1
|
Seldomridge AN, Weiser R, Holder AM. Systemic Therapy for Melanoma: What Surgeons Need to Know. Surg Oncol Clin N Am 2025; 34:359-374. [PMID: 40413004 DOI: 10.1016/j.soc.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2025]
Abstract
Immune checkpoint inhibitors and targeted therapies (BRAF/MEK inhibitors) have transformed the care of patients with stage IV melanoma, now with 5-year overall survival rates around 50%. Surgeons should be acquainted with these drugs, the multidisciplinary considerations of their use, and the unique immune-related adverse events (irAEs) they can cause. In this review, we discuss systemic therapies for cutaneous melanoma, including the biology of immune checkpoint inhibition, treatment indications, and toxicities. We also explain how these irAEs and other toxicities can impact surgical planning and perioperative management.
Collapse
Affiliation(s)
- Ashlee N Seldomridge
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Roi Weiser
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Ashley M Holder
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
| |
Collapse
|
2
|
Sperduto PW, Marqueen KE, Chang E, Li J, Davies MA, Ebner DK, Breen WG, Lamba N, Shih HA, Edwards D, Kim MM, Mahal A, Rahman R, Ankrah N, Boggs DH, Lewis C, Hyer D, Buatti JM, Johri F, Soliman H, Masucci L, Roberge D, Aneja S, Chiang V, Phuong C, Braunstein S, Dajani S, Sachdev S, Wan Z, Niedzwiecki D, Vaios E, Kirkpatrick JP, Pasetsky J, Wang TJ, Kutuk T, Kotecha R, Ross RB, Rusthoven CG, Nakano T, Tawbi HA, Mehta MP. Improved Survival and Prognostication in Melanoma Patients With Brain Metastases: An Update of the Melanoma Graded Prognostic Assessment. J Clin Oncol 2025; 43:1910-1919. [PMID: 40245362 PMCID: PMC12119226 DOI: 10.1200/jco-24-01351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 01/24/2025] [Accepted: 02/21/2025] [Indexed: 04/19/2025] Open
Abstract
PURPOSE Survival for patients with melanoma has recently improved. The propensity of melanoma to metastasize to the brain remains a common and serious feature of this disease. The purposes of this study were to evaluate prognostic factors for patients with newly diagnosed melanoma brain metastases (MBMs) in a large cohort treated with modern multimodal therapies, compare those results with those in prior eras, and update the Melanoma Graded Prognostic Assessment (GPA). METHODS Univariable and multivariable (MVA) analyses of prognostic factors and treatments associated with survival were performed on 1,796 patients with newly diagnosed MBM treated between January 01, 2015, and December 31, 2021, using a multi-institutional retrospective database. Multiple imputation was used to address missingness of potential predictors. Significant variables in combined MVA were used to update the Melanoma GPA. Comparisons were made with legacy cohorts. RESULTS Median survivals for cohorts A (1985-2007, n = 481), B (2006-2015, n = 823), and C (2015-2021, n = 1,796) were 6.7, 9.8, and 16.6 months and median follow-up times were 40.1, 43.6, and 48.8 months, respectively. In combined MVA, significant prognostic factors for survival were higher Karnofsky Performance Status, fewer MBMs, absence of extracranial metastases, lower serum lactate dehydrogenase, and no immunotherapy before MBM. These factors were incorporated into the updated Melanoma GPA. The combined median and 3-year survivals for patients with GPA 0-1, 1.5-2, and 2.5-4.0 were 5.4, 13.2, and 43.2 months and 12.4%, 28.8%, and 51.6%, respectively. CONCLUSION Prognostic factors have changed and survival has improved for patients with MBM but varies widely by GPA. The updated Melanoma GPA calculator (BrainMetGPA), available free online, can be used to estimate survival, individualize treatment, stratify clinical trials, guide surveillance, and augment clinical trial eligibility. Multidisciplinary treatment is essential. Trials are needed to elucidate the optimal sequencing of various therapeutic modalities.
Collapse
Affiliation(s)
| | | | - Enoch Chang
- University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jing Li
- University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | | | | | | | | | | | | | | | | - Nii Ankrah
- University of Alabama, Birmingham, Birmingham, AL
| | | | | | | | | | - Fasila Johri
- Sunnybrook Odette Cancer Centre, University of Toronto, Toronto, Canada
| | - Hany Soliman
- Sunnybrook Odette Cancer Centre, University of Toronto, Toronto, Canada
| | - Laura Masucci
- Centre Hospitalier de l’Universite de Montreal, Montreal, Canada
| | - David Roberge
- Centre Hospitalier de l’Universite de Montreal, Montreal, Canada
| | | | | | | | | | | | | | - Zihan Wan
- Duke Cancer Institute-Biostatistics Shared Resource, Durham, NC
| | | | | | | | | | | | - Tugce Kutuk
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL
| | - Rupesh Kotecha
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL
| | | | | | | | | | - Minesh P. Mehta
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL
| |
Collapse
|
3
|
van der Hiel B, de Wit-van der Veen BJ, van den Eertwegh AJM, Vogel WV, Stokkel MPM, Lopez-Yurda M, Boellaard R, Kapiteijn EW, Hospers GAP, Aarts MJB, de Vos FYFL, Boers-Sonderen MJ, van der Veldt AAM, de Groot JWB, Haanen JBAG. Metabolic parameters on baseline and early [ 18F]FDG PET/CT as a predictive biomarker for resistance to BRAF/MEK inhibition in advanced cutaneous BRAFV600-mutated melanoma. EJNMMI Res 2025; 15:60. [PMID: 40434500 PMCID: PMC12119442 DOI: 10.1186/s13550-025-01259-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Accepted: 05/14/2025] [Indexed: 05/29/2025] Open
Abstract
BACKGROUND [18F]FDG PET/CT plays a crucial role in evaluating cancer patients and assessing treatment response, including in BRAF-mutated melanoma. Metabolic tumor volume (MTV) and total lesion glycolysis (TLG) have emerged as promising alternatives to standardized uptake value (SUV)-based measures for tumor assessment. This study evaluates the predictive value of SUVpeak, MTV, and TLG in predicting progression-free survival (PFS) in advanced BRAF-mutated melanoma treated with BRAF/MEK inhibitors. RESULTS Seventy-five patients with metastatic melanoma were enrolled in a multi-center trial and treated with vemurafenib/cobimetinib. [18F]FDG-PET/CT scans were performed at baseline, week-2, and week-7. Imaging analysis included SUVpeak, MTV, and TLG of summed metastases, as well as percentage changes over time (∆). Baseline median PET-parameters were SUVpeak 12.59 (range 3.13-50.59), MTV 159mL (range 0-1897 mL), and TLG 1013 (range 1-13162). Baseline MTV was the strongest predictor (AUCT=6 months=0.714), while early changes in MTV, TLG, and especially week-7 ΔSUVpeak% showed similar or improved performance (P = 0.017 vs. baseline SUVpeak). Patients with TLG below the median had significantly prolonged PFS (15.4 vs. 8.5 months, P = 0.024). MTV above optimal cutoff (45.3 mL) was associated with an increased risk of progression/death, even after adjusting for LDH, ECOG status, and metastatic sites (HR = 2.97, 95% CI 1.17-7.52, P = 0.022). At week-2, ∆SUVpeak% was not predictive in a multivariable analysis, but became predictive at week-7 (median ∆SUVpeak%: 64), with a more than three-fold hazard of progression for patients with ∆SUVpeak% below 64% (P = 0.0014); PFS was 5.0 months (95% CI: 4.3-NA) for patients below the median versus 14.7 months (95% CI: 9.2-20.2) for those above or with non-quantifiable scans (P = 0.0002). Median ∆MTV was 95.5% at week-2 and 97.6% at week-7, with significant PFS differences at both time points (week-2: P = 0.020, week-7: P < 0.001). As expected, TLG mirrored MTV. Patients with MTV increases at week-7 after an initial response at week-2 had a median PFS of 5.3 vs. 12.6 months for those with stable or declining MTV (P = 0.0023). Intra-patient metabolic heterogeneity was also associated with outcome, with early reductions in SUVpeak variation between lesions correlating with better PFS. CONCLUSION This study supports the use of MTV and TLG as robust predictive markers for PFS in advanced melanoma treated with BRAF/MEK-inhibitors. Monitoring early PET parameters changes can provide valuable insights into therapeutic response and disease progression. TRIAL REGISTRATION Clinicaltrials.gov identifier: NCT02414750. Registered 10 April 2015, retrospectively registered.
Collapse
Affiliation(s)
- Bernies van der Hiel
- Department of Nuclear Medicine, Netherlands Cancer Institute-Antoni van Leeuwenhoek, Plesmanlaan 121- Room C0.137, Amsterdam, 1066 CX, The Netherlands.
| | - Berlinda J de Wit-van der Veen
- Department of Nuclear Medicine, Netherlands Cancer Institute-Antoni van Leeuwenhoek, Plesmanlaan 121- Room C0.137, Amsterdam, 1066 CX, The Netherlands
| | - Alfons J M van den Eertwegh
- Department of Medical Oncology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Wouter V Vogel
- Department of Nuclear Medicine, Netherlands Cancer Institute-Antoni van Leeuwenhoek, Plesmanlaan 121- Room C0.137, Amsterdam, 1066 CX, The Netherlands
| | - Marcel P M Stokkel
- Department of Nuclear Medicine, Netherlands Cancer Institute-Antoni van Leeuwenhoek, Plesmanlaan 121- Room C0.137, Amsterdam, 1066 CX, The Netherlands
| | - Marta Lopez-Yurda
- Department of Biometrics, Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| | - Ronald Boellaard
- Department of Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Ellen W Kapiteijn
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Geke A P Hospers
- Department of Medical Oncology, University Medical Center Groningen, Groningen, The Netherlands
| | - Maureen J B Aarts
- Department of Medical Oncology, GROW-School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Filip Y F L de Vos
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marye J Boers-Sonderen
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | - John B A G Haanen
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Medical Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Zhang P, Zhang Y, Sun Y, Chen Y, Cao X, He Y, Tan Y, Zhang Z, Deng S, Zhou W, Zhong C, Zeng A, Liu H, Xu JY, Zhou Y, Shen S, Li P, Li Y. Discovery of 2-Amino-7-Amide Quinazoline Derivatives as Potent and Orally Bioavailable Inhibitors Targeting Extracellular Signal-Regulated Kinase 1/2. J Med Chem 2025. [PMID: 40370105 DOI: 10.1021/acs.jmedchem.5c01055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Aberrant activation of the ERK/MAPK pathway is closely associated with various cancers. Directly targeting ERK1/2, the most distal node of this cascade, is not only a rational therapeutic approach for cancers harboring pathway-activating alterations, but also provides a potential solution for overcoming resistance from upstream signaling. Herein, we described the discovery of potent and orally bioavailable ERK1/2 inhibitors featuring 2-amino-7-amide quinazoline skeletons through structure-based drug design. Among them, the optimal compound 23 inhibited ERK1/2 at single-digital nanomolar concentrations with good specificity, and exhibited great potencies in preventing cell growth, migration and invasion, disrupting cell cycle, and inducing cell apoptosis. Further mechanism studies demonstrated that 23 dose-dependently suppressed the phosphorylation of the downstream substrate RSK. Remarkably, 23 exerted favorable ADMET and PK profiles, as well as significant in vivo antitumor efficacy with excellent tolerance. Collectively, this work offers a novel and highly promising candidate targeting ERK1/2 for further drug development.
Collapse
Affiliation(s)
- Peili Zhang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Yu Zhang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Yuelan Sun
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Yanyan Chen
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Xiang Cao
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Yu He
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Ye Tan
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Zian Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shengyi Deng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjuan Zhou
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Chuhai Zhong
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Ai Zeng
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Huanhuan Liu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Jun-Yu Xu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yubo Zhou
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shiyang Shen
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Li
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yi Li
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Sugitani I, Kiyota N, Ito Y, Onoda N, Hiromasa T, Horiuchi K, Kinuya S, Kondo T, Moritani S, Sugino K, Hara H. The 2024 revised clinical guidelines on the management of thyroid tumors by the Japan Association of Endocrine Surgery. Endocr J 2025; 72:545-635. [PMID: 40058844 PMCID: PMC12086281 DOI: 10.1507/endocrj.ej24-0644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 12/31/2024] [Indexed: 05/09/2025] Open
Abstract
The Japan Association of Endocrine Surgery published the first edition of the "Clinical guidelines on the management of thyroid tumors" in 2010 and the revised edition in 2018. The guideline presented herein is the English translation of the revised third edition, issued in 2024. The aim is to enhance health outcomes for patients suffering from thyroid tumors by facilitating evidence-based shared decision-making between healthcare providers and patients, as well as standardizing the management of thyroid tumors. The focus is on adult patients with thyroid tumors, addressing clinically significant issues categorized into areas such as an overview of the diagnosis and treatment of thyroid nodules, treatment strategies by histological type, radioactive iodine therapy, treatment of advanced differentiated carcinoma, pharmacotherapy, and complications and safety management associated with thyroid surgery. Thirty-two clinical questions were established in these areas. Following a comprehensive search of the literature and systematic review to evaluate the overall evidence, we aimed to present optimal recommendations by considering the balance of benefits and harms from the patient's perspective. We integrated evidence and clinical experience to determine the "Certainty of evidence" and "Strength of recommendations". Based on these, we illustrated overall flows of care as "Clinical algorithms". Necessary background knowledge of diseases and established clinical procedures for understanding the recommendations are presented in "Notes", while information that may be clinically useful but for which evidence remains insufficient is included in "Columns", based on the current state of evidence. Finally, future challenges for the next revision are presented as "Future research questions".
Collapse
Affiliation(s)
- Iwao Sugitani
- Department of Endocrine Surgery, Nippon Medical School, Tokyo 113-8603, Japan
- the Task Force of the Japan Association of Endocrine Surgery on the Guidelines for Thyroid Tumors
| | - Naomi Kiyota
- Department of Medical Oncology and Hematology, Cancer Center, Kobe University Hospital, Kobe 650-0017, Japan
- the Task Force of the Japan Association of Endocrine Surgery on the Guidelines for Thyroid Tumors
| | - Yasuhiro Ito
- Department of Surgery, Kuma Hospital, Kobe 650-0011, Japan
- the Task Force of the Japan Association of Endocrine Surgery on the Guidelines for Thyroid Tumors
| | - Naoyoshi Onoda
- Department of Surgery, Kuma Hospital, Kobe 650-0011, Japan
- the Task Force of the Japan Association of Endocrine Surgery on the Guidelines for Thyroid Tumors
| | - Tomo Hiromasa
- Department of Nuclear Medicine, Kanazawa University Hospital, Kanazawa 920-8641, Japan
- the Task Force of the Japan Association of Endocrine Surgery on the Guidelines for Thyroid Tumors
| | - Kiyomi Horiuchi
- Department of Endocrine Surgery, Tokyo Women’s Medical University, Tokyo 162-8666, Japan
- the Task Force of the Japan Association of Endocrine Surgery on the Guidelines for Thyroid Tumors
| | - Seigo Kinuya
- Department of Nuclear Medicine, Kanazawa University, Kanazawa 920-8641, Japan
- the Task Force of the Japan Association of Endocrine Surgery on the Guidelines for Thyroid Tumors
| | - Tetsuo Kondo
- Department of Pathology, University of Yamanashi, Yamanashi 409-3898, Japan
- the Task Force of the Japan Association of Endocrine Surgery on the Guidelines for Thyroid Tumors
| | - Sueyoshi Moritani
- Center for Head and Neck Thyroid Surgery, Oumi Medical Center, Shiga 525-8585, Japan
- the Task Force of the Japan Association of Endocrine Surgery on the Guidelines for Thyroid Tumors
| | - Kiminori Sugino
- Surgical Branch, Ito Hospital, Tokyo 150-8308, Japan
- the Task Force of the Japan Association of Endocrine Surgery on the Guidelines for Thyroid Tumors
| | - Hisato Hara
- Department of Breast and Endocrine Surgery, University of Tsukuba, Tsukuba 305-8576, Japan
- the Task Force of the Japan Association of Endocrine Surgery on the Guidelines for Thyroid Tumors
| |
Collapse
|
6
|
Xiao F, Zhu Y, Chen Y, Li Q, Qi J, Qin Z, Zhao X, Pang Z, Tang H, Xie J, Jiang X. Inhibition of Post-Surgical Tumor Recurrence by 3-Bromopyruvate-Conjugated Gold Nanoclusters via MAPK and PI3K-Akt Pathways. NANO LETTERS 2025. [PMID: 40325508 DOI: 10.1021/acs.nanolett.5c01159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
The multitargeted strategy demonstrates significant potential in modern medical treatment, enhancing efficacy and reducing the risk of drug resistance. The rational combination design of nanomaterials and small molecules expands the new prospects of multitargeted therapies. Here, we have covalently linked ligands of atomic gold nanoclusters with 3-bromopyruvate and strategically designed a multitargeted approach to prevent postsurgical melanoma recurrence by activating the mitogen-activated protein kinase pathway and downregulating the phosphatidylinositol 3-kinase pathway. In vitro and in vivo validations confirm safety and outstanding efficacy, with recurrence rates reduced to 0% in completely resected mouse tumor models from 100%. The surface ligand modifiability of gold nanoclusters enables the precise engineering of nanodrugs with a molecule-like structure, providing a novel template that aligns with the clinical translation criteria set by the FDA. These findings identify an effective multitargeted strategy to develop structurally well-defined gold nanocluster-modified drug molecules in preventing postsurgical tumor recurrence.
