1
|
Yang J, Shi H, Niu W, Bao X, Liu H, Chen C, Jin H, Song W, Sun Y. Identification of carrier status of Xp22.31 microdeletions associated with X-linked ichthyosis at the single-cell level using haplotype linkage analysis by karyomapping. J Assist Reprod Genet 2023; 40:1735-1746. [PMID: 37154837 PMCID: PMC10352200 DOI: 10.1007/s10815-023-02812-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/18/2023] [Indexed: 05/10/2023] Open
Abstract
PURPOSE Currently, owing to the limitations of high-throughput sequencing depth and the allele dropout caused by the whole-genome amplification, detection of chromosomal variants in embryos with CNVs <5 Mb is unsatisfactory at the single-cell level using only conventional sequencing methods. Therefore, here we aimed to use a strategy of preimplantation genetic testing for monogenic (PGT-M) to compensate for the shortcomings of conventional sequencing methods. The purpose of this study is to report the effectiveness of haplotype linkage analysis by karyomapping for preimplantation diagnosis microdeletion diseases. METHODS Six couples carrying chromosomal microdeletions associated with X-linked ichthyosis were recruited, and all couples entered the PGT process. Multiple displacement amplification (MDA) method was used to amplify the whole-genome DNA of trophectoderm cells. Then karyomapping based on single nucleotide polymorphism (SNP) was used for haplotype linkage analysis to detect alleles carrying microdeletions, and CNVs of embryos were identified to determine euploid identity. Amniotic fluid tests were performed in the second trimester to verify the PGT-M results. RESULTS All couples were tested for chromosomal microdeletions, with deletion fragments ranging in size from 1.60 to 1.73 Mb, and one partner in each couple did not carry the microdeletion. Three couples successfully underwent PGT-M assisted conception and obtained healthy live births. CONCLUSION This study shows that haplotype linkage analysis by karyomapping could effectively detect the carrier status of embryos with microdeletions at the single-cell level. This approach may be applied to the preimplantation diagnosis of various chromosomal microvariation diseases.
Collapse
Affiliation(s)
- Jingya Yang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Hao Shi
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Wenbin Niu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xiao Bao
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Han Liu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Chuanju Chen
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Haixia Jin
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Wenyan Song
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yingpu Sun
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
2
|
Brcic L, Underwood JF, Kendall KM, Caseras X, Kirov G, Davies W. Medical and neurobehavioural phenotypes in carriers of X-linked ichthyosis-associated genetic deletions in the UK Biobank. J Med Genet 2020; 57:692-698. [PMID: 32139392 PMCID: PMC7525778 DOI: 10.1136/jmedgenet-2019-106676] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/20/2019] [Accepted: 01/23/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND X-linked ichthyosis (XLI) is an uncommon dermatological condition resulting from a deficiency of the enzyme steroid sulfatase (STS), often caused by X-linked deletions spanning STS. Some medical comorbidities have been identified in XLI cases, but small samples of relatively young patients has limited this. STS is highly expressed in subcortical brain structures, and males with XLI and female deletion carriers appear at increased risk of developmental/mood disorders and associated traits; the neurocognitive basis of these findings has not been examined. METHODS Using the UK Biobank resource, comprising participants aged 40-69 years recruited from the general UK population, we compared multiple medical/neurobehavioural phenotypes in males (n=86) and females (n=312) carrying genetic deletions spanning STS (0.8-2.5 Mb) (cases) to male (n=190 577) and female (n=227 862) non-carrier controls. RESULTS We identified an elevated rate of atrial fibrillation/flutter in male deletion carriers (10.5% vs 2.7% in male controls, Benjamini-Hochberg corrected p=0.009), and increased rates of mental distress (p=0.003), irritability (p<0.001) and depressive-anxiety traits (p<0.05) in male deletion carriers relative to male controls completing the Mental Health Questionnaire. While academic attainment was unaffected, male and female deletion carriers exhibited impaired performance on the Fluid Intelligence Test (Cohen's d≤0.05, corrected p<0.1). Neuroanatomical analysis in female deletion carriers indicated reduced right putamen and left nucleus accumbens volumes (Cohen's d≤0.26, corrected p<0.1). CONCLUSION Adult males with XLI disease-causing deletions are apparently at increased risk of cardiac arrhythmias and self-reported mood problems; altered basal ganglia structure may underlie altered function and XLI-associated psychiatric/behavioural phenotypes. These results provide information for genetic counselling of deletion-carrying individuals and reinforce the need for multidisciplinary medical care.
