in an osteoarthritis model by modulating the AMPK/STAT3 signaling pathway. Arthritis Res Ther 2024; 26:199. [PMID: 39533324 PMCID: PMC11555939 DOI: 10.1186/s13075-024-03417-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
OBJECTIVE Osteoarthritis (OA) is a degenerative joint disease caused by the breakdown of joint cartilage and adjacent bone. Joint injury, being overweight, differences in leg length, high levels of joint stress, abnormal joint or limb development, and inherited factors have been implicated in the etiology of OA. In addition to physical damage to the joint, a role for inflammatory processes has been identified as well. Small heterodimer partner-interacting leucine zipper protein (SMILE) regulates transcription and many cellular functions. Among the proteins activated by SMILE is the peroxisome proliferator-activated receptor (PPAR) γ, which mediates the activities of CD4 + T helper cells, including Th1, Th2, and Th17, as well as Treg cells. PPAR-γ binds to STAT3 to inhibit its transcription, thereby suppressing the expression of the NF-κB pathway, and in turn, the expression of the inflammatory cytokines interferon (IFN), interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α, which are sub-signals of STAT3 and NF-κB. METHODS OA was induced in control C57BL/6 mice and in C57BL/6-derived SMILE-overexpressing transgenic (SMILE Tg) mice. The protein expression levels in the joint and spleen tissues were analyzed by immunohistochemistry and immunofluorescence images. In addition, flow cytometry was performed for detecting changes of the changes of immune cells. RESULTS Less cartilage damage and significantly reduced levels of OA biomarkers (MMP13, TIMP3 and MCP-1) were observed in SMILE Tg mice. Immunohistochemistry performed to identify the signaling pathway involved in the link between SMILE expression and OA revealed decreased levels of IL-1β, IL-6, TNF-α, and phosphorylated AMPK in synovial tissues as well as a significant decrease in phosphorylated STAT3 in both cartilage and synovium. Changes in systemic immune cells were investigated via flow cytometry to analyze splenocytes isolated from control and SMILE Tg mice. SMILE Tg mice had elevated proportions of CD4 + IL-4 + cells (Th2) and CD4 + CD25 + Foxp3 + cells (Treg) and a notable decrease in CD4 + IL-17 + cells (Th17). CONCLUSION Our results show that overexpressed SMILE attenuates the symptoms of OA, by increasing AMPK signaling and decreasing STAT3, thus reducing the levels of inflammatory immune cells.
Collapse
Affiliation(s)
- Jeonghyeon Moon
- Departments of Immunobiology and Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Keun-Hyung Cho
- Lab of Translational ImmunoMedicine (LaTIM), Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
| | - JooYeon Jhun
- Lab of Translational ImmunoMedicine (LaTIM), Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
| | - JeongWon Choi
- Lab of Translational ImmunoMedicine (LaTIM), Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
| | - Hyun-Sik Na
- Lab of Translational ImmunoMedicine (LaTIM), Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
| | - Jeong Su Lee
- Lab of Translational ImmunoMedicine (LaTIM), Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
| | - Seung Yoon Lee
- Lab of Translational ImmunoMedicine (LaTIM), Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
| | - Jun-Ki Min
- Department of Internal Medicine, and the Clinical Medicine Research Institute of Bucheon St. Mary's Hospital, The Catholic University of Korea, Bucheon si, Gyeonggi-do, Korea
| | - Anan Shetty
- Institute of Medical Sciences, Canterbury Christ Church University, Medway Campus, Chatham, Kent, UK
| | - Sung-Hwan Park
- Department of Internal Medicine, Division of Rheumatology, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, 222, Banpo‑daero, Seocho‑gu, Seoul, 06591, Korea
| | - Seok Jung Kim
- Department of Orthopaedic Surgery, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Cheonbo-ro, Uijeongbu-si, Gyeonggi-do, 271, Korea
| | - Mi-La Cho
- Lab of Translational ImmunoMedicine (LaTIM), Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea.
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea.
| |
Collapse
|
16
|
Chen Y, Zhang X, Xia C, Tang L, Chen ME, Huang S, He J, Li Z. Characteristics of Temporomandibular Joint Osteoarthritis Patients With Condylar Erosion: A Retrospective Cross-Sectional Study. J Oral Rehabil 2024. [PMID: 39532685 DOI: 10.1111/joor.13894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/16/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Condylar erosion (CE) may indicate an active progressive stage of temporomandibular joint osteoarthritis (TMJOA), but no studies have analysed the characteristics of this population. OBJECTIVE This cross-sectional study analysed the characteristics of TMJOA patients with CE. METHODS A total of 267 patients were included. The severity of CE of all joints was evaluated using cone beam computed tomography (CBCT) and scored using a four-point rating scale (0-III). Patients were categorised into mild (grade I), moderate (grade II) and severe (grade III) groups. Demographic and clinical characteristics were summarised and stratified by age and erosion severity. Univariate and multivariate logistic regression analyses were performed based on the assignment of the variables. RESULTS The proportion of patients under 30 years old is much higher than other age groups. Compared to adults (≥ 20 years old), a higher proportion of adolescent patients (10-19 years old) choose orthodontics department for their first consultation (p < 0.01). And adolescent patients have a higher proportion of temporomandibular joint (TMJ) noise (p < 0.05) and a lower proportion of arthralgia (p < 0.001). Significant differences exist in CE severity between adolescents and adults (p < 0.001). The severe group had the youngest patients (p < 0.05) and the highest proportion of mandibular deviation and abnormal postural habits. CONCLUSIONS Patients under 30 years of age constitute a significant proportion of TMJOA cases with CE. Compared to adults, adolescent patients have more severe CE and less arthralgia. Due to obvious dental and maxillofacial deformities and milder TMJ symptoms, adolescent patients may not be aware that they have TMJ disease, potentially leading to delayed treatment.
Collapse
Affiliation(s)
- Yifan Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Xiao Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Chenlong Xia
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Liangchen Tang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Min-Er Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Sirong Huang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Jianxiang He
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Zhiyong Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| |
Collapse
|
17
|
Zhao J, Xia Y, He J. Low fluid shear stress promotes chondrocyte proliferation and extracellular matrix secretion by downregulating mir-143-3p and activating the ERK5/KLF4 signaling pathway. Sci Rep 2024; 14:27737. [PMID: 39532925 PMCID: PMC11557884 DOI: 10.1038/s41598-024-78676-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Low fluid shear stress (FSS, ≤ 2 dyn/cm2) has been shown to exert protective effects on chondrocytes, but the underlying molecular mechanisms remain unclear. This study aimed to elucidate the mechanisms by which FSS promotes chondrocyte proliferation and extracellular matrix (ECM) stability. We exposed SW1353 chondrocytes to low FSS (1.8 dyn/cm2, 60 min) and found that it led to a significant downregulation of microRNA-143-3p (miR-143-3p), which was associated with increased chondrocyte proliferation and ECM secretion, including type II collagen (COL2A1) and aggrecan. Further investigation revealed that miR-143-3p directly targeted ERK5, a key component of the ERK5/KLF4 signaling pathway. Overexpression of miR-143-3p suppressed ERK5/KLF4 pathway activation, resulting in reduced chondrocyte proliferation and ECM production. Our findings demonstrate that low FSS promotes chondrocyte proliferation and ECM secretion by downregulating miR-143-3p, leading to the activation of the ERK5/KLF4 signaling pathway. This study reveals a novel mechanism by which FSS regulates chondrocyte behavior and ECM secretion, highlighting the potential of FSS as a therapeutic target for cartilage-related diseases.
Collapse
Affiliation(s)
- Jun Zhao
- Department of Orthopaedics, Lanzhou University Second Hospital, #82 Cuiyingmen, Lanzhou, 730000, Gansu, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, Gansu, China
| | - Yayi Xia
- Department of Orthopaedics, Lanzhou University Second Hospital, #82 Cuiyingmen, Lanzhou, 730000, Gansu, China.
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, Gansu, China.
| | - Jinwen He
- Department of Orthopaedics, Lanzhou University Second Hospital, #82 Cuiyingmen, Lanzhou, 730000, Gansu, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, Gansu, China
| |
Collapse
|
18
|
Zhao L, Li L, Zhang Y, He Z, Chen X, Liu Y, Shi B, Liu Y. Targeting Synovial Macrophages with Astaxanthin-Loaded Liposomes for Antioxidant Treatment of Osteoarthritis. ACS Biomater Sci Eng 2024; 10:7191-7205. [PMID: 39413302 DOI: 10.1021/acsbiomaterials.4c00998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Osteoarthritis (OA) is a chronic joint disease highly associated with an imbalance in the network of inflammatory factors and typically characterized by oxidative stress and cartilage damage. Moreover, the specificity of the joint structure makes it difficult for drugs to achieve good penetration and effective enrichment in the joint cavity. Therefore, therapeutic strategies that increase the specific targeting of drugs to inflammatory joint and incorporate antioxidative stress effects are important to improve the efficacy of OA. Here, we developed a folic acid-modified liposomal nanoparticle (AST@Lip-FA) loaded with the antioxidant astaxanthin (AST) to enhance the water solubility and stability of AST and to target the delivery of AST to the site of OA, leading to a significant improvement in therapeutic efficacy. In vitro experiments demonstrated that, due to the recognition by FA of the receptor folate receptor β on the surface of activated macrophages, the cellular uptake efficiency of AST@Lip-FA was increased. Meanwhile, intracellularly overexpressed inflammatory mediators such as reactive oxygen species and nitric oxide were efficiently removed by AST@Lip-FA. In addition, in the ACLT-induced OA mouse model, AST@Lip-FA was precisely enriched in the inflamed joints and achieved long-term retention, fully utilizing the anti-inflammatory, antioxidant, and cartilage-protecting effects of AST to effectively alleviate the progression of OA. In summary, AST@Lip-FA has an important prospect as a potential and effective therapeutic strategy for OA.
