1
|
Ye F, Zhang Z, Shi L, Lu S, Li X, Mu W, Jiang Q, Yan B. Targeting glycolytic reprogramming by tsRNA-0032 for treating pathological lymphangiogenesis. Cell Death Dis 2025; 16:51. [PMID: 39870617 PMCID: PMC11772812 DOI: 10.1038/s41419-025-07366-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 12/27/2024] [Accepted: 01/16/2025] [Indexed: 01/29/2025]
Abstract
Lymphangiogenesis is vital for tissue fluid homeostasis, immune function, and lipid absorption. Abnormal lymphangiogenesis has been implicated in several diseases such as cancers, inflammatory, and autoimmune diseases. In this study, we elucidate the role of tsRNA-0032 in lymphangiogenesis and its molecular mechanism. tsRNA-0032 expression is significantly decreased in corneal suture model and human lymphatic endothelial cell (HLEC) model under inflammatory condition. Overexpression of tsRNA-0032 exerts anti-lymphangiogenic effects by inhibiting HLEC proliferation, migration, and tube formation. Moreover, overexpression of tsRNA-0032 inhibits suture-induced corneal lymphangiogenesis. tsRNA-0032 is mainly located in the cytoplasm and interacts with Ago2 protein. Overexpression of tsRNA-0032 reduces ATP production and decreases pyruvate and lactate levels by targeting PKM2, a key enzyme in glycolysis. This regulation of glycolysis alters cellular energy and metabolic balance in HLECs, contributing to anti-lymphangiogenic effects. Clinical data reveals that tsRNA-0032 levels are significantly reduced in corneal tissues of transplant recipients compared to donors, while PKM2 expression is elevated, highlighting the clinical relevance of tsRNA-0032/PKM2 axis in corneal lymphangiogenesis. This study offers new insights into the regulation of lymphangiogenesis and presents potential therapeutic targets for lymphangiogenesis-related diseases.
Collapse
Affiliation(s)
- Fan Ye
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ziran Zhang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
| | - Lianjun Shi
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
| | - Shuting Lu
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
| | - Xiumiao Li
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
| | - Wan Mu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Qin Jiang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China.
| | - Biao Yan
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Sugimoto Y, Takasaki T, Yamada R, Kurosaki R, Yamane T, Sugiura R. Rapamycin Abrogates Aggregation of Human α-Synuclein Expressed in Fission Yeast via an Autophagy-Independent Mechanism. Genes Cells 2025; 30:e13185. [PMID: 39695344 DOI: 10.1111/gtc.13185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/16/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024]
Abstract
Aggregation of alpha-synuclein (α-Syn) is implicated in the pathogenesis of several neurodegenerative disorders, such as Parkinson's disease and Dementia with Lewy bodies, collectively termed synucleinopathies. Thus, tremendous efforts are being made to develop strategies to prevent or inhibit α-Syn aggregation. Here, we genetically engineered fission yeast to express human α-Syn C-terminally fused to green fluorescent protein (GFP) at low and high levels. α-Syn was localized at the cell tips and septa at low-level expression. At high-level expression, α-Syn was observed to form cytoplasmic aggregates. Notably, rapamycin, a natural product that allosterically inhibits the mammalian target of rapamycin (mTOR) by forming a complex with FKBP12, and Torin1, a synthetic mTOR inhibitor that blocks ATP binding to mTOR, markedly reduced the number of cells harboring α-Syn aggregates. These mTOR inhibitors abrogate α-Syn aggregation without affecting α-Syn expression levels. Rapamycin, but not Torin1, failed to reduce α-Syn aggregation in the deletion cells of fkh1+, encoding FKBP12, indicating the requirement of FKBP12 for rapamycin-mediated inhibition of α-Syn aggregation. Importantly, the effect of rapamycin was also observed in the cells lacking atg1+, a key regulator of autophagy. Collectively, rapamycin abrogates human α-Syn aggregation expressed in fission yeast via an autophagy-independent mechanism mediated by FKBP12.