Collapse
Affiliation(s)
- Feng Xiao
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, China
| | - Yihang Zhu
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, China
| | - Yao Chen
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, China
| | - Qizhen Li
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, China
| | - Jie Qi
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, China
| | - Zhiliang Qin
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, China
| | - Xiaomeng Zhao
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, China
| | - Zeyang Pang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, China
| | - Hao Tang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, China
| | - Jianping Xie
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Kent Ridge, Singapore 117585, Singapore
| | - Xingyu Jiang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, China
| |
Collapse
|
7
|
Stec NE, Barker FG, Brastianos PK. Targeted treatment for craniopharyngioma. J Neurooncol 2025; 172:503-513. [PMID: 39951179 DOI: 10.1007/s11060-025-04942-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/13/2025] [Indexed: 04/04/2025]
Abstract
INTRODUCTION Craniopharyngioma is a rare solid-cystic tumor of the hypothalamopituitary region. Two distinct craniopharyngioma types (formerly subtypes), adamantinomatous and papillary, have been described. These tumors often manifest with neuroendocrine dysfunction, vision problems, hydrocephalus, and cognitive changes. Despite efforts to spare vital brain structures, conventional treatments such as surgery and radiation can exacerbate preceding deficits and contribute to permanent neurologic impairment. Recent studies have identified BRAF-V600E mutations in nearly all papillary craniopharyngiomas (PCP), and CTNNB1/Wnt pathway alterations in adamantinomatous craniopharyngiomas (ACP). These discoveries have advanced our understanding of craniopharyngioma pathogenesis and have opened opportunities for targeted biological treatments. PURPOSE The primary objective of this article is to review the current landscape of targeted treatments in papillary and adamantinomatous craniopharyngioma. RESULTS Treatment of PCP with BRAF/MEK inhibition has demonstrated durable tumor response in the adjuvant and neoadjuvant settings in multiple case studies and one phase II clinical trial. Although treatment advances are more limited for ACP, CTNNB1/Wnt pathway inhibitors showed promising results in pre-clinical studies and are under continued investigation. CONCLUSION The efficacy of BRAF/MEK inhibition in PCP supports the use of targeted therapy in patients with newly diagnosed PCP. The optimal targeted treatment combinations and their timing, duration, long-term effects, and sequencing with traditional therapeutic modalities have not been established and warrant further study. Targeted therapies represent a significant advancement in the field of oncology, and craniopharyngiomas are viable candidates for these approaches pending further research.
Collapse
Affiliation(s)
- Natalie E Stec
- Divisions of Neuro-Oncology and Hematology/Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Fred G Barker
- Department of Neurosurgery, Massachusetts General Hospital Cancer Center, Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Priscilla K Brastianos
- Divisions of Neuro-Oncology and Hematology/Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA.
| |
Collapse
|
8
|
Bonzano E, Barruscotti S, Chiellino S, Montagna B, Bonzano C, Imarisio I, Colombo S, Guerrini F, Saddi J, La Mattina S, Tomasini CF, Spena G, Pedrazzoli P, Lancia A. Current Treatment Paradigms for Advanced Melanoma with Brain Metastases. Int J Mol Sci 2025; 26:3828. [PMID: 40332507 PMCID: PMC12027546 DOI: 10.3390/ijms26083828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 04/12/2025] [Accepted: 04/17/2025] [Indexed: 05/08/2025] Open
Abstract
The therapeutic management of melanoma brain metastases has undergone a profound revolution during recent decades. Optimal integration of systemic therapies with local treatments seems to represent the strategy to pursue in order to maximize clinical outcomes, stressing the need for real multidisciplinary care in this setting of patients. However, the current approach in the clinics does not necessarily reflect what the current guidelines state, and several pending issues are present, from the ideal therapeutic sequence between stereotactic radiosurgery (SRS) and drug administration to the current role of surgery and whole brain radiotherapy (WBRT), all of which need to be addressed. This narrative review aims to provide practical help for navigating the current controversies, with an eye towards possible future advancements in the field, which could help to obtain a comprehensive molecular characterization of the tumor and a more personalized patient-centered therapeutic approach.
Collapse
Affiliation(s)
- Elisabetta Bonzano
- Department of Radiation Oncology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy (S.L.M.)
| | | | - Silvia Chiellino
- Unit of Oncology, Department of Oncology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy (B.M.)
| | - Benedetta Montagna
- Unit of Oncology, Department of Oncology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy (B.M.)
| | - Chiara Bonzano
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, IRCCS Ospedale Policlinico San Martino, University Eye Clinic, 16132 Genoa, Italy
| | - Ilaria Imarisio
- Unit of Oncology, Department of Oncology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy (B.M.)
| | - Sara Colombo
- Department of Radiation Oncology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy (S.L.M.)
| | - Francesco Guerrini
- Unit of Neurosurgery, Department of Head & Neck Surgery, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (F.G.)
| | - Jessica Saddi
- Department of Radiation Oncology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy (S.L.M.)
| | - Salvatore La Mattina
- Department of Radiation Oncology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy (S.L.M.)
| | | | - Giannantonio Spena
- Unit of Neurosurgery, Department of Head & Neck Surgery, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (F.G.)
| | - Paolo Pedrazzoli
- Unit of Oncology, Department of Oncology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy (B.M.)
| | - Andrea Lancia
- Department of Radiation Oncology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy (S.L.M.)
| |
Collapse
|
9
|
Mechahougui H, Gutmans J, Gouasmi R, Smekens L, Friedlaender A. BRAF Targeting Across Solid Tumors: Molecular Aspects and Clinical Applications. Int J Mol Sci 2025; 26:3757. [PMID: 40332392 PMCID: PMC12027668 DOI: 10.3390/ijms26083757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 05/08/2025] Open
Abstract
BRAF mutations are critical drivers in cancers such as melanoma, colorectal cancer, and non-small-cell lung cancer. The most common mutation, BRAF V600E, is a key therapeutic target. Targeted treatments with BRAF and MEK inhibitors have significantly improved progression-free and overall survival in melanoma patients. However, in cancers like metastatic colorectal cancer, BRAF mutations are associated with poor outcomes due to aggressive disease behavior and resistance to conventional chemotherapy. Despite progress, resistance to BRAF/MEK inhibitors remains a major challenge, often driven by secondary mutations in the mitogen-activated protein kinase (MAPK) pathway, activation of alternative pathways such as phosphoinositide 3-kinases (PI3Ks)/protein kinase B (AKT), or changes in the tumor microenvironment. These challenges have motivated ongoing research into combining BRAF inhibitors with immunotherapies to enhance and prolong treatment effectiveness. Future research must also account for the role of the cancer's tissue of origin, as the biological context significantly influences response to targeted therapies, highlighting the need for a deeper understanding of tumor biology, micro-environment, and genetics.
Collapse
Affiliation(s)
- Hiba Mechahougui
- Oncology Department, Geneva University Hospital (HUG), 1205 Geneva, Switzerland; (J.G.); (L.S.)
| | - James Gutmans
- Oncology Department, Geneva University Hospital (HUG), 1205 Geneva, Switzerland; (J.G.); (L.S.)
| | - Roumaïssa Gouasmi
- Cancer Research Center of Lyon, CNRS UMR5286, Inserm U1052, University of Lyon, 69100 Lyon, France;
| | - Laure Smekens
- Oncology Department, Geneva University Hospital (HUG), 1205 Geneva, Switzerland; (J.G.); (L.S.)
| | | |
Collapse
|
10
|
Reitmajer M, Nanz L, Müller N, Leiter U, Amaral T, Aebischer V, Flatz L, Forschner A. Comparative real-world outcomes of stage III melanoma patients treated with talimogene laherparepvec or interleukin 2. Ther Adv Med Oncol 2025; 17:17588359251324035. [PMID: 40171522 PMCID: PMC11960150 DOI: 10.1177/17588359251324035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 02/12/2025] [Indexed: 04/03/2025] Open
Abstract
Background Talimogene laherparepvec (T-VEC) and interleukin-2 (IL-2) are both used in the intralesional treatment of melanoma skin metastases. T-VEC received regulatory approval from the European Medicines Agency and the U.S. Food and Drug Administration in 2015, while IL-2 has been used off-label for this purpose for many years. Despite their use in clinical practice, there is a lack of comparative data on the efficacy and safety of these treatments. Objectives This retrospective study aimed to compare the efficacy and safety of intralesional T-VEC and IL-2 in non-resectable stage III patients with melanoma treated at a single center between January 2016 and September 2024. Methods We identified eligible patients using the Central Malignant Melanoma Registry and the local University Hospital Pharmacy database. Overall survival (OS) and progression-free survival (PFS) were calculated. Furthermore, best response rates and occurrence of adverse events (AEs) were compared between the T-VEC and the IL-2 group. Concomitant systemic treatment was allowed. Results A total of 62 patients were included, with 37 receiving T-VEC and 25 receiving IL-2 as first-line therapy. Ten patients received both therapies subsequently. The median PFS for the cohort was 5.0 months, and the median OS was 34.0 months. No significant differences in PFS (p = 0.790), OS (p = 0.894), or best response rates (p = 0.468) were found between groups. Common AEs included local injection site reactions and fever, with no severe events leading to discontinuation by a physician. Conclusion No significant differences in PFS, OS, or best response rates were observed between IL-2 and T-VEC treatments. The choice of therapy may be influenced by factors such as availability, physician preference, and patient-specific considerations.
Collapse
Affiliation(s)
- Markus Reitmajer
- Department of Dermatology, University Hospital Tuebingen, Liebermeisterstraße 25, Tuebingen 72076, Germany
| | - Lena Nanz
- Department of Dermatology, University Hospital Tuebingen, Tuebingen, Germany
| | - Nina Müller
- University Pharmacy, University Hospital Tuebingen, Tuebingen, Germany
| | - Ulrike Leiter
- Department of Dermatology, University Hospital Tuebingen, Tuebingen, Germany
| | - Teresa Amaral
- Department of Dermatology, University Hospital Tuebingen, Tuebingen, Germany
| | - Valentin Aebischer
- Department of Dermatology, University Hospital Tuebingen, Tuebingen, Germany
| | - Lukas Flatz
- Department of Dermatology, University Hospital Tuebingen, Tuebingen, Germany
| | - Andrea Forschner
- Department of Dermatology, University Hospital Tuebingen, Tuebingen, Germany
| |
Collapse
|
11
|
Mahipal A, Bucheit L, Zhang N, Barnett RM, Storandt MH, Chakrabarti S. Frequency and outcomes of BRAF alterations identified by liquid biopsy in metastatic, non-colorectal gastrointestinal cancers. Oncologist 2025; 30:oyaf044. [PMID: 40163685 PMCID: PMC11957259 DOI: 10.1093/oncolo/oyaf044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 02/04/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND Impact of BRAF V600E mutations (BRAFV600E), a poor prognostic factor in metastatic colorectal cancer, is lacking in non-CRC gastrointestinal (GI) cancers including pancreatic (PDAC), gastric/gastroesophageal (GEA), hepatocellular carcinoma (HCC), and cholangiocarcinoma (CCA). Due to tumor-agnostic approvals for patients with BRAFV600E, understanding the frequency and impact of BRAF alterations across non-CRC GI cancers is essential for clinical decision-making. METHODS Patients with PDAC, GEA, HCC, or CCA who had cell-free DNA detected on Guardant360 (Guardant Health) from 2020 to 2023 were queried. Prevalence of characterized BRAF genomic alterations (GA) was calculated; GAs were grouped by class (Class I/II/III). The Chi-squared test assessed differences between cancer types. A subset of patients had outcomes analysis using GuardantINFORM, a real-world clinicogenomic database, to derive real-world overall survival (rwOS). RESULTS Of 32 480 included patients, BRAF GAs were identified in 4.4%; 19% were BRAFV600E (0.81% prevalence overall). CCA had the highest rate of BRAF GAs and BRAFV600E (P < .01); HCC and GEA had the highest rates of BRAF class II/III alterations. There were no significant differences in rwOS by alteration class or cancer type; numeric differences were observed by alteration class. Few patients were treated with BRAF inhibitors (2.2%). Prevalence of co-occurring alterations was unique by cancer type. CONCLUSIONS Frequency of BRAF GAs, including BRAFV600E, in non-CRC GI cancers detected by liquid biopsy is similar to tissue-based rates and can be reliably used to assess BRAF status. BRAF GAs have mixed prognostic implications on survival for patients with non-CRC GI malignancies that warrant further exploration.
Collapse
Affiliation(s)
- Amit Mahipal
- University Hospitals Seidman Cancer Center, Case Western Reserve University, Cleveland, OH, United States
- Mayo Clinic, Rochester, MN, United States
| | | | - Nicole Zhang
- Guardant Health Inc, Palo Alto, CA, United States
| | | | | | - Sakti Chakrabarti
- University Hospitals Seidman Cancer Center, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
12
|
Wu J, Ding Q, Zhang Q, Chen Q, Wen X, Ding Y, Li J, Chen Z, Zhang T, Wang J, Huang F, Jiang H, Chen L, Zhou Q, Li K, Zhang X, Li D. Addition of anti-PD-1 immunotherapy to BRAF inhibitor-based targeted therapy improves real-world survival and delays brain metastases in patients with BRAF V600-mutant advanced melanoma: a multicenter cohort study. MedComm (Beijing) 2025; 6:e70102. [PMID: 39968494 PMCID: PMC11832434 DOI: 10.1002/mco2.70102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 12/24/2024] [Accepted: 12/31/2024] [Indexed: 02/20/2025] Open
Abstract
Anti-PD-1 immunotherapy and targeted therapy (TT) represent two major therapeutic modalities for BRAFV600-mutant advanced melanoma, but the efficacy of combination therapy in Asian populations remains unknown. Asian melanoma patients differ significantly from Caucasians in tissue subtypes, pathogenesis and response to treatment. We retrospectively analyzed data of BRAFV600-mutant advanced melanoma patients treated with first-line vemurafenib (V) ± anti-PD-1 or dabrafenib+trametinib (D+T) ± anti-PD-1 between 2014 and 2023 from three centers in China. 178 patients were included, with V (n = 45), D+T (n = 51), V+anti-PD-1 (n = 39) and D+T+anti-PD-1 (n = 43). The median PFS (21.9 vs. 11.1 months, p < 0.001), OS (NR vs. 32.6 months, p = 0.027), and DoR (20.0 vs. 8.4 months, p = 0.002) were significantly prolonged with D+T+anti-PD-1 versus D+T. Addition of anti-PD-1 to V also significantly prolonged PFS, OS, and DoR (p < 0.001). V+anti-PD-1 was superior to D+T in terms of PFS (15.0 vs. 11.1 months, p = 0.007) and DoR (18.0 vs. 8.4 months, p = 0.013), and was comparable to D+T+anti-PD-1. Addition of anti-PD-1 to BRAF inhibitor-based TT was associated with lower incidence of brain metastases (p = 0.032). Addition of anti-PD-1 to BRAF inhibitor-based TT appears to be a safe and effective treatment option, conferring a survival benefit and delaying the onset brain metastases in patients with BRAFV600-mutant advanced melanoma.
