1
|
Guengerich FP. A history of the roles of cytochrome P450 enzymes in the toxicity of drugs. Toxicol Res 2021; 37:1-23. [PMID: 32837681 PMCID: PMC7431904 DOI: 10.1007/s43188-020-00056-z] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 05/22/2020] [Accepted: 06/11/2020] [Indexed: 02/07/2023] Open
Abstract
The history of drug metabolism began in the 19th Century and developed slowly. In the mid-20th Century the relationship between drug metabolism and toxicity became appreciated, and the roles of cytochrome P450 (P450) enzymes began to be defined in the 1960s. Today we understand much about the metabolism of drugs and many aspects of safety assessment in the context of a relatively small number of human P450s. P450s affect drug toxicity mainly by either reducing exposure to the parent molecule or, in some cases, by converting the drug into a toxic entity. Some of the factors involved are enzyme induction, enzyme inhibition (both reversible and irreversible), and pharmacogenetics. Issues related to drug toxicity include drug-drug interactions, drug-food interactions, and the roles of chemical moieties of drug candidates in drug discovery and development. The maturation of the field of P450 and drug toxicity has been facilitated by advances in analytical chemistry, computational capability, biochemistry and enzymology, and molecular and cell biology. Problems still arise with P450s and drug toxicity in drug discovery and development, and in the pharmaceutical industry the interaction of scientists in medicinal chemistry, drug metabolism, and safety assessment is critical for success.
Collapse
Affiliation(s)
- F. Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, 638B Robinson Research Building, 2200 Pierce Avenue, Nashville, TN 37232-0146 USA
| |
Collapse
|
2
|
Shah RR, Stonier PD. Repurposing old drugs in oncology: Opportunities with clinical and regulatory challenges ahead. J Clin Pharm Ther 2018; 44:6-22. [PMID: 30218625 DOI: 10.1111/jcpt.12759] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/08/2018] [Accepted: 08/19/2018] [Indexed: 12/11/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE In order to expedite the availability of drugs to treat cancers in a cost-effective manner, repurposing of old drugs for oncological indications is gathering momentum. Revolutionary advances in pharmacology and genomics have demonstrated many old drugs to have activity at novel antioncogenic pharmacological targets. We decided to investigate whether prospective studies support the promises of nonclinical and retrospective clinical studies on repurposing three old drugs, namely metformin, valproate and astemizole. METHODS We conducted an extensive literature search through PubMed to gather representative nonclinical and retrospective clinical studies that investigated the potential repurposing of these three drugs for oncological indications. We then searched for prospective studies aimed at confirming the promises of retrospective data. RESULTS AND DISCUSSION While evidence from nonclinical and retrospective clinical studies with these drugs appears highly promising, large scale prospective studies are either lacking or have failed to substantiate this promise. We provide a brief discussion of some of the challenges in repurposing. Principal challenges and obstacles relate to heterogeneity of cancers studied without considering their molecular signatures, trials with small sample size and short duration, failure consider issues of ethnicity of study population and effective antioncogenic doses of the drug studied. WHAT IS NEW AND CONCLUSION Well-designed prospective studies demonstrating efficacy are required for repurposing old drugs for oncology indications, just as they are for new chemical entities for any indication. Early and ongoing interactions with regulatory authorities are invaluable. We outline a tentative framework for a structured approach to repurposing old drugs for novel indications in oncology.