Collapse
Affiliation(s)
- Lucija Brcic
- School of Psychology, Cardiff University, Cardiff, UK
| | - Jack Fg Underwood
- MRC Centre for Neuropsychiatric Genetics and Genomics and Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK.,Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
| | - Kimberley M Kendall
- MRC Centre for Neuropsychiatric Genetics and Genomics and Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Xavier Caseras
- MRC Centre for Neuropsychiatric Genetics and Genomics and Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - George Kirov
- MRC Centre for Neuropsychiatric Genetics and Genomics and Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - William Davies
- School of Psychology, Cardiff University, Cardiff, UK .,MRC Centre for Neuropsychiatric Genetics and Genomics and Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK.,Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
| |
Collapse
|
3
|
Rodrigo-Nicolás B, Bueno-Martínez E, Martín-Santiago A, Cañueto J, Vicente A, Torrelo A, Noguera-Morel L, Duat-Rodríguez A, Jorge-Finnigan C, Palacios-Álvarez I, García-Hernández J, Sebaratnam D, González-Sarmiento R, Hernández-Martín A. Evidence of the high prevalence of neurological disorders in nonsyndromic X-linked recessive ichthyosis: a retrospective case series. Br J Dermatol 2018; 179:933-939. [DOI: 10.1111/bjd.16826] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2018] [Indexed: 12/11/2022]
Affiliation(s)
| | - E. Bueno-Martínez
- Molecular Medicine Unit-Department of Medicine; IBSAL and IBMCC and University Hospital of Salamanca; CSIC, University of Salamanca; Spain
| | - A. Martín-Santiago
- Department of Dermatology; Hospital Son Espases; Palma de Mallorca Spain
| | - J. Cañueto
- Department of Dermatology; Hospital Universitario de Salamanca; Salamanca Spain
| | - A. Vicente
- Department of Dermatology; Hospital Sant Joan de Deu; Barcelona Spain
| | - A. Torrelo
- Department of Dermatology; Hospital Infantil Niño Jesús; Madrid Spain
| | - L. Noguera-Morel
- Department of Dermatology; Hospital Infantil Niño Jesús; Madrid Spain
| | | | - C. Jorge-Finnigan
- Department of Dermatology; Hospital Infantil Niño Jesús; Madrid Spain
| | | | - J.L. García-Hernández
- Molecular Medicine Unit-Department of Medicine; IBSAL and IBMCC and University Hospital of Salamanca; CSIC, University of Salamanca; Spain
| | - D.F. Sebaratnam
- Department of Dermatology; Hospital Infantil Niño Jesús; Madrid Spain
| | - R. González-Sarmiento
- Molecular Medicine Unit-Department of Medicine; IBSAL and IBMCC and University Hospital of Salamanca; CSIC, University of Salamanca; Spain
| | | |
Collapse
|
4
|
Fietz D. Transporter for sulfated steroid hormones in the testis - expression pattern, biological significance and implications for fertility in men and rodents. J Steroid Biochem Mol Biol 2018; 179:8-19. [PMID: 29017936 DOI: 10.1016/j.jsbmb.2017.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 09/22/2017] [Accepted: 10/03/2017] [Indexed: 12/14/2022]
Abstract
In various tissues, steroid hormones may be sulfated, glucuronidated or otherwise modified. For a long time, these hydrophilic molecules have been considered to be merely inactive metabolites for excretion via bile or urine. Nevertheless, different organs such as the placenta and breast tissue produce large amounts of sulfated steroids. After the discovery of the enzyme steroid sulfatase, which is able to re-activate sulfated steroids, these precursor molecules entered the focus of interest again as a local supply for steroid hormone synthesis with a prolonged half-life compared to their unconjugated counterparts. The first descriptions of this so-called sulfatase pathway in the placenta and breast tissue (with special regards to hormone-dependent breast cancer) were quickly followed by studies of steroid sulfate production and function in the testis. These hydrophilic molecules may not permeate the cell membrane by diffusion in the way that unbound steroids can, but need to be transported through the plasma membrane by transport systems. In the testis, a functional sulfatase pathway requires the expression of specific uptake carrier and efflux transporters in testicular cells, i.e. Sertoli, Leydig and germ cells. Main focus has to be placed on Sertoli cells, as these cells build up the blood-testis barrier. In this review, an overview of carrier expression pattern in the human as well as rodent testis is provided with special interest towards implications on fertility.