Collapse
Affiliation(s)
- Junwan Wu
- Biotherapy Center, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer MedicineGuangzhouGuangdong ProvinceP. R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat‐sen University Cancer CenterGuangzhouGuangdong ProvinceP. R. China
| | - Qiuyue Ding
- Biotherapy Center, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer MedicineGuangzhouGuangdong ProvinceP. R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat‐sen University Cancer CenterGuangzhouGuangdong ProvinceP. R. China
| | - Qiong Zhang
- Biotherapy Center, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer MedicineGuangzhouGuangdong ProvinceP. R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat‐sen University Cancer CenterGuangzhouGuangdong ProvinceP. R. China
| | - Qianqi Chen
- Department of OncologyHuazhong University of Science and Technology Union Shenzhen HospitalShenzhenGuangdong ProvinceP. R. China
| | - Xizhi Wen
- Biotherapy Center, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer MedicineGuangzhouGuangdong ProvinceP. R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat‐sen University Cancer CenterGuangzhouGuangdong ProvinceP. R. China
| | - Ya Ding
- Biotherapy Center, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer MedicineGuangzhouGuangdong ProvinceP. R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat‐sen University Cancer CenterGuangzhouGuangdong ProvinceP. R. China
| | - Jingjing Li
- Biotherapy Center, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer MedicineGuangzhouGuangdong ProvinceP. R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat‐sen University Cancer CenterGuangzhouGuangdong ProvinceP. R. China
| | - Ziluan Chen
- Biotherapy Center, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer MedicineGuangzhouGuangdong ProvinceP. R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat‐sen University Cancer CenterGuangzhouGuangdong ProvinceP. R. China
| | - Tao Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat‐sen University Cancer CenterGuangzhouGuangdong ProvinceP. R. China
| | - Jiuhong Wang
- Biotherapy Center, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer MedicineGuangzhouGuangdong ProvinceP. R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat‐sen University Cancer CenterGuangzhouGuangdong ProvinceP. R. China
| | - Fuxue Huang
- Biotherapy Center, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer MedicineGuangzhouGuangdong ProvinceP. R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat‐sen University Cancer CenterGuangzhouGuangdong ProvinceP. R. China
| | - Hang Jiang
- Biotherapy Center, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer MedicineGuangzhouGuangdong ProvinceP. R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat‐sen University Cancer CenterGuangzhouGuangdong ProvinceP. R. China
| | - Linbin Chen
- Biotherapy Center, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer MedicineGuangzhouGuangdong ProvinceP. R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat‐sen University Cancer CenterGuangzhouGuangdong ProvinceP. R. China
| | - Qiming Zhou
- Department of OncologyHuazhong University of Science and Technology Union Shenzhen HospitalShenzhenGuangdong ProvinceP. R. China
| | - Ke Li
- Department of Cancer Biotherapy CenterYunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan ProvinceKunmingYunnan ProvinceP. R. China
| | - Xiaoshi Zhang
- Biotherapy Center, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer MedicineGuangzhouGuangdong ProvinceP. R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat‐sen University Cancer CenterGuangzhouGuangdong ProvinceP. R. China
| | - Dandan Li
- Biotherapy Center, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer MedicineGuangzhouGuangdong ProvinceP. R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat‐sen University Cancer CenterGuangzhouGuangdong ProvinceP. R. China
| |
Collapse
|
13
|
Jutten E, van Kempen LCLT, Diercks GFH, van Leeuwen BL, Kruijff S, Wevers KP. Real-World Evidence of the Prevalence of Driver Mutations in Anorectal Melanoma. Mol Diagn Ther 2025; 29:229-238. [PMID: 39739287 DOI: 10.1007/s40291-024-00764-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2024] [Indexed: 01/02/2025]
Abstract
INTRODUCTION Anorectal melanoma is a rare neoplasm with an aggressive behavior and poor prognosis. Recently, recurrent gene mutations related to anorectal melanoma have been identified in a small series of cases, and this holds promise for targeted therapies, analogous to cutaneous melanoma. The purpose of this study was to analyze testing rates and prevalence of mutations in anorectal melanoma in the Dutch population. METHODS The Netherlands Cancer Registry and the Dutch Nationwide Pathology Databank were queried for all patients with a diagnosis of anorectal melanoma (2009-2019) and for whom a molecular analysis was performed. The genes that were tested and mutations that were reported were recorded. Mutation status was correlated with clinical characteristics. RESULTS In the period 2009-2019, 121 patients were diagnosed with anorectal melanoma. A molecular analysis was performed for 81 (67%) using single gene testing and various next-generation sequencing panels. Testing rates increased from 53% in 2009-2012 to 73% in 2016-2019. In 29/81 (36%) analyzed tumors, one or more mutations were reported: mutations in KIT (16/70, 23%), CTNNB1 (3/20, 15%), NRAS (6/60, 10%), BRAF non-V600E (4/74, 5%), GNAS (1/19, 5%), KRAS (1/28, 4%), BRAF V600E (1/74, 1%), and SF3B1 (1/1). In this cohort, a positive correlation was found between BRAF mutation status and age. Mutation status did not correlate with sex, date of diagnosis, tumor stage or surgical treatment. Survival was not influenced by any mutation status. CONCLUSION KIT was the most frequently mutated gene in the 81 analyzed anorectal melanomas in the period 2009-2019. With the increasing testing rates and use of next generation sequencing, the molecular landscape of anorectal melanomas is gradually being revealed. Adoption of broad mutation analysis will reveal potentially actionable targets for treatment of patients with anorectal melanoma.
Collapse
Affiliation(s)
- E Jutten
- Hospital group Twente, Zilvermeeuw 1, 7609 PP, Almelo, The Netherlands
- University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - L C L T van Kempen
- University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
- Department of Pathology, University of Antwerp, Antwerp University Hospital, 655 Drie Eikenstraat, 2650, Edegem, Belgium
| | - G F H Diercks
- University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - B L van Leeuwen
- University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - S Kruijff
- University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - K P Wevers
- Comprehensive Cancer Center, University of Maastricht, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands.
| |
Collapse
|
14
|
Jalal AHB, Gunn H, Gunasekara B, Gan HW. Endocrine effects of MEK and BRAF inhibitor therapy in paediatric patients: a tertiary centre experience. J Neurooncol 2025; 172:257-263. [PMID: 39671021 PMCID: PMC11832571 DOI: 10.1007/s11060-024-04896-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/20/2024] [Indexed: 12/14/2024]
Abstract
PURPOSE BRAF and MEK inhibitors are used to treat a range of paediatric tumours including low-grade gliomas. The ubiquitous nature of the BRAF/MAPK/MEK pathway means such treatments are not without side effects such as renal tubulopathies and hyperglycaemia. This study aims to describe the endocrine dysfunction observed in a cohort of children treated with BRAF and MEK inhibitors at the largest paediatric centre in the UK utilising these treatments. METHODS Electronic data for patients treated with dabrafenib (BRAF inhibitor) and trametinib (MEK inhibitor) from January 2019 to May 2022 were retrospectively reviewed. Outcomes included diagnosis of glucose dysregulation, the presence of hyponatraemia (< 135 mmol/l) and sodium nadir during treatment. RESULTS A total of 55 patients were included for analysis. Nine patients had at least one hyponatraemic episode during treatment of whom three had coexisting central diabetes insipidus. A statistically significant difference (p-value = 0.037) with regards to the plasma sodium nadir during treatment was observed between patients with diabetes insipidus (median = 134 (132-137) mmol/l) and patients without (median = 137 (127-141 mmol/l). Six patients were diagnosed with a form of glucose dysregulation (e.g. insulin resistance, type 2 diabetes), of whom four were diagnosed during treatment with dabrafenib, all with hypothalamo-pituitary lesions. CONCLUSION Clinicians using such treatments need to be aware of these potential effects, particularly the risk of hyponatraemia in patients with pre-existing central diabetes insipidus and monitor for these accordingly, including performing measurements of sodium and glucose prior to, during and after treatment.
Collapse
Affiliation(s)
| | - Harriet Gunn
- Department of Endocrinology, University College London Hospitals NHS Foundation Trust, London, UK
- UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Buddhi Gunasekara
- Department of Endocrinology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Hoong-Wei Gan
- UCL Great Ormond Street Institute of Child Health, University College London, London, UK.
- Department of Endocrinology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.
| |
Collapse
|
15
|
Siegel BI, Patil P, Prakash A, Klawinski DM, Hwang EI. Targeted therapy in pediatric central nervous system tumors: a review from the National Pediatric Cancer Foundation. Front Oncol 2025; 15:1504803. [PMID: 40094009 PMCID: PMC11906681 DOI: 10.3389/fonc.2025.1504803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/23/2025] [Indexed: 03/19/2025] Open
Abstract
Central nervous system tumors represent the leading cause of cancer-related mortality in children. Conventional therapies of surgery, radiation, and cytotoxic chemotherapy have insufficient efficacy for some pediatric CNS tumors and are associated with significant morbidity, prompting an ongoing need for novel treatment approaches. Identification of molecular alterations driving tumorigenesis has led to a rising interest in developing targeted therapies for these tumors. The present narrative review focuses on recent progress in targeted therapies for pediatric CNS tumors. We outline the key implicated cellular pathways, discuss candidate molecular therapies for targeting each pathway, and present an overview of the clinical trial landscape for targeted therapies in pediatric CNS tumors. We then discuss challenges and future directions for targeted therapy, including combinatorial approaches and real-time drug screening for personalized treatment planning.
Collapse
Affiliation(s)
- Benjamin I. Siegel
- Brain Tumor Institute and Gilbert Family Neurofibromatosis Institute, Children’s National Hospital, Washington, DC, United States
- Division of Oncology, Children’s National Hospital, Washington, DC, United States
| | - Prabhumallikarjun Patil
- Children’s Healthcare of Atlanta, Aflac Cancer Center, Atlanta, GA, United States
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Akul Prakash
- New York University, New York, NY, United States
| | - Darren M. Klawinski
- Division of Hematology/Oncology, Nemours Children’s Health Jacksonville, Jacksonville, FL, United States
| | - Eugene I. Hwang
- Brain Tumor Institute and Gilbert Family Neurofibromatosis Institute, Children’s National Hospital, Washington, DC, United States
| |
Collapse
|
16
|
Lahr RG, Meyer M, Nelson L, Kottschade LA, Jannetto PJ, Yang YK. Performance Comparison of Liquid Chromatography and Paper Spray Ionization with Mass Spectrometry for Measuring Kinase Inhibitors in Human Plasma. ACS Pharmacol Transl Sci 2025; 8:557-565. [PMID: 39974637 PMCID: PMC11834250 DOI: 10.1021/acsptsci.4c00646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/24/2024] [Accepted: 01/06/2025] [Indexed: 02/21/2025]
Abstract
Kinase inhibitors are small-molecule drugs designed to target oncogenic mutations in cancer treatment. Although less toxic than conventional chemotherapy drugs, they can cause severe adverse effects in some patients, resulting in dose reduction and cessation. To evaluate if therapeutic drug monitoring of kinase inhibitors and their metabolites can improve toxicity assessment in patients, we developed and evaluated the analytical performance of two parallel methods utilizing liquid chromatography (LC) and paper spray (PS) ionization coupled with a triple quadrupole mass spectrometer (MS) for the measurement of dabrafenib, its major metabolite OH-dabrafenib, and trametinib in patient plasma samples. The PS-MS method yielded a faster sample analysis time (2 min) compared to the LC separation (9 min). The two methods shared the same analytical measurement range (AMR) for dabrafenib and OH-dabrafenib (10-3500 and 10-1250 ng/mL), but the AMR differed for trametinib (LC-MS: 0.5-50 ng/mL; PS-MS: 5.0-50 ng/mL). The imprecision across their respective AMR was 1.3-6.5% (dabrafenib), 3.0-9.7% (OH-dabrafenib), and 1.3-5.1% (trametinib) for the LC-MS method and 3.8-6.7% (dabrafenib), 4.0-8.9% (OH-dabrafenib), and 3.2-9.9% (trametinib) for the PS-MS method. Using authentic patient samples, the quantification results were comparable between the two methods: dabrafenib (correlation coefficient r = 0.9977), OH-dabrafenib (r = 0.885), and trametinib (r = 0.9807). Nonetheless, the PS-MS method displayed significantly higher variations compared with the LC-MS method. Based on the LC-MS method, we were able to profile the concentrations and metabolism patterns of dabrafenib and trametinib in patients who were receiving the drugs for BRAF V600 mutation-driven malignancies.
Collapse
Affiliation(s)
- Richard G. Lahr
- Department of Laboratory Medicine and Pathology,
Mayo Clinic, Rochester, Minnesota 55905, United
States
| | - Makenzie Meyer
- Department of Laboratory Medicine and Pathology,
Mayo Clinic, Rochester, Minnesota 55905, United
States
| | - Leah Nelson
- Mayo Clinic Comprehensive Cancer Center,
Mayo Clinic, Rochester, Minnesota 55905, United
States
| | - Lisa A. Kottschade
- Mayo Clinic Comprehensive Cancer Center,
Mayo Clinic, Rochester, Minnesota 55905, United
States
| | - Paul J. Jannetto
- Department of Laboratory Medicine and Pathology,
Mayo Clinic, Rochester, Minnesota 55905, United
States
| | - Yifei K. Yang
- Department of Laboratory Medicine and Pathology,
Mayo Clinic, Rochester, Minnesota 55905, United
States
| |
Collapse
|
17
|
Martin-Liberal J, Márquez-Rodas I, Cerezuela-Fuentes P, Soria A, Garicano F, Medina J, García Galindo R, Oramas J, Luis Manzano J, Delgado M, Valdivia J, Sanchez P. Challenges and perspectives in the management of BRAF-mutated metastatic melanoma: Systemic treatment sequencing and brain metastases. Cancer Treat Rev 2025; 133:102886. [PMID: 39879863 DOI: 10.1016/j.ctrv.2025.102886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/27/2024] [Accepted: 01/13/2025] [Indexed: 01/31/2025]
Abstract
The global incidence of metastatic melanoma with BRAF mutations, characterized by aggressive behavior and poor prognosis, is rising. Recent treatment advances, including immune checkpoint inhibitors (ICI) and targeted therapies (TT) such as BRAF and MEK inhibitors, have significantly enhanced patient outcomes. Although guidelines recommend sequencing strategies, real-world implementation can be influenced by clinical scenarios. This article highlights the importance of tailored treatment strategies, emphasizing that the decision to initiate immunotherapy (IT) or TT hinges on multiple factors, including tumor burden, LDH levels, presence of brain metastases, and patient symptomatic status. Managing brain metastases also poses a challenge, as these patients are typically excluded from pivotal clinical trials. While insights from phase II studies provide some guidance, there is a critical need for more quality data to inform comprehensive recommendations. Furthermore, although triple therapy combining IT and TT was initially thought to be promising, it has failed to clearly demonstrate benefit over current treatments. For all these reasons, there is an imperative need for further research on biomarkers and predictive factors, as well as real-world studies, that will help tailor treatment strategies across diverse patient subsets, thereby refining therapeutic approaches for BRAF-mutated metastatic melanoma.
Collapse
Affiliation(s)
| | - Iván Márquez-Rodas
- Medical Oncology Department, Hospital General Universitario Gregorio Marañón, Universidad Complutense, Madrid, Spain
| | | | - Ainara Soria
- Ramón y Cajal University Hospital, Madrid, Spain
| | | | - Javier Medina
- General University Hospital of Toledo, Toledo, Spain
| | | | - Juana Oramas
- University Hospital of the Canary Islands, Tenerife, Spain
| | | | - Mayte Delgado
- San Cecilio Clinical University Hospital, Granada, Spain
| | - Javier Valdivia
- Medical Oncology, Virgen de las Nieves University Hospital, Granada, Spain
| | | |
Collapse
|
18
|
Nakao T, Shindo T, Takakura H, Narita T, Ise-Nakao Y, Akiyama S, Iizumi Y, Boku S, Watanabe M, Sakai T, Shimizu S, Yamada M, Sowa Y, Mutoh M. Trametinib Suppresses the Stimulated T Cells Through G1 Arrest and Apoptosis. Eur J Immunol 2025; 55:e202350667. [PMID: 39989249 DOI: 10.1002/eji.202350667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/05/2024] [Accepted: 12/13/2024] [Indexed: 02/25/2025]
Abstract
The development of efficient immunosuppressants may bring significant benefits to patients after organ/stem transplantation and those with allergies or autoimmune diseases. MEK inhibitors were originally developed as anticancer reagents, but recent reports have suggested that they may have the potential to be immunosuppressants. Trametinib is a first-in-class MEK inhibitor. Here, we examined the effects of trametinib on the immune system and revealed its mechanism. Trametinib suppressed both CD4 and CD8 T-cell proliferation and activated T cells, which expressed CD25 and TIM3, in a dose-dependent manner in vitro. Trametinib also suppressed T cell-related cytokine secretion in a dose-dependent manner. Notably, trametinib suppressed T cell proliferation through the induction of G1 arrest and apoptosis in stimulated T cells. In addition, trametinib induced regulatory T cells (Tregs). We confirmed that low concentrations of trametinib (1 and 10 nM) were not toxic toward splenic naïve T cells and normal mouse liver cells. In this study, we demonstrated whether trametinib suppressed CD4 and CD8 T cell proliferation by inducing G1 arrest and apoptosis along with suppression of cytokine secretion.
Collapse
Affiliation(s)
- Toshimasa Nakao
- Department of Molecular-Targeting Prevention, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
- Division of Renal Surgery and Transplantation, Department of Urology, Jichi Medical University, Shimotsuke, Japan
| | - Takero Shindo
- Department of Hematology/Oncology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Next Generation Development of Genome and Cellular Therapy Program, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Hideki Takakura
- Department of Molecular-Targeting Prevention, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takumi Narita
- Department of Molecular-Targeting Prevention, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yukako Ise-Nakao
- Department of Molecular-Targeting Prevention, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Saeko Akiyama
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, Tokyo, Japan
| | - Yosuke Iizumi
- Department of Molecular-Targeting Prevention, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shogen Boku
- Cancer Treatment Center, Kansai Medical University Hospital, Osaka, Japan
| | - Motoki Watanabe
- Department of Molecular-Targeting Prevention, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshiyuki Sakai
- Department of Drug Discovery Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Seiichi Shimizu
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Masaki Yamada
- Department for Advanced Medicine for Viral Infections, National Center for Child Health and Development, Tokyo, Japan
| | - Yoshihiro Sowa
- Department of Molecular-Targeting Prevention, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Michihiro Mutoh
- Department of Molecular-Targeting Prevention, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
19
|
Poustforoosh A. Optimizing kinase and PARP inhibitor combinations through machine learning and in silico approaches for targeted brain cancer therapy. Mol Divers 2025:10.1007/s11030-025-11114-9. [PMID: 39841319 DOI: 10.1007/s11030-025-11114-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/08/2025] [Indexed: 01/23/2025]
Abstract
The drug combination is an attractive approach for cancer treatment. PARP and kinase inhibitors have recently been explored against cancer cells, but their combination has not been investigated comprehensively. In this study, we used various drug combination databases to build ML models for drug combinations against brain cancer cells. Some decision tree-based models were used for this purpose. The results were further evaluated using molecular docking and molecular dynamics (MD) simulation. The possibility of the hit drug combinations for crossing the Blood-brain barrier (BBB) was also examined. Based on the obtained results, the combination of niraparib, as the PARP inhibitor, and lapatinib, as the kinase inhibitor, exhibited more considerable outcomes with a remarkable model performance (accuracy of 0.915) and prediction confidence of 0.92. The protein tweety homolog 3 and BTB/POZ domain-containing protein 2 are the main targets of niraparib and lapatinib with - 10.2 and - 8.5 scores, respectively. Due to the outcomes, this drug combination can use the CAT1 transporter on the BBB surface and effectively cross the BBB. Based on the obtained results, niraparib-lapatinib can be a promising drug combination candidate for brain cancer treatment. This combination is worth to be examined by experimental investigation in vitro and in vivo.