Collapse
Affiliation(s)
- Rashmi R Shah
- Pharmaceutical Consultant, Gerrards Cross, Buckinghamshire, UK
| | - Peter D Stonier
- Department of Pharmaceutical Medicine, School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College, London, UK
| |
Collapse
|
3
|
|
4
|
Shah RR. Pharmacogenetic aspects of drug-induced torsade de pointes: potential tool for improving clinical drug development and prescribing. Drug Saf 2004; 27:145-72. [PMID: 14756578 DOI: 10.2165/00002018-200427030-00001] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Drug-induced torsade de pointes (TdP) has proved to be a significant iatro-genic cause of morbidity and mortality and a major reason for the withdrawal of a number of drugs from the market in recent times. Enzymes that metabolise many of these drugs and the potassium channels that are responsible for cardiac repolarisation display genetic polymorphisms. Anecdotal reports have suggested that in many cases of drug-induced TdP, there may be a concealed genetic defect of either these enzymes or the potassium channels, giving rise to either high plasma drug concentrations or diminished cardiac repolarisation reserve, respectively. The presence of either of these genetic defects may predispose a patient to TdP, a potentially fatal adverse reaction, even at therapeutic dosages of QT-prolonging drugs and in the absence of other risk factors. Advances in pharmacogenetics of drug metabolising enzymes and pharmacological targets, together with the prospects of rapid and inexpensive genotyping procedures, promise to individualise and improve the benefit/risk ratio of therapy with drugs that have the potential to cause TdP. The qualitative and the quantitative contributions of these genetic defects in clinical cases of TdP are unclear because not all of the patients with TdP are routinely genotyped and some relevant genetic mutations still remain to be discovered. There are regulatory guidelines that recommend strategies aimed at uncovering the risk of TdP associated with new chemical entities during their development. There are also a number of guidelines that recommend integrating pharmacogenetics in this process. This paper proposes a strategy for integrating pharmacogenetics into drug development programmes to optimise association studies correlating genetic traits and endpoints of clinical interest, namely failure of efficacy or development of repolarisation abnormalities. Until pharmacogenetics is carefully integrated into all phases of development of QT-prolonging drugs and large-scale studies are undertaken during their post-marketing use to determine the genetic components involved in induction of TdP, routine genotyping of patients remains unrealistic. Even without this pharmacogenetic data, the clinical risk of TdP can already be greatly minimised. Clinically, a substantial proportion of cases of TdP are due to the use of either high or usual dosages of drugs with potential to cause TdP in the presence of factors that inhibit drug metabolism. Therefore, choosing the lowest effective dose and identifying patients with these non-genetic risk factors are important means of minimising the risk of TdP. In view of the common secondary pharmacology shared by these drugs, a standard set of contraindications and warnings have evolved over the last decade. These include factors responsible for pharmacokinetic or pharmacodynamic drug interactions. Among the latter, the more important ones are bradycardia, electrolyte imbalance, cardiac disease and co-administration of two or more QT-prolonging drugs. In principle, if large scale prospective studies can demonstrate a substantial genetic component, pharmacogenetically driven prescribing ought to reduce the risk further. However, any potential benefits of pharmacogenetics will be squandered without any reduction in the clinical risk of TdP if physicians do not follow prescribing and monitoring recommendations.
Collapse
Affiliation(s)
- Rashmi R Shah
- Medicines and Healthcare products Regulatory Agency, London, United Kingdom.
| |
Collapse
|
5
|
Kévorkian JP, Michel C, Hofmann U, Jacqz-Aigrain E, Kroemer HK, Peraldi MN, Eichelbaum M, Jaillon P, Funck-Brentano C. Assessment of individual CYP2D6 activity in extensive metabolizers with renal failure: comparison of sparteine and dextromethorphan. Clin Pharmacol Ther 1996; 59:583-92. [PMID: 8646830 DOI: 10.1016/s0009-9236(96)90187-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
OBJECTIVES To examine whether the variability of CYP2D6 activity in patients with chronic renal failure can be assessed, particularly among subjects with the extensive metabolizer phenotype, by use of standard in vivo indexes of CYP2D6 activity derived from oral administration of dextromethorphan and sparteine. METHODS A single 100 mg oral dose of sparteine and a single 40 mg oral dose of dextromethorphan were administered on two occasions to 12 patients with chronic renal failure (creatinine clearance ranging from 20 to 70 ml/min) and 12 age- and sex-matched healthy subjects. Sparteine clearances, sparteine metabolic ratio, and urinary recovery of dextrorphan were calculated. Patients and healthy control subjects were not selected on the basis of their CYP2D6 phenotypes. RESULTS Chronic renal failure was associated with a decrease in sparteine partial metabolic clearance to dehydrosparteine (median of 322 ml/min and range of 62 to 670 ml/min in patients with renal failure versus median of 635 ml/min and range of 77 to 1276 ml/min in normal subjects; p < 0.02). Sparteine apparent oral clearance (p < 0.03) and renal clearance (p < 0.001) decreased in patients with renal failure. However, sparteine metabolic ratio was not significantly altered in patients with renal failure and showed that all patients were extensive metabolizers of sparteine. Although fractional urinary excretion of dextrorphan decreased in patients with renal failure (median, 24.4%; range, 9.7% to 55.9%) compared with control (median, 47.5%; range, 24.1% to 72.1%) (p = 0.02), it also showed that all subjects were extensive metabolizers of dextromethorphan. The amount of dextromethorphan excreted in urine correlated with creatinine clearance independently from CYP2D6 activity measured as sparteine partial metabolic clearance. However, it did not correlate with sparteine metabolic ratio or with fractional urinary excretion of dehydrosparteine. CONCLUSION Assessment of CYP2D6 activity by use of dextromethorphan and sparteine is possible in extensive metabolizer patients with chronic renal failure. However, in these subjects, dextromethorphan and sparteine do not reflect CYP2D6 activity in the same way.