Collapse
Affiliation(s)
- Linlin Zhao
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Liangxiao Li
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Yingyu Zhang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Ziye He
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Xin Chen
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Yingying Liu
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Bin Shi
- Department of Traditional Chinese Medicine Orthopedics, Neck-Shoulder and Lumbocrural Pain Hospital Affiliated to Shandong First Medical University, Jinan 250014, Shandong, China
| | - Yajun Liu
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
- Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing 100035, China
| |
Collapse
|
19
|
Yang X, Wang J, Wei C, Tian J, Yan L, Huang Q. Association between ethylene oxide exposure and osteoarthritis risk mediated by oxidative stress: evidence from NHANES 2013-2020. Med Gas Res 2024:01612956-990000000-00043. [PMID: 39511755 DOI: 10.4103/mgr.medgasres-d-24-00054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/30/2024] [Indexed: 11/15/2024] Open
Abstract
Ethylene oxide is extensively used for sterilizing medical equipment, and its carcinogenicity has been well documented. Furthermore, the onset of multiple diseases, including diabetes and hypertension, has been demonstrated to be associated with exposure to this compound. However, its association with osteoarthritis risk remains elusive. The study analyzed data from the National Health and Nutrition Examination Survey from 2013-2020, which included 6088 American adults, among whom 763 (12.5%) were diagnosed with osteoarthritis. We utilized a weighted generalized linear model to assess the correlation between ethylene oxide exposure levels and osteoarthritis risk. This study used mediation analysis to assess the functions of indicators of oxidative stress (γ-glutamyl transferase) and inflammation (alkaline phosphatase, white blood cell count, neutrophil count, and lymphocyte count) as mediators of how ethylene oxide affects osteoarthritis. The analysis revealed that elevated levels of ethylene oxide were correlated with a higher risk of osteoarthritis, even when controlling for other variables. The odds of developing osteoarthritis were 1.86 times higher in the fourth quartile than in the first quartile (95% confidence interval: 1.20-2.88, P = 0.0097, P for trend = 0.0087). Subgroup analyses indicated consistency across different cohorts. Mediation analysis revealed that oxidative stress (γ-glutamyl transferase), not inflammation, was the mediator linking ethylene oxide levels to the risk of osteoarthritis. This finding in a sample of American adults revealed a direct relationship between exposure to ethylene oxide and increased osteoarthritis risk. Oxidative stress has been suggested as a possible biological explanation for osteoarthritis caused by ethylene oxide.
Collapse
Affiliation(s)
- Xinyue Yang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jianwen Wang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Chengcheng Wei
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jia Tian
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Lizhao Yan
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Qishun Huang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
20
|
Wang D, Liu W, Venkatesan JK, Madry H, Cucchiarini M. Therapeutic Controlled Release Strategies for Human Osteoarthritis. Adv Healthc Mater 2024:e2402737. [PMID: 39506433 DOI: 10.1002/adhm.202402737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/15/2024] [Indexed: 11/08/2024]
Abstract
Osteoarthritis is a progressive, irreversible debilitating whole joint disease that affects millions of people worldwide. Despite the availability of various options (non-pharmacological and pharmacological treatments and therapy, orthobiologics, and surgical interventions), none of them can definitively cure osteoarthritis in patients. Strategies based on the controlled release of therapeutic compounds via biocompatible materials may provide powerful tools to enhance the spatiotemporal delivery, expression, and activities of the candidate agents as a means to durably manage the pathological progression of osteoarthritis in the affected joints upon convenient intra-articular (injectable) delivery while reducing their clearance, dissemination, or side effects. The goal of this review is to describe the current knowledge and advancements of controlled release to treat osteoarthritis, from basic principles to applications in vivo using therapeutic recombinant molecules and drugs and more innovatively gene sequences, providing a degree of confidence to manage the disease in patients in a close future.
Collapse
Affiliation(s)
- Dan Wang
- Center of Experimental Orthopaedics, Saarland University and Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421, Homburg/Saar, Germany
| | - Wei Liu
- Center of Experimental Orthopaedics, Saarland University and Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421, Homburg/Saar, Germany
| | - Jagadeesh K Venkatesan
- Center of Experimental Orthopaedics, Saarland University and Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421, Homburg/Saar, Germany
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University and Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421, Homburg/Saar, Germany
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University and Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421, Homburg/Saar, Germany
| |
Collapse
|
21
|
Kang M, Liang H, Hu Y, Wei Y, Huang D. Gelatin-based hydrogels with tunable network structure and mechanical property for promoting osteogenic differentiation. Int J Biol Macromol 2024; 281:136312. [PMID: 39370072 DOI: 10.1016/j.ijbiomac.2024.136312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 09/25/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Osteoarthritis (OA) is a joint disease involving all joint components, including cartilage, calcified cartilage, and subchondral bone. The repair of osteochondral defects remains a significant challenge in orthopedics. Development of new strategies is essential for effective osteochondral injury repair. In this study, gelatin (Gel), polyethylene glycol diglycidyl ether (PEGDGE), hydroxyethyl cellulose (HEC) and chitosan (CS) were used to prepare semi-IPNs and IPNs hydrogels. Mechanical properties of Gel based hydrogels significantly improved with the semi-IPN and IPN structures. Tensile strength ranges from 238.7 KPa to 479.5 KPa, and its compressive strength ranges from 35.6 KPa to 112.7 KPa. Additionally, the stress relaxation rate increased with higher CS concentrations, ranging from 25 % to 35 %. The network structure of Gel-based hydrogels was a key factor in regulating stress relaxation. Viscoelasticity was adjusted by its network structures. Swelling and degradation behaviors of Gel based hydrogels were systematically investigated. Gel based hydrogels had good cytocompatibility. Both semi-IPN and IPN structures Gel based hydrogels could promote cell spreading and osteogenic differentiation. G10HEC1 and G10CS1 hydrogels show promise as candidates for osteochondral tissue regeneration, offering a new strategy for osteochondral tissue engineering.
Collapse
Affiliation(s)
- Min Kang
- Research Center for Nano-Biomaterials & Regenerative Medicine, Department of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Haijiao Liang
- Research Center for Nano-Biomaterials & Regenerative Medicine, Department of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Yinchun Hu
- Research Center for Nano-Biomaterials & Regenerative Medicine, Department of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China.
| | - Yan Wei
- Research Center for Nano-Biomaterials & Regenerative Medicine, Department of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Di Huang
- Research Center for Nano-Biomaterials & Regenerative Medicine, Department of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| |
Collapse
|
22
|
Li Q, Zhang F, Dai Y, Liu L, Chen L, Wang H. Activation of the PGC-1α-mediated mitochondrial glutamine metabolism pathway attenuates female offspring osteoarthritis induced by prenatal excessive prednisone. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2382-2397. [PMID: 39180608 DOI: 10.1007/s11427-023-2593-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/12/2024] [Indexed: 08/26/2024]
Abstract
Osteoarthritis is a chronic, age-related joint disease. Previous studies have shown that osteoarthritis develops during intrauterine development. Prednisone is frequently used to treat pregnancies complicated by autoimmune diseases. However, limited research has been conducted on the enduring effects of prednisone use during pregnancy on the offspring. In this study, we investigated the effect of excessive prednisone exposure on cartilage development and susceptibility to osteoarthritis in the offspring. We found that prenatal prednisone exposure (PPE) impaired cartilage extracellular matrix (ECM) synthesis, resulting in poor cartilage pathology in female offspring during the adult period, which was further exacerbated after long-distance running stimulation. Additionally, PPE suppressed cartilage development during the intrauterine period. Tracing back to the intrauterine period, we found that Pred, rather than prednisone, decreased glutamine metabolic flux, which resulted in increased oxidative stress, and decreased histone acetylation, and expression of cartilage phenotypic genes. Further, PGC-1α-mediated mitochondrial biogenesis, while PPE caused hypermethylation in the promoter region of PGC-1α and decreased its expression in fetal cartilage by activating the glucocorticoid receptor, resulting in a reduction of glutamine flux controlled by mitochondrial biogenesis. Additionally, overexpression of PGC-1α (either pharmacological or through lentiviral transfection) reversed PPE- and Pred-induced cartilage ECM synthesis impairment. In summary, this study demonstrated that PPE causes chondrodysplasia in female offspring and increases their susceptibility to postnatal osteoarthritis. Hence, targeting PGC-1α early on could be a potential intervention strategy for PPE-induced osteoarthritis susceptibility.
Collapse
Affiliation(s)
- Qingxian Li
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Fan Zhang
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yongguo Dai
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Liang Liu
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Liaobin Chen
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Division of Joint Surgery and Sports Medicine, Joint Disease Research Center of Wuhan University, Wuhan, 430071, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| | - Hui Wang
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| |
Collapse
|
23
|
Xu D, Zhang L, Song C, Zhang D, Xing C, Lv J, Bian H, Zhu M, Han M, Yu Y, Su L. Acacetin targets STING to alleviate the destabilization of the medial meniscus-induced osteoarthritis in mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8863-8878. [PMID: 38856915 DOI: 10.1007/s00210-024-03167-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/14/2024] [Indexed: 06/11/2024]
Abstract
Osteoarthritis (OA) is a common joint disorder affecting about 7% of the global population, primarily characterized by the gradual loss of articular cartilage. This degeneration results from local inflammation, matrix depletion, and direct cartilage damage. A critical element in this process is the activation of the stimulator of the interferon genes (STING) pathway. Emerging evidence highlights its potential as a therapeutic target, with natural products showing promise as inhibitors. Our study centers on Acacetin, a basic unit of polyketides known for its anti-inflammatory properties. Prior research has highlighted its potential interaction with STING based on the structure. Thus, this study aimed to assess the effectiveness of Acacetin as a STING inhibitor and its protective role against OA. In vitro experiments showed that Acacetin pretreatment not only mitigated interleukin-1β (IL-1β)-induced cytotoxicity but also decreased the inflammatory response and degeneration in chondrocytes stimulated IL-1β. In vivo studies revealed that Acacetin administration significantly reduced articular cartilage destruction, abnormal bone remodeling, and osteophyte formation in a model of OA induced by destabilization of the medial meniscus (DMM). Mechanistically, Acacetin was found to interact directly with STING, and inhibit IL-1β-induced activation of STING, along with the subsequent phosphorylation of the TBK1/NF-κB pathway in chondrocytes. In conclusion, our findings establish Acacetin as an effective inhibitor of STING that protects chondrocytes from IL-1β-induced damage and slows the progression of OA in mice.
Collapse
Affiliation(s)
- Dingjun Xu
- School of Medicine, Shanghai University, Shangda Road 99, Shanghai, 200444, China
- Institute of Translational Medicine, Shanghai University, Shangda Road 99, Shanghai, 200444, China
| | - Linjie Zhang
- School of Medicine, Shanghai University, Shangda Road 99, Shanghai, 200444, China
| | - Chenyu Song
- School of Medicine, Shanghai University, Shangda Road 99, Shanghai, 200444, China
| | - Dinglei Zhang
- Institute of Translational Medicine, Shanghai University, Shangda Road 99, Shanghai, 200444, China
| | - Chunlei Xing
- Institute of Translational Medicine, Shanghai University, Shangda Road 99, Shanghai, 200444, China
| | - Juan Lv
- Institute of Translational Medicine, Shanghai University, Shangda Road 99, Shanghai, 200444, China
| | - Huihui Bian
- Institute of Translational Medicine, Shanghai University, Shangda Road 99, Shanghai, 200444, China
| | - Minyu Zhu
- Department of Spine Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Minxuan Han
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China.