Collapse
Affiliation(s)
- Alireza Poustforoosh
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
20
|
Schettini F, Sirico M, Loddo M, Williams GH, Hardisty KM, Scorer P, Thatcher R, Rivera P, Milani M, Strina C, Ferrero G, Ungari M, Bottin C, Zanconati F, de Manzini N, Aguggini S, Tancredi R, Fiorio E, Fioravanti A, Scaltriti M, Generali D. Next-generation sequencing-based evaluation of the actionable landscape of genomic alterations in solid tumors: the "MOZART" prospective observational study. Oncologist 2025; 30:oyae206. [PMID: 39177668 PMCID: PMC11783315 DOI: 10.1093/oncolo/oyae206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 07/10/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND The identification of the most appropriate targeted therapies for advanced cancers is challenging. We performed a molecular profiling of metastatic solid tumors utilizing a comprehensive next-generation sequencing (NGS) assay to determine genomic alterations' type, frequency, actionability, and potential correlations with PD-L1 expression. METHODS A total of 304 adult patients with heavily pretreated metastatic cancers treated between January 2019 and March 2021 were recruited. The CLIA-/UKAS-accredit Oncofocus assay targeting 505 genes was used on newly obtained or archived biopsies. Chi-square, Kruskal-Wallis, and Wilcoxon rank-sum tests were used where appropriate. Results were significant for P < .05. RESULTS A total of 237 tumors (78%) harbored potentially actionable genomic alterations. Tumors were positive for PD-L1 in 68.9% of cases. The median number of mutant genes/tumor was 2.0 (IQR: 1.0-3.0). Only 34.5% were actionable ESCAT Tier I-II with different prevalence according to cancer type. The DNA damage repair (14%), the PI3K/AKT/mTOR (14%), and the RAS/RAF/MAPK (12%) pathways were the most frequently altered. No association was found among PD-L1, ESCAT, age, sex, and tumor mutational status. Overall, 62 patients underwent targeted treatment, with 37.1% obtaining objective responses. The same molecular-driven treatment for different cancer types could be associated with opposite clinical outcomes. CONCLUSIONS We highlight the clinical value of molecular profiling in metastatic solid tumors using comprehensive NGS-based panels to improve treatment algorithms in situations of uncertainty and facilitate clinical trial recruitment. However, interpreting genomic alterations in a tumor type-specific manner is critical.
Collapse
Affiliation(s)
- Francesco Schettini
- Translational Genomics and Targeted Therapies in Solid Tumors Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- Medical Oncology Department, Hospital Clinic of Barcelona, 08036 Barcelona, Spain
- Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
| | - Marianna Sirico
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori,”47014, Meldola, Italy
| | - Marco Loddo
- Oncologica UK Ltd, Cambridge CB10 1XL, United Kingdom
| | | | | | - Paul Scorer
- Oncologica UK Ltd, Cambridge CB10 1XL, United Kingdom
| | | | - Pablo Rivera
- Medical Oncology Department, Hospital Clinic of Barcelona, 08036 Barcelona, Spain
| | - Manuela Milani
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34147, Trieste, Italy
| | - Carla Strina
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34147, Trieste, Italy
| | - Giuseppina Ferrero
- Multidisciplinary Unit of Breast Pathology and Translational Research, Cremona Hospital, 26100, Cremona, Italy
| | - Marco Ungari
- Multidisciplinary Unit of Breast Pathology and Translational Research, Cremona Hospital, 26100, Cremona, Italy
| | - Cristina Bottin
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34147, Trieste, Italy
| | - Fabrizio Zanconati
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34147, Trieste, Italy
| | - Nicolò de Manzini
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34147, Trieste, Italy
| | - Sergio Aguggini
- Multidisciplinary Unit of Breast Pathology and Translational Research, Cremona Hospital, 26100, Cremona, Italy
| | - Richard Tancredi
- Multidisciplinary Unit of Breast Pathology and Translational Research, Cremona Hospital, 26100, Cremona, Italy
| | - Elena Fiorio
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, 37134, Verona, Italy
| | | | - Maurizio Scaltriti
- Neurosurgery Unit, ASST Cremona, 26100, Cremona, Italy
- AstraZeneca, Gaithersburg, MD 20876, United States
| | - Daniele Generali
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34147, Trieste, Italy
- Multidisciplinary Unit of Breast Pathology and Translational Research, Cremona Hospital, 26100, Cremona, Italy
| |
Collapse
|
21
|
Hossain MA. A comprehensive review of targeting RAF kinase in cancer. Eur J Pharmacol 2025; 986:177142. [PMID: 39577552 DOI: 10.1016/j.ejphar.2024.177142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/11/2024] [Accepted: 11/17/2024] [Indexed: 11/24/2024]
Abstract
RAF kinases, particularly the BRAF isoform, play a crucial role in the MAPK/ERK signaling pathway, regulating key cellular processes such as proliferation, differentiation, and survival. Dysregulation of this pathway often caused by mutations in the BRAF gene or alterations in upstream regulators like Ras and receptor tyrosine kinases contributes significantly to cancer development. Mutations, such as BRAF-V600E, are present in a variety of malignancies, with the highest prevalence in melanoma. Targeted therapies against RAF kinases have achieved substantial success, especially in BRAF-V600E-mutant melanomas, where inhibitors like vemurafenib and dabrafenib have demonstrated remarkable efficacy, leading to improved patient outcomes. These inhibitors have also shown clinical benefits in cancers such as thyroid and colorectal carcinoma, although to a lesser extent. Despite these successes, therapeutic resistance remains a major hurdle. Resistance mechanisms, including RAF dimerization, feedback reactivation of the MAPK pathway, and paradoxical activation of ERK signaling, often lead to diminished efficacy over time, resulting in disease progression or even secondary malignancies. In response, current research is focusing on novel therapeutic strategies, including combination therapies that target multiple components of the pathway simultaneously, such as MEK inhibitors used in tandem with RAF inhibitors. Additionally, next-generation RAF inhibitors are being developed to address resistance and enhance therapeutic specificity. This review discusses the clinical advancements in RAF-targeted therapies, with a focus on ongoing efforts to overcome therapeutic resistance and enhance outcomes for cancer patients. It also underscores the persistent challenges in effectively targeting RAF kinase in oncology.
Collapse
Affiliation(s)
- Md Arafat Hossain
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh.
| |
Collapse
|
22
|
Forschner A, Nanz L, Maczey-Leber Y, Amaral T, Flatz L, Leiter U. Response and outcome of patients with melanoma skin metastases and immune checkpoint inhibition. Int J Cancer 2025; 156:145-153. [PMID: 39032035 DOI: 10.1002/ijc.35103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/22/2024]
Abstract
It is known, that different metastatic organ systems respond differently to immune checkpoint inhibitors (ICIs). In this study, we aimed to investigate the extent to which skin/subcutaneous metastases respond to ICI or targeted therapies (TTs) and whether the response rate differs from that of distant metastases in the same patient. Patients with melanoma diagnosed between January 2021 and September 2023 with at least one skin/subcutaneous metastasis who had received therapy with ICI or TT in an advanced setting were included in the analysis. Best overall response (BOR) was classified according to the revised response evaluation criteria in solid tumors (RECIST). The BOR of skin metastases and visceral metastases to ICI and TT was compared using the chi-square test. Skin metastases treated with ICI a first-line setting showed an overall response rate (ORR) of 44.1%. In contrast, visceral metastases had a higher ORR of 51.1%. However, the difference was not statistically significant (p = .77). Regarding TT, the ORR for skin metastases was 57.1%, compared to 38.5% for visceral metastases (p = .59). Interestingly, the ORR for skin/subcutaneous metastases was notably lower with ICI compared to visceral metastases, in contrast to patients who underwent TT. Skin metastases showed a poorer response to ICI than visceral metastases. Therefore, careful monitoring is recommended to detect non-response early in patients with skin metastases as skin metastases may have a worse response than TT. A larger cohort is needed for a comprehensive analysis and confirmation of our results.
Collapse
Affiliation(s)
- Andrea Forschner
- Center for Dermatooncology, Department of Dermatology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Lena Nanz
- Center for Dermatooncology, Department of Dermatology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Yves Maczey-Leber
- Center for Dermatooncology, Department of Dermatology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Teresa Amaral
- Center for Dermatooncology, Department of Dermatology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Lukas Flatz
- Center for Dermatooncology, Department of Dermatology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Ulrike Leiter
- Center for Dermatooncology, Department of Dermatology, Eberhard Karls University of Tübingen, Tübingen, Germany
| |
Collapse
|
23
|
Amaral T, Ottaviano M, Arance A, Blank C, Chiarion-Sileni V, Donia M, Dummer R, Garbe C, Gershenwald JE, Gogas H, Guckenberger M, Haanen J, Hamid O, Hauschild A, Höller C, Lebbé C, Lee RJ, Long GV, Lorigan P, Muñoz Couselo E, Nathan P, Robert C, Romano E, Schadendorf D, Sondak V, Suijkerbuijk KPM, van Akkooi ACJ, Michielin O, Ascierto PA. Cutaneous melanoma: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann Oncol 2025; 36:10-30. [PMID: 39550033 DOI: 10.1016/j.annonc.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/18/2024] Open
Affiliation(s)
- T Amaral
- Skin Cancer Clinical Trials Center-University of Tuebingen, Tuebingen, Germany
| | - M Ottaviano
- Department of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS Fondazione "G. Pascale", Napoli, Italy
| | - A Arance
- Department of Medical Oncology and IDIBAPS, Hospital Clinic y Provincial de Barcelona, Barcelona, Spain
| | - C Blank
- Department of Medical Oncology and Division of Immunology, The Netherlands Cancer Institute Antoni van Leeuwenhoek Ziekenhuis (NKI), Amsterdam; Leiden University Medical Center (LUMC), Leiden, The Netherlands; University Clinic Regensburg, Regensburg, Germany
| | - V Chiarion-Sileni
- Department of Oncology, Melanoma Unit, Istituto Oncologico Veneto, IOV-IRCCS, Padova, Italy
| | - M Donia
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital Herlev and Gentofte, Herlev, Denmark
| | - R Dummer
- Department of Dermatology, Skin Cancer Center, USZ-University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - C Garbe
- Department of Dermatology, Center for DermatoOncology, University Hospital Tuebingen, Tuebingen, Germany
| | - J E Gershenwald
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center and The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, USA
| | - H Gogas
- First Department of Medicine, School of Medicine, National and Kapodistrian University of Athens-School of Medicine, Athens, Greece
| | - M Guckenberger
- Department of Radiation Oncology, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - J Haanen
- Division of Medical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands; Department of Medical Oncology, Leiden University Medical Center (LUMC), Leiden, The Netherlands; Oncology Service, Melanoma Clinic, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - O Hamid
- Medical Oncology, Cutaneous Malignancies, The Angeles Clinic and Research Institute, A Cedars Sinai Affiliate, Los Angeles, USA
| | - A Hauschild
- Department of Dermatology, UKSH-Universitätsklinikum Schleswig-Holstein-Campus Kiel, Kiel, Germany
| | - C Höller
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - C Lebbé
- Université Paris Cite, AP-HP Dermato-oncology and CIC, Cancer Institute APHP, Nord Paris Cité, INSERM U976, Saint Louis Hospital, Paris, France
| | - R J Lee
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK; Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK
| | - G V Long
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia; Department Medical Oncology, Royal North Shore Hospital, Sydney, Australia; Mater Hospital, Sydney, Australia
| | - P Lorigan
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK; Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK
| | - E Muñoz Couselo
- Department of Medical Oncology, Vall d'Hebron University Hospital and Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - P Nathan
- Mount Vernon Cancer Centre, Northwood, UK
| | - C Robert
- Department of Oncology, Institut Gustave Roussy and Paris-Saclay University, Villejuif, France
| | - E Romano
- Department of Oncology, Center for Cancer Immunotherapy, Institut Curie, Paris, France
| | - D Schadendorf
- Department of Dermatology, WTZ-Westdeutsches Tumorzentrum Essen, National Center for Tumor Diseases (NCT-West), Campus Essen, Essen, Germany; University Alliance Ruhr, Research Center One Health, University Duisburg-Essen, Essen, Germany
| | - V Sondak
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, USA
| | - K P M Suijkerbuijk
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - A C J van Akkooi
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia; Department of Melanoma and Surgical Oncology, Royal Prince Alfred Hospital, Sydney, Australia
| | - O Michielin
- Department of Oncology, Geneva University Hospital, Geneva, Switzerland
| | - P A Ascierto
- Melanoma, Cancer Immunotherapy and Development Therapeutics Unit, Instituto Nazionale Tumori IRCCS Fondazione Pascale, Napoli, Italy
| |
Collapse
|
24
|
Hicks HM, Nassar VL, Lund J, Rose MM, Schweppe RE. The effects of Aurora Kinase inhibition on thyroid cancer growth and sensitivity to MAPK-directed therapies. Cancer Biol Ther 2024; 25:2332000. [PMID: 38521968 PMCID: PMC10962586 DOI: 10.1080/15384047.2024.2332000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 03/14/2024] [Indexed: 03/25/2024] Open
Abstract
Thyroid cancer is one of the deadliest endocrine cancers, and its incidence has been increasing. While mutations in BRAF are common in thyroid cancer, advanced PTC patients currently lack therapeutic options targeting the MAPK pathway, and despite the approved combination of BRAF and MEK1/2 inhibition for BRAF-mutant ATC, resistance often occurs. Here, we assess growth and signaling responses to combined BRAF and MEK1/2 inhibition in a panel of BRAF-mutant thyroid cancer cell lines. We first showed that combined BRAF and MEK1/2 inhibition synergistically inhibits cell growth in four out of six of the -BRAF-mutant thyroid cancer cell lines tested. Western blotting showed that the MAPK pathway was robustly inhibited in all cell lines. Therefore, to identify potential mechanisms of resistance, we performed RNA-sequencing in cells sensitive or resistant to MEK1/2 inhibition. In response to MEK1/2 inhibition, we identified a downregulation of Aurora Kinase B (AURKB) in sensitive but not resistant cells. We further demonstrated that combined MEK1/2 and AURKB inhibition slowed cell growth, which was phenocopied by inhibiting AURKB and ERK1/2. Finally, we show that combined AURKB and ERK1/2 inhibition induces apoptosis in BRAF-mutant thyroid cancer cell lines, together suggesting a potential combination therapy for BRAF-mutant thyroid cancer patients.
Collapse
Affiliation(s)
- Hannah M. Hicks
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Veronica L. Nassar
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Jane Lund
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Madison M. Rose
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Rebecca E. Schweppe
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
- University of Colorado Cancer Center, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
25
|
Prkačin I, Mokos M, Ferara N, Šitum M. Melanoma's New Frontier: Exploring the Latest Advances in Blood-Based Biomarkers for Melanoma. Cancers (Basel) 2024; 16:4219. [PMID: 39766118 PMCID: PMC11727356 DOI: 10.3390/cancers16244219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 01/06/2025] Open
Abstract
Melanoma is one of the most malignant cancers, and the global incidence of cutaneous melanoma is increasing. While melanomas are highly prone to metastasize if diagnosed late, early detection and treatment significantly reduce the risk of mortality. Identifying patients at higher risk of metastasis, who might benefit from early adjuvant therapies, is particularly important, especially with the advent of new melanoma treatments. Therefore, there is a pressing need to develop additional prognostic biomarkers for melanoma to improve early stratification of patients and accurately identify high-risk subgroups, ultimately enabling more effective personalized treatments. Recent advances in melanoma therapy, including targeted treatments and immunotherapy, have underscored the importance of biomarkers in determining prognosis and predicting treatment response. The clinical application of these markers holds the potential for significant advancements in melanoma management. Various tumor-derived genetic, proteomic, and cellular components are continuously released into the bloodstream of cancer patients. These molecules, including circulating tumor DNA and RNA, proteins, tumor cells, and immune cells, are emerging as practical and precise liquid biomarkers for cancer. In the current era of effective molecular-targeted therapies and immunotherapies, there is an urgent need to integrate these circulating biomarkers into clinical practice to facilitate personalized treatment. This review highlights recent discoveries in circulating melanoma biomarkers, explores the challenges and potentials of emerging technologies for liquid biomarker discovery, and discusses future directions in melanoma biomarker research.
Collapse
Affiliation(s)
- Ivana Prkačin
- Department of Dermatology and Venereology, Sestre Milosrdnice University Hospital Center, 10000 Zagreb, Croatia; (M.M.); (N.F.); (M.Š.)
- School of Medicine, University of Split, 21000 Split, Croatia
| | - Mislav Mokos
- Department of Dermatology and Venereology, Sestre Milosrdnice University Hospital Center, 10000 Zagreb, Croatia; (M.M.); (N.F.); (M.Š.)
| | - Nikola Ferara
- Department of Dermatology and Venereology, Sestre Milosrdnice University Hospital Center, 10000 Zagreb, Croatia; (M.M.); (N.F.); (M.Š.)
| | - Mirna Šitum
- Department of Dermatology and Venereology, Sestre Milosrdnice University Hospital Center, 10000 Zagreb, Croatia; (M.M.); (N.F.); (M.Š.)