Collapse
Affiliation(s)
- J P Kévorkian
- Clinical Pharmacology Unit, Saint-Antoine University Hospital, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Affiliation(s)
- R J Guttendorf
- Pharmacokinetics/Drug Metabolism Department, Parke-Davis Pharmaceutical Research Division, Warner-Lambert Co., Ann Arbor, Michigan 48105
| | | |
Collapse
|
7
|
Abstract
Cytochrome P-450 (P-450) enzymes have been studied extensively in experimental animal models and much is known regarding their structures, regulation, and mechanisms of catalysis. In recent years investigations have been extended to the human P-450s. There are more than 30 different characterized human P-450s in the superfamily, and collectively they are probably the most significant enzymes involved in the metabolism of drugs, carcinogens, and steroids. The levels of many of the P-450s and their catalytic activities can vary considerably because of polymorphism, induction, and inhibition. The catalytic specificity of the P-450s can range from being very non-discriminatory to very exacting, and clinical consequences of drugs and steroids can be related to variations in P-450 levels. Defects in the rate-limiting P-450 reactions in steroidogenesis (due to genetic deficiencies) have been shown to be debilitating and even fatal.
Collapse
Affiliation(s)
- F P Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| |
Collapse
|
8
|
Helsby NA, Ward SA, Edwards G, Howells RE, Breckenridge AM. The pharmacokinetics and activation of proguanil in man: consequences of variability in drug metabolism. Br J Clin Pharmacol 1990; 30:593-8. [PMID: 2291871 PMCID: PMC1368250 DOI: 10.1111/j.1365-2125.1990.tb03818.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
1. Based on the ratio of drug to active metabolite excreted in urine approximately 3% of a healthy Caucasian population showed a reduced ability to convert proguanil to cycloguanil. 2. Pharmacokinetic analysis showed that this observation resulted from a reduced oral clearance of proguanil in these individuals (245, 534 and 552 ml min-1) compared with the rest of the population (858 +/- 482 ml min-1). 3. Peak plasma concentrations of active metabolite were significantly lower in these subjects (54.2, 26.8 and 51.7 ng ml-1) compared with the rest of the population (141 +/- 45.2 ng ml-1). 4. The observed variability may result from the polymorphic metabolism of proguanil in man.
Collapse
Affiliation(s)
- N A Helsby
- Department of Parasitology, Liverpool School of Tropical Medicine
| | | | | | | | | |
Collapse
|
9
|
Helsby NA, Ward SA, Howells RE, Breckenridge AM. In vitro metabolism of the biguanide antimalarials in human liver microsomes: evidence for a role of the mephenytoin hydroxylase (P450 MP) enzyme. Br J Clin Pharmacol 1990; 30:287-91. [PMID: 2206791 PMCID: PMC1368230 DOI: 10.1111/j.1365-2125.1990.tb03777.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The metabolic activation of the arylbiguanide antimalarials proguanil (PG) and chlorproguanil (CPG) has been investigated in liver microsomes from three human livers. All three microsomal preparations activated the biguanides. The kinetic parameters for PG metabolism to cycloguanil (CG) were Km 21.8, 29.6 and 26.4 microM and Vmax 1.5, 5.9, and 8.2 pmol min-1 mg-1. The values for CPG conversion to chlorcycloguanil (CCG) were Km 12.9, 19.7 and 26.1 microM and Vmax 5.7, 4.8 and 3.6 pmol min-1 mg-1. The metabolic activation of both biguanides was competitively inhibited by the anticonvulsant mephenytoin. Sparteine and tolbutamide had no effect on biguanide metabolism. These data suggest an involvement of the mephenytoin hydroxylase enzyme, which exhibits a genetic polymorphism in man, in the metabolic activation of the biguanide antimalarials.