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, China.
| | - Yongsheng Yu
- School of Medicine, Shanghai University, Shangda Road 99, Shanghai, 200444, China.
| | - Li Su
- Institute of Translational Medicine, Shanghai University, Shangda Road 99, Shanghai, 200444, China.
| |
Collapse
|
24
|
Tian G, Yin H, Zheng J, Yu R, Ding Z, Yan Z, Tang Y, Wu J, Ning C, Yuan X, Liao C, Sui X, Zhao Z, Liu S, Guo W, Guo Q. Promotion of osteochondral repair through immune microenvironment regulation and activation of endogenous chondrogenesis via the release of apoptotic vesicles from donor MSCs. Bioact Mater 2024; 41:455-470. [PMID: 39188379 PMCID: PMC11347043 DOI: 10.1016/j.bioactmat.2024.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 08/28/2024] Open
Abstract
Utilizing transplanted human umbilical cord mesenchymal stem cells (HUMSCs) for cartilage defects yielded advanced tissue regeneration, but the underlying mechanism remain elucidated. Early after HUMSCs delivery to the defects, we observed substantial apoptosis. The released apoptotic vesicles (apoVs) of HUMSCs promoted cartilage regeneration by alleviating the chondro-immune microenvironment. ApoVs triggered M2 polarization in macrophages while simultaneously facilitating the chondrogenic differentiation of endogenous MSCs. Mechanistically, in macrophages, miR-100-5p delivered by apoVs activated the MAPK/ERK signaling pathway to promote M2 polarization. In MSCs, let-7i-5p delivered by apoVs promoted chondrogenic differentiation by targeting the eEF2K/p38 MAPK axis. Consequently, a cell-free cartilage regeneration strategy using apoVs combined with a decellularized cartilage extracellular matrix (DCM) scaffold effectively promoted the regeneration of osteochondral defects. Overall, new mechanisms of cartilage regeneration by transplanted MSCs were unconcealed in this study. Moreover, we provided a novel experimental basis for cell-free tissue engineering-based cartilage regeneration utilizing apoVs.
Collapse
Affiliation(s)
- Guangzhao Tian
- School of Medicine, Nankai University, Tianjin, 300071, China
- Institute of Orthopedies, Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, 51 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Han Yin
- Institute of Orthopedies, Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, 51 Fucheng Road, Haidian District, Beijing, 100142, China
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jinxuan Zheng
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Rongcheng Yu
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Zhengang Ding
- Institute of Orthopedies, Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, 51 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Zineng Yan
- Institute of Orthopedies, Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, 51 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Yiqi Tang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Jiang Wu
- Institute of Orthopedies, Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, 51 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Chao Ning
- Institute of Orthopedies, Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, 51 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Xun Yuan
- Institute of Orthopedies, Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, 51 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Chenxi Liao
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Xiang Sui
- Institute of Orthopedies, Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, 51 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Zhe Zhao
- Institute of Orthopedies, Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, 51 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Shuyun Liu
- Institute of Orthopedies, Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, 51 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Weimin Guo
- Department of Orthopaedic Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital Sun Yat-Sen University, Guangzhou, 510080, China
| | - Quanyi Guo
- School of Medicine, Nankai University, Tianjin, 300071, China
- Institute of Orthopedies, Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, 51 Fucheng Road, Haidian District, Beijing, 100142, China
| |
Collapse
|
25
|
Wei X, Zhao G, Chen N, Xu X, Jiang H, Tran D, Glissmeyer E, Goldring MB, Goldring SR, Wang D. Identification of formulation parameters that affect the analgesic efficacy of ProGel-Dex - A thermoresponsive polymeric dexamethasone prodrug for chronic arthritis pain relief. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 62:102782. [PMID: 39179013 DOI: 10.1016/j.nano.2024.102782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/08/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
The relief of joint pain is one of the main objectives in the clinical management of arthritis. Although significant strides have been made in improving management of rheumatoid and related forms of inflammatory arthritis, there are still major unmet needs for therapies that selectively provide potent, sustained and safe joint pain relief, especially among patients with osteoarthritis (OA), the most common form of arthritis. We have recently developed ProGel-Dex, an N-(2-hydroxypropyl) methacrylamide (HPMA) copolymer-based thermoresponsive dexamethasone (Dex) prodrug, which forms a hydrogel upon intra-articular administration and provides sustained improvement in pain-related behavior and inflammation in rodent models of arthritis. The focus of the present study was to investigate the impact of ProGel-Dex formulation parameters on its physicochemical properties and in vivo efficacy. The results of this study provide essential knowledge for the future design of ProGel-Dex that can provide more effective, sustained and safe relief of joint pain and inflammation.
Collapse
Affiliation(s)
- Xin Wei
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Gang Zhao
- Ensign Pharmaceutical, Inc., Omaha, NE 68106, USA
| | - Ningrong Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Xiaoke Xu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Haochen Jiang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Daniel Tran
- Ensign Pharmaceutical, Inc., Omaha, NE 68106, USA
| | | | | | - Steven R Goldring
- Ensign Pharmaceutical, Inc., Omaha, NE 68106, USA; Hospital for Special Surgery, New York, NY 10021, USA
| | - Dong Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Ensign Pharmaceutical, Inc., Omaha, NE 68106, USA; Department of Orthopaedic Surgery & Rehabilitation, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
26
|
Cheng Y, Liu X, Qu W, Wang X, Su H, Li W, Xu W. Amentoflavone alleviated cartilage injury and inflammatory response of knee osteoarthritis through PTGS2. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8903-8916. [PMID: 38856914 DOI: 10.1007/s00210-024-03222-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
The role of amentoflavone on cartilage injury in knee osteoarthritis (KOA) rats and the underlying mechanism were explored. KOA rat and IL-1β-stimulated chondrocyte models were constructed. MTT, colony formation, and ELISA were performed to determine the cytotoxicity, cell proliferation, and inflammatory factors. The role of PTGS2 in IL-1β-stimulated chondrocytes was also confirmed through transfecting PTGS2 overexpression and silencing plasmids. Further, we analyzed how amentoflavone regulated PTGS2 to improve IL-1β-stimulated chondrocytes in vitro. Additionally, we analyzed the expression of PTGS2 after amentoflavone treatment. In vivo, HE and Safranin-O staining were carried out, and the inflammatory response was detected by ELISA and HE staining. In addition, we also analyzed the regulatory effect of amentoflavone on PTGS2 and explored the mechanism effect of PTGS2 in vitro and in vivo. The results indicated that PTGS2 was the downstream molecule of amentoflavone, which was highly expressed in IL-1β-stimulated chondrocytes and KOA rats, and amentoflavone decreased PTGS2 expression. We also confirmed the potential role of amentoflavone on KOA, which was also characterized by the repair of cartilage injury, reduction of inflammatory infiltration, and improvement of functional disability. Consistent with in vivo results, in vitro experiments gave the same conclusions. Amentoflavone reduced PTGS2 expression in IL-1β-stimulated chondrocytes and inhibited inflammation of chondrocytes via PTGS2. Collectively, the results confirmed that this drug was the potential targeted drug for KOA, whose repair effect on cartilage injury was partly related to PTGS2.
Collapse
Affiliation(s)
- Yiheng Cheng
- Department of Orthopaedics, Yantaishan Hospital, Yantai, 264000, Shandong, China
| | - Xiaofeng Liu
- Department of Traumatic Orthopaedics, Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China
| | - Wenqing Qu
- Department of Orthopaedics, Yantaishan Hospital, Yantai, 264000, Shandong, China
| | - Xin Wang
- Department of Traumatic Orthopaedics, Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China
| | - Hao Su
- Department of Traumatic Orthopaedics, Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China
| | - Wenliang Li
- Department of Orthopaedics, Yantaishan Hospital, Yantai, 264000, Shandong, China
| | - Wenqiang Xu
- Department of Hand and Foot Surgery, Yantai Yuhuangding Hospital of Qingdao University, 20 Yuhuangding East Road, Yantai, 264000, Shandong, China.
| |
Collapse
|
27
|
Shi S, Zhang L, Jiang K. Polysaccharide nanosystems for osteoarthritis therapy: Mechanisms, combinations, and future directions. Int J Biol Macromol 2024; 279:135146. [PMID: 39208912 DOI: 10.1016/j.ijbiomac.2024.135146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Osteoarthritis (OA) represents a chronic degenerative joint ailment characterized by the gradual breakdown of cartilage, inflicting substantial physical and economic burdens, especially among the elderly. Given the incomplete understanding of OA's pathogenesis, there is an increasing need to develop targeted therapeutic strategies and preventive measures. Conventional pharmaceutical interventions, such as non-steroidal anti-inflammatory drugs, steroids, and opioids, though effective, are often accompanied by notable adverse effects, thus emphasizing the urgency in seeking safer and more efficient therapeutic alternatives. The rapid evolution of nanotechnology has opened the door to various nanosystems for drug delivery, offering a promising avenue to mitigate these side effects. Of particular interest, recent research has shed light on the significant potential of polysaccharide-based nanosystems in the context of OA therapy, demonstrating their capability to counter inflammation, oxidative stress, regulate chondrocyte metabolism and proliferation, and protect cartilage. Therefore, in this review, we provide an in-depth examination of the role of polysaccharide nanosystems in OA, focusing on summarizing these findings based on different mechanisms of action. Furthermore, this review explores the application of combined polysaccharide nanosystems in OA, aiming to establish a foundation for the utilization of novel drug delivery nanoplatforms in OA treatment, ultimately expanding therapeutic options for this debilitating condition.
Collapse
Affiliation(s)
- Shaoyan Shi
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an Honghui Hospital North District, Xi'an, Shaanxi 710000, China
| | - Li Zhang
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an Honghui Hospital North District, Xi'an, Shaanxi 710000, China
| | - Ke Jiang
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an Honghui Hospital North District, Xi'an, Shaanxi 710000, China.
| |
Collapse
|
28
|
Castagno S, Gompels B, Strangmark E, Robertson-Waters E, Birch M, van der Schaar M, McCaskie AW. Understanding the role of machine learning in predicting progression of osteoarthritis. Bone Joint J 2024; 106-B:1216-1222. [PMID: 39481441 DOI: 10.1302/0301-620x.106b11.bjj-2024-0453.r1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Aims Machine learning (ML), a branch of artificial intelligence that uses algorithms to learn from data and make predictions, offers a pathway towards more personalized and tailored surgical treatments. This approach is particularly relevant to prevalent joint diseases such as osteoarthritis (OA). In contrast to end-stage disease, where joint arthroplasty provides excellent results, early stages of OA currently lack effective therapies to halt or reverse progression. Accurate prediction of OA progression is crucial if timely interventions are to be developed, to enhance patient care and optimize the design of clinical trials. Methods A systematic review was conducted in accordance with PRISMA guidelines. We searched MEDLINE and Embase on 5 May 2024 for studies utilizing ML to predict OA progression. Titles and abstracts were independently screened, followed by full-text reviews for studies that met the eligibility criteria. Key information was extracted and synthesized for analysis, including types of data (such as clinical, radiological, or biochemical), definitions of OA progression, ML algorithms, validation methods, and outcome measures. Results Out of 1,160 studies initially identified, 39 were included. Most studies (85%) were published between 2020 and 2024, with 82% using publicly available datasets, primarily the Osteoarthritis Initiative. ML methods were predominantly supervised, with significant variability in the definitions of OA progression: most studies focused on structural changes (59%), while fewer addressed pain progression or both. Deep learning was used in 44% of studies, while automated ML was used in 5%. There was a lack of standardization in evaluation metrics and limited external validation. Interpretability was explored in 54% of studies, primarily using SHapley Additive exPlanations. Conclusion Our systematic review demonstrates the feasibility of ML models in predicting OA progression, but also uncovers critical limitations that currently restrict their clinical applicability. Future priorities should include diversifying data sources, standardizing outcome measures, enforcing rigorous validation, and integrating more sophisticated algorithms. This paradigm shift from predictive modelling to actionable clinical tools has the potential to transform patient care and disease management in orthopaedic practice.