Collapse
Affiliation(s)
- D Fietz
- Institute for Veterinary Anatomy, Histology and Embryology, Justus Liebig University Giessen, Giessen, Germany.
| |
Collapse
|
5
|
Ghosh A, Ahar R, Chatterjee G, Sharma N, Jadhav SA. Clinico-epidemiological Study of Congenital Ichthyosis in a Tertiary Care Center of Eastern India. Indian J Dermatol 2017; 62:606-611. [PMID: 29263534 PMCID: PMC5724308 DOI: 10.4103/ijd.ijd_411_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Background Congenital ichthyoses comprises various specific genetic diseases and can range from mild to very severe presentation. Furthermore, these may be associated with various syndromes. There is scanty data regarding the demographic profile and clinical features of patients with congenital ichthyosis in India. Aims and Objectives The aim is to evaluate the epidemiology and clinical characteristics of various types of congenital ichthyoses. Materials and Methods The study was conducted for 1 year from April 2013 to March 2014. Patients were evaluated for epidemiological profile and clinical features. Results During the study of 1 year, 106 patients of congenital ichthyoses were identified. The most common of the various ichthyoses was ichthyosis vulgaris, followed by lamellar ichthyosis, X-linked recessive ichthyosis. One case of Netherton syndrome and one of ichthyosis hystrix were also identified. Conclusion Various types of congenital ichthyoses present with different clinical features which range from mild to severe. These present with significant psychological stress to both patients and their families. Furthermore, all these diseases have significant implications of transmission to their offspring.
Collapse
Affiliation(s)
- Arghyaprasun Ghosh
- Department of Dermatology, Venereology and Leprosy, Bankura Sammilani Medical College, Bankura, West Bengal, India
| | - Rahul Ahar
- Department of Dermatology, Venereology and Leprosy, Shridev Suman Subharti Medical College, Dehradun, Uttarakhand, India
| | - Gobinda Chatterjee
- Department of Dermatology, Venereology and Leprosy, IPGMER and SSKM Hospital, Kolkata, West Bengal, India
| | - Neha Sharma
- Department of Dermatology, Venereology and Leprosy, IPGMER and SSKM Hospital, Kolkata, West Bengal, India
| | - Shruti Alhad Jadhav
- Department of Dermatology, Venereology and Leprosy, IPGMER and SSKM Hospital, Kolkata, West Bengal, India
| |
Collapse
|
6
|
Mueller JW, Gilligan LC, Idkowiak J, Arlt W, Foster PA. The Regulation of Steroid Action by Sulfation and Desulfation. Endocr Rev 2015; 36:526-63. [PMID: 26213785 PMCID: PMC4591525 DOI: 10.1210/er.2015-1036] [Citation(s) in RCA: 300] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 07/21/2015] [Indexed: 12/14/2022]
Abstract
Steroid sulfation and desulfation are fundamental pathways vital for a functional vertebrate endocrine system. After biosynthesis, hydrophobic steroids are sulfated to expedite circulatory transit. Target cells express transmembrane organic anion-transporting polypeptides that facilitate cellular uptake of sulfated steroids. Once intracellular, sulfatases hydrolyze these steroid sulfate esters to their unconjugated, and usually active, forms. Because most steroids can be sulfated, including cholesterol, pregnenolone, dehydroepiandrosterone, and estrone, understanding the function, tissue distribution, and regulation of sulfation and desulfation processes provides significant insights into normal endocrine function. Not surprisingly, dysregulation of these pathways is associated with numerous pathologies, including steroid-dependent cancers, polycystic ovary syndrome, and X-linked ichthyosis. Here we provide a comprehensive examination of our current knowledge of endocrine-related sulfation and desulfation pathways. We describe the interplay between sulfatases and sulfotransferases, showing how their expression and regulation influences steroid action. Furthermore, we address the role that organic anion-transporting polypeptides play in regulating intracellular steroid concentrations and how their expression patterns influence many pathologies, especially cancer. Finally, the recent advances in pharmacologically targeting steroidogenic pathways will be examined.