Collapse
Affiliation(s)
- N A Helsby
- Department of Parasitology, Liverpool School of Tropical Medicine
| | | | | | | |
Collapse
|
10
|
Funck-Brentano C, Kroemer HK, Pavlou H, Woosley RL, Roden DM. Genetically-determined interaction between propafenone and low dose quinidine: role of active metabolites in modulating net drug effect. Br J Clin Pharmacol 1989; 27:435-44. [PMID: 2719900 PMCID: PMC1379722 DOI: 10.1111/j.1365-2125.1989.tb05391.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
1. Quinidine is a potent inhibitor of the genetically-determined debrisoquine 4-hydroxylation. Oxidation reactions of several other drugs, including the 5-hydroxylation of the new antiarrhythmic drug propafenone, depend on the isozyme responsible for debrisoquine 4-hydroxylation. 2. The effect of quinidine on the debrisoquine phenotype-dependent 5-hydroxylation and the pharmacological activity of propafenone was studied in seven 'extensive' metabolizers and two 'poor' metabolizers of the drug receiving propafenone for the treatment of ventricular arrhythmias. 3. In patients with the extensive metabolizer phenotype, quinidine increased mean steady-state plasma propafenone concentrations more than two fold, from 408 +/- 351 (mean +/- s.d.) to 1096 +/- 644 ng ml-1 (P less than 0.001), decreased 5-hydroxypropafenone concentrations from 242 +/- 196 to 125 +/- 97 ng ml-1 (P less than 0.02) and reduced propafenone oral clearance by 58 +/- 23%. 4. Despite these changes in plasma concentrations, electrocardiographic intervals and arrhythmia frequency were unaltered by quinidine coadministration, indicating that 5-hydroxypropafenone contributes to the pharmacologic effects of propafenone therapy in extensive metabolizers. 5. In contrasts, plasma concentrations of propafenone and 5-hydroxypropafenone remained unchanged in the two patients with the poor metabolizer phenotype. 6. Biotransformation of substrates for the debrisoquine pathway can be markedly perturbed by even low doses of quinidine; interindividual variability in drug interactions may have a genetic component.
Collapse
Affiliation(s)
- C Funck-Brentano
- Department of Medicine, Vanderbilt University, Nashville, TN 37232
| | | | | | | | | |
Collapse
|
11
|
Ferner RE, Chaplin S. The relationship between the pharmacokinetics and pharmacodynamic effects of oral hypoglycaemic drugs. Clin Pharmacokinet 1987; 12:379-401. [PMID: 3301149 DOI: 10.2165/00003088-198712060-00001] [Citation(s) in RCA: 71] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Oral hypoglycaemic drugs have widely differing pharmacokinetic properties. Possible pharmacodynamic benefits include greater efficacy and fewer adverse effects. In general, it has not been possible to demonstrate unequivocal differences in clinical efficacy between the sulphonylureas during long term use, although there are clear differences in potency. These differences have been emphasised to the extent that the term 'second-generation' has been used for the most potent sulphonylureas, but there is little to suggest that potency is of any therapeutic significance. Trials to study differences in efficacy have rarely been of acceptable design. They have often used fixed doses of drugs, begging the question of whether true potency ratios have been established for chronic treatment. They have rarely involved substantial numbers of patients in double-blind crossover studies with a suitable washout period. Trials which show that there is a clear relationship between drug concentrations in blood and drug effects (whether therapeutic effects or adverse effects such as severe hypoglycaemia) are generally lacking. Qualitative and semiquantitative analysis of adverse effects supports the concept that drugs with a long half-life (e.g. chlorpropamide), renally excreted active metabolites (e.g. acetohexamide) or unusual properties (e.g. glibenclamide, which accumulates progressively in islet tissue) are more likely to cause prolonged hypoglycaemia, which may be fatal. The major adverse effect of treatment with biguanides is lactic acidosis, and this probably occurs more commonly in patients treated with phenformin than those treated with metformin because of pharmacogenetic variation in phenformin metabolism. The available evidence therefore favours the use of drugs with a short elimination half-life which are extensively metabolised and which have no active metabolites.