Collapse
Affiliation(s)
- Simone Castagno
- Department of Surgery, University of Cambridge, Cambridge, UK
| | | | | | | | - Mark Birch
- Department of Surgery, University of Cambridge, Cambridge, UK
| | - Mihaela van der Schaar
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
29
|
Liu Z, Xie W, Li H, Liu X, Lu Y, Lu B, Deng Z, Li Y. Novel perspectives on leptin in osteoarthritis: Focus on aging. Genes Dis 2024; 11:101159. [PMID: 39229323 PMCID: PMC11369483 DOI: 10.1016/j.gendis.2023.101159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/10/2023] [Accepted: 09/16/2023] [Indexed: 09/05/2024] Open
Abstract
Osteoarthritis (OA) is a common chronic joint disease characterized by articular cartilage degeneration, subchondral sclerosis, synovitis, and osteophyte formation. OA is associated with disability and impaired quality of life, particularly among the elderly. Leptin, a 16-kD non-glycosylated protein encoded by the obese gene, is produced on a systemic and local basis in adipose tissue and the infrapatellar fat pad located in the knee. The metabolic mechanisms employed by leptin in OA development have been widely studied, with attention being paid to aging as a corroborative risk factor for OA. Hence, in this review, we have attempted to establish a potential link between leptin and OA, by focusing on aging-associated mechanisms and proposing leptin as a potential diagnostic and therapeutic target in aging-related mechanisms of OA that may provide fruitful guidance and emphasis for future research.
Collapse
Affiliation(s)
- Zimo Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Xiangya School of Medicine, Central South University, Changsha, Hunan 410083, China
| | - Wenqing Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Hengzhen Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xu Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yao Lu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Xiangya School of Medicine, Central South University, Changsha, Hunan 410083, China
| | - Bangbao Lu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhenhan Deng
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
30
|
Zheng R, Yu C, Yao D, Cai M, Zhang L, Ye F, Huang X. Engineering Stimuli-Responsive Materials for Precision Medicine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2406439. [PMID: 39444066 DOI: 10.1002/smll.202406439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/14/2024] [Indexed: 10/25/2024]
Abstract
Over the past decade, precision medicine has garnered increasing attention, making significant strides in discovering new therapeutic drugs and mechanisms, resulting in notable achievements in symptom alleviation, pain reduction, and extended survival rates. However, the limited target specificity of primary drugs and inter-individual differences have often necessitated high-dosage strategies, leading to challenges such as restricted deep tissue penetration rates and systemic side effects. Material science advancements present a promising avenue for these issues. By leveraging the distinct internal features of diseased regions and the application of specific external stimuli, responsive materials can be tailored to achieve targeted delivery, controllable release, and specific biochemical reactions. This review aims to highlight the latest advancements in stimuli-responsive materials and their potential in precision medicine. Initially, we introduce disease-related internal stimuli and capable external stimuli, elucidating the reaction principles of responsive functional groups. Subsequently, we provide a detailed analysis of representative pre-clinical achievements of stimuli responsive materials across various clinical applications, including enhancements in the treatment of cancers, injury diseases, inflammatory diseases, infection diseases, and high-throughput microfluidic biosensors. Finally, we discuss some clinical challenges, such as off-target effects, long-term impacts of nano-materials, potential ethical concerns, and offer insights into future perspectives of stimuli-responsive materials.
Collapse
Affiliation(s)
- Ruixuan Zheng
- Joint Centre of Translational Medicine, Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University Wenzhou, Wenzhou, Zhejiang, 325000, China
| | - Chang Yu
- Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University Wenzhou, Wenzhou, Zhejiang, 325000, China
- Intervention Department, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Dan Yao
- Joint Centre of Translational Medicine, Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University Wenzhou, Wenzhou, Zhejiang, 325000, China
| | - Mengsi Cai
- Joint Centre of Translational Medicine, Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University Wenzhou, Wenzhou, Zhejiang, 325000, China
| | - Lexiang Zhang
- Joint Centre of Translational Medicine, Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| | - Fangfu Ye
- Joint Centre of Translational Medicine, Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiaoying Huang
- Joint Centre of Translational Medicine, Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University Wenzhou, Wenzhou, Zhejiang, 325000, China
| |
Collapse
|
31
|
Deng Z, Zeng X, Lin B, Chen L, Wu J, Zheng J, Ma Y, Lyu FJ, Zheng Q. Human umbilical cord mesenchymal stem cells on treating osteoarthritis in a rabbit model: Injection strategies. Heliyon 2024; 10:e38384. [PMID: 39430502 PMCID: PMC11489144 DOI: 10.1016/j.heliyon.2024.e38384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 10/22/2024] Open
Abstract
Human umbilical cord mesenchymal stem cells (UCMSCs) are a novel stem-cell source to treat osteoarthritis (OA). Here we investigated the therapeutic effects of UCMSCs injection strategies on knee OA in a rabbit model. Thirty OA rabbits randomly received normal saline, a single dose of 1 × 106 UCMSCs, or three injections of 1 × 106 UCMSCs at 2, 4, 6 weeks. Articular cartilages were collected after 8 weeks. Macroscopic and histological assessments indicated that intra-articular injection of UCMSCs, both single and multiple injection, significantly reduced the formation of periarticular osteophytes and articular cartilage degeneration when compared with the control. Furthermore, both UCMSCs injections increased the expression of chondrogenic markers in the articular cartilage, and reduced the levels of TNF-α and IL-6 in synovium. Micro-CT showed significant reduction of sub-chondral bone degeneration and osteophytes in the multiple-injection group compared to the control and single-injection group. Taken together, intra-articular injection of UCMSCs for OA treatment is safe and effective. Single and multiple injection of UCMSCs had comparable reparative effect on cartilage lesions, while multiple injection of UCMSCs further exerted effect on enhancing subchondral bone volume.
Collapse
Affiliation(s)
- Zhantao Deng
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Xiaoli Zeng
- Guangdong Xiangxue Stem Cell Regenerative Medicine Technology Co., Ltd, Guangzhou, China
| | - Bofu Lin
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Lixuan Chen
- Guangdong Xiangxue Stem Cell Regenerative Medicine Technology Co., Ltd, Guangzhou, China
| | - Jiwei Wu
- Guangdong Xiangxue Stem Cell Regenerative Medicine Technology Co., Ltd, Guangzhou, China
| | - Jie Zheng
- Guangdong Xiangxue Stem Cell Regenerative Medicine Technology Co., Ltd, Guangzhou, China
| | - Yuanchen Ma
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Feng-Juan Lyu
- The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Qiujian Zheng
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| |
Collapse
|
32
|
Zhou R, Hu W, Ma PX, Liu CJ. Versatility of 14-3-3 proteins and their roles in bone and joint-related diseases. Bone Res 2024; 12:58. [PMID: 39406741 PMCID: PMC11480210 DOI: 10.1038/s41413-024-00370-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/30/2024] [Accepted: 09/03/2024] [Indexed: 10/19/2024] Open
Abstract
Bone and joint-related diseases, including osteoarthritis (OA), rheumatoid arthritis (RA), and bone tumors, pose significant health challenges due to their debilitating effects on the musculoskeletal system. 14-3-3 proteins, a family of conserved regulatory molecules, play a critical role in the pathology of these diseases. This review discusses the intricate structure and multifunctionality of 14-3-3 proteins, their regulation of signaling pathways, and their interactions with other proteins. We underscore the significance of 14-3-3 proteins in the regulation of osteoblasts, osteoclasts, chondrocytes, and bone remodeling, all key factors in the maintenance and dysfunction of bone and joint systems. Specific focus is directed toward elucidating the contribution of 14-3-3 proteins in the pathology of OA, RA, and bone malignancies, where dysregulated 14-3-3-mediated signaling cascades have been implicated in the disease processes. This review illuminates how the perturbation of 14-3-3 protein interactions can lead to the pathological manifestations observed in these disorders, including joint destruction and osteolytic activity. We highlight cutting-edge research that positions 14-3-3 proteins as potential biomarkers for disease progression and as innovative therapeutic targets, offering new avenues for disease intervention and management.
Collapse
Affiliation(s)
- Renpeng Zhou
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, USA
| | - Weirong Hu
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, USA
| | - Peter X Ma
- Department of Biologic and Materials Sciences and Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Chuan-Ju Liu
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
33
|
Sun Z, Tang J, You T, Zhang B, Liu Y, Liu J. lncRNA OIP5-AS1 promotes mitophagy to alleviate osteoarthritis by upregulating PPAR-γ to activate the AMPK/Akt/mTOR pathway. Mod Rheumatol 2024; 34:1265-1276. [PMID: 38441253 DOI: 10.1093/mr/roae015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/21/2024] [Indexed: 10/17/2024]
Abstract
OBJECTIVES Osteoarthritis (OA) is the most common chronic joint degenerative disease. Herein, we investigated long non-coding RNA Opa-interacting protein 5-antisense transcript 1's (OIP5-AS1) in regulating mitophagy during OA. METHODS RNA immunoprecipitation and RNA pull-down verified the relationship between molecules. Cell counting kit-8 detected cell viability. Enzyme-linked immunosorbent assay evaluated inflammatory cytokines secretion. Flow cytometry measured the contents of reactive oxygen species (ROS) and calcium. Immunofluorescence staining analysed TOMM20 and LC3B levels. JC-1 staining was adopted to measure mitochondrial membrane potential. The changes of mitophagy were analysed by transmission electron microscopy. RESULTS Lipopolysaccharide (LPS) treatment contributed to the decrease of chondrocyte viability, and calcium level and inhibited mitochondrial membrane potential, while elevating the secretion of inflammatory factors, ROS, and TOMM20 expression. OIP5-AS1 overexpression inhibited LPS-induced chondrocyte injury and activated mitophagy. OIP5-AS1 upregulated the peroxisome proliferator-activated receptor-γ (PPAR-γ) mRNA level to regulate adenosine monophosphate-activated protein kinase (AMPK)/v-akt murine thymoma viral oncogene homolog (Akt)/mammalian target of rapamycin (mTOR) signalling by interacting with FUS. PPAR-γ overexpression alleviated LPS-induced chondrocyte injury by activating AMPK/Akt/mTOR signalling. PPAR-γ knockdown reversed the promotion of OIP5-AS1 upregulation on mitophagy. CONCLUSIONS OIP5-AS1 promotes PPAR-γ expression to activate the AMPK/Akt/mTOR signalling, thereby enhancing mitophagy and alleviating OA progression.
