1
|
Avramidou E, Psatha K, St John K, Tsoulfas G, Aivaliotis M. Future of non-invasive graft evaluation: A systematic review of proteomics in kidney transplantation. World J Transplant 2025; 15:96025. [DOI: 10.5500/wjt.v15.i1.96025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/19/2024] [Accepted: 10/21/2024] [Indexed: 11/26/2024] Open
Abstract
BACKGROUND Despite the developments in the field of kidney transplantation, the already existing diagnostic techniques for patient monitoring are considered insufficient. Protein biomarkers that can be derived from modern approaches of proteomic analysis of liquid biopsies (serum, urine) represent a promising innovation in the monitoring of kidney transplant recipients.
AIM To investigate the diagnostic utility of protein biomarkers derived from proteomics approaches in renal allograft assessment.
METHODS A systematic review was conducted in accordance with PRISMA guidelines, based on research results from the PubMed and Scopus databases. The primary focus was on evaluating the role of biomarkers in the non-invasive diagnosis of transplant-related complications. Eligibility criteria included protein biomarkers and urine and blood samples, while exclusion criteria were language other than English and the use of low resolution and sensitivity methods. The selected research articles, were categorized based on the biological sample, condition and methodology and the significantly and reproducibly differentiated proteins were manually selected and extracted. Functional and network analysis of the selected proteins was performed.
RESULTS In 17 included studies, 58 proteins were studied, with the cytokine CXCL10 being the most investigated. Biological pathways related to immune response and fibrosis have shown to be enriched. Applications of biomarkers for the assessment of renal damage as well as the prediction of short-term and long-term function of the graft were reported. Overall, all studies have shown satisfactory diagnostic accuracy of proteins alone or in combination with conventional methods, as far as renal graft assessment is concerned.
CONCLUSION Our review suggests that protein biomarkers, evaluated in specific biological fluids, can make a significant contribution to the timely, valid and non-invasive assessment of kidney graft.
Collapse
Affiliation(s)
- Eleni Avramidou
- Department of Transplantation Surgery, Center for Research and Innovation in Solid Organ Transplantation, Aristotle University of Thessaloniki, School of Medicine, Thessaloniki 54642, Greece
| | - Konstantina Psatha
- Laboratory of Medical Biology- Genetics, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
- Functional Proteomics and Systems Biology (FunPATh), Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Thessaloniki GR-57001, Greece
| | - Kallisti St John
- Functional Proteomics and Systems Biology (FunPATh), Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Thessaloniki GR-57001, Greece
- Laboratory of Biological Chemistry, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Georgios Tsoulfas
- Department of Transplantation Surgery, Center for Research and Innovation in Solid Organ Transplantation, Aristotle University of Thessaloniki, School of Medicine, Thessaloniki 54642, Greece
| | - Michalis Aivaliotis
- Functional Proteomics and Systems Biology (FunPATh), Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Thessaloniki GR-57001, Greece
- Laboratory of Biological Chemistry, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| |
Collapse
|
2
|
Lal H, Ruidas S, Prasad R, Singh A, Prasad N, Kaul A, Bhadauria DS, Kushwaha RS, Patel MR, Jain M, Yadav P. Role of multi-parametric ultrasonography for the assessment and monitoring of functional status of renal allografts with histopathological correlation. World J Radiol 2024; 16:782-793. [DOI: 10.4329/wjr.v16.i12.782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 11/03/2024] [Accepted: 11/19/2024] [Indexed: 12/27/2024] Open
Abstract
BACKGROUND The study focuses on the use of multi-parametric ultrasound [gray scale, color Doppler and shear wave elastography (SWE)] to differentiate stable renal allografts from acute graft dysfunction and to assess time-dependent changes in parenchymal stiffness, thereby assessing its use as an efficient monitoring tool for ongoing graft dysfunction. To date, biopsy is the gold standard for evaluation of acute graft dysfunction. However, because it is invasive, it carries certain risks and cannot be used for follow-up monitoring. SWE is a non-invasive imaging modality that identifies higher parenchymal stiffness values in cases of acute graft dysfunction compared to stable grafts.
AIM To assess renal allograft parenchymal stiffness by SWE and to correlate its findings with functional status of the graft kidney.
METHODS This prospective observational study included 71 renal allograft recipients. Multi-parametric ultrasound was performed on all patients, and biopsies were performed in cases of acute graft dysfunction. The study was performed for a period of 2 years at Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, a tertiary care center in north India. Independent samples t-test was used to compare the means between two independent groups. Paired-samples t-test was used to test the change in mean value between baseline and follow-up observations.
RESULTS Thirty-one patients had experienced acute graft dysfunction at least once, followed by recovery, but none of them had a history of chronic renal allograft injury. Mean baseline parenchymal stiffness in stable grafts and acute graft dysfunction were 30.21 + 2.03 kPa (3.17 + 0.11 m/s) and 31.07 + 2.88 kPa (3.22 + 0.15 m/s), respectively; however, these differences were not statistically significant (P = 0.305 and 0.252, respectively). There was a gradual decrease in SWE values during the first 3 postoperative months, followed by an increase in SWE values up to one-year post-transplantation. Patients with biopsy-confirmed graft dysfunction showed higher SWE values compared to those with a negative biopsy. However, receiver operating characteristic analysis failed to show statistically significant cut-off values to differentiate between the stable graft and acute graft dysfunction.
CONCLUSION Acute graft dysfunction displays higher parenchymal stiffness values compared to stable grafts. Therefore, SWE may be useful in monitoring the functional status of allografts to predict any ongoing dysfunction.
Collapse
Affiliation(s)
- Hira Lal
- Department of Radiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, Uttar Pradesh, India
| | - Surojit Ruidas
- Department of Radiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, Uttar Pradesh, India
| | - Raghunandan Prasad
- Department of Radiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, Uttar Pradesh, India
| | - Anuradha Singh
- Department of Radiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, Uttar Pradesh, India
| | - Narayan Prasad
- Department of Nephrology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, Uttar Pradesh, India
| | - Anupma Kaul
- Department of Nephrology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, Uttar Pradesh, India
| | - Dharmendra S Bhadauria
- Department of Nephrology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, Uttar Pradesh, India
| | - Ravi S Kushwaha
- Department of Nephrology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, Uttar Pradesh, India
| | - Manas R Patel
- Department of Nephrology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, Uttar Pradesh, India
| | - Manoj Jain
- Department of Pathology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, Uttar Pradesh, India
| | - Priyank Yadav
- Department of Urology and Renal Transplantation, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, Uttar Pradesh, India
| |
Collapse
|
3
|
Mao K, Lin F, Pan Y, Li J, Ye J. Identification of glycosyltransferase genes for diagnosis of T-cell mediated rejection and prediction of graft loss in kidney transplantation. Transpl Immunol 2024; 87:102114. [PMID: 39243908 DOI: 10.1016/j.trim.2024.102114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/19/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND Glycosylation is a complex and fundamental metabolic biosynthetic process orchestrated by multiple glycosyltransferases (GT) and glycosidases enzymes. Functions of GT have been extensively examined in multiple human diseases. Our study investigated the potential role of GT genes in T-cell mediated rejection (TCMR) and possible prediction of graft loss of kidney transplantation. METHODS We downloaded the microarray datasets and GT genes from the GEO and the HUGO Gene Nomenclature Committee (HGNC) databases, respectively. Differentially expressed GT genes (DE-GTGs) were obtained by differential expression and Venn analysis. A TCMR diagnostic model was developed based on the hub DE-GTGs using LASSO regression and XGboost machine learning algorithms. In addition, a predictive model for graft survival was constructed by univariate Cox and LASSO Cox regression analysis. RESULTS We have obtained 15 DE-GTGs. Both GO and KEGG analyses showed that the DE-GTGs were mainly involved in the glycoprotein biosynthetic process. The TCMR diagnostic model exhibited high diagnostic potential with generally highly correlated accuracies [aera under the curve (AUC) of 0.83]. The immune characteristics analysis revealed that higher levels of immune cell infiltration and immune responses were observed in the high-risk group than in the low-risk group. In particular, the Kaplan-Meier survival analysis revealed that renal grafts in the high-risk group have poor prognostic outcomes than the low-risk group. The predictive AUC values of 1-, 2- and 3-year graft survival were 0.76, 0.81, and 0.70, respectively. CONCLUSION Our results indicated that GT genes could be used for diagnosis of TCMR and prediction of graft loss in kidney transplantation. These results provide new perspectives and tools for diagnosing, treating and predicting kidney transplant-related diseases.
Collapse
Affiliation(s)
- Kaifeng Mao
- Department of Kidney Transplantation, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Fenwang Lin
- Department of Kidney Transplantation, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Yige Pan
- Division of Nephrology, Department of Nursing, The University of Hong Kong-Shenzhen Hospital, Shenzhen City, Guangdong Province, China
| | - Juan Li
- School of Nursing, Southern Medical University, Guangzhou, Guangdong Province, China.
| | - Junsheng Ye
- Department of Kidney Transplantation, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China.
| |
Collapse
|
4
|
Zhong Z, Ye Y, Xia L, Na N. Identification of RNA-binding protein genes associated with renal rejection and graft survival. Ren Fail 2024; 46:2360173. [PMID: 38874084 PMCID: PMC11182075 DOI: 10.1080/0886022x.2024.2360173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/21/2024] [Indexed: 06/15/2024] Open
Abstract
Rejection is one of the major factors affecting the long-term prognosis of kidney transplantation, and timely recognition and aggressive treatment of rejection is essential to prevent disease progression. RBPs are proteins that bind to RNA to form ribonucleoprotein complexes, thereby affecting RNA stability, processing, splicing, localization, transport, and translation, which play a key role in post-transcriptional gene regulation. However, their role in renal transplant rejection and long-term graft survival is unclear. The aim of this study was to comprehensively analyze the expression of RPBs in renal rejection and use it to construct a robust prediction strategy for long-term graft survival. The microarray expression profiles used in this study were obtained from GEO database. In this study, a total of eight hub RBPs were identified, all of which were upregulated in renal rejection samples. Based on these RBPs, the renal rejection samples could be categorized into two different clusters (cluster A and cluster B). Inflammatory activation in cluster B and functional enrichment analysis showed a strong association with rejection-related pathways. The diagnostic prediction model had a high diagnostic accuracy for T cell mediated rejection (TCMR) in renal grafts (area under the curve = 0.86). The prognostic prediction model effectively predicts the prognosis and survival of renal grafts (p < .001) and applies to both rejection and non-rejection situations. Finally, we validated the expression of hub genes, and patient prognosis in clinical samples, respectively, and the results were consistent with the above analysis.
Collapse
Affiliation(s)
- Zhaozhong Zhong
- Department of Kidney Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yongrong Ye
- Department of Kidney Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Liubing Xia
- Department of Kidney Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ning Na
- Department of Kidney Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
5
|
Hendriks SH, Heidt S, Reinders ME, Koning F, van Kooten C. Allogenic MSC infusion in kidney transplantation recipients promotes within 4 hours distinct B cell and T cell phenotypes. Front Immunol 2024; 15:1455300. [PMID: 39450174 PMCID: PMC11500071 DOI: 10.3389/fimmu.2024.1455300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Background Infusion of mesenchymal stromal cells (MSCs) has been proposed as immune-modulatory therapy in solid organ transplantation. The use of allogenic MSCs could improve standardization and allow for direct availability of the product. Method The nonrandomized phase Ib Neptune clinical trial provided safety and feasibility data on the use of allogenic bone-marrow-derived MSCs, infused in 10 patients at week 25 and 26 post kidney transplantation. Here, we performed detailed analysis on the peripheral blood immune cell composition of these patients up to 52 weeks post transplantation. We used a 40 marker antibody panel with mass cytometry to assess potential effects of MSC therapy on the immune system. Results We showed minor changes in major immune lineages at week 27, 34 and 52 post kidney transplantation after MSC infusion at week 25 and week 26, confirming previous data with regular flow cytometry. However, in a direct comparison between pre- and post MSC infusion, as soon as 4 hours after MSC infusion, we observed a significant increase in cell numbers of B cell and T cell subsets that shared a unique expression of CD11b, CD11c, CD38, CD39, and Ki-67. Conclusion Exploring these CD11b+CD11c+CD38+CD39+Ki-67+ B cells and T cells in the context of MSC infusion after kidney transplantation may be a promising avenue to better understand the immunological effects of MSC therapy.
Collapse
Affiliation(s)
- Sanne H. Hendriks
- Department of Immunology, Leiden University Medical Center, Leiden University, Leiden, Netherlands
| | - Sebastiaan Heidt
- Department of Immunology, Leiden University Medical Center, Leiden University, Leiden, Netherlands
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC Transplant Institute, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Marlies E.J. Reinders
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC Transplant Institute, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Internal Medicine (Nephrology) and Transplant Center, Leiden University Medical Center, Leiden University, Leiden, Netherlands
| | - Frits Koning
- Department of Immunology, Leiden University Medical Center, Leiden University, Leiden, Netherlands
| | - Cees van Kooten
- Department of Internal Medicine (Nephrology) and Transplant Center, Leiden University Medical Center, Leiden University, Leiden, Netherlands
| |
Collapse
|
6
|
David AF, Heinzel A, Kammer M, Aschauer C, Reindl-Schwaighofer R, Hu K, Chen HS, Muckenhuber M, Kubetz A, Weijler AM, Worel N, Edinger M, Berlakovich G, Lion T, Sykes M, Wekerle T, Oberbauer R. Combination cell therapy leads to clonal deletion of donor-specific T cells in kidney transplant recipients. EBioMedicine 2024; 106:105239. [PMID: 38996766 PMCID: PMC11284950 DOI: 10.1016/j.ebiom.2024.105239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND Induction of donor-specific tolerance is a promising approach to achieve long-term graft patency in transplantation with little to no maintenance immunosuppression. Changes to the recipient's T cell receptor (TCR) repertoire are understood to play a pivotal role in the establishment of a robust state of tolerance in chimerism-based transplantation protocols. METHODS We investigated changes to the TCR repertoires of patients participating in an ongoing prospective, controlled, phase I/IIa trial designed to evaluate the safety and efficacy of combination cell therapy in living donor kidney transplantation. Using high-throughput sequencing, we characterized the repertoires of six kidney recipients who also received bone marrow from the same donor (CKBMT), together with an infusion of polyclonal autologous Treg cells instead of myelosuppression. FINDINGS Patients undergoing combination cell therapy exhibited partial clonal deletion of donor-reactive CD4+ T cells at one, three, and six months post-transplant, compared to control patients receiving the same immunosuppression regimen but no cell therapy (p = 0.024). The clonality, R20 and turnover rates of the CD4+ and CD8+ TCR repertoires were comparable in both groups, showing our protocol caused no excessive repertoire shift or loss of diversity. Treg clonality was lower in the case group than in control (p = 0.033), suggesting combination cell therapy helps to preserve Treg diversity. INTERPRETATION Overall, our data indicate that combining Treg cell therapy with CKBMT dampens the alloimmune response to transplanted kidneys in humans in the absence of myelosuppression. FUNDING This study was funded by the Vienna Science and Technology Fund (WWTF).