- School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Croatian Academy of Sciences and Arts, 10000 Zagreb, Croatia
| |
Collapse
|
26
|
Koshrovski-Michael S, Ajamil DR, Dey P, Kleiner R, Tevet S, Epshtein Y, Green Buzhor M, Khoury R, Pozzi S, Shenbach-Koltin G, Yeini E, Woythe L, Blau R, Scomparin A, Barshack I, Florindo HF, Lazar S, Albertazzi L, Amir RJ, Satchi-Fainaro R. Two-in-one nanoparticle platform induces a strong therapeutic effect of targeted therapies in P-selectin-expressing cancers. SCIENCE ADVANCES 2024; 10:eadr4762. [PMID: 39671487 PMCID: PMC11641104 DOI: 10.1126/sciadv.adr4762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/05/2024] [Indexed: 12/15/2024]
Abstract
Combined therapies in cancer treatment aim to enhance antitumor activity. However, delivering multiple small molecules imposes challenges, as different drugs have distinct pharmacokinetic profiles and tumor penetration abilities, affecting their therapeutic efficacy. To circumvent this, poly(lactic-co-glycolic acid) (PLGA)-polyethylene glycol (PEG)-based nanoparticles were developed as a platform for the codelivery of synergistic drug ratios, improving therapeutic efficacy by increasing the percentage of injected dose reaching the tumor. Nonetheless, extravasation-dependent tumor accumulation is susceptible to variations in tumor vasculature; therefore, PLGA-PEG was modified with sulfates to actively target P-selectin-expressing cancers. Here, we show the potential of our platform in unique three-dimensional (3D) in vitro and in vivo models. The P-selectin-targeted nanoparticles showed enhanced accumulation in 3D spheroids and tissues of P-selectin-expressing BRAF-mutated melanomas and BRCA-mutated breast cancers, resulting in superior in vivo efficacy and safety. This nanoplatform could advance the codelivery of a plethora of anticancer drug combinations to various P-selectin-expressing tumors.
Collapse
Affiliation(s)
- Shani Koshrovski-Michael
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Daniel Rodriguez Ajamil
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Pradip Dey
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Chemistry, Siksha Bhavana, Visva-Bharati University, Santiniketan, West Bengal 731235, India
| | - Ron Kleiner
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Shahar Tevet
- The Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Organic Chemistry, School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Tel Aviv University Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
- ADAMA Center for Novel Delivery Systems in Crop Protection, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Yana Epshtein
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Marina Green Buzhor
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Rami Khoury
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Sabina Pozzi
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Gal Shenbach-Koltin
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Eilam Yeini
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Laura Woythe
- Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology (TU/e), 5612AZ Eindhoven, Netherlands
| | - Rachel Blau
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Anna Scomparin
- Department of Drug Science and Technology, University of Turin, Turin 10125, Italy
| | - Iris Barshack
- Department of Pathology, Sheba Medical Center, Tel Hashomer, Ramat-Gan 52621, Israel
- Department of Pathology, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Helena F. Florindo
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon 1649-003, Portugal
| | - Shlomi Lazar
- Department of Pharmacology, Israel Institute of Biological Research (IIBR), Ness-Ziona 74100, Israel
| | - Lorenzo Albertazzi
- Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology (TU/e), 5612AZ Eindhoven, Netherlands
| | - Roey J. Amir
- The Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Organic Chemistry, School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Tel Aviv University Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
- ADAMA Center for Novel Delivery Systems in Crop Protection, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Tel Aviv University Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
27
|
Stoff R, Markovic SN, McWilliams RR, Kottschade LA, Montane HN, Dimou A, Dudek AZ, Tan W, Dronca RS, Seetharam M, Chen R, Block MS. Real-world evidence on efficacy and toxicity of targeted therapy in older melanoma patients treated in a tertiary-hospital setting. Melanoma Res 2024; 34:510-518. [PMID: 39207855 PMCID: PMC11524625 DOI: 10.1097/cmr.0000000000000997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024]
Abstract
Melanoma is the deadliest form of skin cancer. The median age at diagnosis is 66. While most patients are treated with immunotherapy, the use of targeted therapy is a valid alternative for patients whose tumors harbor a BRAF or c-KIT driver mutation. These agents, while effective, come with a variety of side effects which limit their use, especially in older patients. We sought to assess the efficacy and toxicity of these agents in older melanoma patients. Melanoma patients over 65 treated with BRAF/MEK or c-KIT inhibitors were retrospectively identified, and their data were analyzed for treatment efficacy and toxicity. All data were compared using the Chi-square test for categorical comparisons and the Kruskal-Wallis method for median comparisons. One hundred and sixteen patients were identified. One hundred and six patients were treated with BRAF/MEK inhibitors. The assessed response rate (RR) was 83% and was comparable across different subgroups, including advanced line patients and those with a more aggressive disease. The median progression free survival (PFS) was 7.9 months, and the median overall survival (OS) was 15.7 months. Twenty-seven percent experienced grade 3-4 toxicity leading to a 24% treatment discontinuation rate. Another 10 patients were treated with the c-KIT inhibitor imatinib, for whom the assessed RR was 55%. The median PFS was 4.3 months, and the median OS was 22.6 months. Forty percent needed dose reductions, yet none had to stop treatment due to adverse effects. The use of targeted therapy in older patients is effective yet challenging due to toxicity. Deploying mitigation strategies can help maximizing their usefulness.
Collapse
Affiliation(s)
- Ronen Stoff
- Department of Medical Oncology, Mayo Clinic Comprehensive Cancer Center, Rochester, Minnesota
| | - Svetomir N. Markovic
- Department of Medical Oncology, Mayo Clinic Comprehensive Cancer Center, Rochester, Minnesota
| | - Robert R. McWilliams
- Department of Medical Oncology, Mayo Clinic Comprehensive Cancer Center, Rochester, Minnesota
| | - Lisa A. Kottschade
- Department of Medical Oncology, Mayo Clinic Comprehensive Cancer Center, Rochester, Minnesota
| | - Heather N. Montane
- Department of Medical Oncology, Mayo Clinic Comprehensive Cancer Center, Rochester, Minnesota
| | - Anastasios Dimou
- Department of Medical Oncology, Mayo Clinic Comprehensive Cancer Center, Rochester, Minnesota
| | - Arkadiusz Z. Dudek
- Department of Medical Oncology, Mayo Clinic Comprehensive Cancer Center, Rochester, Minnesota
| | - Winston Tan
- Department of Hematology and Oncology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida
| | - Roxana S. Dronca
- Department of Hematology and Oncology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida
| | - Mahesh Seetharam
- Department of Medical Oncology, Mayo Clinic Comprehensive Cancer Center, Scottsdale, Arizona, USA
| | - Ruqin Chen
- Department of Hematology and Oncology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida
| | - Matthew S. Block
- Department of Medical Oncology, Mayo Clinic Comprehensive Cancer Center, Rochester, Minnesota
| |
Collapse
|
28
|
Lengyel AS, Meznerics FA, Galajda NÁ, Gede N, Kói T, Mohammed AA, Péter PN, Lakatos AI, Krebs M, Csupor D, Bánvölgyi A, Hegyi P, Holló P, Kemény LV. Safety and Efficacy Analysis of Targeted and Immune Combination Therapy in Advanced Melanoma-A Systematic Review and Network Meta-Analysis. Int J Mol Sci 2024; 25:12821. [PMID: 39684531 DOI: 10.3390/ijms252312821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
The combinations of BRAF inhibitor-based targeted therapies with immune checkpoint inhibitors currently represent less common therapeutic approaches in advanced melanoma. The aim of this study was to assess the safety and efficacy of currently available melanoma treatments by conducting a systematic review and network meta-analysis. Four databases were systematically searched for randomized clinical studies that included patients with advanced/metastatic melanoma receiving chemotherapy, immune checkpoint inhibitors, BRAF/MEK inhibitor therapy, or combinations thereof. The primary endpoints were treatment-related adverse events (TRAE), serious adverse events (SAE) of grade ≥ 3 adverse events, therapy discontinuation, progression-free survival (PFS), as well as objective response rate (ORR) and complete response rate (CRR). A total of 63 articles were eligible for our systematic review; 59 of them were included in the statistical analysis. A separate subgroup analysis was conducted to evaluate the efficacy outcomes, specifically in BRAF-positive patients. Triple combination therapy or triple therapy (inhibiting BRAF, MEK and PD1/PDL1 axis) showed significantly longer progression-free survival compared to BRAF + MEK combination therapies (HR = 0.76; 95% CI 0.64-0.9), but similar objective and complete response rates in BRAF-mutated melanoma. This safety analysis suggests that triple therapy is not inferior to combined immune checkpoint inhibitors (ICI) and BRAF/MEK therapies in terms of serious adverse events and therapy discontinuation rates. However, monotherapies and BRAF/MEK combinations showed notable advantage over triple therapy in terms of treatment-related adverse events. Combination strategies including BRAF/MEK-targeted therapies with ICI therapies are effective first-line options for advanced, BRAF-mutant melanoma; however, they are associated with more frequent side effects. Therefore, future RCTs are required to evaluate and identify high-risk subpopulations where triple therapy therapies should be considered.
Collapse
Affiliation(s)
- Anna Sára Lengyel
- Department of Dermatology, Venereology and Dermatooncology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary
- Centre for Translational Medicine, Semmelweis University, 1085 Budapest, Hungary
- HCEMM-SU Translational Dermatology Research Group, Semmelweis University, 1094 Budapest, Hungary
- Department of Physiology, Semmelweis University, Tűzoltó Str. 37-47, 1094 Budapest, Hungary
| | - Fanni Adél Meznerics
- Department of Dermatology, Venereology and Dermatooncology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary
- Centre for Translational Medicine, Semmelweis University, 1085 Budapest, Hungary
| | - Noémi Ágnes Galajda
- Department of Dermatology, Venereology and Dermatooncology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary
- Centre for Translational Medicine, Semmelweis University, 1085 Budapest, Hungary
| | - Noémi Gede
- Centre for Translational Medicine, Semmelweis University, 1085 Budapest, Hungary
- Institute for Translational Medicine, Medical School, University of Pécs, 7623 Pécs, Hungary
| | - Tamás Kói
- Centre for Translational Medicine, Semmelweis University, 1085 Budapest, Hungary
- Department of Stochastics, Institute of Mathematics, Budapest University of Technology and Economics, 1111 Budapest, Hungary
| | - Alzahra Ahmed Mohammed
- Department of Dermatology, Venereology and Dermatooncology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary
- Centre for Translational Medicine, Semmelweis University, 1085 Budapest, Hungary
- HCEMM-SU Translational Dermatology Research Group, Semmelweis University, 1094 Budapest, Hungary
| | - Petra Nikolett Péter
- Department of Dermatology, Venereology and Dermatooncology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary
- Centre for Translational Medicine, Semmelweis University, 1085 Budapest, Hungary
- HCEMM-SU Translational Dermatology Research Group, Semmelweis University, 1094 Budapest, Hungary
- Department of Physiology, Semmelweis University, Tűzoltó Str. 37-47, 1094 Budapest, Hungary
| | - Alexandra It Lakatos
- Centre for Translational Medicine, Semmelweis University, 1085 Budapest, Hungary
- HCEMM-SU Translational Dermatology Research Group, Semmelweis University, 1094 Budapest, Hungary
- Department of Physiology, Semmelweis University, Tűzoltó Str. 37-47, 1094 Budapest, Hungary
| | - Máté Krebs
- Department of Dermatology, Venereology and Dermatooncology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary
- Centre for Translational Medicine, Semmelweis University, 1085 Budapest, Hungary
- HCEMM-SU Translational Dermatology Research Group, Semmelweis University, 1094 Budapest, Hungary
- Department of Physiology, Semmelweis University, Tűzoltó Str. 37-47, 1094 Budapest, Hungary
| | - Dezső Csupor
- Centre for Translational Medicine, Semmelweis University, 1085 Budapest, Hungary
- Institute for Translational Medicine, Medical School, University of Pécs, 7623 Pécs, Hungary
- Institute of Clinical Pharmacy, Faculty of Pharmacy, University of Szeged, 6725 Szeged, Hungary
| | - András Bánvölgyi
- Department of Dermatology, Venereology and Dermatooncology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary
- Centre for Translational Medicine, Semmelweis University, 1085 Budapest, Hungary
| | - Péter Hegyi
- Centre for Translational Medicine, Semmelweis University, 1085 Budapest, Hungary
- Institute for Translational Medicine, Medical School, University of Pécs, 7623 Pécs, Hungary
- Institute of Pancreatic Diseases, Semmelweis University, 1083 Budapest, Hungary
| | - Péter Holló
- Department of Dermatology, Venereology and Dermatooncology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary
| | - Lajos V Kemény
- Department of Dermatology, Venereology and Dermatooncology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary
- Centre for Translational Medicine, Semmelweis University, 1085 Budapest, Hungary
- HCEMM-SU Translational Dermatology Research Group, Semmelweis University, 1094 Budapest, Hungary
- Department of Physiology, Semmelweis University, Tűzoltó Str. 37-47, 1094 Budapest, Hungary
- MTA-SE Lendület "Momentum" Dermatooncology Research Group, 1094 Budapest, Hungary
| |
Collapse
|
29
|
Yacoub I, Rayn K, Choi JI, Bakst R, Chhabra A, Qian JY, Johnstone P, Simone CB. The Role of Radiation, Immunotherapy, and Chemotherapy in the Management of Locally Advanced or Metastatic Cutaneous Malignancies. Cancers (Basel) 2024; 16:3920. [PMID: 39682109 PMCID: PMC11640331 DOI: 10.3390/cancers16233920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/31/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
INTRODUCTION Skin cancer impacts a significant proportion of the population. While surgical management is often the mainstay of treatment, advanced or metastatic cutaneous malignancies require additional local and/or systemic therapies. METHODS A review of the literature was performed studying the use of radiation therapy, chemotherapy, and immunotherapy for locally advanced or metastatic cutaneous malignancies. RESULTS A summary of the present literature on the management of locally advanced or metastatic cutaneous malignancies is presented across cutaneous head and neck basal cell carcinoma, squamous cell carcinoma, melanoma, and Merkel cell carcinoma. The addition of multidisciplinary therapies to resection is often associated with improved outcomes. CONCLUSION The management of cutaneous head and neck malignancies requires an approach integrating multiple specialties, to optimize outcomes and minimize toxicities.
Collapse
Affiliation(s)
| | - Kareem Rayn
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - J. Isabelle Choi
- New York Proton Center, New York, NY 10035, USA
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Richard Bakst
- New York Proton Center, New York, NY 10035, USA
- Department of Radiation Oncology, Mount Sinai Medical Center, New York, NY 10029, USA
| | - Arpit Chhabra
- New York Proton Center, New York, NY 10035, USA
- Department of Radiation Oncology, Mount Sinai Medical Center, New York, NY 10029, USA
| | - Joshua Y. Qian
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Peter Johnstone
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Charles B. Simone
- New York Proton Center, New York, NY 10035, USA
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
30
|
Imani S, Roozitalab G, Emadi M, Moradi A, Behzadi P, Jabbarzadeh Kaboli P. The evolution of BRAF-targeted therapies in melanoma: overcoming hurdles and unleashing novel strategies. Front Oncol 2024; 14:1504142. [PMID: 39582535 PMCID: PMC11582033 DOI: 10.3389/fonc.2024.1504142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 10/24/2024] [Indexed: 11/26/2024] Open
Abstract
Melanoma, a highly aggressive form of skin cancer, poses a significant global health burden, with 331,647 new cases and 58,645 deaths reported in 2022. The development of melanoma is influenced by various factors, including sunlight exposure and BRAFV600 mutations that activate the MAPK/ERK pathway. The introduction of BRAF and MEK inhibitors has revolutionized the treatment landscape for melanoma patients. However, innate and acquired therapeutic resistance remains a significant challenge. This review provides a comprehensive overview of the current state of BRAF-targeted therapies in melanoma, highlighting the efficacy and limitations of FDA-approved combinations of BRAF and MEK inhibitors such as vemurafenib, dabrafenib, trametinib, and cobimetinib. The review also explores the off-target effects of BRAF inhibitors on endothelial cells, emphasizing the need for more selective therapies to minimize vascular complications and metastatic potential. The article also discusses potential druggable targets, including ERK5, CD73, ALDH1A1, PLA1A, and DMKN, which are promising in addressing diagnostic hurdles and guiding personalized therapeutic decisions. Recent studies on regorafenib, ERK5 signaling, and CD73 inhibition are highlighted as novel strategies to overcome resistance and improve treatment outcomes. The review also delves into the role of advanced therapeutic tools, such as mRNA vaccines and CRISPR-Cas9, in revolutionizing personalized oncology by targeting specific genetic mutations and enhancing immune responses against melanoma. The ongoing synergy between advancing research, targeted interventions, strategic treatment combinations, and cost-effectiveness evaluations offers a promising pathway to elevate patient outcomes in the persistent battle against melanoma significantly.