Collapse
Affiliation(s)
- Zhilu Sun
- The First Affiliated Hospital, Emergency Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan Province, P.R. China
| | - Jie Tang
- The First Affiliated Hospital, Department of Pain, Hengyang Medical School, University of South China, Hengyang, Hunan Province, P.R. China
| | - Ting You
- The First Affiliated Hospital, Emergency Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan Province, P.R. China
| | - Bihong Zhang
- The First Affiliated Hospital, Emergency Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan Province, P.R. China
| | - Yu Liu
- The First Affiliated Hospital, Emergency Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan Province, P.R. China
| | - Jing Liu
- The First Affiliated Hospital, Department of Rehabilitation, Hengyang Medical School, University of South China, Hengyang, Hunan Province, P.R. China
| |
Collapse
|
34
|
Di Cicco G, Marzano E, Mastrostefano A, Pitocco D, Castilho RS, Zambelli R, Mascio A, Greco T, Cinelli V, Comisi C, Maccauro G, Perisano C. The Pathogenetic Role of RANK/RANKL/OPG Signaling in Osteoarthritis and Related Targeted Therapies. Biomedicines 2024; 12:2292. [PMID: 39457605 PMCID: PMC11505501 DOI: 10.3390/biomedicines12102292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/15/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Osteoarthritis (OA) is the most common degenerative joint disease and affects millions of people worldwide, particularly the elderly population. The pathophysiology of OA is complex and involves multiple factors. Methods: Several studies have emphasized the crucial role of inflammation in this process. The receptor activator of NF-κB ligand (RANKL), the receptor activator of NF-κB (RANK), and osteoprotegerin (OPG) trigger a signaling cascade that leads to the excessive production of RANKL in the serum. Conclusions: The aim of this narrative review is (i) to assess the role of the RANK/RANKL/OPG signaling pathway in the context of OA progression, focusing especially on the physiopathology and on all the mechanisms leading to the activation of the inflammatory cascade, and (ii) to evaluate all the potential therapeutic strategies currently available that restore balance to bone formation and resorption, reducing structural abnormalities and relieving pain in patients with OA.
Collapse
Affiliation(s)
- Gabriele Di Cicco
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy; (G.D.C.)
| | - Emanuela Marzano
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy; (G.D.C.)
| | - Andrea Mastrostefano
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy; (G.D.C.)
| | - Dario Pitocco
- Diabetes Care Unit, Endocrinology, University Hospital “A. Gemelli”, Catholic University of the Sacred Heart, 00136 Rome, Italy
| | - Rodrigo Simões Castilho
- Department of Orthopaedics and Traumatology, Mater Dei Hospital, Belo Horizonte 30170-041, Brazil
| | - Roberto Zambelli
- Department of Orthopaedics and Traumatology, Mater Dei Hospital, Belo Horizonte 30170-041, Brazil
| | - Antonio Mascio
- Department of Orthopedics and Geriatric Sciences, Catholic University of the Sacred Heart, 00136 Rome, Italy
- Department of Orthopedics and Rheumatological Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00136 Rome, Italy
| | - Tommaso Greco
- Department of Orthopedics and Rheumatological Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00136 Rome, Italy
- Department of Life Sciences, Health, and Healthcare Professions, Link Campus University, 00165 Rome, Italy
| | - Virginia Cinelli
- Department of Orthopedics and Geriatric Sciences, Catholic University of the Sacred Heart, 00136 Rome, Italy
- Department of Orthopedics and Rheumatological Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00136 Rome, Italy
| | - Chiara Comisi
- Department of Orthopedics and Geriatric Sciences, Catholic University of the Sacred Heart, 00136 Rome, Italy
- Department of Orthopedics and Rheumatological Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00136 Rome, Italy
| | - Giulio Maccauro
- Department of Orthopedics and Geriatric Sciences, Catholic University of the Sacred Heart, 00136 Rome, Italy
- Department of Orthopedics and Rheumatological Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00136 Rome, Italy
| | - Carlo Perisano
- Department of Orthopedics and Geriatric Sciences, Catholic University of the Sacred Heart, 00136 Rome, Italy
- Department of Orthopedics and Rheumatological Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00136 Rome, Italy
| |
Collapse
|
35
|
Zhang H, Yang Y, Gao M, Peng J, Li D, Zhu J. Bibliometric analysis of chondrocyte apoptosis in knee osteoarthritis. Medicine (Baltimore) 2024; 103:e40000. [PMID: 39465698 PMCID: PMC11460941 DOI: 10.1097/md.0000000000040000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Apoptosis, a form of programmed cell death, plays a significant role in osteoarthritis; however, bibliometric studies in this field remain scarce. Bibliometrics provides a visual representation of research outcomes and trends, guiding future investigations. METHOD Journal data from January 1, 2013, to December 31, 2023, in this field were obtained from the Web of Science (WOS) core database. Analysis was conducted using VOSviewer and CiteSpace. RESULTS Analysis revealed that over the past decade, 794 articles were published in 299 journals by 4447 authors from 49 countries and 877 institutions. The top contributors were China, the United States, and the United Kingdom. Zhuang Chao emerged as the most prolific author, and "osteoarthritis and cartilage" ranked as the most frequently cited journal. Keyword clustering focused on mechanisms, inflammation, and cartilage. The most-cited article was "chondrocyte apoptosis in the pathogenesis of osteoarthritis" in the "International Journal of Molecular Sciences." Burst word analysis highlighted extracellular matrix, circular RNA, micro RNA, indicating current research hotspots. CONCLUSION Utilizing bibliometrics and visual analysis, we explored the hotspots and trends in the field of chondrocyte apoptosis in osteoarthritis. Extracellular matrix, Circular RNA, Micro RNA, among others, are likely to become future research focal points and frontiers.
Collapse
Affiliation(s)
- Hongxing Zhang
- Department of Second Clinical Medical College, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
| | - Yao Yang
- Department of Second Clinical Medical College, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
| | - Minglei Gao
- Department of Second Clinical Medical College, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
| | - Jiafeng Peng
- Department of Second Clinical Medical College, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
| | - Danyang Li
- Department of Second Clinical Medical College, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
| | - Junchen Zhu
- Department of Orthopaedics, Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui Province, China
| |
Collapse
|
36
|
Yan L, Ge H, Wang Z, Shen A, Xu Q, Jiang D, Cao Y. Roles of low muscle strength and sarcopenic obesity on incident symptomatic knee osteoarthritis: A longitudinal cohort study. PLoS One 2024; 19:e0311423. [PMID: 39361683 PMCID: PMC11449331 DOI: 10.1371/journal.pone.0311423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/18/2024] [Indexed: 10/05/2024] Open
Abstract
OBJECTIVES Sarcopenia is prevalent in middle to old age. We aimed to investigate the association between muscle strength and the incident knee osteoarthritis (OA). METHODS 12,043 participants were collected from the China Health and Retirement Longitudinal Study. The effects of sarcopenic obesity (defined by obesity in combination with possible sarcopenia) on knee OA onset were calculated using Poisson regression models. Mediation analysis was fit to estimate mediating proportion of muscle strength on the association between obesity and incident knee OA. RESULTS The study all enrolled 12,043 participants with 2,008 progressed to knee OA. Poisson analyses demonstrated causal association of general obesity (RR:1.23, 95% CI: 1.08 to 1.39) and abdominal obesity (RR:1.23, 95% CI: 1.11 to 1.35) with knee OA onset. For the risk of incident knee OA, participants with the highest level of normalized grip strength had a decreased risk of incident knee OA by 0.33 (RR:0.67, 95% CI: 0.60 to 0.75) times compared to the control group, and chair-rising time was associated with increased risk of incident knee OA by 0.65 (RR:1.65, 95% CI: 1.17 to 2.33) times. Sensitivity analysis identified similar results. Participants with sarcopenic obesity were about 2 times risk of incident knee OA than reference group. Normalized grip strength and chair-rising time mediated the association between obesity and incidence of knee OA. CONCLUSIONS Sarcopenic obesity is correlated with an increased risk of knee OA. Muscle strength recovery may alleviate the risk of incident knee OA in middle to old age with obesity.
Collapse
Affiliation(s)
- Laijun Yan
- Shi’s Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Haiya Ge
- Shi’s Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhengming Wang
- Shi’s Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Anping Shen
- Shi’s Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qinguang Xu
- Shi’s Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ding Jiang
- Shi’s Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuelong Cao
- Shi’s Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
37
|
Cardillo C, Schaffler BC, Lehane K, Habibi AA, Schwarzkopf R, Lajam CM. Treating Osteoarthritis in Jehovah's Witness Patients. Orthop Clin North Am 2024; 55:445-451. [PMID: 39216949 DOI: 10.1016/j.ocl.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
This article addresses the challenges surrounding hip and knee osteoarthritis (OA) treatment in Jehovah's Witnesses (JWs), focusing on the complexities arising from their refusal of blood products and transfusions. Acknowledging the heightened risk of blood loss anemia during joint replacement surgery, this review explores documented strategies that enable safe elective joint arthroplasty in JW patients, emphasizing comparable initial diagnostic methods and non-operative treatments up until the pre-operative stage. Special considerations should be taken in the perioperative and intraoperative stage. Despite these challenges, safe arthroplasty is feasible with satisfactory outcomes through a combination of careful preoperative optimization, blood saving protocols, and cultural sensitivity.
Collapse
Affiliation(s)
- Casey Cardillo
- Department of Orthopedic Surgery, NYU Langone Health, 301 East 17th Street, New York, NY 10003, USA
| | - Benjamin C Schaffler
- Department of Orthopedic Surgery, NYU Langone Health, 301 East 17th Street, New York, NY 10003, USA
| | - Kevin Lehane
- Department of Orthopedic Surgery, NYU Langone Health, 301 East 17th Street, New York, NY 10003, USA
| | - Akram A Habibi
- Department of Orthopedic Surgery, NYU Langone Health, 301 East 17th Street, New York, NY 10003, USA
| | - Ran Schwarzkopf
- Department of Orthopedic Surgery, NYU Langone Health, 301 East 17th Street, New York, NY 10003, USA.
| | - Claudette M Lajam
- Department of Orthopedic Surgery, NYU Langone Health, 301 East 17th Street, New York, NY 10003, USA
| |
Collapse
|
38
|
Zhang Y, Li Z, Chen X. The role of galectin-3 in bone homeostasis: A review. Int J Biol Macromol 2024; 278:134882. [PMID: 39168209 DOI: 10.1016/j.ijbiomac.2024.134882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/05/2024] [Accepted: 08/17/2024] [Indexed: 08/23/2024]
Abstract
The skeletal system maintains a delicate balance known as bone homeostasis, which is essential for the lifelong preservation of bone mass, shape, and integrity. This equilibrium relies on a complex interplay between bone marrow mesenchymal stem cells (BMSCs), osteoblasts, osteocytes, and osteoclasts. Galectin-3 (Gal-3), a chimeric galectin with a unique N-terminal tail and a conserved carbohydrate recognition domain (CRD) at its C-terminus, has emerged as a critical regulator in bone homeostasis. The CRD of Gal-3 mediates carbohydrate binding, while its N-terminal tail is implicated in oligomerization and phase separation, which are vital for its functionality. Gal-3's multivalency is central to its role in a range of cellular activities, including inflammation, immune response, apoptosis, cell adhesion, and migration. Imbalances in bone homeostasis often arise from disruptions in osteoblast differentiation and activity, increased osteoclast differentiation and activity. Gal-3's influence on these processes suggests its significant role in the regulation of bone remodeling. This review will examine the molecular mechanisms through which Gal-3 contributes to bone remodeling and discuss its potential as a therapeutic target for the treatment of bone-related disorders.