Collapse
Affiliation(s)
- Ana F David
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Andreas Heinzel
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Michael Kammer
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Center for Medical Data Science, Institute for Clinical Biometrics, Medical University of Vienna, Vienna, Austria
| | - Constantin Aschauer
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Roman Reindl-Schwaighofer
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Karin Hu
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Hao-Shan Chen
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Moritz Muckenhuber
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Anna Kubetz
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Anna Marianne Weijler
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Nina Worel
- Department of Transfusion Medicine and Cell Therapy, Medical University of Vienna, Vienna, Austria
| | - Matthias Edinger
- University Hospital Regensburg, Department of Internal Medicine III & Regensburg Center for Interventional Immunology (RCI), Regensburg, Germany
| | - Gabriela Berlakovich
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Thomas Lion
- St. Anna Children's Cancer, Research Institute and Labdia Labordiagnostik, Vienna, Austria
| | - Megan Sykes
- Columbian Center for Translational Immunology, Department of Medicine, Columbia University, New York City, NY, United States
| | - Thomas Wekerle
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Rainer Oberbauer
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
7
|
Schnuelle P, Krämer BK. Donor Conditioning and Organ Pre-Treatment Prior to Kidney Transplantation: Reappraisal of the Available Clinical Evidence. J Clin Med 2024; 13:4073. [PMID: 39064113 PMCID: PMC11278301 DOI: 10.3390/jcm13144073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Therapeutic measures aimed at optimising organ function prior to transplantation-whether by conditioning the donor after determination of brain death or by improving organ preservation after kidney removal-have the potential to enhance outcomes after transplantation. The particular advantage is that, unlike any optimised immunosuppressive therapy, a favourable effect can be achieved without side effects for the organ recipient. In recent years, several such measures have been tested in controlled clinical trials on large patient cohorts following kidney transplantation. Hypothermic pulsatile machine perfusion, in particular, has become the focus of interest, but interventions in the donor prior to organ removal, such as the administration of low-dose dopamine until the start of cold perfusion as an example of conditioning antioxidant therapy and therapeutic donor hypothermia in the intensive care unit after brain death confirmation, have also significantly reduced the frequency of dialysis after transplantation with far less effort and cost. With regard to benefits for graft survival, the database for all procedures is less clear and controversial. The aim of this review article is to re-evaluate the available clinical evidence from large multicentre controlled trials, which have also significantly influenced later meta-analyses, and to assess the significance for use in routine clinical practice.
Collapse
Affiliation(s)
- Peter Schnuelle
- Center for Renal Diseases, Academic Teaching Practice of the University Medical Center Mannheim, University of Heidelberg, 69469 Weinheim, Germany
- Vth Department of Medicine, University Medical Center Mannheim, University of Heidelberg, 68167 Mannheim, Germany;
| | - Bernhard K. Krämer
- Vth Department of Medicine, University Medical Center Mannheim, University of Heidelberg, 68167 Mannheim, Germany;
| |
Collapse
|
8
|
Schmoeckel M, Längin M, Reichart B, Abicht JM, Bender M, Michel S, Kamla CE, Denner J, Tönjes RR, Schwinzer R, Marckmann G, Wolf E, Brenner P, Hagl C. Current Status of Cardiac Xenotransplantation: Report of a Workshop of the German Heart Transplant Centers, Martinsried, March 3, 2023. Thorac Cardiovasc Surg 2024; 72:273-284. [PMID: 38154473 PMCID: PMC11147670 DOI: 10.1055/a-2235-8854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/22/2023] [Indexed: 12/30/2023]
Abstract
This report comprises the contents of the presentations and following discussions of a workshop of the German Heart Transplant Centers in Martinsried, Germany on cardiac xenotransplantation. The production and current availability of genetically modified donor pigs, preservation techniques during organ harvesting, and immunosuppressive regimens in the recipient are described. Selection criteria for suitable patients and possible solutions to the problem of overgrowth of the xenotransplant are discussed. Obviously microbiological safety for the recipient and close contacts is essential, and ethical considerations to gain public acceptance for clinical applications are addressed. The first clinical trial will be regulated and supervised by the Paul-Ehrlich-Institute as the National Competent Authority for Germany, and the German Heart Transplant Centers agreed to cooperatively select the first patients for cardiac xenotransplantation.
Collapse
Affiliation(s)
- Michael Schmoeckel
- Herzchirurgische Klinik und Poliklinik, LMU Klinikum, LMU München, Germany
| | - Matthias Längin
- Klinik für Anaesthesiologie, LMU Klinikum, LMU München, Germany
- DFG-Transregio-Sonderforschungsbereich TR127—Xenotransplantation, Walter-Brendel-Zentrum für Experimentelle Medizin, LMU München, Germany
| | - Bruno Reichart
- DFG-Transregio-Sonderforschungsbereich TR127—Xenotransplantation, Walter-Brendel-Zentrum für Experimentelle Medizin, LMU München, Germany
| | - Jan-Michael Abicht
- Klinik für Anaesthesiologie, LMU Klinikum, LMU München, Germany
- DFG-Transregio-Sonderforschungsbereich TR127—Xenotransplantation, Walter-Brendel-Zentrum für Experimentelle Medizin, LMU München, Germany
| | - Martin Bender
- Klinik für Anaesthesiologie, LMU Klinikum, LMU München, Germany
- DFG-Transregio-Sonderforschungsbereich TR127—Xenotransplantation, Walter-Brendel-Zentrum für Experimentelle Medizin, LMU München, Germany
| | - Sebastian Michel
- Herzchirurgische Klinik und Poliklinik, LMU Klinikum, LMU München, Germany
- DFG-Transregio-Sonderforschungsbereich TR127—Xenotransplantation, Walter-Brendel-Zentrum für Experimentelle Medizin, LMU München, Germany
| | | | - Joachim Denner
- DFG-Transregio-Sonderforschungsbereich TR127—Xenotransplantation, Walter-Brendel-Zentrum für Experimentelle Medizin, LMU München, Germany
- Institut für Virologie, Fachbereich für Veterinärmedizin, Freie Universität Berlin, Berlin, Germany
| | - Ralf Reinhard Tönjes
- DFG-Transregio-Sonderforschungsbereich TR127—Xenotransplantation, Walter-Brendel-Zentrum für Experimentelle Medizin, LMU München, Germany
- Paul-Ehrlich-Institut, Langen, Germany
| | - Reinhard Schwinzer
- DFG-Transregio-Sonderforschungsbereich TR127—Xenotransplantation, Walter-Brendel-Zentrum für Experimentelle Medizin, LMU München, Germany
- Klinik für Allgemein-, Viszeral- und Transplantationschirurgie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Georg Marckmann
- DFG-Transregio-Sonderforschungsbereich TR127—Xenotransplantation, Walter-Brendel-Zentrum für Experimentelle Medizin, LMU München, Germany
- Institut für Ethik, Geschichte und Theorie der Medizin, LMU München, Germany
| | - Eckhard Wolf
- DFG-Transregio-Sonderforschungsbereich TR127—Xenotransplantation, Walter-Brendel-Zentrum für Experimentelle Medizin, LMU München, Germany
- Lehrstuhl für Molekulare Tierzucht und Biotechnologie, Genzentrum der LMU München, Germany
| | - Paolo Brenner
- Herzchirurgische Klinik und Poliklinik, LMU Klinikum, LMU München, Germany
- DFG-Transregio-Sonderforschungsbereich TR127—Xenotransplantation, Walter-Brendel-Zentrum für Experimentelle Medizin, LMU München, Germany
| | - Christian Hagl
- Herzchirurgische Klinik und Poliklinik, LMU Klinikum, LMU München, Germany
- DZHK (Deutsches Zentrum für Herz-Kreislauf-Forschung e.V.), Partner Site Munich, Germany
| |
Collapse
|
9
|
Weijler AM, Wekerle T. Combining Treg Therapy With Donor Bone Marrow Transplantation: Experimental Progress and Clinical Perspective. Transplantation 2024; 108:1100-1108. [PMID: 37789519 DOI: 10.1097/tp.0000000000004814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Donor-specific tolerance remains a goal in transplantation because it could improve graft survival and reduce morbidity. Cotransplantation of donor hematopoietic cells to achieve chimerism is a promising approach for tolerance induction, which was successfully tested in clinical trials. However, current protocols are associated with side effects related to the myelosuppressive recipient conditioning, which makes it difficult to introduce them as standard therapy. More recently, adoptive cell therapy with polyclonal or donor-specific regulatory T cells (Treg) proved safe and feasible in several transplant trials, but it is unclear whether it can induce tolerance on its own. The combination of both approaches-Treg therapy and hematopoietic cell transplantation-leads to chimerism and tolerance without myelosuppressive treatment in murine models. Treg therapy promotes engraftment of allogeneic hematopoietic cells, reducing conditioning requirements and enhancing regulatory mechanisms maintaining tolerance. This review discusses possible modes of action of transferred Treg in experimental chimerism models and describes translational efforts investigating the potent synergy of Treg and chimerism.
Collapse
Affiliation(s)
- Anna Marianne Weijler
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
10
|
Jabbour R, Heinzel A, Reindl-Schwaighofer R, Gregorich MG, Regele H, Kozakowski N, Kläger J, Fischer G, Kainz A, Becker JU, Wiebe C, Oberbauer R. Early progression of chronic histologic lesions in kidney transplant biopsies is not associated with HLA histocompatibility. Nephrol Dial Transplant 2024; 39:808-817. [PMID: 37960919 PMCID: PMC11181859 DOI: 10.1093/ndt/gfad246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Early progression of chronic histologic lesions in kidney allografts represents the main finding in graft attrition. The objective of this retrospective cohort study was to elucidate whether HLA histocompatibility is associated with progression of chronic histologic lesions in the first year post-transplant. Established associations of de novo donor-specific antibody (dnDSA) formation with HLA mismatch and microvascular inflammation (MVI) were calculated to allow for comparability with other study cohorts. METHODS We included 117 adult kidney transplant recipients, transplanted between 2016 and 2020 from predominantly deceased donors, who had surveillance biopsies at 3 and 12 months. Histologic lesion scores were assessed according to the Banff classification. HLA mismatch scores [i.e. eplet, predicted indirectly recognizable HLA-epitopes algorithm (PIRCHE-II), HLA epitope mismatch algorithm (HLA-EMMA), HLA whole antigen A/B/DR] were calculated for all transplant pairs. Formation of dnDSAs was quantified by single antigen beads. RESULTS More than one-third of patients exhibited a progression of chronic lesion scores by at least one Banff grade in tubular atrophy (ct), interstitial fibrosis (ci), arteriolar hyalinosis (ah) and inflammation in the area of interstitial fibrosis and tubular atrophy (i-IFTA) from the 3- to the 12-month biopsy. Multivariable proportional odds logistic regression models revealed no association of HLA mismatch scores with progression of histologic lesions, except for ah and especially HLA-EMMA DRB1 [odds ratio (OR) = 1.10, 95% confidence interval (CI) 1.03-1.18]. Furthermore, the established associations of dnDSA formation with HLA mismatch and MVI (OR = 5.31, 95% CI 1.19-22.57) could be confirmed in our cohort. CONCLUSIONS These data support the association of HLA mismatch and alloimmune response, while suggesting that other factors contribute to early progression of chronic histologic lesions.
Collapse
Affiliation(s)
- Rhea Jabbour
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Andreas Heinzel
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Roman Reindl-Schwaighofer
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Mariella G Gregorich
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
- Section for Clinical Biometrics, Center for Medical Statistics, Informatics and Intelligent Systems (CeMSIIS), Medical University of Vienna, Vienna, Austria
| | - Heinz Regele
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | | | - Johannes Kläger
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Gottfried Fischer
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria
| | - Alexander Kainz
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Jan U Becker
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | - Chris Wiebe
- Department of Medicine, University of Manitoba, Winnipeg, Canada; Shared Health Services Manitoba, Canada; Department of Immunology, University of Manitoba, Winnipeg, Canada
| | - Rainer Oberbauer
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
11
|
Huang CL, Fu XY, Feng Y, Li XK, Sun Y, Mao XL, Li SW. Relationship between the microenvironment and survival in kidney transplantation: a bibliometric analysis from 2013 to 2023. Front Immunol 2024; 15:1379742. [PMID: 38596670 PMCID: PMC11002143 DOI: 10.3389/fimmu.2024.1379742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/14/2024] [Indexed: 04/11/2024] Open
Abstract
Background Kidney transplantation is considered the most effective treatment for end-stage renal failure. Recent studies have shown that the significance of the immune microenvironment after kidney transplantation in determining prognosis of patients. Therefore, this study aimed to conduct a bibliometric analysis to provide an overview of the knowledge structure and research trends regarding the immune microenvironment and survival in kidney transplantation. Methods Our search included relevant publications from 2013 to 2023 retrieved from the Web of Science core repository and finally included 865 articles. To perform the bibliometric analysis, we utilized tools such as VOSviewer, CiteSpace, and the R package "bibliometrix". The analysis focused on various aspects, including country, author, year, topic, reference, and keyword clustering. Results Based on the inclusion criteria, a total of 865 articles were found, with a trend of steady increase. China and the United States were the countries with the most publications. Nanjing Medical University was the most productive institution. High-frequency keywords were clustered into 6 areas, including kidney transplantation, transforming growth factor β, macrophage, antibody-mediated rejection, necrosis factor alpha, and dysfunction. Antibody mediated rejection (2019-2023) was the main area of research in recent years. Conclusion This groundbreaking bibliometric study comprehensively summarizes the research trends and advances related to the immune microenvironment and survival after kidney transplantation. It identifies recent frontiers of research and highlights promising directions for future studies, potentially offering fresh perspectives to scholars in the field.
Collapse
Affiliation(s)
- Chun-Lian Huang
- Department of Infectious Diseases, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Xin-Yu Fu
- Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Yi Feng
- Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Xiao-Kang Li
- Key Laboratory of Minimally Invasive Techniques and Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Linhai, Zhejiang, China
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Yi Sun
- MRL Global Medical Affairs, MSD China, Shanghai, China
| | - Xin-Li Mao
- Key Laboratory of Minimally Invasive Techniques and Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Linhai, Zhejiang, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Shao-Wei Li
- Key Laboratory of Minimally Invasive Techniques and Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Linhai, Zhejiang, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| |
Collapse
|
12
|
Reindl-Schwaighofer R, Heinzel A, Oberbauer R. Continuous surveillance for kidney transplant rejection: ready for clinical trials? Clin Kidney J 2024; 17:sfad242. [PMID: 38495221 PMCID: PMC10941637 DOI: 10.1093/ckj/sfad242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Indexed: 03/19/2024] Open
Affiliation(s)
| | - Andreas Heinzel
- Department of Nephrology, Medical University of Vienna, Vienna, Austria
| | - Rainer Oberbauer
- Department of Nephrology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
13
|
Schapranow MP, Bayat M, Rasheed A, Naik M, Graf V, Schmidt D, Budde K, Cardinal H, Sapir-Pichhadze R, Fenninger F, Sherwood K, Keown P, Günther OP, Pandl KD, Leiser F, Thiebes S, Sunyaev A, Niemann M, Schimanski A, Klein T. NephroCAGE-German-Canadian Consortium on AI for Improved Kidney Transplantation Outcome: Protocol for an Algorithm Development and Validation Study. JMIR Res Protoc 2023; 12:e48892. [PMID: 38133915 PMCID: PMC10770792 DOI: 10.2196/48892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Recent advances in hardware and software enabled the use of artificial intelligence (AI) algorithms for analysis of complex data in a wide range of daily-life use cases. We aim to explore the benefits of applying AI to a specific use case in transplant nephrology: risk prediction for severe posttransplant events. For the first time, we combine multinational real-world transplant data, which require specific legal and technical protection measures. OBJECTIVE The German-Canadian NephroCAGE consortium aims to develop and evaluate specific processes, software tools, and methods to (1) combine transplant data of more than 8000 cases over the past decades from leading transplant centers in Germany and Canada, (2) implement specific measures to protect sensitive transplant data, and (3) use multinational data as a foundation for developing high-quality prognostic AI models. METHODS To protect sensitive transplant data addressing the first and second objectives, we aim to implement a decentralized NephroCAGE federated learning infrastructure upon a private blockchain. Our NephroCAGE federated learning infrastructure enables a switch of paradigms: instead of pooling sensitive data into a central database for analysis, it enables the transfer of clinical prediction models (CPMs) to clinical sites for local data analyses. Thus, sensitive transplant data reside protected in their original sites while the comparable small algorithms are exchanged instead. For our third objective, we will compare the performance of selected AI algorithms, for example, random forest and extreme gradient boosting, as foundation for CPMs to predict severe short- and long-term posttransplant risks, for example, graft failure or mortality. The CPMs will be trained on donor and recipient data from retrospective cohorts of kidney transplant patients. RESULTS We have received initial funding for NephroCAGE in February 2021. All clinical partners have applied for and received ethics approval as of 2022. The process of exploration of clinical transplant database for variable extraction has started at all the centers in 2022. In total, 8120 patient records have been retrieved as of August 2023. The development and validation of CPMs is ongoing as of 2023. CONCLUSIONS For the first time, we will (1) combine kidney transplant data from nephrology centers in Germany and Canada, (2) implement federated learning as a foundation to use such real-world transplant data as a basis for the training of CPMs in a privacy-preserving way, and (3) develop a learning software system to investigate population specifics, for example, to understand population heterogeneity, treatment specificities, and individual impact on selected posttransplant outcomes. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/48892.