Collapse
Affiliation(s)
- Yoshitaka Sugimoto
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Kindai University, Higashiosaka, Japan
| | - Teruaki Takasaki
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Kindai University, Higashiosaka, Japan
| | - Ryuga Yamada
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Kindai University, Higashiosaka, Japan
| | - Ryo Kurosaki
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Kindai University, Higashiosaka, Japan
| | - Tomonari Yamane
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Kindai University, Higashiosaka, Japan
| | - Reiko Sugiura
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Kindai University, Higashiosaka, Japan
| |
Collapse
|
3
|
Xu D, Wang Y, Li H, Wang B, Chai L, Feng L, Ren F, Zhao X, Zhang X. Insights into the roles of exogenous phenylalanine and tyrosine in improving rapamycin production of Streptomyces rapamycinicus with transcriptome analysis. Microb Cell Fact 2024; 23:350. [PMID: 39741275 DOI: 10.1186/s12934-024-02632-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/23/2024] [Indexed: 01/02/2025] Open
Abstract
Rapamycin is an important natural macrolide antibiotic with antifungal, immunosuppressive and antitumor activities produced by Streptomyces rapamycinicus. However, their prospective applications are limited by low fermentation units. In this study, we found that the exogenous aromatic amino acids phenylalanine and tyrosine could effectively increase the yield of rapamycin in industrial microbial fermentation. To gain insight into the mechanism of rapamycin overproduction, comparative transcriptomic profiling was performed between media with and without phenylalanine and tyrosine addition. The results showed that the addition of phenylalanine and tyrosine upregulated the transcription levels of genes involved in rapamycin biosynthesis, precursor production, and transporters. In addition, the transcription levels of many carbohydrate metabolism-related genes were down-regulated, leading to a decrease in growth, suggesting that balancing cell growth and rapamycin biosynthesis may be important to promote efficient biosynthesis of rapamycin in Streptomyces rapamycinicus. These results provide a basis for understanding physiological roles of phenylalanine and tyrosine, and a new way to increase rapamycin production in Streptomyces cultures.
Collapse
Affiliation(s)
- Dongmei Xu
- Hebei Vocational University of Industry and Technology, Shijiazhuang, 050091, China
| | - Yaoyao Wang
- New Drug Research & Development Center of North China Pharmaceutical Group Corporation, National Engineering Research Center of Microbial Medicine, Shijiazhuang, 052165, China
| | - Hongzhen Li
- New Drug Research & Development Center of North China Pharmaceutical Group Corporation, National Engineering Research Center of Microbial Medicine, Shijiazhuang, 052165, China
| | - Bing Wang
- Hebei Vocational University of Industry and Technology, Shijiazhuang, 050091, China
| | - Libin Chai
- New Drug Research & Development Center of North China Pharmaceutical Group Corporation, National Engineering Research Center of Microbial Medicine, Shijiazhuang, 052165, China
| | - Li Feng
- Hebei Vocational University of Industry and Technology, Shijiazhuang, 050091, China
| | - Fengzhi Ren
- New Drug Research & Development Center of North China Pharmaceutical Group Corporation, National Engineering Research Center of Microbial Medicine, Shijiazhuang, 052165, China
| | - Xuejin Zhao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xuexia Zhang
- New Drug Research & Development Center of North China Pharmaceutical Group Corporation, National Engineering Research Center of Microbial Medicine, Shijiazhuang, 052165, China.
| |
Collapse
|
4
|
Buyachuihan L, Reiners S, Zhao Y, Grininger M. The malonyl/acetyl-transferase from murine fatty acid synthase is a promiscuous engineering tool for editing polyketide scaffolds. Commun Chem 2024; 7:187. [PMID: 39181936 PMCID: PMC11344766 DOI: 10.1038/s42004-024-01269-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/05/2024] [Indexed: 08/27/2024] Open
Abstract
Modular polyketide synthases (PKSs) play a vital role in the biosynthesis of complex natural products with pharmaceutically relevant properties. Their modular architecture makes them an attractive target for engineering to produce platform chemicals and drugs. In this study, we demonstrate that the promiscuous malonyl/acetyl-transferase domain (MAT) from murine fatty acid synthase serves as a highly versatile tool for the production of polyketide analogs. We evaluate the relevance of the MAT domain using three modular PKSs; the short trimodular venemycin synthase (VEMS), as well as modules of the PKSs deoxyerythronolide B synthase (DEBS) and pikromycin synthase (PIKS) responsible for the production of the antibiotic precursors erythromycin and pikromycin. To assess the performance of the MAT-swapped PKSs, we analyze the protein quality and run engineered polyketide syntheses in vitro. Our experiments include the chemoenzymatic synthesis of fluorinated macrolactones. Our study showcases MAT-based reprogramming of polyketide biosynthesis as a facile option for the regioselective editing of substituents decorating the polyketide scaffold.