Collapse
Affiliation(s)
- Jonathan W Mueller
- Centre for Endocrinology, Diabetes, and Metabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Lorna C Gilligan
- Centre for Endocrinology, Diabetes, and Metabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Jan Idkowiak
- Centre for Endocrinology, Diabetes, and Metabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Wiebke Arlt
- Centre for Endocrinology, Diabetes, and Metabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Paul A Foster
- Centre for Endocrinology, Diabetes, and Metabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
7
|
Toral-López J, González-Huerta LM, Cuevas-Covarrubias SA. X linked recessive ichthyosis: Current concepts. World J Dermatol 2015; 4:129-134. [DOI: 10.5314/wjd.v4.i3.129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 01/31/2015] [Accepted: 05/28/2015] [Indexed: 02/06/2023] Open
Abstract
In the present review, we describe the most important aspects of the X-linked ichthyosis (XLI) and make a compilation of the some historic details of the disease. The aim of the present study is an update of the XLI. Historical, clinical, epidemiological, and molecular aspects are described through the text. Recessive XLI is a relatively common genodermatosis affecting different ethnic groups. With a high spectrum of the clinical manifestations due to environmental factors, the disease has a genetic heterogeneity that goes from a point mutation to a large deletion involving several genes to produce a contiguous gene syndrome. Most XLI patients harbor complete STS gene deletion and flanked sequences; seven intragenic deletions and 14 point mutations with a complete loss of the steroid sulfatase activity have been reported worldwide. In this study, we review current knowledge about the disease.
Collapse
|
8
|
Hand JL, Runke CK, Hodge JC. The phenotype spectrum of X-linked ichthyosis identified by chromosomal microarray. J Am Acad Dermatol 2015; 72:617-27. [DOI: 10.1016/j.jaad.2014.12.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 12/10/2014] [Accepted: 12/12/2014] [Indexed: 11/29/2022]
|
9
|
Elias PM, Williams ML, Choi EH, Feingold KR. Role of cholesterol sulfate in epidermal structure and function: lessons from X-linked ichthyosis. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:353-61. [PMID: 24291327 DOI: 10.1016/j.bbalip.2013.11.009] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 11/13/2013] [Accepted: 11/20/2013] [Indexed: 02/07/2023]
Abstract
X-linked ichthyosis is a relatively common syndromic form of ichthyosis most often due to deletions in the gene encoding the microsomal enzyme, steroid sulfatase, located on the short area of the X chromosome. Syndromic features are mild or unapparent unless contiguous genes are affected. In normal epidermis, cholesterol sulfate is generated by cholesterol sulfotransferase (SULT2B1b), but desulfated in the outer epidermis, together forming a 'cholesterol sulfate cycle' that potently regulates epidermal differentiation, barrier function and desquamation. In XLI, cholesterol sulfate levels my exceed 10% of total lipid mass (≈1% of total weight). Multiple cellular and biochemical processes contribute to the pathogenesis of the barrier abnormality and scaling phenotype in XLI. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias.
Collapse
Affiliation(s)
- Peter M Elias
- Dermatology Service, Department of Veterans Affairs Medical Center, and Department of Dermatology, University of California, San Francisco, CA USA.