Collapse
Affiliation(s)
- Yanchao Zhang
- Department of Orthopedics, Tianjin Baodi Hospital/Baodi Clinical College of Tianjin Medical University, Tianjin 301800, China
| | - Zhiyong Li
- Department of Orthopedics, Tianjin Baodi Hospital/Baodi Clinical College of Tianjin Medical University, Tianjin 301800, China
| | - Xueqing Chen
- Department of Orthopedics, Tianjin Baodi Hospital/Baodi Clinical College of Tianjin Medical University, Tianjin 301800, China.
| |
Collapse
|
39
|
Changoor A, Garon M, Quenneville E, Savard P, Buschmann MD, Hurtig MB. Non-invasive electroarthrography measures cartilage in live horses and correlates to direct measurements of cartilage streaming potentials in weight bearing regions of equine metacarpophalangeal joints. Osteoarthritis Cartilage 2024; 32:1235-1244. [PMID: 38679283 DOI: 10.1016/j.joca.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/08/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
OBJECTIVE To perform non-invasive Electroarthrography (EAG) on live horses and establish relationships between EAG and direct measurements of cartilage streaming potentials in weight bearing areas of the equine metacarpophalangeal joint. DESIGN EAG was performed bilaterally on the metacarpophalangeal joints of live horses (n = 3). Separate experiments used metacarpophalangeal joint explants (n = 11) to measure EAG obtained during simulated loading followed by direct measurements of cartilage streaming potentials on joint surfaces using the Arthro-BST probe. Joints were assigned to relatively normal (n = 5) and mildly degraded (n = 6) groups based on histological scoring of Safranin-O/Fast Green stained sections. RESULTS EAG, involving application of electrodes to skin surrounding the joint and repeated weight shifting, was well-tolerated in live horses. One pair of distal forelimbs were available for analogous ex vivo EAG testing and measurements were strongly correlated to in vivo EAG measurements obtained on the same joints (r = 0.804, p = 0.016, n = 8). Both indirect (EAG) and direct (Arthro-BST) measurements of cartilage streaming potentials distinguished between normal and mildly degraded cartilage with statistically significant differences at 5 of 6 and 4 of 6 electrodes during simulated standing and walking, respectively. Strong and moderate correlations for weight bearing regions on the dorsal phalanx and central metacarpus were detected during both standing and walking. At the metacarpus/sesamoid interface a moderate correlation occurred during walking. CONCLUSION Non-invasive EAG was used successfully in a clinical scenario and correlated to direct measurements of streaming potentials in weight bearing cartilage. These data support the potential of EAG to contribute to the diagnosis and treatment of degenerative joint diseases.
Collapse
Affiliation(s)
- Adele Changoor
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada; Department of Surgery, Department of Laboratory Medicine & Pathobiology, Department of Materials Science & Engineering, University of Toronto, Toronto, Ontario, Canada.
| | | | | | - Pierre Savard
- Biomedical and Electrical Engineering, École Polytechnique, Montréal, Québec, Canada
| | - Michael D Buschmann
- Department of Bioengineering, George Mason University, Fairfax, Virginia, United States
| | - Mark B Hurtig
- Comparative Orthopaedic Research Laboratory, Department of Clinical Studies, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
40
|
Lu Z, Wang D, Sun Y, Dai Y. ENO1 regulates IL-1β-induced chondrocyte inflammation, apoptosis and matrix degradation possibly through the potential binding to CRLF1. Tissue Cell 2024; 90:102504. [PMID: 39116531 DOI: 10.1016/j.tice.2024.102504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024]
Abstract
In this study, we aim to investigate the role of enolase 1 (ENO1) in osteoarthritis (OA) pathogenic process and to uncover the underlying mechanism. To this end, we used IL-1β to induce an in vitro OA‑like chondrocyte model in human immortalized chondrocyte C-28/I2 cells. We manipulated the expression of ENO1 and cytokine receptor-like factor 1 (CRLF1) in IL-1β-induced C-28/I2 cells using siRNA and/or overexpression and tested their effects on IL-1β-induced pathologies including cell viability, apoptosis and inflammatory cytokine levels (IL-6 and TNF-α), and the expression of extracellular matrix-related enzymes and major mediators in the NF-κB signaling pathway (p-p65, p65, p-IκBα and IκBα). We used co-immunoprecipitation and immunofluorescence imaging to study a possible binding between ENO1 and CRLF1. Our data showed that IL-1β induction elevated ENO1 and CRLF1 expression in C-28/I2 cells. Silencing ENO1 or CRLF1 inhibited the IL-1β-induced cell viability damage, apoptosis, inflammation, and extracellular matrix degradation. The inhibitory effect of silencing ENO1 was reversed by CRLF1 overexpression, suggesting a functional connection between ENO1 and CRLF1, which could be attributed to a binding between these two partners. Our study could help validate the role of ENO1 in OA pathogenies and identify novel therapeutic targets for OA treatment.
Collapse
Affiliation(s)
- Zhihua Lu
- Medical School, Yangzhou Polytechnic College, Yangzhou, Jiangsu 225009, China
| | - Dandan Wang
- Northern Jiangsu People's Hospital, China; Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Yuzhe Sun
- Medical School, Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Yan Dai
- Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu 225001, China; Medical Research Center, Northern Jiangsu People's Hospital, China.
| |
Collapse
|
41
|
Wilfong JM, Badley EM, Perruccio AV. Old Before Their Time? The Impact of Osteoarthritis on Younger Adults. Arthritis Care Res (Hoboken) 2024; 76:1400-1408. [PMID: 38751094 DOI: 10.1002/acr.25374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 03/27/2024] [Accepted: 05/06/2024] [Indexed: 06/14/2024]
Abstract
OBJECTIVE Osteoarthritis (OA) is frequently perceived as a disease of the elderly and an inevitable result of aging. Because OA studies often are restricted to older adults, there is limited information on OA in younger adults. This study describes the burden of OA across a wide age range and compares younger and older adults. METHODS Descriptive analysis of the Survey on Living with Chronic Diseases in Canada - Arthritis Component, a nationally representative survey of Canadians ≥20 years who reported an arthritis diagnosis in the Canadian Community Health Survey, a general health population survey. Analyses were restricted to those reporting OA and no other kind of arthritis (n = 1,749). RESULTS In the representative group with OA, 55.4% were younger than 65 years. The mean age at diagnosis was 50 years, with 30.4% reporting being diagnosed before age 45 years. Younger adults reported similar symptom severity as their older counterparts with OA regarding the mean number of affected joint sites, severity of pain and fatigue, and activity limitations. In the youngest age group, those with OA were significantly more likely to report fair or poor overall and mental health and life dissatisfaction compared with their general counterparts; the same was not the case in the oldest age group. CONCLUSION OA is not uncommon among younger and middle-aged adults, and they experience OA impacts comparable with those for older adults. These findings suggest that younger adults with OA will live many years with symptoms and disability and highlight a need for effective OA management across ages.
Collapse
Affiliation(s)
- Jessica M Wilfong
- Schroeder Arthritis Institute, Krembil Research Institute, and Arthritis Community Research and Epidemiology Unit, Toronto, Ontario, Canada
| | - Elizabeth M Badley
- Schroeder Arthritis Institute, Krembil Research Institute, Arthritis Community Research and Epidemiology Unit, and University of Toronto, Toronto, Ontario, Canada
| | - Anthony V Perruccio
- Schroeder Arthritis Institute, Krembil Research Institute, Arthritis Community Research and Epidemiology Unit, and University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
42
|
Wang J, Yang J, Fang Y, Lou C, Yu H, Li Y, Lv J, Chen H, Cai L, Zheng W. Vinpocetine protects against osteoarthritis by inhibiting ferroptosis and extracellular matrix degradation via activation of the Nrf2/GPX4 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156115. [PMID: 39368343 DOI: 10.1016/j.phymed.2024.156115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/20/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
BACKGROUND Osteoarthritis (OA) is a progressive joint condition marked by the slow degradation of articular cartilage. Vinpocetine (Vin), a synthetic derivative of vincamine derived from the vinca plant, exhibits anti-inflammatory and antioxidant properties. Nevertheless, the specific role and mechanism of Vin in the treatment of OA remain largely unexplored. OBJECTIVES The study is designed to uncover the impacts of Vin on tert‑butyl hydroperoxide (TBHP)-induced ferroptosis and to explore its potential role and underlying mechanisms in the treatment of OA. Concurrently, we established an OA mouse model through medial meniscal instability surgery to assess the therapeutic effects of Vin in vivo. METHODS Through network pharmacology analysis, we have identified the key targets and potential pathways of Vin. To simulate an oxidative stress-induced OA environment in vitro, we induced chondrocyte injury using TBHP. We tested how Vin affects chondrocytes under TBHP induction by DHE and DCFH-DA probes, BODIPY-C11 and FerroOrange staining, mitochondrial function assessment, Western blotting, co-immunoprecipitation, and immunofluorescence techniques. Simultaneously, we established an OA mouse model through medial meniscal instability surgery to assess the in vivo therapeutic effects of Vin. In this model, we used X-ray and micro-CT imaging, SO staining, TB staining, H&E staining, and immunohistochemistry to analyze the role of Vin in detail. RESULTS This study demonstrated that Vin effectively suppressed TBHP-induced ferroptosis and extracellular matrix (ECM) degradation and significantly lessened mitochondrial damage associated with ferroptosis. In the OA mouse model, Vin improved cartilage degeneration, subchondral remodeling, synovitis, and ECM degradation. Vin worked by activating the Nrf2/GPX4 pathway and inhibiting the Keap1-Nrf2 interaction. This study focused on the function of ferroptosis in OA and its influence on chondrocyte damage and disease progression, offering novel perspectives on potential treatments. CONCLUSION Vin activated the Nrf2/GPX4 pathway, thereby slowing OA progression, inhibiting ferroptosis, and preventing ECM degradation.