Collapse
Affiliation(s)
- Matthieu-P Schapranow
- Hasso Plattner Institute for Digital Engineering, University of Potsdam, Potsdam, Germany
| | - Mozhgan Bayat
- Hasso Plattner Institute for Digital Engineering, University of Potsdam, Potsdam, Germany
| | - Aadil Rasheed
- Hasso Plattner Institute for Digital Engineering, University of Potsdam, Potsdam, Germany
| | - Marcel Naik
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Verena Graf
- Geschäftsbereich IT, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Danilo Schmidt
- Geschäftsbereich IT, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Klemens Budde
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Héloïse Cardinal
- Research Centre, Centre Hospitalier de l'Université de Montréal, Montréal, QC, Canada
| | - Ruth Sapir-Pichhadze
- Division of Nephrology and Multi-Organ Transplant Program, Department of Medicine and Centre for Outcomes Research and Evaluation, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Franz Fenninger
- Division of Nephrology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Karen Sherwood
- Division of Nephrology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Paul Keown
- Division of Nephrology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | - Konstantin D Pandl
- Department of Economics and Management, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Florian Leiser
- Department of Economics and Management, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Scott Thiebes
- Department of Economics and Management, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Ali Sunyaev
- Department of Economics and Management, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | | | | | | |
Collapse
|
14
|
Vafadar A, Vosough P, Jahromi HK, Tajbakhsh A, Savardshtaki A, Butler AE, Sahebkar A. The role of efferocytosis and transplant rejection: Strategies in promoting transplantation tolerance using apoptotic cell therapy and/or synthetic particles. Cell Biochem Funct 2023; 41:959-977. [PMID: 37787641 DOI: 10.1002/cbf.3852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/26/2023] [Accepted: 08/24/2023] [Indexed: 10/04/2023]
Abstract
Recently, efforts have been made to recognize the precise reason(s) for transplant failure and the process of rejection utilizing the molecular signature. Most transplant recipients do not appreciate the unknown length of survival of allogeneic grafts with the existing standard of care. Two noteworthy immunological pathways occur during allogeneic transplant rejection. A nonspecific innate immune response predominates in the early stages of the immune reaction, and allogeneic antigens initiate a donor-specific adaptive reaction. Though the adaptive response is the major cause of allograft rejection, earlier pro-inflammatory responses that are part of the innate immune response are also regarded as significant in graft loss. The onset of the innate and adaptive immune response causes chronic and acute transplant rejection. Currently employed immunosuppressive medications have shown little or no influence on chronic rejection and, as a result, on overall long-term transplant survival. Furthermore, long-term pharmaceutical immunosuppression is associated with side effects, toxicity, and an increased risk of developing diseases, both infectious and metabolic. As a result, there is a need for the development of innovative donor-specific immunosuppressive medications to regulate the allorecognition pathways that induce graft loss and to reduce the side effects of immunosuppression. Efferocytosis is an immunomodulatory mechanism with fast and efficient clearance of apoptotic cells (ACs). As such, AC therapy strategies have been suggested to limit transplant-related sequelae. Efferocytosis-based medicines/treatments can also decrease the use of immunosuppressive drugs and have no detrimental side effects. Thus, this review aims to investigate the impact of efferocytosis on transplant rejection/tolerance and identify approaches using AC clearance to increase transplant viability.
Collapse
Affiliation(s)
- Asma Vafadar
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parisa Vosough
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Kargar Jahromi
- Research Center for Non-Communicable Disease, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Amir Tajbakhsh
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardshtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland - Bahrain, Adliya, Bahrain
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
15
|
Mardomi A, KarajiBani M, Farnood F, Vahed SZ, Ardalan M. The frequency of peripheral PD-1 + TCD4 + cells is reversely associated with serum creatinine levels in recipients of kidney allografts. Transpl Immunol 2023; 81:101946. [PMID: 37918579 DOI: 10.1016/j.trim.2023.101946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 10/24/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
The long-term survival of solid organ allografts remains a challenge for organ transplantation systems worldwide. T-cell exhaustion has been supposed to be associated with immunologic tolerance in transplantation and might reflect the immunologic status in recipients. The aim of the present study was to compare the TCD4+ cells of kidney transplant recipients with high and low serum creatinine levels for their expressions of PD-1 and TIGIT as two well-known exhaustion markers. Blood samples were taken from 20 kidney allograft recipients with serum creatinine levels above 2 mg/dL and 20 recipients with creatinine levels below 2 mg/dL. The percentages of PD-1+ CD4+ and TIGIT+ CD4+ cells were analyzed along with the evaluation of TNF-α, IFN-γ, and IL-10 release from peripheral blood mononuclear cells (PBMCs). The patients with serum creatinine levels below 2 mg/dL demonstrated a higher frequency of PD-1+ CD4+ T-cells (p = 0.003) along with lower TNF-α secretion from PBMCs (p = 0.028). The frequency of PD-1 + CD4+ T-cells was reversely correlated with the serum creatinine levels in recipients of kidney allografts (r = 0.59, p < 0.001). Besides, the MFI of TIGIT on TCD4+ cells demonstrated a trend for higher expression in patients with serum creatinine levels below 2 mg/dL (p = 0.070). The expression of PD-1+ on CD4+ T-cells demonstrated a potential for estimation of the immunologic status of the host in interaction with alloantigens. The exhaustion markers could be regarded as potential diagnostic indicators for the evaluation of immunologic tolerance in renal transplantation.
Collapse
Affiliation(s)
- Alireza Mardomi
- Department of Medical Laboratory Sciences and Microbiology, Faculty of Medical Sciences, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
| | - Maryam KarajiBani
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farahnoosh Farnood
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohmmadreza Ardalan
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
16
|
Wei C, Sun Y, Zeng F, Chen X, Ma L, Liu X, Qi X, Shi W, Gao H. Exosomal miR-181d-5p Derived from Rapamycin-Conditioned MDSC Alleviated Allograft Rejection by Targeting KLF6. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304922. [PMID: 37870185 PMCID: PMC10700181 DOI: 10.1002/advs.202304922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/18/2023] [Indexed: 10/24/2023]
Abstract
Immune rejection and side effects of long-term administration of immunosuppressants are the two major obstacles to allograft acceptance and tolerance. The immunosuppressive extracellular vesicles (EVs)-based approach has been proven to be effective in treating autoimmune/inflammatory disorders. Herein, the anti-rejection advantage of exosomes (Rapa-Exo) from rapamycin-conditioned myeloid-derived suppressor cells (MDSCs) over exosomes (Exo-Nor) from the untreated MDSCs is shown. The exosomal small RNA sequencing and loss-of-function assays reveal that the anti-rejection effect of Rapa-Exo functionally relies on miR-181d-5p. Through target prediction and double-luciferase reporter assay, Kruppel-like factor (KLF) 6 is identified as a direct target of miR-181d-5p. Finally, KLF6 knockdown markedly resolves inflammation and prolongs the survival of corneal allografts. Taken together, these findings support that Rapa-Exo executes an anti-rejection effect, highlighting the immunosuppressive EVs-based treatment as a promising approach in organ transplantation.
Collapse
Affiliation(s)
- Chao Wei
- State Key Laboratory Cultivation BaseShandong Provincial Key Laboratory of OphthalmologyEye Institute of Shandong First Medical UniversityQingdao266071China
| | - Yaru Sun
- State Key Laboratory Cultivation BaseShandong Provincial Key Laboratory of OphthalmologyEye Institute of Shandong First Medical UniversityQingdao266071China
| | - Fanxing Zeng
- State Key Laboratory Cultivation BaseShandong Provincial Key Laboratory of OphthalmologyEye Institute of Shandong First Medical UniversityQingdao266071China
| | - Xiunian Chen
- State Key Laboratory Cultivation BaseShandong Provincial Key Laboratory of OphthalmologyEye Institute of Shandong First Medical UniversityQingdao266071China
| | - Li Ma
- State Key Laboratory Cultivation BaseShandong Provincial Key Laboratory of OphthalmologyEye Institute of Shandong First Medical UniversityQingdao266071China
| | - Xiaoxue Liu
- State Key Laboratory Cultivation BaseShandong Provincial Key Laboratory of OphthalmologyEye Institute of Shandong First Medical UniversityQingdao266071China
| | - Xiaolin Qi
- State Key Laboratory Cultivation BaseShandong Provincial Key Laboratory of OphthalmologyEye Institute of Shandong First Medical UniversityQingdao266071China
- Eye Hospital of Shandong First Medical University (Shandong Eye Hospital)Jinan250117China
- School of OphthalmologyShandong First Medical University & Shandong Academy of Medical ScienceJinan250117China
| | - Weiyun Shi
- State Key Laboratory Cultivation BaseShandong Provincial Key Laboratory of OphthalmologyEye Institute of Shandong First Medical UniversityQingdao266071China
- Eye Hospital of Shandong First Medical University (Shandong Eye Hospital)Jinan250117China
- School of OphthalmologyShandong First Medical University & Shandong Academy of Medical ScienceJinan250117China
| | - Hua Gao
- State Key Laboratory Cultivation BaseShandong Provincial Key Laboratory of OphthalmologyEye Institute of Shandong First Medical UniversityQingdao266071China
- Eye Hospital of Shandong First Medical University (Shandong Eye Hospital)Jinan250117China
- School of OphthalmologyShandong First Medical University & Shandong Academy of Medical ScienceJinan250117China
| |
Collapse
|
17
|
Mengrelis K, Muckenhuber M, Wekerle T. Chimerism-based Tolerance Induction in Clinical Transplantation: Its Foundations and Mechanisms. Transplantation 2023; 107:2473-2485. [PMID: 37046378 DOI: 10.1097/tp.0000000000004589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Hematopoietic chimerism remains the most promising strategy to bring transplantation tolerance into clinical routine. The concept of chimerism-based tolerance aims to extend the recipient's mechanisms of self-tolerance (ie, clonal deletion, anergy, and regulation) to include the tolerization of donor antigens that are introduced through the cotransplantation of donor hematopoietic cells. For this to be successful, donor hematopoietic cells need to engraft in the recipient at least temporarily. Three pioneering clinical trials inducing chimerism-based tolerance in kidney transplantation have been published to date. Within this review, we discuss the mechanisms of tolerance that are associated with the specific therapeutic protocols of each trial. Recent data highlight the importance of regulation as a mechanism that maintains tolerance. Insufficient regulatory mechanisms are also a likely explanation for situations of tolerance failure despite persisting donor chimerism. After decades of preclinical development of chimerism protocols, mechanistic data from clinical trials have recently become increasingly important. Better understanding of the required mechanisms for tolerance to be induced in humans will be a key to design more reliable and less invasive chimerism protocols in the future.
Collapse
Affiliation(s)
- Konstantinos Mengrelis
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | | | | |
Collapse
|
18
|
Wahida A, Schmaderer C, Büttner-Herold M, Branca C, Donakonda S, Haberfellner F, Torrez C, Schmitz J, Schulze T, Seibt T, Öllinger R, Engleitner T, Haller B, Steiger K, Günthner R, Lorenz G, Yabal M, Bachmann Q, Braunisch MC, Moog P, Matevossian E, Aßfalg V, Thorban S, Renders L, Späth MR, Müller RU, Stippel DL, Weichert W, Slotta-Huspenina J, von Vietinghoff S, Viklicky O, Green DR, Rad R, Amann K, Linkermann A, Bräsen JH, Heemann U, Kemmner S. High RIPK3 expression is associated with a higher risk of early kidney transplant failure. iScience 2023; 26:107879. [PMID: 37868627 PMCID: PMC10585402 DOI: 10.1016/j.isci.2023.107879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/05/2022] [Accepted: 09/07/2023] [Indexed: 10/24/2023] Open
Abstract
Renal ischemia-reperfusion injury (IRI) is associated with reduced allograft survival, and each additional hour of cold ischemia time increases the risk of graft failure and mortality following renal transplantation. Receptor-interacting protein kinase 3 (RIPK3) is a key effector of necroptosis, a regulated form of cell death. Here, we evaluate the first-in-human RIPK3 expression dataset following IRI in kidney transplantation. The primary analysis included 374 baseline biopsy samples obtained from renal allografts 10 minutes after onset of reperfusion. RIPK3 was primarily detected in proximal tubular cells and distal tubular cells, both of which are affected by IRI. Time-to-event analysis revealed that high RIPK3 expression is associated with a significantly higher risk of one-year transplant failure and prognostic for one-year (death-censored) transplant failure independent of donor and recipient associated risk factors in multivariable analyses. The RIPK3 score also correlated with deceased donation, cold ischemia time and the extent of tubular injury.
Collapse
Affiliation(s)
- Adam Wahida
- Medical Department III of Hematology and Oncology, Klinikum rechts der Isar, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Christoph Schmaderer
- Department of Nephrology, Klinikum rechts der Isar, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Maike Büttner-Herold
- Department of Nephropathology, Friedrich-Alexander University (FAU) Erlangen-Nurnberg, Erlangen, Germany
| | - Caterina Branca
- Medical Department III of Hematology and Oncology, Klinikum rechts der Isar, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Sainitin Donakonda
- Nephropathology Unit, Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Flora Haberfellner
- Department of Nephrology, Klinikum rechts der Isar, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Carlos Torrez
- Department of Nephrology, Klinikum rechts der Isar, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Jessica Schmitz
- Nephropathology Unit, Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Tobias Schulze
- Medical Department III of Hematology and Oncology, Klinikum rechts der Isar, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Tobias Seibt
- Transplant Center, University Hospital Munich, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Rupert Öllinger
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Thomas Engleitner
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Bernhard Haller
- Institute of AI and Informatics in Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Katja Steiger
- Institute of Pathology, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Roman Günthner
- Department of Nephrology, Klinikum rechts der Isar, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Georg Lorenz
- Department of Nephrology, Klinikum rechts der Isar, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Monica Yabal
- Nephropathology Unit, Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Quirin Bachmann
- Department of Nephrology, Klinikum rechts der Isar, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Matthias C. Braunisch
- Department of Nephrology, Klinikum rechts der Isar, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Philipp Moog
- Department of Nephrology, Klinikum rechts der Isar, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Edouard Matevossian
- Clinic of General, Visceral, Transplantation, Vascular and Thoracic Surgery, University Hospital Munich, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Volker Aßfalg
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Stefan Thorban
- Institute of Molecular Immunology and Experimental Oncology, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Lutz Renders
- Department of Nephrology, Klinikum rechts der Isar, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Martin R. Späth
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Roman-Ulrich Müller
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Dirk L. Stippel
- Department of General, Visceral and Cancer Surgery, University of Cologne, Cologne, Germany
| | - Wilko Weichert
- Institute of Pathology, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Julia Slotta-Huspenina
- Institute of Pathology, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Sibylle von Vietinghoff
- Nephrology Section, Medical Clinic 1, University Hospital Bonn, Rheinische Friedrich Wilhelm University of Bonn, Bonn, Germany
| | - Ondrej Viklicky
- Department of Nephrology, Transplant Center, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Douglas R. Green
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Roland Rad
- Nephropathology Unit, Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Kerstin Amann
- Department of Nephropathology, Friedrich-Alexander University (FAU) Erlangen-Nurnberg, Erlangen, Germany
| | - Andreas Linkermann
- Division of Nephrology, Clinic of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
- Division of Nephrology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jan Hinrich Bräsen
- Nephropathology Unit, Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Uwe Heemann
- Department of Nephrology, Klinikum rechts der Isar, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Stephan Kemmner
- Department of Nephrology, Klinikum rechts der Isar, TUM School of Medicine, Technical University of Munich, Munich, Germany
- Transplant Center, University Hospital Munich, Ludwig-Maximilians-University (LMU), Munich, Germany
| |
Collapse
|
19
|
Thielemans R, Speeckaert R, Delrue C, De Bruyne S, Oyaert M, Speeckaert MM. Unveiling the Hidden Power of Uromodulin: A Promising Potential Biomarker for Kidney Diseases. Diagnostics (Basel) 2023; 13:3077. [PMID: 37835820 PMCID: PMC10572911 DOI: 10.3390/diagnostics13193077] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Uromodulin, also known as Tamm-Horsfall protein, represents the predominant urinary protein in healthy individuals. Over the years, studies have revealed compelling associations between urinary and serum concentrations of uromodulin and various parameters, encompassing kidney function, graft survival, cardiovascular disease, glucose metabolism, and overall mortality. Consequently, there has been a growing interest in uromodulin as a novel and effective biomarker with potential applications in diverse clinical settings. Reduced urinary uromodulin levels have been linked to an elevated risk of acute kidney injury (AKI) following cardiac surgery. In the context of chronic kidney disease (CKD) of different etiologies, urinary uromodulin levels tend to decrease significantly and are strongly correlated with variations in estimated glomerular filtration rate. The presence of uromodulin in the serum, attributable to basolateral epithelial cell leakage in the thick ascending limb, has been observed. This serum uromodulin level is closely associated with kidney function and histological severity, suggesting its potential as a biomarker capable of reflecting disease severity across a spectrum of kidney disorders. The UMOD gene has emerged as a prominent locus linked to kidney function parameters and CKD risk within the general population. Extensive research in multiple disciplines has underscored the biological significance of the top UMOD gene variants, which have also been associated with hypertension and kidney stones, thus highlighting the diverse and significant impact of uromodulin on kidney-related conditions. UMOD gene mutations are implicated in uromodulin-associated kidney disease, while polymorphisms in the UMOD gene show a significant association with CKD. In conclusion, uromodulin holds great promise as an informative biomarker, providing valuable insights into kidney function and disease progression in various clinical scenarios. The identification of UMOD gene variants further strengthens its relevance as a potential target for better understanding kidney-related pathologies and devising novel therapeutic strategies. Future investigations into the roles of uromodulin and regulatory mechanisms are likely to yield even more profound implications for kidney disease diagnosis, risk assessment, and management.