Collapse
|
12
|
Osikowska-Evers BA, Eichelbaum M. A sensitive capillary GC assay for the determination of sparteine oxidation products in microsomal fractions of human liver. Life Sci 1986; 38:1775-82. [PMID: 3702606 DOI: 10.1016/0024-3205(86)90128-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A sensitive method for the assay of sparteine oxidase activity in vitro by microsomal fractions of human liver is described. The activity of sparteine oxidase was assessed by the formation of 2- and 5-dehydrosparteines, which were estimated by capillary gas chromatography with N2-FID detection. The limit of detection of the two metabolites, 2- and 5-dehydrosparteine, was 10 pmol (2.3 ng) per sample. Sparteine oxidase activity was linear with microsomal protein concentration ranging from 25 to 200 ug and with incubation times between 5 and 60 minutes. Omission of NADPH on incubation under an atmosphere of carbon monoxide inhibited formation of both metabolites, thus indicating that aforementioned metabolites arise in reaction catalyzed by cytochrome P-450. In three liver samples from humans classified as extensive (EM) metabolizers the formation of 2- and 5-dehydrosparteines was observed, 2-dehydrosparteine being the major metabolite. In these samples sparteine oxidase activity was characterised by Vmax = 136 +/- 53 pmol/min/mg and Km = 44 +/- 12 microM for 2-dehydrosparteine formation. For 5-dehydrosparteine formation the following values were obtained: Vmax = 57 +/- 18 pmol/min/mg and Km = 42 +/- 26 microM. In a liver sample from a poor metabolizer (PM) only the formation of 2-dehydrosparteine was detected with the method of analysis used. In this sample a great increase in Km (Km PM = 3033 microM) was noted, while Vmax was very similar to those obtained for 2-dehydrosparteine formation in EM subjects (Vmax PM = 147 pmol min/mg).
Collapse
|
13
|
Shah RR, Evans DA, Oates NS, Idle JR, Smith RL. The genetic control of phenformin 4-hydroxylation. J Med Genet 1985; 22:361-6. [PMID: 4078865 PMCID: PMC1049479 DOI: 10.1136/jmg.22.5.361] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Previously published results of phenformin 4-hydroxylation in 195 unrelated white British volunteers and 87 family members of 27 randomly selected probands have been subjected to genetic analysis. The results clearly show that about 9% of this population has a genetically determined defect in carrying out this oxidation reaction. The character for the defect is inherited in a Mendelian autosomal recessive fashion. The polymorphism shows a substantial degree of dominance.
Collapse
|
14
|
|
15
|
Eichelbaum M, Bertilsson L, Säwe J. Antipyrine metabolism in relation to polymorphic oxidations of sparteine and debrisoquine. Br J Clin Pharmacol 1983; 15:317-21. [PMID: 6849767 PMCID: PMC1427783 DOI: 10.1111/j.1365-2125.1983.tb01505.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Thirty-five healthy subjects who had been classified as extensive or poor metabolizers of both sparteine and debrisoquine were given a single oral dose of antipyrine. Saliva concentration of antipyrine and urinary excretion of its three major oxidation metabolites were measured. All the parameters of antipyrine metabolism which were estimated had similar distributions in both the 28 EM and 7 PM genetic phenotypes defined by the metabolism of sparteine and debrisoquine. The clearance of antipyrine by the formation of 4-hydroxy-antipyrine and 3-hydroxy-antipyrine respectively were closely correlated (r = 0.83, P less than 0.001) and both were significantly higher in smokers than in non-smokers. Demethylation of antipyrine also seemed to be influenced by smoking, but not to a statistically significant extent. These findings confirm the influence of the environmental factor of smoking in antipyrine oxidative biotransformations.
Collapse
|
16
|
|
17
|
Shah RR, Oates NS, Idle JR, Smith RL, Lockhart JD. Impaired oxidation of debrisoquine in patients with perhexiline neuropathy. BMJ : BRITISH MEDICAL JOURNAL 1982; 284:295-9. [PMID: 6277419 PMCID: PMC1495859 DOI: 10.1136/bmj.284.6312.295] [Citation(s) in RCA: 175] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The use of perhexiline maleate as an antianginal agent is occasionally associated with side effects, particularly neuropathy and liver damage. The reason why some individuals develop these toxic reactions is not clear, though some evidence suggests that they may result from impaired oxidative metabolism, due to genetic or hepatic factors, and consequential accumulation of the drug in toxic concentrations. Drug oxidation was measured with an oxidation phenotyping procedure in 34 patients treated with perhexiline, 20 of whom had developed neuropathy and 14 of whom had not. Most of the 20 patients with neuropathy, but not the unaffected patients, showed an impaired ability to effect metabolic drug oxidation. This impairment was independent of hepatic function, concurrent drug therapy, or tobacco or alcohol consumption. The fact that the ability to oxidise several drugs is genetically controlled points to a genetic susceptibility to developing neuropathy in response to perhexiline. Routine determination of the drug oxidation phenotype might lead to safer use of perhexiline by predicting patients who may be more at risk of developing a neuropathic reaction associated with its long-term use.
Collapse
|