Collapse
Affiliation(s)
- Saber Imani
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Ghazaal Roozitalab
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Mahdieh Emadi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Atefeh Moradi
- Department of Life Sciences and System Biology, University of Turin, Turin, Italy
| | - Payam Behzadi
- Department of Microbiology, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|
31
|
Márquez-Rodas I, Muñoz Couselo E, Rodríguez Moreno JF, Arance Fernández AM, Berciano Guerrero MÁ, Campos Balea B, de la Cruz Merino L, Espinosa Arranz E, García Castaño A, Berrocal Jaime A. SEOM-GEM clinical guidelines for cutaneous melanoma (2023). Clin Transl Oncol 2024; 26:2841-2855. [PMID: 38748192 PMCID: PMC11467041 DOI: 10.1007/s12094-024-03497-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 10/11/2024]
Abstract
Cutaneous melanoma incidence is rising. Early diagnosis and treatment administration are key for increasing the chances of survival. For patients with locoregional advanced melanoma that can be treated with complete resection, adjuvant-and more recently neoadjuvant-with targeted therapy-BRAF and MEK inhibitors-and immunotherapy-anti-PD-1-based therapies-offer opportunities to reduce the risk of relapse and distant metastases. For patients with advanced disease not amenable to radical treatment, these treatments offer an unprecedented increase in overall survival. A group of medical oncologists from the Spanish Society of Medical Oncology (SEOM) and Spanish Multidisciplinary Melanoma Group (GEM) has designed these guidelines, based on a thorough review of the best evidence available. The following guidelines try to cover all the aspects from the diagnosis-clinical, pathological, and molecular-staging, risk stratification, adjuvant therapy, advanced disease therapy, and survivor follow-up, including special situations, such as brain metastases, refractory disease, and treatment sequencing. We aim help clinicians in the decision-making process.
Collapse
Affiliation(s)
| | - Eva Muñoz Couselo
- Hospital Vall d'Hebron & Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | | | | | | | | | - Luis de la Cruz Merino
- Cancer Immunotherapy, Biomedicine Institute of Seville (IBIS)/CSIC, Clinical Oncology Department, University Hospital Virgen Macarena and School of Medicine, University of Seville, Seville, Spain
| | | | | | | |
Collapse
|
32
|
Babaei S, Fadaee M, Abbasi-Kenarsari H, Shanehbandi D, Kazemi T. Exosome-based immunotherapy as an innovative therapeutic approach in melanoma. Cell Commun Signal 2024; 22:527. [PMID: 39482766 PMCID: PMC11526674 DOI: 10.1186/s12964-024-01906-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/22/2024] [Indexed: 11/03/2024] Open
Abstract
The malignant form of melanoma is one of the deadliest human cancers that accounts for almost all of the skin tumor-related fatalities in its later stages. Achieving an exhaustive understanding of reliable cancer-specific markers and molecular pathways can provide numerous practical techniques and direct the way toward the development of rational curative medicines to increase the lifespan of patients. Immunotherapy has significantly enhanced the treatment of metastatic and late-stage melanoma, resulting in an incredible increase in positive responses to therapy. Despite the increasing occurrence of melanoma, the median survival rate for patients with advanced, inoperable terminal disease has increased from around six months to almost six years. The current knowledge of the tumor microenvironment (TME) and its interaction with the immune system has resulted in the swift growth of innovative immunotherapy treatments. Exosomes are small extracellular vesicles (EVs), ranging from 30 to 150 nm in size, that the majority of cells released them. Exosomes possess natural advantages such as high compatibility with living organisms and low potential for causing immune reactions, making them practical for delivering therapeutic agents like chemotherapy drugs, nucleic acids, and proteins. This review highlights recent advancements in using exosomes as an approach to providing medications for the treatment of melanoma.
Collapse
Affiliation(s)
- Shabnam Babaei
- Immunology Research Center , Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran, P.O. Box: 5165683146
| | - Manouchehr Fadaee
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran, P.O. Box: 5165683146
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hajar Abbasi-Kenarsari
- Department of Immunology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Dariush Shanehbandi
- Immunology Research Center , Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Kazemi
- Immunology Research Center , Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran, P.O. Box: 5165683146.
| |
Collapse
|
33
|
Cossu G, Ramsay DSC, Daniel RT, El Cadhi A, Kerherve L, Morlaix E, Houidi SA, Millot-Piccoli C, Chapon R, Le Van T, Cao C, Farah W, Lleu M, Baland O, Beaurain J, Petit JM, Lemogne B, Messerer M, Berhouma M. Update on Neoadjuvant and Adjuvant BRAF Inhibitors in Papillary Craniopharyngioma: A Systematic Review. Cancers (Basel) 2024; 16:3479. [PMID: 39456573 PMCID: PMC11506763 DOI: 10.3390/cancers16203479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/26/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: The recent discovery of BRAF mutation in papillary craniopharyngiomas opened new avenues for targeted therapies to control tumour growth, decreasing the need for invasive treatments and relative complications. The aim of this systematic review was to summarize the recent scientific data dealing with the use of targeted therapies in papillary craniopharyngiomas, as adjuvant and neoadjuvant treatments. Methods: The PRISMA guidelines were followed with searches performed in Scopus, MEDLINE, and Embase, following a dedicated PICO approach. Results: We included 21 pertinent studies encompassing 53 patients: 26 patients received BRAF inhibitors (BRAFi) as adjuvant treatment, while 25 received them as neoadjuvant treatment. In the adjuvant setting, BRAFi were used to treat recurrent tumours after surgery or adjuvant radiation therapy. The most common regimen combined dabrafenib (BRAFi) with trametinib (MEK1 and 2 inhibitor) in 81% of cases. The mean treatment length was 8.8 months (range 1.6 to 28 months) and 32% were continuing BRAFi. A reduction of tumour volume variable from 24% to 100% was observed at cerebral MRI during treatment and volumetric reduction ≥80% was described in 64% of cases. Once the treatment was stopped, adjuvant treatments were performed to stabilize patients in remission in 11 cases (65%) or when a progression was detected in three cases (12%). In four cases no further therapies were administered (16%). Mean follow-up after the end of targeted therapy was 17.1 months. As neoadjuvant regimen, 36% of patients were treated with dabrafenib and trametinib with a near complete radiological response in all the cases with a mean treatment of 5.7 months. The neoadjuvant use of verumafenib (BRAFi) and cometinib (MEK1 inhibitor) induced a near complete response in 15 patients (94%), with a median volumetric reduction between 85% and 91%. Ten patients did not receive further treatments. Side effects varied among studies. The optimal timing, sequencing, and duration of treatment of these new therapies should be established. Moreover, questions remain about the choice of specific BRAF/MEK inhibitors, the optimal protocol of treatment, and the strategies for managing adverse events. Conclusions: Treatment is shifting to a wider multidisciplinary management, where a key role is played by targeted therapies, to improve outcomes and quality of life for patients with BRAF-mutated craniopharyngiomas. Future, larger comparative trials will optimize their protocol of use and integration into multimodal strategies of treatment.
Collapse
Affiliation(s)
- Giulia Cossu
- Department of Neurosurgery, University Hospital of Lausanne and University of Lausanne, 1011 Lausanne, Switzerland; (R.T.D.)
- Department of Neurosurgery, University Hospital of Dijon Bourgogne, 21000 Dijon, France (C.C.); (W.F.); (M.L.)
| | - Daniele S. C. Ramsay
- Imperial Brain and Spine Initiative, London W2 1NY, UK
- Imperial College School of Medicine, London W2 1PG, UK
| | - Roy T. Daniel
- Department of Neurosurgery, University Hospital of Lausanne and University of Lausanne, 1011 Lausanne, Switzerland; (R.T.D.)
| | - Ahmed El Cadhi
- Department of Neurosurgery, University Hospital of Dijon Bourgogne, 21000 Dijon, France (C.C.); (W.F.); (M.L.)
| | - Luc Kerherve
- Department of Neurosurgery, University Hospital of Dijon Bourgogne, 21000 Dijon, France (C.C.); (W.F.); (M.L.)
| | - Edouard Morlaix
- Department of Neurosurgery, University Hospital of Dijon Bourgogne, 21000 Dijon, France (C.C.); (W.F.); (M.L.)
| | - Sayda A. Houidi
- Department of Neurosurgery, University Hospital of Dijon Bourgogne, 21000 Dijon, France (C.C.); (W.F.); (M.L.)
| | - Clément Millot-Piccoli
- Department of Neurosurgery, University Hospital of Dijon Bourgogne, 21000 Dijon, France (C.C.); (W.F.); (M.L.)
| | - Renan Chapon
- Department of Neurosurgery, University Hospital of Dijon Bourgogne, 21000 Dijon, France (C.C.); (W.F.); (M.L.)
| | - Tuan Le Van
- Department of Neurosurgery, University Hospital of Dijon Bourgogne, 21000 Dijon, France (C.C.); (W.F.); (M.L.)
| | - Catherine Cao
- Department of Neurosurgery, University Hospital of Dijon Bourgogne, 21000 Dijon, France (C.C.); (W.F.); (M.L.)
| | - Walid Farah
- Department of Neurosurgery, University Hospital of Dijon Bourgogne, 21000 Dijon, France (C.C.); (W.F.); (M.L.)
| | - Maxime Lleu
- Department of Neurosurgery, University Hospital of Dijon Bourgogne, 21000 Dijon, France (C.C.); (W.F.); (M.L.)
| | - Olivier Baland
- Department of Neurosurgery, University Hospital of Dijon Bourgogne, 21000 Dijon, France (C.C.); (W.F.); (M.L.)
| | - Jacques Beaurain
- Department of Neurosurgery, University Hospital of Dijon Bourgogne, 21000 Dijon, France (C.C.); (W.F.); (M.L.)
| | - Jean Michel Petit
- Department of Endocrinology, University Hospital of Dijon Bourgogne, 21000 Dijon, France
| | - Brivaël Lemogne
- Department of Neuroradiology, University Hospital of Dijon Bourgogne, 21000 Dijon, France
| | - Mahmoud Messerer
- Department of Neurosurgery, University Hospital of Lausanne and University of Lausanne, 1011 Lausanne, Switzerland; (R.T.D.)
| | - Moncef Berhouma
- Department of Neurosurgery, University Hospital of Dijon Bourgogne, 21000 Dijon, France (C.C.); (W.F.); (M.L.)
- Functional and Molecular Imaging Team (CNRS 6302), Molecular Chemistry Institute (ICMUB), University of Burgundy, 21078 Dijon, France
| |
Collapse
|
34
|
Therien AD, Chime-Eze CM, Rhodin KE, Beasley GM. Neoadjuvant therapy for melanoma: past, present, and future. Surg Oncol 2024; 56:102127. [PMID: 39236515 DOI: 10.1016/j.suronc.2024.102127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/20/2024] [Accepted: 08/25/2024] [Indexed: 09/07/2024]
Abstract
Modern systemic therapy has dramatically improved outcomes for many patients with advanced metastatic melanoma. The success of these therapies has attracted much scientific interest while these therapies have made their way into the treatment of earlier stages of disease. Randomized trials have led to the approval of adjuvant immunotherapy and targeted therapy for resected stage III melanoma. However, most recently, these therapies have gained traction in the neoadjuvant setting. Promising early results led to randomized controlled trials that have now established neoadjuvant therapy as standard of care in advanced melanoma patients. Questions remain regarding the optimal choice of therapy, duration and timing of neoadjuvant therapy, extent of surgery, and the need for additional adjuvant therapy for patients who received neoadjuvant therapy. Herein we provide an overview of neoadjuvant therapy for melanoma and dilemmas to its broader applications.
Collapse
Affiliation(s)
| | | | - Kristen E Rhodin
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Georgia M Beasley
- Department of Surgery, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
35
|
Jeon Y, Park S, Lee SH, Kim TH, Kim SW, Ahn MJ, Jung HA, Chung JH. Combination of Dabrafenib and Trametinib in Patients with Metastatic BRAFV600E-Mutated Thyroid Cancer. Cancer Res Treat 2024; 56:1270-1276. [PMID: 38453274 PMCID: PMC11491250 DOI: 10.4143/crt.2023.1278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/03/2024] [Indexed: 03/09/2024] Open
Abstract
PURPOSE BRAF mutations are detected in 30%-80% of papillary thyroid cancer (PTC) cases. DaBRAFenib and trametinib showed promising antitumor activity in patients with BRAFV600E-mutated metastatic melanoma and non-small cell lung cancer. This study aimed to evaluate the efficacy and safety of daBRAFenib and trametinib in patients with metastatic BRAFV600E-mutated thyroid cancer. MATERIALS AND METHODS This was a retrospective study to evaluate the efficacy of daBRAFenib and trametinib in patients with metastatic BRAFV600E-mutated PTC. The patients received daBRAFenib 150 mg twice daily and trametinib 2 mg once daily at the Samsung Medical Center. This study evaluated the progression-free survival (PFS), objective response rate (ORR), disease control rate (DCR) overall survival (OS), and safety of daBRAFenib and trametinib. RESULTS Between December 2019 and January 2022, 27 PTC patients including eight patients with poorly differentiated or anaplastic transformation, received daBRAFenib and trametinib. The median age was 73.0 years, and the median follow-up period was 19.8 months. The majority (81.5%) had undergone thyroidectomy, while 8 patients had received prior systemic treatments. ORR was 73.1%, with 19 partial responses, and DCR was 92.3%. Median PFS was 21.7 months, and median OS was 21.7 months. Treatment-related adverse events included generalized weakness (29.6%), fever (25.9%), and gastrointestinal problems (22.2%). Dose reduction due to adverse events was required in 81.5% of the patients. CONCLUSION DaBRAFenib and trametinib demonstrated a high ORR with promising PFS; however, most patients with BRAFV600E-mutated metastatic PTC required a dose reduction.
Collapse
Affiliation(s)
- Youngkyung Jeon
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sehhoon Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Se-Hoon Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Tae Hyuk Kim
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sun Wook Kim
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Myung-Ju Ahn
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hyun Ae Jung
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jae Hoon Chung
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
36
|
Plant-Fox AS, Tabori U. Future perspective of targeted treatments in pediatric low-grade glioma (pLGG): the evolution of standard-of-care and challenges of a new era. Childs Nerv Syst 2024; 40:3291-3299. [PMID: 39085626 DOI: 10.1007/s00381-024-06504-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 06/16/2024] [Indexed: 08/02/2024]
Abstract
While surgery, when possible, remains the mainstay of pediatric low-grade glioma (pLGG) management, adjuvant therapy has significantly evolved over time. Radiation therapy was commonly used in the late 1990s for tumors that could not be resected or recurred. This resulted in significant late morbidity in this population and mortality related to secondary malignancies and chronic health conditions. Chemotherapy became the mainstay of adjuvant therapy but children still experienced late morbidity secondary to exposure to multiple lines of treatment over time. Targeted therapies emerged after the identification of frequent genetic alterations in the mitogen activated protein kinase (MAPK) pathway including KIAA1549-BRAF fusions and BRAF-V600 mutations and the near universal upregulation of the MAPK pathway in these tumors. Both BRAF and MEK inhibitors have shown efficacy in the treatment of pLGG and have led to prolonged stability in some cases. Multiple phase III clinical trials are now comparing targeted therapy to standard-of-care chemotherapy regimens setting the stage for targeted therapy to replace chemotherapy as the first-line treatment in some cases. Targeted therapy, however, is not without its challenges. There are clear examples of resistance and mechanisms of resistance have not been fully elucidated. There is also no clear duration for these therapies and rebound growth is a well-known phenomenon especially in BRAF-V600 mutant tumors. Targeted therapies are also fairly recent developments and long-term toxicities and functional outcomes are still being monitored. Very young and adolescent/young adult LGGs also carry molecular features that may not be addressed by inhibition of the MAPK pathway. Adjuvant therapy for pLGG has evolved from radiation for all unresectable or residual tumors to molecularly driven targeted therapies with improved quality of life, late effects, and less off-target toxicities. While there is still much to learn in regard to newer targeted therapies for pLGG, the era of targeted therapies for pediatric LGG is upon us.
Collapse
Affiliation(s)
- Ashley S Plant-Fox
- Ann & Robert H. Lurie Children's Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Uri Tabori
- The Hospital for Sick Children, University of Toronto, Toronto, Canada
| |
Collapse
|
37
|
Dini F, Susini P, Zuccaro B, Nisi G, Cuomo R, Grimaldi L, Perillo G, Tinunin L, Antonini P, Innocenti A, Cecchi G, Gambale E, Doni L, Mazzini C, Santoro N, De Giorgi V. Head and neck melanoma: the eyelid region has a better prognosis and easier management. A retrospective survey and systematic review. Melanoma Res 2024; 34:429-438. [PMID: 38833343 DOI: 10.1097/cmr.0000000000000984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Eyelid melanoma (EM) is a malignant neoplasm accounting for around 1% of eyelid malignancies. Because of its rarity, most of our knowledge of EM is currently based on studies of cutaneous melanomas located elsewhere. Accordingly, this study aimed to specifically evaluate EM characteristics, management strategies, and prognosis. A retrospective study was carried out on patients diagnosed with EM at Careggi University Hospital, Florence between May 2012 and May 2022. In addition, a systematic review of relevant literature was conducted, encompassing studies published from 2013 to 2023. Clinical, histopathological, therapeutical, and prognostic data were analyzed to assess the metastasis rate and the 5-year survival rate of patients with EM. Separate data were extracted for in situ and invasive disease. Our original study included 19 patients diagnosed with EM with a 5-year survival rate of 100% for in situ and 83.3% for invasive EM. The literature review identified five poorly detailed large database reviews and 14 original studies on EM with an overall 5-year survival rate of 79.7%. The present research indicates that EM is a challenging malignancy, but has a relatively better prognosis and easier management than other melanomas of the head and neck region. These are probably related to the anatomical location which leads to early diagnosis. Therefore, EM should be considered as a specific disease requiring dedicated treatment. Based on the personal authors' experience and comprehensive overview of the current knowledge, a dedicated protocol is proposed.