Collapse
Affiliation(s)
- Raïsa Thielemans
- Department of Nephrology, Ghent University Hospital, 9000 Ghent, Belgium; (R.T.); (C.D.)
| | | | - Charlotte Delrue
- Department of Nephrology, Ghent University Hospital, 9000 Ghent, Belgium; (R.T.); (C.D.)
| | - Sander De Bruyne
- Department of Laboratory Medicine, Ghent University Hospital, 9000 Ghent, Belgium; (S.D.B.); (M.O.)
| | - Matthijs Oyaert
- Department of Laboratory Medicine, Ghent University Hospital, 9000 Ghent, Belgium; (S.D.B.); (M.O.)
| | - Marijn M. Speeckaert
- Department of Nephrology, Ghent University Hospital, 9000 Ghent, Belgium; (R.T.); (C.D.)
- Research Foundation Flanders, 1000 Brussels, Belgium
| |
Collapse
|
20
|
Mucha J, Cho A, Weijler AM, Muckenhuber M, Hofmann AG, Wahrmann M, Heinzel A, Linhart B, Gattinger P, Valenta R, Berlakovich G, Zuckermann A, Jaksch P, Oberbauer R, Wekerle T. Prospective assessment of pre-existing and de novo anti-HLA IgE in kidney, liver, lung and heart transplantation. Front Immunol 2023; 14:1179036. [PMID: 37731514 PMCID: PMC10507692 DOI: 10.3389/fimmu.2023.1179036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/31/2023] [Indexed: 09/22/2023] Open
Abstract
Introduction Antibody mediated rejection (ABMR) is a major factor limiting outcome after organ transplantation. Anti-HLA donor-specific antibodies (DSA) of the IgG isotype are mainly responsible for ABMR. Recently DSA of the IgE isotype were demonstrated in murine models as well as in a small cohort of sensitized transplant recipients. In the present study, we aimed to determine the frequency of pre-existing and de novo anti-HLA IgE antibodies in a cohort of 105 solid organ transplant recipients. Methods We prospectively measured anti-HLA IgE antibodies in a cohort of kidney (n=60), liver, heart and lung (n=15 each) transplant recipients before and within one-year after transplantation, employing a single-antigen bead assay for HLA class I and class II antigens. Functional activity of anti-HLA IgE antibodies was assessed by an in vitro mediator release assay. Antibodies of the IgG1-4 subclasses and Th1 and Th2 cytokines were measured in anti-HLA IgE positive patients. Results Pre-existing anti-HLA IgE antibodies were detected in 10% of renal recipients (including 3.3% IgE-DSA) and in 4.4% of non-renal solid organ transplant recipients (heart, liver and lung cohort). Anti-HLA IgE occurred only in patients that were positive for anti-HLA IgG, and most IgE positive patients had had a previous transplant. Only a small fraction of patients developed de novo anti-HLA IgE antibodies (1.7% of kidney recipients and 4.4% of non-renal recipients), whereas no de novo IgE-DSA was detected. IgG subclass antibodies showed a distinct pattern in patients who were positive for anti-HLA IgE. Moreover, patients with anti-HLA IgE showed elevated Th2 and also Th1 cytokine levels. Serum from IgE positive recipients led to degranulation of basophils in vitro, demonstrating functionality of anti-HLA IgE. Discussion These data demonstrate that anti-HLA IgE antibodies occur at low frequency in kidney, liver, heart and lung transplant recipients. Anti-HLA IgE development is associated with sensitization at the IgG level, in particular through previous transplants and distinct IgG subclasses. Taken together, HLA specific IgE sensitization is a new phenomenon in solid organ transplant recipients whose potential relevance for allograft injury requires further investigation.
Collapse
Affiliation(s)
- Jasmin Mucha
- Department of General Surgery, Division of Transplantation, Medical University of Vienna, Vienna, Austria
| | - Ara Cho
- Department of General Surgery, Division of Transplantation, Medical University of Vienna, Vienna, Austria
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Anna Marianne Weijler
- Department of General Surgery, Division of Transplantation, Medical University of Vienna, Vienna, Austria
| | - Moritz Muckenhuber
- Department of General Surgery, Division of Transplantation, Medical University of Vienna, Vienna, Austria
| | - Amun Georg Hofmann
- Department of General Surgery, Division of Transplantation, Medical University of Vienna, Vienna, Austria
| | - Markus Wahrmann
- Department of Internal Medicine III, Division of Nephrology and Dialysis, Medical University of Vienna, Vienna, Austria
| | - Andreas Heinzel
- Department of Internal Medicine III, Division of Nephrology and Dialysis, Medical University of Vienna, Vienna, Austria
| | - Birgit Linhart
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Pia Gattinger
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Rudolf Valenta
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Gabriela Berlakovich
- Department of General Surgery, Division of Transplantation, Medical University of Vienna, Vienna, Austria
| | - Andreas Zuckermann
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Peter Jaksch
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Rainer Oberbauer
- Department of Internal Medicine III, Division of Nephrology and Dialysis, Medical University of Vienna, Vienna, Austria
| | - Thomas Wekerle
- Department of General Surgery, Division of Transplantation, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
21
|
Wen N, Wu J, Li H, Liao J, Lan L, Yang X, Zhu G, Lei Z, Dong J, Sun X. Immune landscape in rejection of renal transplantation revealed by high-throughput single-cell RNA sequencing. Front Cell Dev Biol 2023; 11:1208566. [PMID: 37547477 PMCID: PMC10397399 DOI: 10.3389/fcell.2023.1208566] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/12/2023] [Indexed: 08/08/2023] Open
Abstract
Background: The role of the cellular level in kidney transplant rejection is unclear, and single-cell RNA sequencing (scRNA-seq) can reveal the single-cell landscape behind rejection of human kidney allografts at the single-cell level. Methods: High-quality transcriptomes were generated from scRNA-seq data from five human kidney transplantation biopsy cores. Cluster analysis was performed on the scRNA-seq data by known cell marker genes in order to identify different cell types. In addition, pathways, pseudotime developmental trajectories and transcriptional regulatory networks involved in different cell subpopulations were explored. Next, we systematically analyzed the scoring of gene sets regarding single-cell expression profiles based on biological processes associated with oxidative stress. Results: We obtained 81,139 single cells by scRNA-seq from kidney transplant tissue biopsies of three antibody-mediated rejection (ABMR) patients and two acute kidney injury (AKI) patients with non-rejection causes and identified 11 cell types, including immune cells, renal cells and several stromal cells. Immune cells such as macrophages showed inflammatory activation and antigen presentation and complement signaling, especially in rejection where some subpopulations of cells specifically expressed in rejection showed specific pro-inflammatory responses. In addition, patients with rejection are characterized by an increased number of fibroblasts, and further analysis of subpopulations of fibroblasts revealed their involvement in inflammatory and fibrosis-related pathways leading to increased renal rejection and fibrosis. Notably, the gene set score for response to oxidative stress was higher in patients with rejection. Conclusion: Insight into histological differences in kidney transplant patients with or without rejection was gained by assessing differences in cellular levels at single-cell resolution. In conclusion, we applied scRNA-seq to rejection after renal transplantation to deconstruct its heterogeneity and identify new targets for personalized therapeutic approaches.
Collapse
Affiliation(s)
- Ning Wen
- Transplant Medical Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Organ Donation and Transplantation, Nanning, China
- Guangxi Clinical Research Center for Organ Transplantation, Nanning, China
| | - Jihua Wu
- Transplant Medical Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Organ Donation and Transplantation, Nanning, China
- Guangxi Clinical Research Center for Organ Transplantation, Nanning, China
| | - Haibin Li
- Transplant Medical Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Organ Donation and Transplantation, Nanning, China
- Guangxi Clinical Research Center for Organ Transplantation, Nanning, China
| | - Jixiang Liao
- Transplant Medical Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Liugen Lan
- Transplant Medical Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiawei Yang
- Transplant Medical Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Guangyi Zhu
- Transplant Medical Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhiying Lei
- Transplant Medical Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jianhui Dong
- Transplant Medical Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xuyong Sun
- Transplant Medical Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Organ Donation and Transplantation, Nanning, China
- Guangxi Clinical Research Center for Organ Transplantation, Nanning, China
| |
Collapse
|
22
|
Alhamad T, Murad H, Dadhania DM, Pavlakis M, Parajuli S, Concepcion BP, Singh N, Murakami N, Casey MJ, Ji M, Lubetzky M, Tantisattamo E, Alomar O, Faravardeh A, Blosser CD, Basu A, Gupta G, Adler JT, Adey D, Woodside KJ, Ong SC, Parsons RF, Lentine KL. The Perspectives of General Nephrologists Toward Transitions of Care and Management of Failing Kidney Transplants. Transpl Int 2023; 36:11172. [PMID: 37456682 PMCID: PMC10348051 DOI: 10.3389/ti.2023.11172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/14/2023] [Indexed: 07/18/2023]
Abstract
The management of failing kidney allograft and transition of care to general nephrologists (GN) remain a complex process. The Kidney Pancreas Community of Practice (KPCOP) Failing Allograft Workgroup designed and distributed a survey to GN between May and September 2021. Participants were invited via mail and email invitations. There were 103 respondents with primarily adult nephrology practices, of whom 41% had an academic affiliation. More than 60% reported listing for a second kidney as the most important concern in caring for patients with a failing allograft, followed by immunosuppression management (46%) and risk of mortality (38%), while resistant anemia was considered less of a concern. For the initial approach to immunosuppression reduction, 60% stop antimetabolites first, and 26% defer to the transplant nephrologist. Communicating with transplant centers about immunosuppression cessation was reported to occur always by 60%, and sometimes by 29%, while 12% reported making the decision independently. Nephrologists with academic appointments communicate with transplant providers more than private nephrologists (74% vs. 49%, p = 0.015). There are heterogeneous approaches to the care of patients with a failing allograft. Efforts to strengthen transitions of care and to develop practical practice guidelines are needed to improve the outcomes of this vulnerable population.
Collapse
Affiliation(s)
- Tarek Alhamad
- John T. Milliken Department of Medicine, Washington University in St. Louis, Saint Louis, MO, United States
| | - Haris Murad
- John T. Milliken Department of Medicine, Washington University in St. Louis, Saint Louis, MO, United States
| | - Darshana M. Dadhania
- Department of Transplantation Medicine, Weill Cornel Medicine - New York Presbyterian Hospital, New York, NY, United States
| | - Martha Pavlakis
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard University, Boston, MA, United States
| | - Sandesh Parajuli
- Department of Medicine, University of Wisconsin - Madison, Madison, WI, United States
| | | | - Neeraj Singh
- John C. McDonald Regional Transplant Center, Willis Knighton Health System, Shreveport, LA, United States
| | - Naoka Murakami
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Michael J. Casey
- Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Mengmeng Ji
- John T. Milliken Department of Medicine, Washington University in St. Louis, Saint Louis, MO, United States
| | - Michelle Lubetzky
- Division of Abdominal Transplantation, Department of Surgery and Perioperative Care, Dell Medical School, University of Texas at Austin, Austin, TX, United States
| | - Ekamol Tantisattamo
- Department of Medicine, University of California, Irvine, Orange, CA, United States
| | - Omar Alomar
- John T. Milliken Department of Medicine, Washington University in St. Louis, Saint Louis, MO, United States
| | - Arman Faravardeh
- SHARP Kidney and Pancreas Transplant Center, San Diego, CA, United States
| | - Christopher D. Blosser
- Department of Medicine, Seattle Children’s Hospital, University of Washington, Seattle, WA, United States
| | - Arpita Basu
- Department of Medicine, Emory University, Atlanta, GA, United States
| | - Gaurav Gupta
- Department of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Joel T. Adler
- Division of Abdominal Transplantation, Department of Surgery and Perioperative Care, Dell Medical School, University of Texas at Austin, Austin, TX, United States
| | - Deborah Adey
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | | | - Song C. Ong
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ronald F. Parsons
- Department of Medicine, Emory University, Atlanta, GA, United States
| | - Krista L. Lentine
- Center for Abdominal Transplantation, Saint Louis University, Saint Louis, MO, United States
| |
Collapse
|
23
|
Hendriks SH, Heidt S, Schulz AR, de Fijter JW, Reinders MEJ, Koning F, van Kooten C. Peripheral Blood Immune Cell Composition After Autologous MSC Infusion in Kidney Transplantation Recipients. Transpl Int 2023; 36:11329. [PMID: 37426430 PMCID: PMC10326287 DOI: 10.3389/ti.2023.11329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/09/2023] [Indexed: 07/11/2023]
Abstract
Tacrolimus is the backbone of immunosuppressive agents to prevent transplant rejection. Paradoxically, tacrolimus is nephrotoxic, causing irreversible tubulointerstitial damage. Therefore, infusion of mesenchymal stromal cells (MSC) 6 and 7 weeks post-transplantation was assessed to facilitate withdrawal of tacrolimus in the randomized phase II TRITON trial. Here, we performed detailed analysis of the peripheral blood immune composition using mass cytometry to assess potential effects of MSC therapy on the immune system. We developed two metal-conjugated antibody panels containing 40 antibodies each. PBMC samples from 21 MSC-treated patients and 13 controls, obtained pre-transplant and at 24 and 52 weeks post-transplantation, were analyzed. In the MSC group at 24 weeks, 17 CD4+ T cell clusters were increased of which 14 Th2-like clusters and three Th1/Th2-like clusters, as well as CD4+FoxP3+ Tregs. Additionally, five B cell clusters were increased, representing either class switched memory B cells or proliferating B cells. At 52 weeks, CCR7+CD38+ mature B cells were decreased. Finally, eight Tc1 (effector) memory cytotoxic T cell clusters were increased. Our work provides a comprehensive account of the peripheral blood immune cell composition in kidney transplant recipients after MSC therapy and tacrolimus withdrawal. These results may help improving therapeutic strategies using MSCs with the aim to reduce the use of calcineurin inhibitors. Clinical Trial Registration: ClinicalTrials.gov, identifier NCT02057965.