| | - Mary L Williams
- Departments of Dermatology and Pediatrics, University of California, San Francisco, CA USA
| | - Eung-Ho Choi
- Department of Dermatology, Yonsei University, Wonju College of Medicine, Wonju, South Korea
| | - Kenneth R Feingold
- Medical Service, Department of Veterans Affairs Medical Center, and Department of Medicine, University of California, San Francisco, CA, USA
| |
Collapse
|
10
|
Mutational analysis of proto-oncogene Dbl on Xq27 in testicular germ cell tumors reveals a rare SNP in a patient with bilateral undescended testis. World J Urol 2011; 27:811-5. [PMID: 19373475 DOI: 10.1007/s00345-009-0408-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Accepted: 03/23/2009] [Indexed: 01/20/2023] Open
Abstract
OBJECTIVES An abundance of X chromosomes in testicular germ cell tumors (TGCTs), and a candidate TGCTs susceptibility gene (TGCT1) on Xq27 highlight the potential involvement of X chromosomes in TGCT pathogenesis. However, the TGCT1 on Xq27 has so far not been identified. We hypothesized that a somatic mutation of dbl oncogene on Xq27 may play a role for the development of TGCTs. METHODS We have screened 41 TGCT tissues for dbl mutations using single-strand conformation polymorphism (SSCP) analysis. These tissues are composed of 25 seminomatous TGCTs tissues and 16 non-seminomatous TGCTs tissues, including two cases with a rhabdomyosarcoma component. RESULTS Somatic mutations were not detected in the 25 exons of dbl in these TGCTs. However, we found a rare single nucleotide polymorphism (SNP) (T to C nucleotide change) within intron 22 in one out of the 41 TGCTs cases (2%). Furthermore, the sample with the rare SNP was identified as the sole TGCTs case associated with bilateral undescended testis in our series. CONCLUSIONS Our results indicate that proto-oncogene dbl is not a major target for sporadic TGCTs. However, the rare SNP in dbl may affect the susceptibility to undescended testis. Determining the frequency of this SNP in patients with various types of undescended testis in different ethnic groups is a warranted study.
Collapse
|
11
|
Germ Cell Cancer, Testicular Dysgenesis Syndrome and Epigenetics. EPIGENETICS AND HUMAN REPRODUCTION 2011. [DOI: 10.1007/978-3-642-14773-9_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
12
|
Fernandes NF, Janniger CK, Schwartz RA. X-linked ichthyosis: an oculocutaneous genodermatosis. J Am Acad Dermatol 2010; 62:480-5. [PMID: 20080321 DOI: 10.1016/j.jaad.2009.04.028] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Revised: 04/04/2009] [Accepted: 04/09/2009] [Indexed: 12/12/2022]
Abstract
X-linked ichthyosis (XLI) is an X-linked recessive disorder of cutaneous keratinization with possible extracutaneous manifestations. It was first described as a distinct type of ichthyosis in 1965. XLI is caused by a deficiency in steroid sulfatase activity, which results in abnormal desquamation and a retention hyperkeratosis. XLI is usually evident during the first few weeks of life as polygonal, loosely adherent translucent scales in a generalized distribution that desquamate widely. These are quickly replaced by large, dark brown, tightly adherent scales occurring primarily symmetrically on the extensor surfaces and the side of the trunk. In addition, extracutaneous manifestations such as corneal opacities, cryptorchidism, and abnormalities related to contiguous gene syndromes may be observed. Diagnosis of XLI is usually made clinically, as the histopathology is nonspecific, but confirmation may be obtained through either biochemical or genetic analysis. Treatment should focus on cutaneous hydration, lubrication, and keratolysis and includes topical moisturizers and topical retinoids.
Collapse
Affiliation(s)
- Neil F Fernandes
- Dermatology, New Jersey Medical School, Newark, New Jersey 07103, USA
| | | | | |
Collapse
|
13
|
Abstract
DNA methylation is the best known and most thoroughly studied epigenetic mechanism. Hypermethylation of CpG islands associated with silencing of tumour suppressor genes or tumour-related genes is a common hallmark of human cancer. The list of tumour-related genes with aberrant hypermethylation in their CpG islands has been increasing. There is also the potential for using DNA methylation profile data as markers for various types of human cancer. In this paper, we review the methylation profile of testicular germ cell tumours (TGCTs). We show that TGCTs have distinctive DNA methylation profiles that differ from those of somatic tissue-derived cancers or somatic tissues. We also discuss the methylation profile of TGCTs in terms of the DNA reprogramming that occurs in primordial germ cells or pre-implantation embryos. Finally, we describe the potential clinical utility of this unique methylation phenotype in TGCTs with regard to developing a novel tumour marker. These data suggest that unmethylated DNA fragments in TGCTs may have diagnostic implications. Further elucidation of epigenetic profiles in TGCTs is expected to provide a new insight into the biology of this disease.