Collapse
Affiliation(s)
- Federica Dini
- Department of Neurosciences, Psychology, Drug Research and Child Health Eye Clinic, University of Florence, Florence
| | - Pietro Susini
- Plastic Surgery Unit, Department of Medicine, Surgery, and Neuroscience, University of Siena, Siena
| | | | - Giuseppe Nisi
- Plastic Surgery Unit, Department of Medicine, Surgery, and Neuroscience, University of Siena, Siena
| | - Roberto Cuomo
- Plastic Surgery Unit, Department of Medicine, Surgery, and Neuroscience, University of Siena, Siena
| | - Luca Grimaldi
- Plastic Surgery Unit, Department of Medicine, Surgery, and Neuroscience, University of Siena, Siena
| | | | - Luca Tinunin
- Section of Anatomic Pathology, Department of Health Sciences, University of Florence, Florence
| | - Pietro Antonini
- Section of Anatomic Pathology, Department of Health Sciences, University of Florence, Florence
- Section of Pathology, Department of Diagnostics and Public Health, University of Verona, Verona
| | | | | | | | - Laura Doni
- Clinical Oncology Unit, Careggi University Hospital
| | - Cinzia Mazzini
- Unit of Ocular Oncology, Department of Neuromuscular and Sense Organs
| | - Nicola Santoro
- Unit of Ocular Oncology, Department of Surgery and Translational Medicine, Careggi University Hospital, Florence, Italy
| | | |
Collapse
|
38
|
Kim JW, Kim SK. The role of surgery for optic pathway gliomas in the era of precision medicine. Childs Nerv Syst 2024; 40:3075-3083. [PMID: 38743267 DOI: 10.1007/s00381-024-06450-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
Optic pathway gliomas (OPGs) represent a unique subset of brain tumours that primarily affect the paediatric population. Traditionally, these tumours are managed conservatively due to their location to and association with vital structures. This article explores the evolving role of surgery in the management of OPGs, particularly in the context of advancements in precision medicine. The advent of targeted therapy, especially for tumours with specific genetic alterations, such as BRAF V600E mutations, has revolutionized the treatment landscape, offering new avenues for patient-specific therapy. However, surgery still plays a crucial role, especially for debulking in cases of hydrocephalus or when standard therapies are ineffective. Advances in surgical techniques, including neuronavigation, endoscopic approaches, and intraoperative neurophysiological monitoring, have enhanced the safety and efficacy of operative interventions. Despite these developments, the complexity of OPGs necessitates a multidisciplinary approach, focusing on long-term outcomes and quality of life. Future research is needed to further elucidate the role of surgery in an era increasingly dominated by molecular genetics and targeted therapies.
Collapse
Affiliation(s)
- Joo Whan Kim
- Division of Paediatric Neurosurgery, Seoul National University Children's Hospital, Seoul National University College of Medicine, 03080, 101 Daehak-ro, Jongno-gu, Seoul, Republic of Korea
| | - Seung-Ki Kim
- Division of Paediatric Neurosurgery, Seoul National University Children's Hospital, Seoul National University College of Medicine, 03080, 101 Daehak-ro, Jongno-gu, Seoul, Republic of Korea.
| |
Collapse
|
39
|
Loftus AW, Zarei M, Kakish H, Hajihassani O, Hue JJ, Boutros C, Graor HJ, Nakazzi F, Bahlibi T, Winter JM, Rothermel LD. Therapeutic implications of the metabolic changes associated with BRAF inhibition in melanoma. Cancer Treat Rev 2024; 129:102795. [PMID: 38972133 PMCID: PMC11361048 DOI: 10.1016/j.ctrv.2024.102795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/09/2024]
Abstract
Melanoma metabolism can be reprogrammed by activating BRAF mutations. These mutations are present in up to 50% of cutaneous melanomas, with the most common being V600E. BRAF mutations augment glycolysis to promote macromolecular synthesis and proliferation. Prior to the development of targeted anti-BRAF therapies, these mutations were associated with accelerated clinical disease in the metastatic setting. Combination BRAF and MEK inhibition is a first line treatment option for locally advanced or metastatic melanoma harboring targetable BRAF mutations. This therapy shows excellent response rates but these responses are not durable, with almost all patients developing resistance. When BRAF mutated melanoma cells are inhibited with targeted therapies the metabolism of those cells also changes. These cells rely less on glycolysis for energy production, and instead shift to a mitochondrial phenotype with upregulated TCA cycle activity and oxidative phosphorylation. An increased dependence on glutamine utilization is exhibited to support TCA cycle substrates in this metabolic rewiring of BRAF mutated melanoma. Herein we describe the relevant core metabolic pathways modulated by BRAF inhibition. These adaptive pathways represent vulnerabilities that could be targeted to overcome resistance to BRAF inhibitors. This review evaluates current and future therapeutic strategies that target metabolic reprogramming in melanoma cells, particularly in response to BRAF inhibition.
Collapse
Affiliation(s)
- Alexander W Loftus
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, 11100 Euclid Ave., Cleveland, OH 44106, USA
| | - Mehrdad Zarei
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Hanna Kakish
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, 11100 Euclid Ave., Cleveland, OH 44106, USA
| | - Omid Hajihassani
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Jonathan J Hue
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, 11100 Euclid Ave., Cleveland, OH 44106, USA
| | - Christina Boutros
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, 11100 Euclid Ave., Cleveland, OH 44106, USA
| | - Hallie J Graor
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Faith Nakazzi
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Tsegaw Bahlibi
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Jordan M Winter
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, 11100 Euclid Ave., Cleveland, OH 44106, USA; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Luke D Rothermel
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, 11100 Euclid Ave., Cleveland, OH 44106, USA; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
40
|
Zhou J, Wuthrick E. Evidence for Radiation Therapy in Stage III Locoregionally Advanced Cutaneous Melanoma in the Post-Immunotherapy Era: A Literature Review. Cancers (Basel) 2024; 16:3027. [PMID: 39272885 PMCID: PMC11394305 DOI: 10.3390/cancers16173027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/16/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
In the landscape of Stage III locoregionally advanced cutaneous melanoma treatment, the post-immunotherapy era has sparked a number of questions on the management of the nodal basin. However, much of the available literature is not focused on radiation therapy as an adjuvant therapy. This literature review aims to illuminate the evidence surrounding radiation therapy's potential to mitigate regional recurrences in the adjuvant setting for melanoma. Additionally, it seeks to identify adjunct systemic therapy options and explore the synergy between systemic therapy and radiation. Despite strides in surgical techniques and systemic therapies, controlling regional Stage III melanoma remains a formidable clinical hurdle. While historical data strongly suggest the efficacy of adjuvant radiation therapy in reducing regional recurrence risk, its evaluation predates the advent of MAPK pathway inhibitors and robust immunotherapy options. Notably, clinical trials have yet to definitively demonstrate a survival advantage with adjuvant radiation therapy. Additional research should focus on refining the definition of high risk for regional recurrence through gene expression profiling or tumor immune profiling scores and elucidate the optimal role of adjuvant radiation therapy in patients treated with neoadjuvant systemic therapy.
Collapse
Affiliation(s)
- Jennifer Zhou
- Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Evan Wuthrick
- Department of Radiation, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| |
Collapse
|
41
|
De Alcubierre D, Gkasdaris G, Mordrel M, Joncour A, Briet C, Almairac F, Boetto J, Mouly C, Larrieu-Ciron D, Vasiljevic A, Villa C, Sergeant C, Ducray F, Feuvret L, Chanson P, Baussart B, Raverot G, Jouanneau E. BRAF and MEK inhibitor targeted therapy in papillary craniopharyngiomas: a cohort study. Eur J Endocrinol 2024; 191:251-261. [PMID: 39158090 DOI: 10.1093/ejendo/lvae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/05/2024] [Indexed: 08/20/2024]
Abstract
OBJECTIVE Targeted therapy (TT) with BRAF/MEK inhibitors has emerged as a potential treatment in papillary craniopharyngiomas (PCPs). However, standardized data on large cohorts are lacking. Our study aimed to assess real-life efficacy and safety of BRAF/MEK inhibition in patients with PCPs. DESIGN Retrospective French multicenter study involving BRAF V600E-mutated PCP patients, treated with BRAF/MEK inhibitor combination dabrafenib and trametinib, from April 2019 to July 2023. METHODS Objective response and clinical and safety outcomes were assessed after 3 months and at the last available follow-up during TT. RESULTS Sixteen patients (8 females, mean age 50.5 ± 15.75 years), receiving either neoadjuvant therapy (NEO) for non-resectable tumors (n = 6), post-surgical adjuvant therapy (ADJ; n = 8), or palliative therapy (PAL) following failure of multimodal treatment (n = 2), were included.At the last follow-up (mean 7.6 ± 5.3 months), 12 patients showed subtotal response, 3 exhibited partial response, and 1 maintained stable disease. Mean volume reduction was 88.9 ± 4.4%, 73.3 ± 23.4%, and 91.8 ± 4.3% in the NEO, ADJ, and PAL groups, respectively.Targeted therapy resolved headaches in 5/5 patients and visual impairment in 6/9; 2/3 patients had improved neurological symptoms, 1/4 presented weight loss, and 2/14 recovered endocrine function.Targeted therapy was well-tolerated in 62.5% of cases; adverse events led to treatment discontinuation in 5 patients and definitive discontinuation in 3 cases. CONCLUSIONS In this study, 94% of patients showed partial response or better to TT. Adverse events were acceptable. Further research is needed to establish standardized protocols; however, these results advocate for a NEO approach in invasive PCPs.
Collapse
Affiliation(s)
- Dario De Alcubierre
- Department of Experimental Medicine, Sapienza University of Rome, Rome F-00161, Italy
- Cancer Research Center of Lyon, Inserm U1052, CNRS UMR5286, Lyon F-69008, France
| | - Grigorios Gkasdaris
- Neurosurgery Department, Reference Center for Rare Pituitary Diseases HYPO, "Groupement Hospitalier Est" Hospices Civils de Lyon, Bron F-69677, France
| | - Margaux Mordrel
- CHU de Poitiers, ProDiCeT, Université de Poitiers, Poitiers F-86073, France
| | - Anthony Joncour
- Oncology Department, Poitiers University Hospital, Poitiers F-86000, France
| | | | - Fabien Almairac
- Hôpital Pasteur II, University Hospital of Nice, Nice F-06000, France
| | - Julien Boetto
- Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier F-34295, France
| | - Celine Mouly
- Endocrinology Department, CHU Toulouse, Toulouse F-31400, France
| | - Delphine Larrieu-Ciron
- Oncology Department, Oncopole Claudius Regaud, Toulouse IUCT Oncopole, Toulouse F-31100, France
| | - Alexandre Vasiljevic
- Centre de Pathologie Est, Groupement Hospitalier Est, Hospices Civils de Lyon, Bron F- 69677, France
| | - Chiara Villa
- Department of Neuropathology, Hôpital Universitaire Pitié-Salpêtrière, APHP, Sorbonne Université, Paris F-75651, France
| | - Camille Sergeant
- Endocrinology Department, Reference Center for Rare Pituitary Diseases HYPO, "Groupement Hospitalier Est" Hospices Civils de Lyon, Bron F-69677, France
| | - François Ducray
- Department of Neuro-Oncology, Groupement Hospitalier Est, Hospices Civils de Lyon, Bron F-69677, France
| | - Loic Feuvret
- Department of Radiation Oncology, Groupement Hospitalier Est, Hospices Civils de Lyon, Bron F-69677, France
| | - Philippe Chanson
- Service d'Endocrinologie et des Maladies de la Reproduction et Centre de Référence des Maladies Rares de l'Hypophyse HYPO, Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Le Kremlin-Bicêtre F-94270, France
| | - Bertrand Baussart
- Department of Neurosurgery, La Pitié-Salpêtrière Hospital, AP- HP, Sorbonne University, Paris F-75651, France
- Université Paris Cité, CNRS, INSERM, Institut Cochin, Paris F-75014, France
| | - Gerald Raverot
- Cancer Research Center of Lyon, Inserm U1052, CNRS UMR5286, Lyon F-69008, France
- Endocrinology Department, Reference Center for Rare Pituitary Diseases HYPO, "Groupement Hospitalier Est" Hospices Civils de Lyon, Bron F-69677, France
- Lyon 1 University, Villeurbanne F-69100, France
| | - Emmanuel Jouanneau
- Cancer Research Center of Lyon, Inserm U1052, CNRS UMR5286, Lyon F-69008, France
- Neurosurgery Department, Reference Center for Rare Pituitary Diseases HYPO, "Groupement Hospitalier Est" Hospices Civils de Lyon, Bron F-69677, France
- Lyon 1 University, Villeurbanne F-69100, France
| |
Collapse
|
42
|
Bromberger S, Zadorozhna Y, Ressler JM, Holzner S, Nawrocki A, Zila N, Springer A, Røssel Larsen M, Schossleitner K. Off-targets of BRAF inhibitors disrupt endothelial signaling and vascular barrier function. Life Sci Alliance 2024; 7:e202402671. [PMID: 38839106 PMCID: PMC11153892 DOI: 10.26508/lsa.202402671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/07/2024] Open
Abstract
Targeted therapies against mutant BRAF are effectively used in combination with MEK inhibitors (MEKi) to treat advanced melanoma. However, treatment success is affected by resistance and adverse events (AEs). Approved BRAF inhibitors (BRAFi) show high levels of target promiscuity, which can contribute to these effects. The blood vessel lining is in direct contact with high plasma concentrations of BRAFi, but effects of the inhibitors in this cell type are unknown. Hence, we aimed to characterize responses to approved BRAFi for melanoma in the vascular endothelium. We showed that clinically approved BRAFi induced a paradoxical activation of endothelial MAPK signaling. Moreover, phosphoproteomics revealed distinct sets of off-targets per inhibitor. Endothelial barrier function and junction integrity were impaired upon treatment with vemurafenib and the next-generation dimerization inhibitor PLX8394, but not with dabrafenib or encorafenib. Together, these findings provide insights into the surprisingly distinct side effects of BRAFi on endothelial signaling and functionality. Better understanding of off-target effects could help to identify molecular mechanisms behind AEs and guide the continued development of therapies for BRAF-mutant melanoma.
Collapse
Affiliation(s)
- Sophie Bromberger
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Yuliia Zadorozhna
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | | | - Silvio Holzner
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Arkadiusz Nawrocki
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Nina Zila
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- University of Applied Sciences FH Campus Wien, Division of Biomedical Science, Vienna, Austria
| | - Alexander Springer
- Department of Pediatric Surgery, Medical University of Vienna, Vienna, Austria
| | - Martin Røssel Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | | |
Collapse
|
43
|
Wang M, Sullivan RJ, Mooradian MJ. Toxicities from BRAF and MEK Inhibitors: Strategies to Maximize Therapeutic Success. Curr Oncol Rep 2024; 26:934-944. [PMID: 38850505 DOI: 10.1007/s11912-024-01544-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2024] [Indexed: 06/10/2024]
Abstract
PURPOSE OF REVIEW This report highlights several of the recent therapeutic advancements in the treatment of BRAF-mutant tumors, discusses the most common adverse events observed with BRAF-targeted agents, and suggests strategies to manage and mitigate treatment-related toxicities. RECENT FINDINGS BRAF and MEK inhibitors represent a significant advancement in the treatment of BRAF-mutated malignancies with data across tumor types demonstrating the anti-tumor efficacy of dual MAPK inhibition. Although these agents have a reasonable toxicity profile, variable side effects across organ systems can develop. The discovery of activating BRAF mutations and subsequent development of BRAF and MEK inhibitors has transformed the treatment algorithms of BRAF-mutant malignancies. With increased application of these targeted regimens, identification and prompt management of their unique adverse events are crucial.
Collapse
Affiliation(s)
- Mike Wang
- Division of Medical Oncology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Ryan J Sullivan
- Division of Medical Oncology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Meghan J Mooradian
- Division of Medical Oncology, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
44
|
Egeler MD, van Leeuwen M, Lai-Kwon J, Eriksson H, Bartula I, Elashwah S, Fox L, Van Hemelrijck M, Jefford M, Lijnsvelt J, Bagge ASL, Morag O, Ny L, Olofsson Bagge R, Rogiers A, Saw RPM, Serpentini S, Iannopollo L, Thompson J, Stiller HT, Vanlaer N, van Akkooi ACJ, van de Poll-Franse LV. Understanding quality of life issues in patients with advanced melanoma: Phase 1 and 2 in the development of the EORTC advanced melanoma module. Eur J Cancer 2024; 207:114176. [PMID: 38875843 DOI: 10.1016/j.ejca.2024.114176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/05/2024] [Indexed: 06/16/2024]
Abstract
AIMS We aimed to develop a European Organization for Research and Treatment of Cancer (EORTC) Quality of Life (QoL) module tailored for patients with advanced (resectable or unresectable stage III/IV) melanoma receiving immune checkpoint inhibitors or targeted therapy. METHODS Following the EORTC QoL Group module development guidelines, we conducted phases 1 and 2 of the development process. In phase 1, we generated a list of health-related (HR)QoL issues through a systematic literature review and semi-structured interviews with healthcare professionals (HCPs) and patients with advanced melanoma. In phase 2, these issues were converted into questionnaire items to create the preliminary module. RESULTS Phase 1: we retrieved 8006 articles for the literature review, of which 35 were deemed relevant, resulting in 84 HRQoL issues being extracted to create the initial issue list. Semi-structured interviews with 18 HCPs and 28 patients with advanced melanoma resulted in 28 issues being added to the initial issue list. Following EORTC module development criteria, 26 issues were removed, and two issues were added after review by patient advocates. Phase 2: To ensure uniformity and avoid duplication, 16 issues were consolidated into eight items. Additionally, an independent expert contributed one new item, resulting in a preliminary module comprising 80 HRQoL items. CONCLUSION We identified a range of HRQoL issues (dry skin, xerostomia, and arthralgia) relevant to patients with stage III/IV melanoma. Future module development phases will refine the questionnaire. Once completed, this module will enable standardized assessment of HRQoL in patients with (locally) advanced melanoma.