Collapse
Affiliation(s)
- Sanne H. Hendriks
- Department of Immunology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Sebastiaan Heidt
- Department of Immunology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Axel R. Schulz
- German Rheumatism Research Center (DRFZ), Berlin, Germany
| | - Johan W. de Fijter
- Department of Internal Medicine (Nephrology) and Transplant Center, Leiden University Medical Center, Leiden, Netherlands
| | - Marlies E. J. Reinders
- Department of Internal Medicine (Nephrology) and Transplant Center, Leiden University Medical Center, Leiden, Netherlands
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC Transplant Institute, Erasmus University Medical Center, Leiden, Netherlands
| | - Frits Koning
- Department of Immunology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Cees van Kooten
- Department of Internal Medicine (Nephrology) and Transplant Center, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
24
|
Lackner K, Ebner S, Watschinger K, Maglione M. Multiple Shades of Gray-Macrophages in Acute Allograft Rejection. Int J Mol Sci 2023; 24:8257. [PMID: 37175964 PMCID: PMC10179242 DOI: 10.3390/ijms24098257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/27/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
Long-term results following solid organ transplantation do not mirror the excellent short-term results achieved in recent decades. It is therefore clear that current immunosuppressive maintenance protocols primarily addressing the adaptive immune system no longer meet the required clinical need. Identification of novel targets addressing this shortcoming is urgently needed. There is a growing interest in better understanding the role of the innate immune system in this context. In this review, we focus on macrophages, which are known to prominently infiltrate allografts and, during allograft rejection, to be involved in the surge of the adaptive immune response by expression of pro-inflammatory cytokines and direct cytotoxicity. However, this active participation is janus-faced and unspecific targeting of macrophages may not consider the different subtypes involved. Under this premise, we give an overview on macrophages, including their origins, plasticity, and important markers. We then briefly describe their role in acute allograft rejection, which ranges from sustaining injury to promoting tolerance, as well as the impact of maintenance immunosuppressants on macrophages. Finally, we discuss the observed immunosuppressive role of the vitamin-like compound tetrahydrobiopterin and the recent findings that suggest the innate immune system, particularly macrophages, as its target.
Collapse
Affiliation(s)
- Katharina Lackner
- Daniel Swarovski Research Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria; (K.L.); (S.E.)
| | - Susanne Ebner
- Daniel Swarovski Research Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria; (K.L.); (S.E.)
| | - Katrin Watschinger
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Manuel Maglione
- Daniel Swarovski Research Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria; (K.L.); (S.E.)
- Department of Visceral, Transplant, and Thoracic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
25
|
Tseng IH, Lin IH, Wu YM, Van Duong T, Nien SW, Wang HH, Chiang YJ, Yang SH, Wong TC. High Alternative Health Eating Index-Taiwan Scores Are Associated With Prevention of Graft Dysfunction in Taiwanese Renal Transplant Recipients. Transplant Proc 2023:S0041-1345(23)00148-3. [PMID: 37059667 DOI: 10.1016/j.transproceed.2023.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/13/2023] [Indexed: 04/16/2023]
Abstract
BACKGROUND Various dietary quality indices demonstrate that a higher dietary quality score is associated with a reduced risk of several chronic diseases. However, creating an index tailored to the national population is crucial. The study investigated the association between the Alternative Healthy Eating Index-Taiwan (AHEI-Taiwan) and graft dysfunction in Taiwanese renal transplant recipients (RTRs). METHODS A prospective cohort study recruited 102 RTRs with a functioning allograft without acute rejection in the last 3 months from September 2016 to June 2018. Laboratory data were obtained from the medical records of patients. Graft dysfunction was indicated by an estimated glomerular filtration rate (eGFR) <60 mL/min per 1.73 m2 in accordance with the Kidney Disease Outcomes Quality Initiative guideline. The dietary quality index AHEI-Taiwan was adapted from the AHEI based on Taiwanese dietary recommendations. RESULTS Mean age, renal transplant time, and eGFR were 48.9 ± 12.8 years, 8.5 ± 5.8 years, and 54.9 ± 17.8 mL/min per 1.73 m2, respectively, in 102 RTRs. The RTRs with the highest quartile of AHEI-Taiwan scores were older and had a higher eGFR. Logistic regression analysis adjusted for age, sex, calories, Charlson comorbidity index, transplant time, and dialysis time showed that the highest quartile of the AHEI-Taiwan was associated with an 88% (odds ratio, 0.12; 95% CI, 0.03-0.59, P < .01) lower risk of graft dysfunction. CONCLUSION A high AHEI-Taiwan score was associated with a reduced risk of graft dysfunction in Taiwanese RTRs.
Collapse
Affiliation(s)
- I-Hsin Tseng
- Department of Medical Nutrition Therapy, Linkou Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - I-Hsin Lin
- Department of Medical Nutrition Therapy, Linkou Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Yi-Ming Wu
- Department of Medical Nutrition Therapy, Linkou Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Tuyen Van Duong
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan
| | - Shih-Wei Nien
- Department of Medical Nutrition Therapy, Linkou Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Hsu-Han Wang
- Department of Urology, Linkou Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Yang-Jen Chiang
- Department of Urology, Linkou Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Shwu-Huey Yang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan; Research Center of Geriatric Nutrition, College of Nutrition, Taipei Medical University, Taipei, Taiwan; Nutrition Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Te-Chih Wong
- Department of Nutrition and Health Sciences, Chinese Culture University, Taipei, Taiwan.
| |
Collapse
|
26
|
Ott LC, Cuenca AG. Innate immune cellular therapeutics in transplantation. FRONTIERS IN TRANSPLANTATION 2023; 2:1067512. [PMID: 37994308 PMCID: PMC10664839 DOI: 10.3389/frtra.2023.1067512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Successful organ transplantation provides an opportunity to extend the lives of patients with end-stage organ failure. Selectively suppressing the donor-specific alloimmune response, however, remains challenging without the continuous use of non-specific immunosuppressive medications, which have multiple adverse effects including elevated risks of infection, chronic kidney injury, cardiovascular disease, and cancer. Efforts to promote allograft tolerance have focused on manipulating the adaptive immune response, but long-term allograft survival rates remain disappointing. In recent years, the innate immune system has become an attractive therapeutic target for the prevention and treatment of transplant organ rejection. Indeed, contemporary studies demonstrate that innate immune cells participate in both the initial alloimmune response and chronic allograft rejection and undergo non-permanent functional reprogramming in a phenomenon termed "trained immunity." Several types of innate immune cells are currently under investigation as potential therapeutics in transplantation, including myeloid-derived suppressor cells, dendritic cells, regulatory macrophages, natural killer cells, and innate lymphoid cells. In this review, we discuss the features and functions of these cell types, with a focus on their role in the alloimmune response. We examine their potential application as therapeutics to prevent or treat allograft rejection, as well as challenges in their clinical translation and future directions for investigation.
Collapse
Affiliation(s)
- Leah C Ott
- Department of General Surgery, Boston Children's Hospital, Boston, MA, United States
| | - Alex G Cuenca
- Department of General Surgery, Boston Children's Hospital, Boston, MA, United States
| |
Collapse
|
27
|
Andrian T, Siriteanu L, Covic AS, Ipate CA, Miron A, Morosanu C, Caruntu ID, Covic A. Non-Traditional Non-Immunological Risk Factors for Kidney Allograft Loss-Opinion. J Clin Med 2023; 12:jcm12062364. [PMID: 36983364 PMCID: PMC10051358 DOI: 10.3390/jcm12062364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/16/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Rates of late allograft loss have improved slowly in the last decades. Well described traditional risk factors that influence allograft survival include cardiovascular events, rejection, infections and post-transplant neoplasia. Here, we critically evaluate the influence of several non-immunological, non-traditional risk factors and describe their impact on allograft survival and cardiovascular health of kidney transplant recipients. We assessed the following risk factors: arterial stiffness, persistent arteriovenous access, mineral bone disease, immunosuppressive drugs residual levels variability, hypomagnesemia, glomerular pathological alterations not included in Banff criteria, persistent inflammation and metabolic acidosis.
Collapse
Affiliation(s)
- Titus Andrian
- Nephrology Clinic, Dialysis and Renal Transplant Center, C. I. Parhon University Hospital, 700503 Iasi, Romania
- Department of Internal Medicine, 'Grigore T. Popa' University of Medicine, 700115 Iasi, Romania
| | - Lucian Siriteanu
- Nephrology Clinic, Dialysis and Renal Transplant Center, C. I. Parhon University Hospital, 700503 Iasi, Romania
- Department of Internal Medicine, 'Grigore T. Popa' University of Medicine, 700115 Iasi, Romania
| | - Andreea Simona Covic
- Nephrology Clinic, Dialysis and Renal Transplant Center, C. I. Parhon University Hospital, 700503 Iasi, Romania
- Department of Internal Medicine, 'Grigore T. Popa' University of Medicine, 700115 Iasi, Romania
| | - Cristina Alexandra Ipate
- Nephrology Clinic, Dialysis and Renal Transplant Center, C. I. Parhon University Hospital, 700503 Iasi, Romania
| | - Adelina Miron
- Nephrology Clinic, Dialysis and Renal Transplant Center, C. I. Parhon University Hospital, 700503 Iasi, Romania
- Department of Internal Medicine, 'Grigore T. Popa' University of Medicine, 700115 Iasi, Romania
| | - Corneliu Morosanu
- Nephrology Clinic, Dialysis and Renal Transplant Center, C. I. Parhon University Hospital, 700503 Iasi, Romania
| | - Irina-Draga Caruntu
- Department of Internal Medicine, 'Grigore T. Popa' University of Medicine, 700115 Iasi, Romania
| | - Adrian Covic
- Nephrology Clinic, Dialysis and Renal Transplant Center, C. I. Parhon University Hospital, 700503 Iasi, Romania
- Department of Internal Medicine, 'Grigore T. Popa' University of Medicine, 700115 Iasi, Romania
| |
Collapse
|
28
|
Steiner R, Pilat N. The potential for Treg-enhancing therapies in transplantation. Clin Exp Immunol 2023; 211:122-137. [PMID: 36562079 PMCID: PMC10019131 DOI: 10.1093/cei/uxac118] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/21/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022] Open
Abstract
Since the discovery of regulatory T cells (Tregs) as crucial regulators of immune tolerance against self-antigens, these cells have become a promising tool for the induction of donor-specific tolerance in transplantation medicine. The therapeutic potential of increasing in vivoTreg numbers for a favorable Treg to Teff cell ratio has already been demonstrated in several sophisticated pre-clinical models and clinical pilot trials. In addition to improving cell quantity, enhancing Treg function utilizing engineering techniques led to encouraging results in models of autoimmunity and transplantation. Here we aim to discuss the most promising approaches for Treg-enhancing therapies, starting with adoptive transfer approaches and ex vivoexpansion cultures (polyclonal vs. antigen specific), followed by selective in vivostimulation methods. Furthermore, we address next generation concepts for Treg function enhancement (CARs, TRUCKs, BARs) as well as the advantages and caveats inherit to each approach. Finally, this review will discuss the clinical experience with Treg therapy in ongoing and already published clinical trials; however, data on long-term results and efficacy are still very limited and many questions that might complicate clinical translation remain open. Here, we discuss the hurdles for clinical translation and elaborate on current Treg-based therapeutic options as well as their potencies for improving long-term graft survival in transplantation.
Collapse
Affiliation(s)
- Romy Steiner
- Department of General Surgery, Medical University of Vienna, Vienna, Austria
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
- Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Nina Pilat
- Correspondence: Nina Pilat, PhD, Department of Cardiac Surgery, Center for Biomedical Research, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria.
| |
Collapse
|
29
|
Moreau A, Kervella D, Bouchet-Delbos L, Braudeau C, Saïagh S, Guérif P, Limou S, Moreau A, Bercegeay S, Streitz M, Sawitzki B, James B, Harden PN, Game D, Tang Q, Markmann JF, Roberts ISD, Geissler EK, Dréno B, Josien R, Cuturi MC, Blancho G, Branchereau J, Cantarovich D, Chapelet A, Dantal J, Deltombe C, Figueres L, Gaisne R, Garandeau C, Giral M, Gourraud-Vercel C, Hourmant M, Karam G, Kerleau C, Kervella D, Masset C, Meurette A, Ville S, Kandell C, Moreau A, Renaudin K, Delbos F, Walencik A, Devis A. A Phase I/IIa study of autologous tolerogenic dendritic cells immunotherapy in kidney transplant recipients. Kidney Int 2023; 103:627-637. [PMID: 36306921 DOI: 10.1016/j.kint.2022.08.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 11/09/2022]
Abstract
Kidney transplant survival is shortened by chronic rejection and side effects of standard immunosuppressive drugs. Cell-based immunotherapy with tolerogenic dendritic cells has long been recognized as a promising approach to reduce general immunosuppression. Published trials report the safety and the absence of therapy-related adverse reactions in patients treated with tolerogenic dendritic cells suffering from several inflammatory diseases. Here, we present the first phase I clinical trial results using human autologous tolerogenic dendritic cells (ATDC) in kidney transplantation. Eight patients received ATDC the day before transplantation in conjunction with standard steroids, mycophenolate mofetil and tacrolimus immunosuppression with an option to taper mycophenolate mofetil. ATDC preparations were manufactured in a Good Manufacturing Practice-compliant facility and fulfilled cell count, viability, purity and identity criteria for release. A control group of nine patients received the same standard immunosuppression, except basiliximab induction replaced ATDC therapy and mycophenolate tapering was not allowed. During the three-year follow-up, no deaths occurred and there was 100% graft survival. No significant increase of adverse events was associated with ATDC infusion. Episodes of rejection were observed in two patients from the ATDC group and one patient from the control group. However, all rejections were successfully treated by glucocorticoids. Mycophenolate was successfully reduced/stopped in five patients from the ATDC group, allowing tacrolimus monotherapy for two of them. Regarding immune monitoring, reduced CD8 T cell activation markers and increased Foxp3 expression were observed in the ATDC group. Thus, our results demonstrate ATDC administration safety in kidney-transplant recipients.
Collapse
Affiliation(s)
- Aurélie Moreau
- Inserm, Nantes Université, Centre Hospitalier Universitaire Nantes, Centre de Recherche Translationnelle en Transplantation et Immunologie, Unite Mixte de Recherche 1064, Institut de Transplantation Urologie Nephrologie, Nantes, France.