Collapse
Affiliation(s)
- Keisei Okamoto
- Department of Urology, Shiga University of Medical Science, Shiga, Japan.
| | | |
Collapse
|
14
|
Richard G. Molecular genetics of the ichthyoses. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2005; 131C:32-44. [PMID: 15452860 DOI: 10.1002/ajmg.c.30032] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The ichthyoses are a large, clinically, genetically, and etiologically heterogeneous group of disorders of cornification due to abnormal differentiation and desquamation of the epidermis. Although they differ in clinical features, inheritance, and structural and biochemical abnormalities of the epidermis, they often pose a diagnostic challenge. For each of the 12 ichthyoses and related disorders described here, the major disease genes have been identified and genotype-phenotype correlation have begun to emerge. The molecular findings reveal the functional importance and interactions of many different epidermal proteins and metabolic pathways, including major structural proteins (keratins, loricrin), enzymes involved in lipid metabolism (transglutaminase 1, lipoxygenases, fatty aldehyde dehydrogenase, steroid sulfatase, glucocerebrosidase, Delta8-Delta7 sterol isomerase, 3beta-hydroxysteroid dehydrogenase), and protein catabolism (LEKTI), peroxisomal transport and processing (Peroxin 7 receptor, Phytanoyl-CoA hydroxylase) and DNA repair (proteins of the transcription repair complex). This review highlights the spectacular advances in the molecular genetics and biology of heritable ichthyoses over the past decade. It illustrates the power of molecular diagnostics for refining disease classification, providing prenatal diagnosis, improving genetic counseling, and clinical management.
Collapse
Affiliation(s)
- Gabriele Richard
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
15
|
Lutke Holzik MF, Sijmons RH, Sleijfer DT, Sonneveld DJA, Hoekstra-Weebers JEHM, van Echten-Arends J, Hoekstra HJ. Syndromic aspects of testicular carcinoma. Cancer 2003; 97:984-92. [PMID: 12569597 DOI: 10.1002/cncr.11155] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND In patients with hereditary or constitutional chromosomal anomalies, testicular carcinoma can develop sporadically or on the basis of an underlying hereditary genetic defect. Greater knowledge of these genetic defects would provide more insight into the molecular pathways that lead to testicular carcinoma. To the authors' knowledge, little attention has been paid to date to the comorbid occurrence of testicular carcinoma in patients with hereditary disorders or constitutional chromosomal anomalies. METHODS The authors performed a review of the literature. RESULTS Twenty-five different hereditary disorders or constitutional chromosomal anomalies have been reported in patients who developed seminomatous or nonseminomatous testicular carcinoma. CONCLUSIONS Although most of these malignancies were too rare to enable the detection of statistically significant correlations between the chromosomal/hereditary disorder and the testicular tumor, it was striking that many of the patients had also other urogenital abnormalities. Susceptibility to urogenital abnormalities seems to disrupt normal urogenital differentiation and suggests a correlation with testicular dysgenesis and, thus, also with testicular carcinoma. Other evidence of causal involvement has been found in the field of tumor cytogenetics. Some of the genes responsible for hereditary disorders have been mapped to regions that are of interest in the development of sporadic testicular carcinoma. Molecular studies on candidate genes will be required to provide definite answers. Completion of the human gene map and the availability of advanced gene arrays and bioinformatics are expected to greatly facilitate further exploration of the role of hereditary genetic defects in testicular carcinoma.
Collapse
Affiliation(s)
- Martijn F Lutke Holzik
- Department of Surgical Oncology, University Medical Center Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
16
|
|
17
|
Ammirati CT, Mallory SB. The major inherited disorders of cornification. New advances in pathogenesis. Dermatol Clin 1998; 16:497-508. [PMID: 9704207 DOI: 10.1016/s0733-8635(05)70248-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
This article provides a synopsis of the major (most common) inherited disorders of cornification. It also reviews the recent advances that have been made for each disorder and their practical applications.
Collapse
Affiliation(s)
- C T Ammirati
- Department of Internal Medicine, Washington University, St. Louis, Missouri, USA
| | | |
Collapse
|
18
|
Sakura N, Nishimura S, Matsumoto T, Ohsaki M, Ogata T. Allergic disease as an association of steroid sulphatase deficiency. J Inherit Metab Dis 1997; 20:807-10. [PMID: 9427150 DOI: 10.1023/a:1005375902993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Ten of 31 patients with steroid sulphatase (STS) deficiency were found to have an allergic disease (bronchial asthma, allergic rhinitis, or atopic dermatitis). STS deficiency may predispose patients to allergic disease.