Collapse
Affiliation(s)
- Jinwu Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, PR China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, PR China; The Second School of Medicine of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Jin Yang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, PR China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, PR China; The Second School of Medicine of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Yuqin Fang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, PR China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, PR China; The Second School of Medicine of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Chao Lou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, PR China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, PR China; The Second School of Medicine of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Heng Yu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, PR China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, PR China; The Second School of Medicine of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Yangbo Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, PR China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, PR China; The Second School of Medicine of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Junlei Lv
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, PR China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, PR China; The Second School of Medicine of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Hua Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, PR China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, PR China; The Second School of Medicine of Wenzhou Medical University, Wenzhou 325000, PR China.
| | - Leyi Cai
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, PR China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, PR China; The Second School of Medicine of Wenzhou Medical University, Wenzhou 325000, PR China.
| | - Wenhao Zheng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, PR China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, PR China; The Second School of Medicine of Wenzhou Medical University, Wenzhou 325000, PR China.
| |
Collapse
|
43
|
Yu X, Zhuang R, Jin P. Evaluation of the efficacy after Total Knee Arthroplasty by Gait analysis in patients with Knee Osteoarthritis: a meta-analysis. J Orthop Surg Res 2024; 19:612. [PMID: 39343975 PMCID: PMC11441000 DOI: 10.1186/s13018-024-05091-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Total knee replacement (TKA) is a frequent modality performed in patients with knee osteoarthritis (OA). The aim of this study was to perform a meta-analysis and systematic review to evaluate the efficacy after TKA by gait analysis in patients with OA. METHODS PubMed, EMBASE, the Cochrane library, and Web of Science were searched for relevant studies from inception to July 2024. STATA SE 14.0 software was used for statistical analysis according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA 2020) guideline. RESULTS A total of 2525 reports were identified with 24 studies meeting pre-designed inclusion criteria. Several gait parameters were investigated. In patients with knee OA after TKA, there existed an increase in the Max knee flexion (WMD, 3.12; 95% CI, 0.93 to 5.32; I2 = 73.9%, P < 0.001), the Cadence (WMD, 4.05; 95% CI, 2.28 to 5.82; I2 = 48.9%, P = 0.068), the stride length (WMD, 0.05; 95% CI, 0.01 to 0.09; I2 = 77.1%, P < 0.001), the walking speed (WMD, 0.08; 95% CI, 0.02 to 0.14; I2 = 93.3%, P < 0.001), and the step length (WMD, 0.04; 95% CI, 0.00 to 0.07; I2 = 89.3%, P < 0.001) while a decrease in the double support time (WMD, -0.04; 95% CI, - 0.08 to -0.01; I2 = 0.0%, P = 0.585). Besides, no statistically significant differences were observed in the Knee range of motion (ROM), the Max knee rotation at stance phase, the Max knee extension, the step width, the stride time and the step time. Sensitivity analysis showed that all the results were robust. CONCLUSIONS In summary, the study found that, in patients with knee OA undergoing TKA may have great effects on improving gait parameters. If there are more high-quality studies in the future, we should make a more comprehensive evaluation of walking function by gait analysis together with other evaluation systems such as muscle strength and proprioception measurement.
Collapse
Affiliation(s)
- Xinfeng Yu
- Department of Orthopedics, Sanmen People's Hospital, Taizhou, Zhejiang, 317100, China
| | - Rujie Zhuang
- Department of Orthopedics, Quzhou TCM Hospital at the Junction of Four Provinces Affiliated to Zhejiang Chinese Medical University, Quzhou, Zhejiang, 324000, China.
| | - Peng Jin
- Department of Orthopedics, Sanmen People's Hospital, Taizhou, Zhejiang, 317100, China
| |
Collapse
|
44
|
Zhao H, Wang T, Fang X, Xu T, Li J, Jing S, Chen G, Liu Y, Sheng G. 2D MXene Nanosheets with ROS Scavenging Ability Effectively Delay Osteoarthritis Progression. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1572. [PMID: 39404298 PMCID: PMC11478061 DOI: 10.3390/nano14191572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/29/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024]
Abstract
MXenes nanosheets with high conductivity, hydrophilicity, and excellent reactive oxygen species (ROS) scavenging ability have shown promise in treating various degenerative diseases correlated with abnormal ROS accumulation. Herein, the therapeutic potential of Ti3C2Tx nanosheets, which is the most widely investigated MXene material, in delaying osteoarthritis (OA) progression is demonstrated. In vitro experiments indicate the strong ROS scavenging capacity of Ti3C2Tx nanosheets and their acceptable biocompatibility. Ti3C2Tx nanosheets effectively protect chondrocytes from cell death induced by oxidative stress. In addition, Ti3C2Tx nanosheets demonstrate a prominent anti-inflammatory effect and the ability to restore homeostasis between anabolic activities and catabolic activities in chondrocytes. Furthermore, RNA sequencing reveals the potential mechanism underlying the Ti3C2Tx nanosheet-mediated therapeutic effect. Finally, the in vivo curative effect of Ti3C2Tx nanosheets is verified using a rat OA model. Histological staining and immunohistochemical analyses indicate that Ti3C2Tx nanosheets effectively ameliorate OA progression. Conclusively, the in vitro and in vivo experiments suggest that Ti3C2Tx nanosheets could be a promising and effective option for OA treatment.
Collapse
Affiliation(s)
- Hongqi Zhao
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tianqi Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xuan Fang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tao Xu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jian Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Shaoze Jing
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Guangzi Chen
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yang Liu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Gaohong Sheng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
45
|
Jian Y, Lyu Y, Hashemolhosseini S. Exploring the Causal Relationship between Ibuprofen Use and Osteoarthritis Risk: A Mendelian Randomization Study. BIOLOGY 2024; 13:748. [PMID: 39336175 PMCID: PMC11428583 DOI: 10.3390/biology13090748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024]
Abstract
This study explored the potential causal relationship between ibuprofen (IBU) use and the risk of developing osteoarthritis, a prevalent joint disorder characterized by pain and stiffness. We conducted a two-sample MR analysis using four distinct OA GWAS datasets as outcomes and single-nucleotide polymorphisms (SNPs) associated with IBU metabolism as exposures. The inverse variance weighted (IVW) and weighted median methods were utilized to assess the causal association by meta-analysis, while pleiotropy and heterogeneity were evaluated using MR-Egger regression and Cochran's Q statistics. The MR analysis provided strong evidence for a causal association between IBU use and an increased risk of OA. A meta-analysis of the IVW and weighted median results across all datasets demonstrated an OR = 1.116 (95% CI = 1.063-1.170) and an OR = 1.110 (95% CI = 1.041-1.184). The consistency of the results obtained from different methods enhanced the reliability of the findings. Low pleiotropy and minimal heterogeneity were observed, further validating the results. The study supports a causal link between IBU use and an increased risk of OA, suggesting that IBU may accelerate the progression of OA while relieving symptoms. These findings highlight the importance of cautious use of IBU in clinical practice, especially considering its potential impact on long-term joint health.
Collapse
Affiliation(s)
- Yongzhi Jian
- Institute of Biochemistry, Medical Faculty, Friedrich-Alexander-University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Yanmin Lyu
- Division of Molecular and Experimental Surgery, Translational Research Center, Universitätsklinikum Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Said Hashemolhosseini
- Institute of Biochemistry, Medical Faculty, Friedrich-Alexander-University of Erlangen-Nürnberg, 91054 Erlangen, Germany
- Muscle Research Center, Friedrich-Alexander-University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
46
|
Van der Hout ACA, Huiskes M, Gosens T, Den Oudsten BL. How option-listing influences decision-making in orthopedic consultations: a conversation analytic study. PATIENT EDUCATION AND COUNSELING 2024; 130:108450. [PMID: 39332192 DOI: 10.1016/j.pec.2024.108450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/09/2024] [Accepted: 09/16/2024] [Indexed: 09/29/2024]
Abstract
OBJECTIVES Examine which practices orthopedists use to do option-listing, a technique that can facilitate shared decision-making (SDM). METHODS A conversation analytic study of 35 orthopedic consultations with newly referred patients with hip and/or knee osteoarthritis. RESULTS Orthopedists implement option-listing in consultations using two organizational principles: 1) A fixed order of options that constitutes a scale (based on the severity of treatment). Presenting this scale (in two possible orders) encodes this fixed order; 2) Options are presented in relation to each other, rather than as individual options to be discussed incrementally. This format provides orthopedists with interactional slots to formulate their professional stance by presenting options as considered but rejected. Patients co-construct this list by taking a recipient role and not responding to the individual items of the list. CONCLUSIONS Option-listing can facilitate SDM, allowing patients to choose amongst options. A drawback is that, while the organizational principles of option-listing allow orthopedists to express a professional opinion, they also place patients in an interactional position in which they have to address the orthopedists' epistemic stance. On the other hand, patients can use the scale to propose their own preferences. PRACTICAL IMPLICATIONS Awareness of the interactional consequences of option-listing might optimize SDM.
Collapse
Affiliation(s)
- A C Anouk Van der Hout
- Department of Medical and Clinical Psychology, Tilburg University, Tilburg, the Netherlands; Center of Research on Psychological disorders and Somatic diseases (CoRPS), Tilburg University, the Netherlands
| | - Mike Huiskes
- Center for Language and Cognition, University of Groningen, Groningen, the Netherlands
| | - Taco Gosens
- Department of Medical and Clinical Psychology, Tilburg University, Tilburg, the Netherlands; Center of Research on Psychological disorders and Somatic diseases (CoRPS), Tilburg University, the Netherlands; Department of Orthopedics, Elisabeth-TweeSteden Hospital, Tilburg, the Netherlands
| | - Brenda L Den Oudsten
- Department of Medical and Clinical Psychology, Tilburg University, Tilburg, the Netherlands; Center of Research on Psychological disorders and Somatic diseases (CoRPS), Tilburg University, the Netherlands.
| |
Collapse
|
47
|
Zhang Z, Shao Z, Xu Z, Wang J. Similarities and differences between osteoarthritis and rheumatoid arthritis: insights from Mendelian randomization and transcriptome analysis. J Transl Med 2024; 22:851. [PMID: 39304950 DOI: 10.1186/s12967-024-05643-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 08/26/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Osteoarthritis (OA) and rheumatoid arthritis (RA) are often difficult to distinguish in the early stage of the disease. The purpose of this study was to explore the similarities and differences between the two diseases through Mendelian randomization (MR) and transcriptome analysis. METHODS We first performed a correlation analysis of phenotypic data from genome-wide association studies (GWAS) of OA and RA. Then, we performed functional and pathway enrichment of differentially expressed genes in OA, RA, and normal patients. The infiltration of immune cells in arthritis was analyzed according to gene expression. Finally, MR analysis was performed with inflammatory cytokines and immune cells as exposures and arthritis as the outcome. The same and different key cytokines and immune cells were obtained by the two analysis methods. RESULTS GWAS indicated that there was a genetic correlation between OA and RA. The common function of OA and RA is enriched in their response to cytokines, while the difference is enriched in lymphocyte activation. T cells are the main immune cells that differentiate between OA and RA. MR analysis further revealed that OA is associated with more protective cytokines, and most of the cytokines in RA are pathogenic. In addition, CCR7 on naive CD4 + T cell was positively correlated with OA. SSC-A on CD4 + T cell was negatively correlated with RA, while HLA DR on CD33- HLA DR + was positively correlated with RA. CONCLUSION Our study demonstrated the similarities and differences of immune inflammation between OA and RA, allowing us to better understand these two diseases.