| | - Delphine Kervella
- Inserm, Nantes Université, Centre Hospitalier Universitaire Nantes, Centre de Recherche Translationnelle en Transplantation et Immunologie, Unite Mixte de Recherche 1064, Institut de Transplantation Urologie Nephrologie, Nantes, France; Centre Hospitalier Universitaire Nantes, Nantes Université, Service de Néphrologie et d'immunologie clinique, Institut de Transplantation Urologie Nephrologie, Nantes, France
| | - Laurence Bouchet-Delbos
- Inserm, Nantes Université, Centre Hospitalier Universitaire Nantes, Centre de Recherche Translationnelle en Transplantation et Immunologie, Unite Mixte de Recherche 1064, Institut de Transplantation Urologie Nephrologie, Nantes, France
| | - Cécile Braudeau
- Inserm, Nantes Université, Centre Hospitalier Universitaire Nantes, Centre de Recherche Translationnelle en Transplantation et Immunologie, Unite Mixte de Recherche 1064, Institut de Transplantation Urologie Nephrologie, Nantes, France; Centre Hospitalier Universitaire Nantes, Nantes Université, Laboratoire d'Immunologie, Center for Immuno Monitoring Nantes Atlantic, Nantes, France
| | - Soraya Saïagh
- Centre Hospitalier Universitaire Nantes, Nantes Université, Unité de Thérapie Cellulaire et Génique Good Manufacturing Practice, Nantes, France
| | - Pierrick Guérif
- Centre Hospitalier Universitaire Nantes, Nantes Université, Service de Néphrologie et d'immunologie clinique, Institut de Transplantation Urologie Nephrologie, Nantes, France
| | - Sophie Limou
- Inserm, Nantes Université, Centre Hospitalier Universitaire Nantes, Centre de Recherche Translationnelle en Transplantation et Immunologie, Unite Mixte de Recherche 1064, Institut de Transplantation Urologie Nephrologie, Nantes, France
| | - Anne Moreau
- Centre Hospitalier Universitaire Nantes, Nantes Université, Laboratoire d'anatomopathologie, Nantes, France
| | - Sylvain Bercegeay
- Centre Hospitalier Universitaire Nantes, Nantes Université, Unité de Thérapie Cellulaire et Génique Good Manufacturing Practice, Nantes, France
| | - Mathias Streitz
- Institute of Medical Immunology, Charité University of Medicine, Berlin, Germany; Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler Institut, Greifswald-Insel Riems, Greifswald, Germany
| | - Birgit Sawitzki
- Institute of Medical Immunology, Charité University of Medicine, Berlin, Germany
| | - Ben James
- Department of surgery, Division of Experimental Surgery, University of Regensburg, Regensburg, Germany
| | - Paul N Harden
- Oxford Transplant Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - David Game
- Department of Transplantation, Guys and St Thomas's Hospital NHS Trust, London, UK
| | - Qizhi Tang
- Department of Surgery, University of California San Francisco Transplantation Research Lab, University of California, San Francisco, California, USA
| | - James F Markmann
- Center for Transplantation Sciences, Mass General Hospital, Boston, Massachusetts, USA
| | - Ian S D Roberts
- Department of Pathology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Edward K Geissler
- Department of surgery, Division of Experimental Surgery, University of Regensburg, Regensburg, Germany
| | - Brigitte Dréno
- Centre Hospitalier Universitaire Nantes, Nantes Université, Unité de Thérapie Cellulaire et Génique Good Manufacturing Practice, Nantes, France
| | - Régis Josien
- Inserm, Nantes Université, Centre Hospitalier Universitaire Nantes, Centre de Recherche Translationnelle en Transplantation et Immunologie, Unite Mixte de Recherche 1064, Institut de Transplantation Urologie Nephrologie, Nantes, France; Centre Hospitalier Universitaire Nantes, Nantes Université, Laboratoire d'Immunologie, Center for Immuno Monitoring Nantes Atlantic, Nantes, France
| | - Maria-Cristina Cuturi
- Inserm, Nantes Université, Centre Hospitalier Universitaire Nantes, Centre de Recherche Translationnelle en Transplantation et Immunologie, Unite Mixte de Recherche 1064, Institut de Transplantation Urologie Nephrologie, Nantes, France
| | - Gilles Blancho
- Inserm, Nantes Université, Centre Hospitalier Universitaire Nantes, Centre de Recherche Translationnelle en Transplantation et Immunologie, Unite Mixte de Recherche 1064, Institut de Transplantation Urologie Nephrologie, Nantes, France; Centre Hospitalier Universitaire Nantes, Nantes Université, Service de Néphrologie et d'immunologie clinique, Institut de Transplantation Urologie Nephrologie, Nantes, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
de Rougemont O, Deng Y, Frischknecht L, Wehmeier C, Villard J, Ferrari-Lacraz S, Golshayan D, Gannagé M, Binet I, Wirthmueller U, Sidler D, Schachtner T, Schaub S, Nilsson J. Donation type and the effect of pre-transplant donor specific antibodies - Data from the Swiss Transplant Cohort Study. Front Immunol 2023; 14:1104371. [PMID: 36875145 PMCID: PMC9974644 DOI: 10.3389/fimmu.2023.1104371] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/30/2023] [Indexed: 02/19/2023] Open
Abstract
Introduction The type of donation may affect how susceptible a donor kidney is to injury from pre-existing alloimmunity. Many centers are, therefore, reluctant to perform donor specific antibody (DSA) positive transplantations in the setting of donation after circulatory death (DCD). There are, however, no large studies comparing the impact of pre-transplant DSA stratified on donation type in a cohort with a complete virtual cross-match and long-term follow-up of transplant outcome. Methods We investigated the effect of pre-transplant DSA on the risk of rejection, graft loss, and the rate of eGFR decline in 1282 donation after brain death (DBD) transplants and compared it to 130 (DCD) and 803 living donor (LD) transplants. Results There was a significant worse outcome associated with pre-transplant DSA in all of the studied donation types. DSA directed against Class II HLA antigens as well as a high cumulative mean fluorescent intensity (MFI) of the detected DSA showed the strongest association with worse transplant outcome. We could not detect a significant additive negative effect of DSA in DCD transplantations in our cohort. Conversely, DSA positive DCD transplants appeared to have a slightly better outcome, possibly in part due to the lower mean fluorescent intensity (MFI) of the pre-transplant DSA. Indeed when DCD transplants were compared to DBD transplants with similar MFI (<6.5k), graft survival was not significantly different. Discussion Our results suggest that the negative impact of pre-transplant DSA on graft outcome could be similar between all donation types. This suggests that immunological risk assessment could be performed in a similar way regardless of the type of donor kidney transplantation.
Collapse
Affiliation(s)
- Olivier de Rougemont
- Department of Surgery and Transplantation, University Hospital Zurich, Zurich, Switzerland
| | - Yun Deng
- Department of Immunology, University Hospital Zurich (USZ), Zurich, Switzerland
| | - Lukas Frischknecht
- Department of Immunology, University Hospital Zurich (USZ), Zurich, Switzerland
| | - Caroline Wehmeier
- Clinic for Transplantation Immunology and Nephrology, University Hospital Basel, Basel, Switzerland
| | - Jean Villard
- Transplantation Immunology Unit and National Reference Laboratory for Histocompatibility, Department of Diagnostic, Geneva University Hospitals, Geneva, Switzerland
| | - Sylvie Ferrari-Lacraz
- Transplantation Immunology Unit and National Reference Laboratory for Histocompatibility, Department of Diagnostic, Geneva University Hospitals, Geneva, Switzerland
| | - Déla Golshayan
- Transplantation Center, Lausanne University Hospital, Lausanne, Switzerland
| | - Monique Gannagé
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Isabelle Binet
- Nephrology & Transplantation Medicine, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Urs Wirthmueller
- Department of Laboratory Medicine, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Daniel Sidler
- Department of Nephrology and Hypertension, Inselspital, Berne University Hospital and University of Berne, Berne, Switzerland
| | - Thomas Schachtner
- Division of Nephrology, University Hospital Zurich, Zurich, Switzerland
| | - Stefan Schaub
- Clinic for Transplantation Immunology and Nephrology, University Hospital Basel, Basel, Switzerland
| | - Jakob Nilsson
- Department of Immunology, University Hospital Zurich (USZ), Zurich, Switzerland
| |
Collapse
|
31
|
van der Elst G, Varol H, Hermans M, Baan CC, Duong-van Huyen JP, Hesselink DA, Kramann R, Rabant M, Reinders MEJ, von der Thüsen JH, van den Bosch TPP, Clahsen-van Groningen MC. The mast cell: A Janus in kidney transplants. Front Immunol 2023; 14:1122409. [PMID: 36891297 PMCID: PMC9986315 DOI: 10.3389/fimmu.2023.1122409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/30/2023] [Indexed: 02/22/2023] Open
Abstract
Mast cells (MCs) are innate immune cells with a versatile set of functionalities, enabling them to orchestrate immune responses in various ways. Aside from their known role in allergy, they also partake in both allograft tolerance and rejection through interaction with regulatory T cells, effector T cells, B cells and degranulation of cytokines and other mediators. MC mediators have both pro- and anti-inflammatory actions, but overall lean towards pro-fibrotic pathways. Paradoxically, they are also seen as having potential protective effects in tissue remodeling post-injury. This manuscript elaborates on current knowledge of the functional diversity of mast cells in kidney transplants, combining theory and practice into a MC model stipulating both protective and harmful capabilities in the kidney transplant setting.
Collapse
Affiliation(s)
- G van der Elst
- Department of Pathology and Clinical Bioinformatics, Erasmus University Center Rotterdam, Rotterdam, Netherlands
| | - H Varol
- Department of Pathology and Clinical Bioinformatics, Erasmus University Center Rotterdam, Rotterdam, Netherlands
| | - M Hermans
- Department of Internal Medicine, Division of Allergy and Clinical Immunology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - C C Baan
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | | | - D A Hesselink
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - R Kramann
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands.,Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany.,Division of Nephrology and Clinical Immunology, RWTH Aachen University Hospital, Aachen, Germany
| | - M Rabant
- Department of Pathology, Necker Hospital, APHP, Paris, France
| | - M E J Reinders
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - J H von der Thüsen
- Department of Pathology and Clinical Bioinformatics, Erasmus University Center Rotterdam, Rotterdam, Netherlands
| | - T P P van den Bosch
- Department of Pathology and Clinical Bioinformatics, Erasmus University Center Rotterdam, Rotterdam, Netherlands
| | - M C Clahsen-van Groningen
- Department of Pathology and Clinical Bioinformatics, Erasmus University Center Rotterdam, Rotterdam, Netherlands.,Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
32
|
Muckenhuber M, Mucha J, Mengrelis K, How C, Reindl-Schwaighofer R, Heinzel A, Kainz V, Worel N, Berlakovich G, Edinger M, Oberbauer R, Wekerle T. Optimum timing of antithymocyte globulin in relation to adoptive regulatory T cell therapy. Am J Transplant 2023; 23:84-92. [PMID: 36695625 DOI: 10.1016/j.ajt.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 01/13/2023]
Abstract
Reducing the recipient's T cell repertoire is considered to increase the efficacy of regulatory T cell (Treg) therapy. This necessitates timing the administration of antithymocyte globulin (ATG) early enough before adoptive cell therapy (ACT) so that residual serum ATG does not deplete the transferred Tregs. The optimum time point in this regard has not been defined. Herein, we report the effects of residual serum ATG on the viability of an in vitro expanded Treg cell product used in a clinical trial of ACT in kidney transplant recipients (NCT03867617). Patients received ATG monotherapy (either 6 or 3 mg/kg body weight) without concomitant immunosuppression 2 to 3 weeks before transplantation and Treg transfer. An anti-ATG immunoglobulin G (IgG) immune response was elicited in all patients within 14 days. In turn, the elimination of total and Treg-specific ATG was accelerated substantially over control patients receiving the same dose of ATG with concomitant immunosuppression. However, ATG serum concentrations of <1 μg/mL, which had previously been reported as subtherapeutic threshold, triggered apoptosis of Tregs in vitro. Therefore, ATG levels need to decline to lower levels than those previously thought for efficacious Treg transfer. In 5 of 6 patients, such low levels of serum ATG considered safe for Treg transfer were reached within 2 weeks after ATG administration.
Collapse
Affiliation(s)
- Moritz Muckenhuber
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Jasmin Mucha
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Konstantinos Mengrelis
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Christopher How
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Roman Reindl-Schwaighofer
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Andreas Heinzel
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Verena Kainz
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Nina Worel
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria
| | - Gabriela Berlakovich
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Matthias Edinger
- Leibniz Institute of Immunotherapy, Regensburg, Germany; Department of Internal Medicine 3 (Hematology and Oncology), University Hospital Regensburg, Regensburg, Germany
| | - Rainer Oberbauer
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Thomas Wekerle
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
33
|
Yeh H. Applications of Transcriptomics in the Research of Antibody-Mediated Rejection in Kidney Transplantation: Progress and Perspectives. Organogenesis 2022; 18:2131357. [PMID: 36259540 PMCID: PMC9586696 DOI: 10.1080/15476278.2022.2131357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Antibody-mediated rejection (ABMR) is the major cause of chronic allograft dysfunction and loss in kidney transplantation. The immunological mechanisms of ABMR that have been featured in the latest studies indicate a highly complex interplay between various immune and nonimmune cell types. Clinical diagnostic standards have long been criticized for being arbitrary and the lack of accuracy. Transcriptomic approaches, including microarray and RNA sequencing of allograft biopsies, enable the identification of differential gene expression and the continuous improvement of diagnostics. Given that conventional bulk transcriptomic approaches only reflect the average gene expression but not the status at the single-cell level, thereby ignoring the heterogeneity of the transcriptome across individual cells, single-cell RNA sequencing is rising as a powerful tool to provide a high-resolution transcriptome map of immune cells, which allows the elucidation of the pathogenesis and may facilitate the development of novel strategies for clinical treatment of ABMR.
Collapse
Affiliation(s)
- Hsuan Yeh
- Division of Renal-Electrolyte, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA,CONTACT Hsuan Yeh S976 Scaife Hall 3550 Terrace Street Pittsburgh, PA 15261
| |
Collapse
|
34
|
Schwarz C, Muckenhuber M, Wekerle T. Optimizing Costimulation Blockade-Based Immunosuppression. KIDNEY360 2022; 3:2005-2007. [PMID: 36591358 PMCID: PMC9802563 DOI: 10.34067/kid.0005652022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 10/30/2022] [Indexed: 01/01/2023]
Affiliation(s)
- Christoph Schwarz
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Moritz Muckenhuber
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Thomas Wekerle
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
35
|
Population Characteristics and Clinical Outcomes from the Renal Transplant Outcome Prediction Validation Study (TOPVAS). J Clin Med 2022; 11:jcm11247421. [PMID: 36556037 PMCID: PMC9781432 DOI: 10.3390/jcm11247421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Kidney transplantation is the preferred method for selected patients with kidney failure. Despite major improvements over the last decades, a significant proportion of organs are still lost every year. Causes of graft loss and impaired graft function are incompletely understood and prognostic tools are lacking. Here, we describe baseline characteristics and outcomes of the non-interventional Transplant Outcome Prediction Validation Study (TOPVAS). A total of 241 patients receiving a non-living kidney transplant were recruited in three Austrian transplantation centres and treated according to local practices. Clinical information as well as blood and urine samples were obtained at baseline and consecutive follow-ups up to 24 months. Out of the overall 16 graft losses, 11 occurred in the first year. The patient survival rate was 96.7% (95% CI: 94.3-99.1%) in the first year and 94.3% (95% CI: 91.1-97.7%) in the second year. Estimated glomerular filtration rate (eGFR) improved from 37.1 ± 14.0 mL/min/1.73 m2 at hospital discharge to 45.0 ± 14.5 mL/min/1.73 m2 at 24 months. The TOPVAS study provides information on current kidney graft and patient survival, eGFR trajectories, and rejection rates, as well as infectious and surgical complication rates under different immunosuppressive drug regimens. More importantly, it provides an extensive and well-characterized biobank for the future discovery and validation of prognostic methods.
Collapse
|
36
|
Unger LW, Muckenhuber M, Mahr B, Schwarz C, Pilat N, Granofszky N, Regele H, Wekerle T. Chronic CD40L blockade is required for long-term cardiac allograft survival with a clinically relevant CTLA4-Ig dosing regimen. Front Immunol 2022; 13:1060576. [PMID: 36569922 PMCID: PMC9773869 DOI: 10.3389/fimmu.2022.1060576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/17/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction In de-novo kidney transplantation, the CTLA4-Ig fusion protein belatacept is associated with improved graft function but also an increased risk of acute rejection compared to calcineurin inhibitor therapy. The combination with a second costimulation blocker could potentially improve outcome while avoiding calcineurin inhibitor toxicity. The aim of this study was to define the conditions under which the combination of CTLA4-Ig and CD40L blockade leads to rejection-free permanent graft survival in a stringent murine heart transplantation model. Methods Naïve wild-type or CD40L (CD154) knock-out mice received a fully mismatched BALB/c cardiac allograft. Selected induction and maintenance protocols for CTLA4-Ig and blocking αCD40L monoclonal antibodies (mAB) were investigated. Graft survival, rejection severity and donor-specific antibody (DSA) formation were assessed during a 100-day follow-up period. Results and Discussion Administering αCD40L mAb as monotherapy at the time of transplantation significantly prolonged heart allograft survival but did not further improve the outcome when given in addition to chronic CTLA4-Ig therapy (which prolongs graft survival to a median of 22 days). Likewise, chronic αCD40L mAb therapy (0.5mg) combined with perioperative CTLA4-Ig led to rejection in a proportion of mice and extensive histological damage, despite abrogating DSA formation. Only the permanent interruption of CD40-CD40L signaling by using CD40L-/- recipient mice or by chronic αCD40L administration synergized with chronic CTLA4-Ig to achieve long-term allograft survival with preserved histological graft integrity in all recipients without DSA formation. The combination of α-CD40L and CTLA4-Ig works most effectively when both therapeutics are administered chronically.