Collapse
Affiliation(s)
- M D Egeler
- Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - M van Leeuwen
- Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - J Lai-Kwon
- Department of Medical Oncology and Department of Health Services Research, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - H Eriksson
- Theme Cancer, Karolinska University Hospital, Stockholm, Sweden; Department of Oncology-Pathology, Karolinska Institutet, Sweden
| | - I Bartula
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia
| | - S Elashwah
- Medical Oncology Unit, Oncology Center, Mansoura University (OCMU), Egypt
| | - L Fox
- King's College London, London, United Kingdom
| | | | - M Jefford
- Department of Medical Oncology and Department of Health Services Research, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - J Lijnsvelt
- Netherlands Cancer Institute, Department of Medical Oncology, Amsterdam, the Netherlands
| | - A-S Lindqvist Bagge
- Sahlgrenska Center for Cancer Research, Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Psychology, University of Gothenburg, Gothenburg, Sweden
| | - O Morag
- Sheba Medical Center, The Jusjdman Cancer Center, Ramat-gan, Israel
| | - L Ny
- Sahlgrenska Center for Cancer Research, Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - R Olofsson Bagge
- Sahlgrenska Center for Cancer Research, Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - A Rogiers
- Department of Medical Oncology, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - R P M Saw
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia; Department of Melanoma and Surgical Oncology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | | | | | - J Thompson
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia
| | | | - N Vanlaer
- Sheba Medical Center, The Jusjdman Cancer Center, Ramat-gan, Israel
| | - A C J van Akkooi
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia; Department of Melanoma and Surgical Oncology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | | |
Collapse
|
45
|
Dugan MM, Perez MC, Karapetyan L, Zager JS. Combination Atezolizumab, Cobimetinib, and Vemurafenib as a Treatment Option in BRAF V600 Mutation-Positive Melanoma: Patient Selection and Perspectives. Cancer Manag Res 2024; 16:933-939. [PMID: 39099762 PMCID: PMC11296355 DOI: 10.2147/cmar.s325514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 07/24/2024] [Indexed: 08/06/2024] Open
Abstract
The treatment landscape for advanced and metastatic melanoma has drastically changed in recent years, with the advent of novel therapeutic options such as immune checkpoint inhibitors and targeted therapies offering remarkable efficacy and significantly improved patient outcomes compared to traditional approaches. Approximately 50% of melanomas harbor activating BRAF mutations, with over 90% resulting in BRAF V600E. Tumors treated with BRAF inhibitor monotherapy have a high rate of developing resistance within six months. Combination therapy with MEK inhibitors helped to mitigate this treatment resistance and led to improved outcomes. Due to the up-regulation of PD-1/PD-L1 receptors in tumors treated with BRAF/MEK inhibitor therapy, further studies included a third combination agent, anti-PD-1/PD-L1 inhibitors. This triple combination therapy may have superior efficacy and a manageable safety profile when compared with single or double agent therapy regimens.
Collapse
Affiliation(s)
- Michelle M Dugan
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Matthew C Perez
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Lilit Karapetyan
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, FL, USA
- Department of Oncologic Sciences, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Jonathan S Zager
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, FL, USA
- Department of Oncologic Sciences, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| |
Collapse
|
46
|
Erker C, Vanan MI, Larouche V, Nobre L, Cacciotti C, Vairy S, Zelcer S, Fleming A, Bouffet E, Jabado N, Legault G, Renzi S, McKeown T, Crooks B, Thacker N, Ramaswamy V, Coltin H, Lafay-Cousin L, Cheng S, Hukin J, Climans SA, Lim-Fat MJ, McKillop S, Lapointe S, Alves M, Bennett J, Tabori U, Perreault S. Canadian Consensus for Treatment of BRAF V600E Mutated Pediatric and AYA Gliomas. Curr Oncol 2024; 31:4022-4029. [PMID: 39057171 PMCID: PMC11276207 DOI: 10.3390/curroncol31070299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Background: The treatment of BRAF V600E gliomas with BRAF inhibitors (BRAFis) and MEK inhibitors (MEKis) has been increasingly integrated into clinical practice for pediatric low-grade gliomas (PLGGs) and pediatric high-grade gliomas (HGGs). However, some questions remain unanswered, such as the best time to start targeted therapy, duration of treatment, and discontinuation of therapy. Given that no clinical trial has been able to address these critical questions, we developed a Canadian Consensus statement for the treatment of BRAF V600E mutated pediatric as well as adolescent and young adult (AYA) gliomas. Methods: Canadian neuro-oncologists were invited to participate in the development of this consensus. The consensus was discussed during monthly web-based national meetings, and the algorithms were revised until a consensus was achieved. Results: A total of 26 participants were involved in the development of the algorithms. Two treatment algorithms are proposed, one for the initiation of treatment and one for the discontinuation of treatment. We suggest that most patients with BRAF V600E gliomas should be treated with BRAFis ± MEKis upfront. Discontinuation of treatment can be considered in certain circumstances, and we suggest a slow wean. Conclusions: Based on expert consensus in Canada, we developed algorithms for treatment initiation of children and AYA with BRAF V600E gliomas as well as a discontinuation algorithm.
Collapse
Affiliation(s)
- Craig Erker
- Department of Pediatrics, Dalhousie University, Halifax, NS B3H 4R2, Canada; (C.E.); (B.C.)
- Division of Pediatric Hematology-Oncology, IWK Health Centre, Halifax, NS B3K 6R8, Canada
| | - Magimairajan Issai Vanan
- Pediatric Neuro-Oncology, Division of Pediatric Hematology-Oncology and BMT, Cancer Care Manitoba, 3a Department of Pediatrics and Child Health, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| | - Valérie Larouche
- Department of Pediatric Hemato-Oncology, CHU de Québec-Université Laval, Quebec City, QC G1V 4G2, Canada; (V.L.); (S.R.)
| | - Liana Nobre
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| | - Chantel Cacciotti
- Division of Hematology/Oncology, Department of Pediatrics, London Health Sciences Centre & Western University, London, ON N6A 5A5, Canada; (C.C.); (S.Z.)
| | - Stéphanie Vairy
- Department of Pediatrics, Division of Pediatric Hematology, CHU Sherbrooke, QC J1H 5N4, Canada;
| | - Shayna Zelcer
- Division of Hematology/Oncology, Department of Pediatrics, London Health Sciences Centre & Western University, London, ON N6A 5A5, Canada; (C.C.); (S.Z.)
| | - Adam Fleming
- McMaster Children’s Hospital, Hamilton, ON L8N 3Z5, Canada;
| | - Eric Bouffet
- Department of Pediatrics, University of Toronto, Toronto, ON M5S 1A1, Canada; (E.B.); (T.M.); (V.R.); (J.B.); (U.T.)
- Division of Hematology Oncology, The Hospital for Sick Children, Toronto, ON M5G 1E8, Canada
| | - Nada Jabado
- Montreal Children’s Hospital, Montréal, QC H4A 3J1, Canada; (N.J.); (G.L.)
| | - Geneviève Legault
- Montreal Children’s Hospital, Montréal, QC H4A 3J1, Canada; (N.J.); (G.L.)
| | - Samuele Renzi
- Department of Pediatric Hemato-Oncology, CHU de Québec-Université Laval, Quebec City, QC G1V 4G2, Canada; (V.L.); (S.R.)
| | - Tara McKeown
- Department of Pediatrics, University of Toronto, Toronto, ON M5S 1A1, Canada; (E.B.); (T.M.); (V.R.); (J.B.); (U.T.)
- Division of Hematology Oncology, The Hospital for Sick Children, Toronto, ON M5G 1E8, Canada
| | - Bruce Crooks
- Department of Pediatrics, Dalhousie University, Halifax, NS B3H 4R2, Canada; (C.E.); (B.C.)
- Division of Pediatric Hematology-Oncology, IWK Health Centre, Halifax, NS B3K 6R8, Canada
| | - Nirav Thacker
- Division of Hematology/Oncology, CHEO, Ottawa, ON K1H 8L1, Canada;
| | - Vijay Ramaswamy
- Department of Pediatrics, University of Toronto, Toronto, ON M5S 1A1, Canada; (E.B.); (T.M.); (V.R.); (J.B.); (U.T.)
- Division of Hematology Oncology, The Hospital for Sick Children, Toronto, ON M5G 1E8, Canada
| | - Hallie Coltin
- Division of Hematology Oncology, CHU Sainte-Justine, Montréal, QC H3T 1C5, Canada;
| | | | - Sylvia Cheng
- B.C. Children’s Hospital, Vancouver, BC V6H 3N1, Canada; (S.C.); (J.H.)
| | - Juliette Hukin
- B.C. Children’s Hospital, Vancouver, BC V6H 3N1, Canada; (S.C.); (J.H.)
| | | | - Mary Jane Lim-Fat
- Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M5S 1A1, Canada;
| | - Sarah McKillop
- Women and Children’s Health Research Institute, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| | - Sarah Lapointe
- Division of Neurology, Department of Neurosciences, Montreal, QC H3A 2B4, Canada;
- Department of Neurosciences, University of Montreal, Montréal, QC H3T 1J4, Canada;
| | - Mélanie Alves
- Department of Neurosciences, University of Montreal, Montréal, QC H3T 1J4, Canada;
| | - Julie Bennett
- Department of Pediatrics, University of Toronto, Toronto, ON M5S 1A1, Canada; (E.B.); (T.M.); (V.R.); (J.B.); (U.T.)
| | - Uri Tabori
- Department of Pediatrics, University of Toronto, Toronto, ON M5S 1A1, Canada; (E.B.); (T.M.); (V.R.); (J.B.); (U.T.)
- Division of Hematology Oncology, The Hospital for Sick Children, Toronto, ON M5G 1E8, Canada
| | - Sébastien Perreault
- Department of Neurosciences, University of Montreal, Montréal, QC H3T 1J4, Canada;
- Division of Child Neurology, CHU Sainte-Justine, Montréal, QC H3T 1C5, Canada
| |
Collapse
|
47
|
Boileve A, Smolenschi C, Lambert A, Boige V, Tarabay A, Valery M, Fuerea A, Pudlarz T, Conroy T, Hollebecque A, Ducreux M. Role of molecular biology in the management of pancreatic cancer. World J Gastrointest Oncol 2024; 16:2902-2914. [PMID: 39072173 PMCID: PMC11271790 DOI: 10.4251/wjgo.v16.i7.2902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/04/2024] [Accepted: 05/21/2024] [Indexed: 07/12/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) presents significant challenges in patient management due to a dismal prognosis, increasing incidence, and limited treatment options. In this regard, precision medicine, which personalizes treatments based on tumour molecular characteristics, has gained great interest. However, its widespread implementation is not fully endorsed in current recommendations. This review explores key molecular alterations in PDAC, while emphasizing differences between KRAS-mutated and KRAS-wild-type tumours. It assesses the practical application of precision medicine in clinical settings and outlines potential future directions with respect to PDAC. Actionable molecular targets are examined with the aim of enhancing our understanding of PDAC molecular biology. Insights from this analysis may contribute to a more refined and personalized approach to pancreatic cancer treatment, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Alice Boileve
- Department of Medical, Gustave Roussy, Villejuif 94800, France
| | | | - Aurélien Lambert
- Department of Medical Oncology, Institut de Cancérologie de Lorraine, Nancy 54519, France
| | - Valérie Boige
- Department of Medical, Gustave Roussy, Villejuif 94800, France
| | - Anthony Tarabay
- Department of Medical, Gustave Roussy, Villejuif 94800, France
| | - Marine Valery
- Department of Medical, Gustave Roussy, Villejuif 94800, France
| | - Alina Fuerea
- Department of Medical, Gustave Roussy, Villejuif 94800, France
| | - Thomas Pudlarz
- Department of Medical, Gustave Roussy, Villejuif 94800, France
| | - Thierry Conroy
- Department of Medical Oncology, Institut de Cancérologie de Lorraine, Nancy 54519, France
| | | | - Michel Ducreux
- Department of Medical, Gustave Roussy, Villejuif 94800, France
| |
Collapse
|
48
|
Deiana C, Agostini M, Brandi G, Giovannetti E. The trend toward more target therapy in pancreatic ductal adenocarcinoma. Expert Rev Anticancer Ther 2024; 24:525-565. [PMID: 38768098 DOI: 10.1080/14737140.2024.2357802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/16/2024] [Indexed: 05/22/2024]
Abstract
INTRODUCTION Despite the considerable progress made in cancer treatment through the development of target therapies, pancreatic ductal adenocarcinoma (PDAC) continues to exhibit resistance to this category of drugs. As a result, chemotherapy combination regimens remain the primary treatment approach for this aggressive cancer. AREAS COVERED In this review, we provide an in-depth analysis of past and ongoing trials on both well-known and novel targets that are being explored in PDAC, including PARP, EGFR, HER2, KRAS, and its downstream and upstream pathways (such as RAF/MEK/ERK and PI3K/AKT/mTOR), JAK/STAT pathway, angiogenesis, metabolisms, epigenetic targets, claudin, and novel targets (such as P53 and plectin). We also provide a comprehensive overview of the significant trials for each target, allowing a thorough glimpse into the past and future of target therapy. EXPERT OPINION The path toward implementing a target therapy capable of improving the overall survival of PDAC is still long, and it is unlikely that a monotherapy target drug will fulfill a meaningful role in addressing the complexity of this cancer. Thus, we discuss the future direction of target therapies in PDAC, trying to identify the more promising target and combination treatments, with a special focus on the more eagerly awaited ongoing trials.
Collapse
Affiliation(s)
- Chiara Deiana
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Margherita Agostini
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Giovanni Brandi
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), Amsterdam, The Netherlands
- Cancer Pharmacology Lab, Associazione Italiana per la Ricerca sul Cancro (AIRC) Start-Up Unit, Fondazione Pisana per la Scienza, Pisa, San Giuliano, Italy
| |
Collapse
|
49
|
Karras F, Kunz M. Patient-derived melanoma models. Pathol Res Pract 2024; 259:155231. [PMID: 38508996 DOI: 10.1016/j.prp.2024.155231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/15/2024] [Accepted: 02/26/2024] [Indexed: 03/22/2024]
Abstract
Melanoma is a very aggressive, rapidly metastasizing tumor that has been studied intensively in the past regarding the underlying genetic and molecular mechanisms. More recently developed treatment modalities have improved response rates and overall survival of patients. However, the majority of patients suffer from secondary treatment resistance, which requires in depth analyses of the underlying mechanisms. Here, melanoma models based on patients-derived material may play an important role. Consequently, a plethora of different experimental techniques have been developed in the past years. Among these are 3D and 4D culture techniques, organotypic skin reconstructs, melanoma-on-chip models and patient-derived xenografts, Every technique has its own strengths but also weaknesses regarding throughput, reproducibility, and reflection of the human situation. Here, we provide a comprehensive overview of currently used techniques and discuss their use in different experimental settings.
Collapse
Affiliation(s)
- Franziska Karras
- Institute of Pathology, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, Magdeburg 39120, Germany.
| | - Manfred Kunz
- Department of Dermatology, Venereology and Allergology, University Medical Center Leipzig, Philipp-Rosenthal-Str. 23, Leipzig 04103, Germany
| |
Collapse
|
50
|
Palatkar A, Jain YV, Babu M, Shinde V, Ingale M. A Rare Presentation of Malignant Melanoma of the Face: A Case Report. Cureus 2024; 16:e64797. [PMID: 39156466 PMCID: PMC11330291 DOI: 10.7759/cureus.64797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 07/17/2024] [Indexed: 08/20/2024] Open
Abstract
Melanoma is a malignant neoplasm of melanoblasts, which are the precursors of the melanocytes arising from the neural crest cells. Melanomas can occur at various sites like the skin, eyes, upper esophagus, and meninges due to the migration of neural crest cells. Usually, the prognostic factors are decided based on the Breslow index. This case report describes a 61-year-old female who presented with the complaint of pinkish irregular swelling over the left side of her face for six months. The patient had a surgical resection, and the condition was determined to be invasive melanoma following confirmation by magnetic resonance imaging (MRI) and histological examination. Through our case report, we aim to shed light on the existing protocol for managing malignant melanoma while also exploring new aspects of presentation and multidisciplinary action.
Collapse
Affiliation(s)
- Apurva Palatkar
- Department of Otolaryngology, Head and Neck Surgery, Dr. D. Y. Patil Medical College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pune, IND
| | - Yash V Jain
- Department of Otolaryngology, Head and Neck Surgery, Dr. D. Y. Patil Medical College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pune, IND
| | - Manu Babu
- Department of Otolaryngology, Head and Neck Surgery, Dr. D. Y. Patil Medical College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pune, IND
| | - Vinod Shinde
- Department of Otolaryngology, Head and Neck Surgery, Dr. D. Y. Patil Medical College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pune, IND
| | - Mayur Ingale
- Department of Otolaryngology, Head and Neck Surgery, Dr. D. Y. Patil Medical College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pune, IND
| |
Collapse
|