Collapse
Affiliation(s)
- N Sakura
- Department of Pediatrics, Hiroshima University School of Medicine, Japan
| | | | | | | | | |
Collapse
|
19
|
Affiliation(s)
- S Kumar
- Department of Dermatology and Venereology, Lady Hardinge Medical College and Associated Hospitals, New Delhi, India
| | | | | |
Collapse
|
20
|
Cohen PR, Kurzrock R. Miscellaneous Genodermatoses: Beckwith-Wiedemann Syndrome, Birt-Hogg-Dube Syndrome, Familial Atypical Multiple Mole Melanoma Syndrome, Hereditary Tylosis, Incontinentia Pigmenti, and Supernumerary Nipples. Dermatol Clin 1995. [DOI: 10.1016/s0733-8635(18)30121-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
|
22
|
Abstract
From "alligator people" to "porcupine boys," the ichthyoses have been a distinctly recognizable entity for thousands of years. Recent improvements in biochemical and genetic research have allowed more scientific delineation of this class of diseases. This article covers the latest in pathophysiology, the major classes of ichthyoses, many of the newer minor ones, prenatal diagnosis, and treatment options.
Collapse
Affiliation(s)
- T Shwayder
- Department of Dermatology, Henry Ford Hospital, Detroit, Michigan
| | | |
Collapse
|
23
|
Lykkesfeldt G, Bennett P, Lykkesfeldt AE, Micic S, Rørth M, Skakkebaek NE, Svenstrup B. Testis cancer. Ichthyosis constitutes a significant risk factor. Cancer 1991; 67:730-4. [PMID: 1898710 DOI: 10.1002/1097-0142(19910201)67:3<730::aid-cncr2820670333>3.0.co;2-t] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Testis cancer and ichthyosis are both relatively rare diseases. Hence the finding of six individuals with both these conditions in a small population with testicular cancer is highly conspicuous and indicates some kind of connection among such persons. Despite the identical clinical appearances of their ichthyoses, three of the ichthyotic subjects had no measurable activity of the enzyme, steroid sulfatase (STS) in leucocytes, a distinct characteristic of recessive X-linked ichthyosis (RXLI). However, the remaining three subjects had normal STS activity, a strong indicator of autosomal dominant ichthyosis (ADI). The STS activity in patients with testicular cancer who do not have ichthyosis (N = 30) was also within the normal range. The patients with testicular cancer with no skin disease had elevated serum levels of 4-androstenedione (4-AD), follicle stimulating hormone (FSH), and luteinizing hormone (LH) but had reduced levels of estrone and estrone sulfate. The other serum parameters measured did not significantly differ from normal levels. In essence, the hormone levels obtained for the patients with ichthyotic testicular cancer followed the same pattern, although their dehydroepiandrosterone sulfate (DHEAS) and estrone sulfate levels tended to be slightly higher than normal. However, no conspicuous aberrations in any of the parameters examined were observed, and why men with ichthyosis are at high risk for testicular cancer remains an unresolved issue.
Collapse
Affiliation(s)
- G Lykkesfeldt
- Department of Obstetrics and Gynecology, Hvidovre Hospital University of Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
The incidence of testicular cancer is rapidly increasing. It is highly curable when detected and treated early, yet 500 to 1,000 men die from this cancer each year. Most victims are young men whose deaths account for a large number of potential years of life lost. Risk factors for testicular cancer are known but they cannot account for the increase in incidence. Only one age group, men between 15 and 34 years, is currently exhibiting an increase in incidence and mortality and should therefore comprise the primary at-risk group. Health education for the at-risk group, including promotion of regular and accurate testicular self-examination (TSE), could lead to earlier tumor detection and treatment and thereby save lives.
Collapse
Affiliation(s)
- P C Friman
- University of Pennsylvania School of Medicine
| | | |
Collapse
|
25
|
Abstract
The cause of testicular cancer, like most other cancers, is unknown. Certain risk factors such as cryptorchidism, carcinoma in situ, and a preceding contralateral testicular germ cell neoplasm are known to predispose a person to the subsequent development of a testicular malignant lesion. Familial testicular cancer has been debated as a potential and possibly independent risk factor. Evidence in favor of such a hypothesis, based on various genetic studies reported during the past few decades, is reviewed. We add to the existing literature our experience with six cases of familial testicular cancer encountered during a 10-year period, consisting of four father-and-son pairs, one pair of nontwin brothers, and a 23-year-old man who had a maternal uncle with a history of testicular cancer.