Collapse
Affiliation(s)
- Lukas W. Unger
- Department of General Surgery, Division of Transplantation, Medical University of Vienna, Vienna, Austria
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Vienna, Austria
| | - Moritz Muckenhuber
- Department of General Surgery, Division of Transplantation, Medical University of Vienna, Vienna, Austria
| | - Benedikt Mahr
- Department of General Surgery, Division of Transplantation, Medical University of Vienna, Vienna, Austria
| | - Christoph Schwarz
- Department of General Surgery, Division of Transplantation, Medical University of Vienna, Vienna, Austria
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Vienna, Austria
| | - Nina Pilat
- Department of General Surgery, Division of Transplantation, Medical University of Vienna, Vienna, Austria
| | - Nicolas Granofszky
- Department of General Surgery, Division of Transplantation, Medical University of Vienna, Vienna, Austria
| | - Heinz Regele
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - Thomas Wekerle
- Department of General Surgery, Division of Transplantation, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
37
|
Valentijn FA, Knoppert SN, Marquez-Exposito L, Rodrigues-Diez RR, Pissas G, Tang J, Tejedor-Santamaria L, Broekhuizen R, Samarakoon R, Eleftheriadis T, Goldschmeding R, Nguyen TQ, Ruiz-Ortega M, Falke LL. Cellular communication network 2 (connective tissue growth factor) aggravates acute DNA damage and subsequent DNA damage response-senescence-fibrosis following kidney ischemia reperfusion injury. Kidney Int 2022; 102:1305-1319. [PMID: 35921911 DOI: 10.1016/j.kint.2022.06.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 05/17/2022] [Accepted: 06/23/2022] [Indexed: 01/12/2023]
Abstract
Chronic allograft dysfunction with progressive fibrosis of unknown cause remains a major issue after kidney transplantation, characterized by ischemia-reperfusion injury (IRI). One hypothesis to account for this is that spontaneous progressive tubulointerstitial fibrosis following IRI is driven by cellular senescence evolving from a prolonged, unresolved DNA damage response (DDR). Since cellular communication network factor 2 ((CCN2), formerly called connective tissue growth factor), an established mediator of kidney fibrosis, is also involved in senescence-associated pathways, we investigated the relation between CCN2 and cellular senescence following kidney transplantation. Tubular CCN2 overexpression was found to be associated with DDR, loss of kidney function and tubulointerstitial fibrosis in both the early and the late phase in human kidney allograft biopsies. Consistently, CCN2 deficient mice developed reduced senescence and tubulointerstitial fibrosis in the late phase; six weeks after experimental IRI. Moreover, tubular DDR markers and plasma urea were less elevated in CCN2 knockout than in wild-type mice. Finally, CCN2 administration or overexpression in epithelial cells induced upregulation of tubular senescence-associated genes including p21, while silencing of CCN2 alleviated DDR induced by anoxia-reoxygenation injury in cultured proximal tubule epithelial cells. Thus, our observations indicate that inhibition of CCN2 can mitigate IRI-induced acute kidney injury, DNA damage, and the subsequent DDR-senescence-fibrosis sequence. Hence, targeting CCN2 might help to protect the kidney from transplantation-associated post-IRI chronic kidney dysfunction.
Collapse
Affiliation(s)
- Floris A Valentijn
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands.
| | - Sebastiaan N Knoppert
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Laura Marquez-Exposito
- Molecular and Cellular Biology in Renal and Vascular Pathology, Fundación Instituto de Investigación Sanitaria -Fundación Jiménez Díaz, Universidad Autónoma Madrid, Madrid, Spain
| | - Raúl R Rodrigues-Diez
- Molecular and Cellular Biology in Renal and Vascular Pathology, Fundación Instituto de Investigación Sanitaria -Fundación Jiménez Díaz, Universidad Autónoma Madrid, Madrid, Spain
| | - Georgios Pissas
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Jiaqi Tang
- Center for Cell Biology and Cancer Research, Albany Medical Center, Albany, New York, USA
| | - Lucia Tejedor-Santamaria
- Molecular and Cellular Biology in Renal and Vascular Pathology, Fundación Instituto de Investigación Sanitaria -Fundación Jiménez Díaz, Universidad Autónoma Madrid, Madrid, Spain
| | - Roel Broekhuizen
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Rohan Samarakoon
- Center for Cell Biology and Cancer Research, Albany Medical Center, Albany, New York, USA
| | | | - Roel Goldschmeding
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Tri Q Nguyen
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Marta Ruiz-Ortega
- Molecular and Cellular Biology in Renal and Vascular Pathology, Fundación Instituto de Investigación Sanitaria -Fundación Jiménez Díaz, Universidad Autónoma Madrid, Madrid, Spain
| | - Lucas L Falke
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
38
|
Pang Q, Chen H, Wu H, Wang Y, An C, Lai S, Xu J, Wang R, Zhou J, Xiao H. N6-methyladenosine regulators-related immune genes enable predict graft loss and discriminate T-cell mediate rejection in kidney transplantation biopsies for cause. Front Immunol 2022; 13:1039013. [PMID: 36483557 PMCID: PMC9722771 DOI: 10.3389/fimmu.2022.1039013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/01/2022] [Indexed: 11/23/2022] Open
Abstract
Objective The role of m6A modification in kidney transplant-associated immunity, especially in alloimmunity, still remains unknown. This study aims to explore the potential value of m6A-related immune genes in predicting graft loss and diagnosing T cell mediated rejection (TCMR), as well as the possible role they play in renal graft dysfunction. Methods Renal transplant-related cohorts and transcript expression data were obtained from the GEO database. First, we conducted correlation analysis in the discovery cohort to identify the m6A-related immune genes. Then, lasso regression and random forest were used respectively to build prediction models in the prognosis and diagnosis cohort, to predict graft loss and discriminate TCMR in dysfunctional renal grafts. Connectivity map (CMap) analysis was applied to identify potential therapeutic compounds for TCMR. Results The prognostic prediction model effectively predicts the prognosis and survival of renal grafts with clinical indications (P< 0.001) and applies to both rejection and non-rejection situations. The diagnostic prediction model discriminates TCMR in dysfunctional renal grafts with high accuracy (area under curve = 0.891). Meanwhile, the classifier score of the diagnostic model, as a continuity index, is positively correlated with the severity of main pathological injuries of TCMR. Furthermore, it is found that METTL3, FTO, WATP, and RBM15 are likely to play a pivotal part in the regulation of immune response in TCMR. By CMap analysis, several small molecular compounds are found to be able to reverse TCMR including fenoldopam, dextromethorphan, and so on. Conclusions Together, our findings explore the value of m6A-related immune genes in predicting the prognosis of renal grafts and diagnosis of TCMR.
Collapse
Affiliation(s)
- Qidan Pang
- Department of Nephrology, Bishan Hospital of Chongqing Medical University, Chongqing, China
| | - Hong Chen
- Department of General Surgery/Gastrointestinal Surgery, Bishan Hospital of Chongqing Medical University, Chongqing, China
| | - Hang Wu
- Department of Nephrology, Bishan Hospital of Chongqing Medical University, Chongqing, China
| | - Yong Wang
- Department of General Surgery/Gastrointestinal Surgery, Bishan Hospital of Chongqing Medical University, Chongqing, China
| | - Changyong An
- Department of General Surgery/Gastrointestinal Surgery, Bishan Hospital of Chongqing Medical University, Chongqing, China
| | - Suhe Lai
- Department of General Surgery/Gastrointestinal Surgery, Bishan Hospital of Chongqing Medical University, Chongqing, China
| | - Jia Xu
- Department of Nephrology, Bishan Hospital of Chongqing Medical University, Chongqing, China
| | - Ruiqiong Wang
- Department of Nephrology, Bishan Hospital of Chongqing Medical University, Chongqing, China
| | - Juan Zhou
- Department of Nephrology, Bishan Hospital of Chongqing Medical University, Chongqing, China,*Correspondence: Hanyu Xiao, ; Juan Zhou,
| | - Hanyu Xiao
- Department of General Surgery/Gastrointestinal Surgery, Bishan Hospital of Chongqing Medical University, Chongqing, China,*Correspondence: Hanyu Xiao, ; Juan Zhou,
| |
Collapse
|
39
|
Frischknecht L, Deng Y, Wehmeier C, de Rougemont O, Villard J, Ferrari-Lacraz S, Golshayan D, Gannagé M, Binet I, Wirthmueller U, Sidler D, Schachtner T, Schaub S, Nilsson J. The impact of pre-transplant donor specific antibodies on the outcome of kidney transplantation – Data from the Swiss transplant cohort study. Front Immunol 2022; 13:1005790. [PMID: 36211367 PMCID: PMC9532952 DOI: 10.3389/fimmu.2022.1005790] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Background Pre-transplant donor specific antibodies (DSA), directed at non-self human leukocyte antigen (HLA) protein variants present in the donor organ, have been associated with worse outcomes in kidney transplantation. The impact of the mean fluorescence intensity (MFI) and the target HLA antigen of the detected DSA has, however, not been conclusively studied in a large cohort with a complete virtual cross-match (vXM). Methods We investigated the effect of pre-transplant DSA on the risk of antibody-mediated rejection (ABMR), graft loss, and the rate of eGFR decline in 411 DSA positive transplants and 1804 DSA negative controls. Results Pre-transplant DSA were associated with a significantly increased risk of ABMR, graft loss, and accelerated eGFR decline. DSA directed at Class I and Class II HLA antigens were strongly associated with increased risk of ABMR, but only DSA directed at Class II associated with graft loss. DSA MFI markedly affected outcome, and Class II DSA were associated with ABMR already at 500-1000 MFI, whereas Class I DSA did not affect outcome at similar low MFI values. Furthermore, isolated DSA against HLA-DP carried comparable risks for ABMR, accelerated eGFR decline, and graft loss as DSA against HLA-DR. Conclusion Our results have important implications for the construction and optimization of vXM algorithms used within organ allocation systems. Our data suggest that both the HLA antigen target of the detected DSA as well as the cumulative MFI should be considered and that different MFI cut-offs could be considered for Class I and Class II directed DSA.
Collapse
Affiliation(s)
- Lukas Frischknecht
- Department of Immunology, University Hospital Zurich (USZ), Zurich, Switzerland
| | - Yun Deng
- Department of Immunology, University Hospital Zurich (USZ), Zurich, Switzerland
| | - Caroline Wehmeier
- Clinic for Transplantation Immunology and Nephrology, University Hospital Basel, Basel, Switzerland
| | - Olivier de Rougemont
- Department of Surgery and Transplantation, University Hospital Zurich, Zurich, Switzerland
| | - Jean Villard
- Transplantation Immunology Unit and National Reference Laboratory for Histocompatibility, Department of Diagnostic, Geneva University Hospitals, Geneva, Switzerland
| | - Sylvie Ferrari-Lacraz
- Transplantation Immunology Unit and National Reference Laboratory for Histocompatibility, Department of Diagnostic, Geneva University Hospitals, Geneva, Switzerland
| | - Déla Golshayan
- Transplantation Center, Lausanne University Hospital, Lausanne, Switzerland
| | - Monique Gannagé
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Isabelle Binet
- Nephrology & Transplantation Medicine, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Urs Wirthmueller
- Department of Laboratory Medicine, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Daniel Sidler
- Department of Nephrology and Hypertension, Inselspital, Berne University Hospital and University of Berne, Berne, Switzerland
| | - Thomas Schachtner
- Division of Nephrology, University Hospital Zurich, Zurich, Switzerland
| | - Stefan Schaub
- Clinic for Transplantation Immunology and Nephrology, University Hospital Basel, Basel, Switzerland
| | - Jakob Nilsson
- Department of Immunology, University Hospital Zurich (USZ), Zurich, Switzerland
- *Correspondence: Jakob Nilsson,
| | | |
Collapse
|
40
|
Yi SG, Gaber AO, Chen W. B-cell response in solid organ transplantation. Front Immunol 2022; 13:895157. [PMID: 36016958 PMCID: PMC9395675 DOI: 10.3389/fimmu.2022.895157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 07/11/2022] [Indexed: 11/21/2022] Open
Abstract
The transcriptional regulation of B-cell response to antigen stimulation is complex and involves an intricate network of dynamic signals from cytokines and transcription factors propagated from T-cell interaction. Long-term alloimmunity, in the setting of organ transplantation, is dependent on this B-cell response, which does not appear to be halted by current immunosuppressive regimens which are targeted at T cells. There is emerging evidence that shows that B cells have a diverse response to solid organ transplantation that extends beyond plasma cell antibody production. In this review, we discuss the mechanistic pathways of B-cell activation and differentiation as they relate to the transcriptional regulation of germinal center B cells, plasma cells, and memory B cells in the setting of solid organ transplantation.
Collapse
Affiliation(s)
- Stephanie G. Yi
- Division of Transplantation, Department of Surgery, Houston Methodist Hospital, Houston, TX, United States
- *Correspondence: Stephanie G. Yi,
| | - Ahmed Osama Gaber
- Division of Transplant Immunology, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, United States
| | - Wenhao Chen
- Division of Transplantation, Department of Surgery, Houston Methodist Hospital, Houston, TX, United States
| |
Collapse
|
41
|
Early prediction of renal graft function: Analysis of a multi-center, multi-level data set. Curr Res Transl Med 2022; 70:103334. [DOI: 10.1016/j.retram.2022.103334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/05/2022] [Accepted: 01/14/2022] [Indexed: 11/20/2022]
|
42
|
Song Q, Yu H, Han J, Qiang Lv JL, Yang H. Exosomes in urological diseases - Biological functions and clinical applications. Cancer Lett 2022; 544:215809. [PMID: 35777716 DOI: 10.1016/j.canlet.2022.215809] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/02/2022]
Abstract
Exosomes are extracellular vesicles with a variety of biological functions that exist in various biological body fluids and exert their functions through proteins, nucleic acids, lipids, and metabolites. Recent discoveries have revealed the functional and biomarker roles of miRNAs in urological diseases, including benign diseases and malignancies. Exosomes have several uses in the diagnosis, treatment, and monitoring of urological diseases, especially cancer. Proteins and nucleic acids can be used as alternative biomarkers for detecting urological diseases. Additionally, exosomes can be detected in most body fluids, thereby avoiding pathogenesis. More importantly, for urological tumors, exosomes display a higher sensitivity than circulating tumor cells and tumor-derived DNA in body fluid biopsies because of their low immunogenicity and high stability. These advantages have made it a research hotspot in recent years. In this review, we focus on the biological characteristics and functions of exosomes and summarize their advantages and the latest progress in the diagnosis and treatment of urological diseases.
Collapse
Affiliation(s)
- Qiang Song
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing, 210029, PR China
| | - Hao Yu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing, 210029, PR China
| | - Jie Han
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing, 210029, PR China
| | - Jiancheng Lv Qiang Lv
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing, 210029, PR China.
| | - Haiwei Yang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing, 210029, PR China.
| |
Collapse
|
43
|
Naesens M, Loupy A, Hilbrands L, Oberbauer R, Bellini MI, Glotz D, Grinyó J, Heemann U, Jochmans I, Pengel L, Reinders M, Schneeberger S, Budde K. Rationale for Surrogate Endpoints and Conditional Marketing Authorization of New Therapies for Kidney Transplantation. Transpl Int 2022; 35:10137. [PMID: 35669977 PMCID: PMC9163307 DOI: 10.3389/ti.2022.10137] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/10/2022] [Indexed: 12/13/2022]
Abstract
Conditional marketing authorization (CMA) facilitates timely access to new drugs for illnesses with unmet clinical needs, such as late graft failure after kidney transplantation. Late graft failure remains a serious, burdensome, and life-threatening condition for recipients. This article has been developed from content prepared by members of a working group within the European Society for Organ Transplantation (ESOT) for a Broad Scientific Advice request, submitted by ESOT to the European Medicines Agency (EMA), and reviewed by the EMA in 2020. The article presents the rationale for using surrogate endpoints in clinical trials aiming at improving late graft failure rates, to enable novel kidney transplantation therapies to be considered for CMA and improve access to medicines. The paper also provides background data to illustrate the relationship between primary and surrogate endpoints. Developing surrogate endpoints and a CMA strategy could be particularly beneficial for studies where the use of primary endpoints would yield insufficient statistical power or insufficient indication of long-term benefit following transplantation.