Collapse
Affiliation(s)
- Zhixiang Zhang
- Department of Orthopedic, Yancheng No.1 People's Hospital, Affiliated Hospital of Medical School, Nanjing University, The First People's Hospital of Yancheng, Yancheng, 224000, China
| | - Zhiqiang Shao
- Department of Orthopedic, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School of Nanjing Medical University, Suzhou, 215008, China
| | - Zonghan Xu
- Department of Orthopedic, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School of Nanjing Medical University, Suzhou, 215008, China.
| | - Jiaqian Wang
- Department of Orthopedic, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
48
|
Chatterjee P, Stevens HY, Kippner LE, Bowles-Welch AC, Drissi H, Mautner K, Yeago C, Gibson G, Roy K. Single-cell transcriptome and crosstalk analysis reveals immune alterations and key pathways in the bone marrow of knee OA patients. iScience 2024; 27:110827. [PMID: 39310769 PMCID: PMC11416684 DOI: 10.1016/j.isci.2024.110827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 06/10/2024] [Accepted: 08/22/2024] [Indexed: 09/25/2024] Open
Abstract
Knee osteoarthritis (OA) is a significant medical and economic burden. To understand systemic immune effects, we performed deep exploration of bone marrow aspirate concentrates (BMACs) from knee-OA patients via single-cell RNA sequencing and proteomic analyses from a randomized clinical trial (MILES: NCT03818737). We found significant cellular and immune alterations in the bone marrow, specifically in MSCs, T cells and NK cells, along with changes in intra-tissue cellular crosstalk during OA progression. Unlike previous studies focusing on injury sites or peripheral blood, our probe into the bone marrow-an inflammation and immune regulation hub-highlights remote organ impact of OA, identifying cell types and pathways for potential therapeutic targeting. Our findings highlight increased cellular senescence and inflammatory pathways, revealing key upstream genes, transcription factors, and ligands. Additionally, we identified significant enrichment in key biological pathways like PI3-AKT-mTOR signaling and IFN responses, showing their potentially crucial role in OA onset and progression.
Collapse
Affiliation(s)
- Paramita Chatterjee
- Marcus Center for Therapeutic Cell Characterization and Manufacturing, The Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
- The Parker H. Petit Institute for Bioengineering and Biosciences Georgia Institute of Technology, Atlanta, GA, USA
| | - Hazel Y. Stevens
- Marcus Center for Therapeutic Cell Characterization and Manufacturing, The Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
- The Parker H. Petit Institute for Bioengineering and Biosciences Georgia Institute of Technology, Atlanta, GA, USA
| | - Linda E. Kippner
- Marcus Center for Therapeutic Cell Characterization and Manufacturing, The Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
- The Parker H. Petit Institute for Bioengineering and Biosciences Georgia Institute of Technology, Atlanta, GA, USA
| | - Annie C. Bowles-Welch
- Marcus Center for Therapeutic Cell Characterization and Manufacturing, The Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
- The Parker H. Petit Institute for Bioengineering and Biosciences Georgia Institute of Technology, Atlanta, GA, USA
| | - Hicham Drissi
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Kenneth Mautner
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Carolyn Yeago
- The Parker H. Petit Institute for Bioengineering and Biosciences Georgia Institute of Technology, Atlanta, GA, USA
| | - Greg Gibson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Krishnendu Roy
- Marcus Center for Therapeutic Cell Characterization and Manufacturing, The Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
- Department of Biomedical Engineering, School of Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, School of Medicine, Vanderbilt University, Nashville, TN, USA
- Department of Chemical and Biomolecular Engineering, School of Engineering, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
49
|
Zhang L, Ma R, Li H, Wan X, Xu P, Zhu A, Wei P. Comparison of knee biomechanical characteristics during gait between patients with knee osteoarthritis and healthy individuals. Heliyon 2024; 10:e36931. [PMID: 39281588 PMCID: PMC11399588 DOI: 10.1016/j.heliyon.2024.e36931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/24/2024] [Accepted: 08/24/2024] [Indexed: 09/18/2024] Open
Abstract
Objective This study aim to quantify the differences in knee biomechanics during gait between knee osteoarthritis (KOA) patients and healthy individuals. Methods Twenty KOA patients (4 males and 16 females, 66.2 ± 7.7 years) and twenty controls (16 males and 4 females, 64.8 ± 5.4 years) were recruited for gait test using the motion capture system and force-platform system. The spatiotemporal parameters, knee kinematics and kinetics, and tibiofemoral contact force (TFCF) were calculated using an improved musculoskeletal model. Results KOA patients walked with reduced speed (48.6 %), stride length (32.9 %), stride height (33.0 %), time proportions of single-support phases (19.2 %), increased gait cycle time (31.0 %), time proportions of stance (8.5 %) and double-support phases (57.7-75.9 %). KOA patients had significant smaller peak flexion angle (29.1 %), flexion ROM (50.6 %) and peak flexion moment (90.2 %), greater peak adduction moment (KAM) (40.7 %), peak rotation moments (KRM) (50.0 %), KAM impulse (106.2 %) and KRM impulse (126.0 %). In proximodistal direction, greater medial TFCF impulse (238 %), total and medial first-peak TFCF (9.6 % and 15.2 %), and smaller lateral peak TFCF (33.3 %) and TFCF impulse (38.4 %) were found in KOA patients. Besides, significant differences were found in the total, medial and lateral peak TFCFs and TFCF impulses in mediolateral direction, and the medial and lateral TFCFs and TFCF impulses in anteroposterior direction. Conclusions Significant differences were found in the spatiotemporal parameters, knee kinematics and kinetics, and TFCF between the two groups. The results of this study have important implication for clinicians and rehabilitation physicians. These quantified biomechanical differences can provide data support for the personalized and quantified rehabilitation strategies, give suggestions for the exercises of KOA patients, help monitor disease, evaluate surgical treatment, and develop more effective preoperative planning and postoperative rehabilitation strategies.
Collapse
Affiliation(s)
- Li Zhang
- Honghui Hospital, Xi'an Jiaotong University, Xi'an 710000, PR China
| | - Rui Ma
- Honghui Hospital, Xi'an Jiaotong University, Xi'an 710000, PR China
| | - Hui Li
- Honghui Hospital, Xi'an Jiaotong University, Xi'an 710000, PR China
| | - Xianjie Wan
- Honghui Hospital, Xi'an Jiaotong University, Xi'an 710000, PR China
| | - Peng Xu
- Honghui Hospital, Xi'an Jiaotong University, Xi'an 710000, PR China
| | - Aibin Zhu
- Shaanxi Key Laboratory of Intelligent Robots, Institute of Robotics and Intelligent Systems, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Pingping Wei
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710054, PR China
| |
Collapse
|
50
|
Bi Z, Cai Y, Chen J, Shi X, Liao S, Jin L, Liu J. Genetically predicted effects of 10 sleep phenotypes on revision of knee arthroplasty: a mendelian randomization study. J Orthop Surg Res 2024; 19:563. [PMID: 39267063 PMCID: PMC11391806 DOI: 10.1186/s13018-024-05031-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/25/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND Accumulating evidence has suggested that sleep disturbances and disorders are common in patients who undergo knee arthroplasty. Revision surgery represents one of the most catastrophic outcomes of knee arthroplasty. However, it remains unclear whether sleep traits are the causes or consequences of knee arthroplasty revision. This study aimed to genetically examine the relationships between sleep traits and knee arthroplasty revision. METHODS To determine the causal relationship between sleep traits and knee arthroplasty revision, we employed two-sample Mendelian randomization (MR) using summary statistics from the largest publicly available genome-wide association studies (GWASs). The MR design uses genetic variants as instrumental variables to help separate causal relationships from non-causal associations. The main analyses included an inverse variance weighted (IVW) meta-analysis to obtain primary effect estimates. Sensitivity analyses involving the weighted median approach and MR-Egger regression were also conducted to check for potential pleiotropic biases. Numerous complementary sensitivity analyses were also performed to identify statistically significant causal correlations when there were horizontal pleiotropy and heterogeneity across variants. Finally, a reverse MR analysis was performed to evaluate the possibility of reverse causation. RESULTS In the absence of heterogeneity and horizontal pleiotropy, the IVW method revealed that genetically-predicted short sleep duration short sleep duration (average sleep duration of 24 h is 6 h or less) was positively correlated with the risk of knee arthroplasty revision (odds ratio = 1.03, 95% confidence interval = 1.01-1.05, and P = 0.003), while the association between genetically-predicted long sleep duration and knee arthroplasty was negative. The reverse MR analysis did not yield evidence supporting reverse causality relation between knee arthroplasty revision and sleep phenotypes. CONCLUSION This research indicated that, of the 10 sleep phenotypes we analyzed, only sleep duration was causally associated with knee arthroplasty revision. These discoveries added to the understanding of the role of sleep traits in the etiology of knee arthroplasty revision, which might further expand our insights into the prevention of knee arthroplasty revision.
Collapse
Affiliation(s)
- Zhiguo Bi
- Department of Orthopaedic Surgery, Orthopaedic Center, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Yimeng Cai
- College of Basic Medical Sciences, Jilin University, Changchun, Jilin, 130021, China
| | - Jintian Chen
- Department of Orthopaedic Surgery, Orthopaedic Center, The First Hospital of Jilin University, Changchun, Jilin, 130021, China.
| | - Xiaotong Shi
- Department of Orthopaedic Surgery, Orthopaedic Center, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Shiyu Liao
- Department of Orthopaedic Surgery, Orthopaedic Center, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
- Guangdong Provincial Hospital of Chinese Medicine-Zhuhai Hospital, Zhuhai, China
| | - Long Jin
- Department of Orthopaedic Surgery, Orthopaedic Center, The First Hospital of Jilin University, Changchun, Jilin, 130021, China.
- Lithotriptic Center, The First Hospital of Jilin University, Changchun, China.
| | - Jianguo Liu
- Department of Orthopaedic Surgery, Orthopaedic Center, The First Hospital of Jilin University, Changchun, Jilin, 130021, China.
| |
Collapse
|