Collapse
Affiliation(s)
- S R Patel
- Division of Medical Oncology, Mayo Clinic, Rochester, MN 55905
| | | | | |
Collapse
|
26
|
Bonifas JM, Morley BJ, Oakey RE, Kan YW, Epstein EH. Cloning of a cDNA for steroid sulfatase: frequent occurrence of gene deletions in patients with recessive X chromosome-linked ichthyosis. Proc Natl Acad Sci U S A 1987; 84:9248-51. [PMID: 3480541 PMCID: PMC299730 DOI: 10.1073/pnas.84.24.9248] [Citation(s) in RCA: 94] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
A human steroid sulfatase (steryl-sulfatase; steryl-sulfate sulfohydrolase, EC 3.1.6.2) cDNA 2.4 kilobases long was isolated from a human placental lambda gt11 cDNA expression library. The library was screened with monospecific rabbit antibodies elicited by injection of steroid sulfatase protein purified from human placentas. Hybridization of the cDNA with EcoRI-digested genomic DNA indicated that patients from 14 of 15 apparently unrelated families have gross deletions of the gene for steroid sulfatase. One patient had genomic DNA fragments that were identical to those from normal individuals, indicating the absence of any major deletions as the cause of his lack of steroid sulfatase enzyme activity.
Collapse
Affiliation(s)
- J M Bonifas
- Department of Dermatology, University of California, San Francisco
| | | | | | | | | |
Collapse
|
27
|
|
28
|
|
29
|
Ballabio A, Parenti G, Tippett P, Mondello C, Di Maio S, Tenore A, Andria G. X-linked ichthyosis, due to steroid sulphatase deficiency, associated with Kallmann syndrome (hypogonadotropic hypogonadism and anosmia): linkage relationships with Xg and cloned DNA sequences from the distal short arm of the X chromosome. Hum Genet 1986; 72:237-40. [PMID: 3007328 DOI: 10.1007/bf00291885] [Citation(s) in RCA: 72] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We report a large Italian pedigree in which five out of six males are affected by a syndrome, following an X-linked inheritance pattern, characterized by ichthyosis, hypogonadotropic hypogonadism, and anosmia. The concurrence of features of X-linked ichthyosis (XLI) with those of Kallmann syndrome, another disease often inherited as an X-linked trait, prompted us to perform biochemical, cytogenetic, and molecular studies in relation to the short arm of the X chromosome (Xp). Steroid sulphatase (STS) activity was found to be completely deficient in all affected members of the family. Prometaphase chromosome analyses of two obligate heterozygous women and one affected male showed normal karyotypes. Xg blood group antigen analysis and molecular studies employing cloned DNA sequences from the distal segment of the Xp (probes RC8, 782, dic56, and M1A), did not provide evidence for deletions or rearrangements of the X chromosome. The linkage analysis showed no crossovers between the disease, Xg, and DXS143, the locus defined by probe dic56, thus suggesting the possibility of a linkage between these two markers of the distal segment of Xp and the X-linked ichthyosis, hypogonadism, and anosmia syndrome.
Collapse
|
30
|
|
31
|
Lykkesfeldt G, Müller J, Skakkebaek NE, Bruun E, Lykkesfeldt AE. Absence of testicular steroid sulphatase activity in a boy with recessive X-linked ichthyosis and testicular maldescent. Eur J Pediatr 1985; 144:273-4. [PMID: 2865141 DOI: 10.1007/bf00451960] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We present a 14-year-old boy with recessive X-linked ichthyosis in whom only one testis could be found. In this apparently normal testis, a lack of activity of the enzyme steroid sulphatase was demonstrated. Several male patients with recessive X-linked ichthyosis have been reported to have testicular diseases, and it is suggested that this may be related to the absence of testicular steroid sulphatase activity.
Collapse
|
32
|
Shapiro LJ. Steroid sulfatase deficiency and the genetics of the short arm of the human X chromosome. ADVANCES IN HUMAN GENETICS 1985; 14:331-81, 388-9. [PMID: 2859745 DOI: 10.1007/978-1-4615-9400-0_5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|