Collapse
Affiliation(s)
- Maarten Naesens
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- *Correspondence: Maarten Naesens,
| | - Alexandre Loupy
- Paris Translational Research Center for Organ Transplantation, Hôpital Necker, Paris, France
| | - Luuk Hilbrands
- Department of Nephrology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Rainer Oberbauer
- Department of Nephrology and Dialysis, Medical University of Vienna, Vienna, Austria
| | | | - Denis Glotz
- Paris Translational Research Center for Organ Transplantation, Hôpital Saint Louis, Paris, France
| | | | - Uwe Heemann
- Department of Nephrology, Technical University of Munich, Munich, Germany
| | - Ina Jochmans
- Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Liset Pengel
- Centre for Evidence in Transplantation, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Marlies Reinders
- Erasmus MC Transplant Institute, Department of Internal Medicine, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Stefan Schneeberger
- Department of General, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Klemens Budde
- Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
44
|
Murakami N, Baggett ND, Schwarze ML, Ladin K, Courtwright AM, Goldberg HJ, Nolley EP, Jain N, Landzberg M, Wentlandt K, Lai JC, Shinall MC, Ufere NN, Jones CA, Lakin JR. Top Ten Tips Palliative Care Clinicians Should Know About Solid Organ Transplantation. J Palliat Med 2022; 25:1136-1142. [PMID: 35275707 PMCID: PMC9467633 DOI: 10.1089/jpm.2022.0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Solid organ transplantation (SOT) is a life-saving procedure for people with end-stage organ failure. However, patients experience significant symptom burden, complex decision making, morbidity, and mortality during both pre- and post-transplant periods. Palliative care (PC) is well suited and historically underdelivered for the transplant population. This article, written by a team of transplant specialists (surgeons, cardiologists, nephrologists, hepatologists, and pulmonologists), PC clinicians, and an ethics specialist, shares 10 high-yield tips for PC clinicians to consider when caring for SOT patients.
Collapse
Affiliation(s)
- Naoka Murakami
- Division of Renal Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Nathan D Baggett
- Division of Emergency Medicine, Health Partners Institute/Regions Hospital, St. Paul, Minnesota, USA
| | | | - Keren Ladin
- Department of Occupational Therapy, Tufts University, Medford, Massachusetts, USA.,Department of Community Health, Tufts University, Medford, Massachusetts, USA
| | - Andrew M Courtwright
- Department of Pulmonary and Critical Care Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hilary J Goldberg
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Eric P Nolley
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Nelia Jain
- Department of Psychosocial Oncology and Palliative Care, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Michael Landzberg
- Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Kirsten Wentlandt
- Division of Palliative Care, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Jennifer C Lai
- Department of Medicine, University of California, San Francisco, California, USA
| | - Myrick C Shinall
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Section of Palliative Care, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Nneka N Ufere
- Liver Center, Gastrointestinal Division, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Christopher A Jones
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Joshua R Lakin
- Department of Psychosocial Oncology and Palliative Care, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| |
Collapse
|
45
|
Dou M, Ding C, Zheng B, Deng G, Zhu K, Xu C, Xue W, Ding X, Zheng J, Tian P. Immune-Related Genes for Predicting Future Kidney Graft Loss: A Study Based on GEO Database. Front Immunol 2022; 13:859693. [PMID: 35281025 PMCID: PMC8913884 DOI: 10.3389/fimmu.2022.859693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/08/2022] [Indexed: 11/22/2022] Open
Abstract
Objective We aimed to identify feature immune-related genes that correlated with graft rejection and to develop a prognostic model based on immune-related genes in kidney transplantation. Methods Gene expression profiles were obtained from the GEO database. The GSE36059 dataset was used as a discovery cohort. Then, differential expression analysis and a machine learning method were performed to select feature immune-related genes. After that, univariate and multivariate Cox regression analyses were used to identify prognosis-related genes. A novel Riskscore model was built based on the results of multivariate regression. The levels of these feature genes were also confirmed in an independent single-cell dataset and other GEO datasets. Results 15 immune-related genes were expressed differently between non-rejection and rejection kidney allografts. Those differentially expressed immune-related genes (DE-IRGs) were mainly associated with immune-related biological processes and pathways. Subsequently, a 5-immune-gene signature was constructed and showed favorable predictive results in the GSE21374 dataset. Recipients were divided into the high-risk and low-risk groups according to the median value of RiskScore. The GO and KEGG analysis indicated that the differentially expressed genes (DEGs) between high-risk and low-risk groups were mainly involved in inflammatory pathways, chemokine-related pathways, and rejection-related pathways. Immune infiltration analysis demonstrated that RiskScore was potentially related to immune infiltration. Kaplan-Meier survival analysis suggested that recipients in the high-risk group had poor graft survival. AUC values of 1- and 3-year graft survival were 0.804 and 0.793, respectively. Conclusion Our data suggest that this immune-related prognostic model had good sensitivity and specificity in predicting the 1- and 3-year kidney graft survival and might act as a useful tool for predicting kidney graft loss.
Collapse
Affiliation(s)
- Meng Dou
- Department of Kidney Transplantation, Hospital of Nephropathy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Chenguang Ding
- Department of Kidney Transplantation, Hospital of Nephropathy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Bingxuan Zheng
- Department of Kidney Transplantation, Hospital of Nephropathy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Ge Deng
- Department of Kidney Transplantation, Hospital of Nephropathy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Kun Zhu
- Department of Kidney Transplantation, Hospital of Nephropathy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Cuixiang Xu
- Center of Shaanxi Provincial Clinical Laboratory, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Wujun Xue
- Department of Kidney Transplantation, Hospital of Nephropathy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xiaoming Ding
- Department of Kidney Transplantation, Hospital of Nephropathy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jin Zheng
- Department of Kidney Transplantation, Hospital of Nephropathy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Puxun Tian
- Department of Kidney Transplantation, Hospital of Nephropathy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Puxun Tian,
| |
Collapse
|
46
|
Poppelaars F, Gaya da Costa M, Faria B, Eskandari SK, Damman J, Seelen MA. A functional TGFB1 polymorphism in the donor associates with long-term graft survival after kidney transplantation. Clin Kidney J 2022; 15:278-286. [PMID: 35145642 PMCID: PMC8824786 DOI: 10.1093/ckj/sfab175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Indexed: 12/17/2022] Open
Abstract
Background Improvement of long-term outcomes in kidney transplantation remains one of the most pressing challenges, yet drug development is stagnating. Human genetics offers an opportunity for much-needed target validation in transplantation. Conflicting data exist about the effect of transforming growth factor-beta 1 (TGF-β1) on kidney transplant survival, since TGF-β1 has pro-fibrotic and protective effects. We investigated the impact of a recently discovered functional TGFB1 polymorphism on kidney graft survival. Methods We performed an observational cohort study analysing recipient and donor DNA in 1271 kidney transplant pairs from the University Medical Centre Groningen in The Netherlands, and associated a low-producing TGFB1 polymorphism (rs1800472-C > T) with 5-, 10- and 15-year death-censored kidney graft survival. Results Donor genotype frequencies of rs1800472 in TGFB1 differed significantly between patients with and without graft loss (P = 0.014). Additionally, the low-producing TGFB1 polymorphism in the donor was associated with an increased risk of graft loss following kidney transplantation (hazard ratio = 2.12 for the T-allele; 95% confidence interval 1.18–3.79; P = 0.012). The incidence of graft loss within 15 years of follow-up was 16.4% in the CC-genotype group and 31.6% in the CT-genotype group. After adjustment for transplant-related covariates, the association between the TGFB1 polymorphism in the donor and graft loss remained significant. In contrast, there was no association between the TGFB1 polymorphism in the recipient and graft loss. Conclusions Kidney allografts possessing a low-producing TGFB1 polymorphism have a higher risk of late graft loss. Our study adds to a growing body of evidence that TGF-β1 is beneficial, rather than harmful, for kidney transplant survival.
Collapse
Affiliation(s)
- Felix Poppelaars
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Mariana Gaya da Costa
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Bernardo Faria
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Nephrology and Infectious Disease R&D Group, INEB, Institute of Investigation and Innovation in Health (i3S), University of Porto, Porto, Portugal
| | - Siawosh K Eskandari
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jeffrey Damman
- Department of Pathology, Erasmus Medical Center, University Medical Center, Rotterdam, The Netherlands
| | - Marc A Seelen
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
47
|
Hamelink TL, Ogurlu B, De Beule J, Lantinga VA, Pool MBF, Venema LH, Leuvenink HGD, Jochmans I, Moers C. Renal Normothermic Machine Perfusion: The Road Toward Clinical Implementation of a Promising Pretransplant Organ Assessment Tool. Transplantation 2022; 106:268-279. [PMID: 33979315 DOI: 10.1097/tp.0000000000003817] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The increased utilization of high-risk renal grafts for transplantation requires optimization of pretransplant organ assessment strategies. Current decision-making methods to accept an organ for transplantation lack overall predictive power and always contain an element of subjectivity. Normothermic machine perfusion (NMP) creates near-physiological conditions, which might facilitate a more objective assessment of organ quality before transplantation. NMP is rapidly gaining popularity, with various transplant centers developing their own NMP protocols and renal viability criteria. However, to date, no validated sets of on-pump viability markers exist nor are there unified NMP protocols. This review provides a critical overview of the fundamentals of current renal NMP protocols and proposes a framework to approach further development of ex vivo organ evaluation. We also comment on the potential logistical implications of routine clinical use of NMP, which is a more complex procedure compared with static cold storage or even hypothermic machine perfusion.
Collapse
Affiliation(s)
- Tim L Hamelink
- Department of Surgery-Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Baran Ogurlu
- Department of Surgery-Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Julie De Beule
- Laboratory of Abdominal Transplantation, Transplantation Research Group, Department of Microbiology, Immunology, and Transplantation, KU Leuven, Leuven, Belgium
| | - Veerle A Lantinga
- Department of Surgery-Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Merel B F Pool
- Department of Surgery-Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Leonie H Venema
- Department of Surgery-Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Henri G D Leuvenink
- Department of Surgery-Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Ina Jochmans
- Laboratory of Abdominal Transplantation, Transplantation Research Group, Department of Microbiology, Immunology, and Transplantation, KU Leuven, Leuven, Belgium
- Department of Abdominal Transplant Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Cyril Moers
- Department of Surgery-Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
48
|
Prevalence Rate of Proteinuria and Metabolic Acidosis Among Kidney Transplant Recipients in a Tertiary Teaching Hospital and Its Relationship to Dietary Intake. Transplant Proc 2022; 54:355-361. [DOI: 10.1016/j.transproceed.2021.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/02/2021] [Accepted: 12/29/2021] [Indexed: 11/20/2022]
|
49
|
Chan J, Svensson M, Tannæs TM, Waldum-Grevbo B, Jenssen T, Eide IA. Associations of Serum Uromodulin and Urinary Epidermal Growth Factor with Measured Glomerular Filtration Rate and Interstitial Fibrosis in Kidney Transplantation. Am J Nephrol 2022; 53:108-117. [PMID: 35104815 DOI: 10.1159/000521757] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/20/2021] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Noninvasive biomarkers that reflect tubular health and allow early recognition of accelerated graft fibrosis development are warranted. Serum uromodulin (sUmod) and urinary epidermal growth factor (uEGF) originate from kidney tubules and may reflect functional nephron mass. The aim of this study was to investigate the associations between sUmod and uEGF with measured glomerular filtration rate (mGFR) and kidney allograft interstitial fibrosis percentage (IF%) score. METHODS sUmod and uEGF measurements, mGFR by iohexol-clearance and kidney allograft biopsies were obtained from kidney transplant recipients (KTRs) included in the Omega-3 fatty acids in Renal Transplantation (ORENTRA) trial at 8 weeks (baseline) and at 1 year after transplantation (end of study). Associations were analyzed with univariable and multivariable linear regression. RESULTS Ninety patients at baseline and 48 patients at end of study had complete study variable assessments. uEGF normalized to urinary creatinine (uEGF/Cr) was associated with mGFR both at baseline (standardized β-coefficient [Std. β-coeff] = 0.457 [p = <0.001]) and at end of study (Std. β-coeff = 0.637 [p = <0.001]). sUmod was only associated with mGFR at end of study (Std. β-coeff = 0.443 [p = 0.002]). uEGF/Cr, sUmod, and mGFR were associated with graft IF% score both at baseline (Std. β-coeff = -0.349 [p = 0.001], -0.274 [p = 0.009] and -0.289 [p = 0.006], respectively) and at end of study (Std. β-coeff = -0.365 [p = 0.011], -0.347 [p = 0.016] and -0.405 [p = 0.004], respectively). The results remained largely unchanged in multivariable analysis. CONCLUSION uEGF/Cr and sUmod were associated with mGFR and graft IF% score. Our results indicate a possible role of uEGF/Cr and sUmod in the follow-up of KTRs.
Collapse
Affiliation(s)
- Joe Chan
- Department of Renal Medicine, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - My Svensson
- Department of Renal Medicine, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Tone M Tannæs
- Division of Medicine, Department of Clinical Molecular Biology (EpiGen), Akershus University Hospital and University of Oslo, Lørenskog, Norway
| | - Bard Waldum-Grevbo
- Department of Nephrology, Oslo University Hospital Ullevål, Oslo, Norway
| | - Trond Jenssen
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Transplantation Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Ivar A Eide
- Department of Renal Medicine, Akershus University Hospital, Lørenskog, Norway
- Department of Transplantation Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| |
Collapse
|
50
|
Kainz A, Kammer M, Reindl-Schwaighofer R, Strohmaier S, Petr V, Viklicky O, Abramowicz D, Naik M, Mayer G, Oberbauer R. Waiting Time for Second Kidney Transplantation and Mortality. Clin J Am Soc Nephrol 2022; 17:90-97. [PMID: 34965955 PMCID: PMC8763155 DOI: 10.2215/cjn.07620621] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/11/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND AND OBJECTIVES The median kidney transplant half-life is 10-15 years. Because of the scarcity of donor organs and immunologic sensitization of candidates for retransplantation, there is a need for quantitative information on if and when a second transplantation is no longer associated with a lower risk of mortality compared with waitlisted patients treated by dialysis. Therefore, we investigated the association of time on waiting list with patient survival in patients who received a second transplantation versus remaining on the waiting list. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS In this retrospective study using target trial emulation, we analyzed data of 2346 patients from the Austrian Dialysis and Transplant Registry and Eurotransplant with a failed first graft, aged over 18 years, and waitlisted for a second kidney transplantation in Austria during the years 1980-2019. The differences in restricted mean survival time and hazard ratios for all-cause mortality comparing the treatment strategies "retransplant" versus "remain waitlisted with maintenance dialysis" are reported for different waiting times after first graft loss. RESULTS Second kidney transplantation showed a longer restricted mean survival time at 10 years of follow-up compared with remaining on the waiting list (5.8 life months gained; 95% confidence interval, 0.9 to 11.1). This survival difference was diminished in patients with longer waiting time after loss of the first allograft; restricted mean survival time differences at 10 years were 8.0 (95% confidence interval, 1.9 to 14.0) and 0.1 life months gained (95% confidence interval, -14.3 to 15.2) for patients with waiting time for retransplantation of <1 and 8 years, respectively. CONCLUSIONS Second kidney transplant is associated with patient survival compared with remaining waitlisted and treatment by dialysis, but the survival difference diminishes with longer waiting time.
Collapse
Affiliation(s)
- Alexander Kainz
- Department of Nephrology, Medical University of Vienna, Vienna, Austria
| | - Michael Kammer
- Department of Nephrology, Medical University of Vienna, Vienna, Austria,Institute of Clinical Biometrics, Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | | | - Susanne Strohmaier
- Department of Epidemiology, Medical University of Vienna, Vienna, Austria
| | - Vojtěch Petr
- Department of Nephrology, Transplant Center, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Ondrej Viklicky
- Department of Nephrology, Transplant Center, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Daniel Abramowicz
- Department of Nephrology, Antwerp University Hospital, Antwerp, Belgium
| | - Marcel Naik
- Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin, Berlin, Germany,Berlin Institute of Health, Berlin, Germany
| | - Gert Mayer
- Department of Internal Medicine IV–Nephrology and Hypertension, Medical University of Innsbruck, Innsbruck, Austria,Austrian Dialysis and Transplant Registry, Innsbruck, Austria
| | - Rainer Oberbauer
- Department of Nephrology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|