Collapse
Affiliation(s)
- Lynn Buyachuihan
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| | - Simon Reiners
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| | - Yue Zhao
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| | - Martin Grininger
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
5
|
Yamaguchi J, Canaud G. mTOR Signaling and Human Physiology Relevant to Kidney Disease. J Am Soc Nephrol 2024; 35:00001751-990000000-00374. [PMID: 39053582 PMCID: PMC11387027 DOI: 10.1681/asn.0000000000000450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024] Open
Affiliation(s)
- Junna Yamaguchi
- Université Paris Cité, Paris, France; Unité de Médecine Translationnelle et Thérapies Ciblées, Hôpital Necker-Enfants Malades, AP-HP, Paris, France; and INSERM U1151, Institut Necker-Enfants Malades, Paris, France
| | | |
Collapse
|
6
|
Yu Q, Ding J, Li S, Li Y. Autophagy in cancer immunotherapy: Perspective on immune evasion and cell death interactions. Cancer Lett 2024; 590:216856. [PMID: 38583651 DOI: 10.1016/j.canlet.2024.216856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/22/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Both the innate and adaptive immune systems work together to produce immunity. Cancer immunotherapy is a novel approach to tumor suppression that has arisen in response to the ineffectiveness of traditional treatments like radiation and chemotherapy. On the other hand, immune evasion can diminish immunotherapy's efficacy. There has been a lot of focus in recent years on autophagy and other underlying mechanisms that impact the possibility of cancer immunotherapy. The primary feature of autophagy is the synthesis of autophagosomes, which engulf cytoplasmic components and destroy them by lysosomal degradation. The planned cell death mechanism known as autophagy can have opposite effects on carcinogenesis, either increasing or decreasing it. It is autophagy's job to maintain the balance and proper functioning of immune cells like B cells, T cells, and others. In addition, autophagy controls whether macrophages adopt the immunomodulatory M1 or M2 phenotype. The ability of autophagy to control the innate and adaptive immune systems is noteworthy. Interleukins and chemokines are immunological checkpoint chemicals that autophagy regulates. Reducing antigen presentation to induce immunological tolerance is another mechanism by which autophagy promotes cancer survival. Therefore, targeting autophagy is of importance for enhancing potential of cancer immunotherapy.
Collapse
Affiliation(s)
- Qiang Yu
- Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Jiajun Ding
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Shisen Li
- Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Yunlong Li
- Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China.
| |
Collapse
|
7
|
Todeschini L, Cristin L, Martinino A, Mattia A, Agnes S, Giovinazzo F. The Role of mTOR Inhibitors after Liver Transplantation for Hepatocellular Carcinoma. Curr Oncol 2023; 30:5574-5592. [PMID: 37366904 DOI: 10.3390/curroncol30060421] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023] Open
Abstract
Liver transplantation is a treatment option for nonresectable patients with early-stage HCC, with more significant advantages when Milan criteria are fulfilled. An immunosuppressive regimen is required to reduce the risk of graft rejection after transplantation, and CNIs represent the drugs of choice in this setting. However, their inhibitory effect on T-cell activity accounts for a higher risk of tumour regrowth. mTOR inhibitors (mTORi) have been introduced as an alternative immunosuppressive approach to conventional CNI-based regimens to address both immunosuppression and cancer control. The PI3K-AKT-mTOR signalling pathway regulates protein translation, cell growth, and metabolism, and the pathway is frequently deregulated in human tumours. Several studies have suggested the role of mTORi in reducing HCC progression after LT, accounting for a lower recurrence rate. Furthermore, mTOR immunosuppression controls the renal damage associated with CNI exposure. Conversion to mTOR inhibitors is associated with stabilizing and recovering renal dysfunction, suggesting an essential renoprotective effect. Limitations in this therapeutic approach are related to their negative impact on lipid and glucose metabolism as well as on proteinuria development and wound healing. This review aims to summarize the roles of mTORi in managing patients with HCC undergoing LT. Strategies to overcome common adverse effects are also proposed.
Collapse
Affiliation(s)
- Letizia Todeschini
- Faculty of Medicine and Surgery, University of Verona, 37134 Verona, Italy
| | - Luca Cristin
- Faculty of Medicine and Surgery, University of Verona, 37134 Verona, Italy
| | | | - Amelia Mattia
- General Surgery and Liver Transplantation Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Salvatore Agnes
- General Surgery and Liver Transplantation Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Francesco Giovinazzo
- General Surgery and Liver Transplantation Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
8
|
Gharoonpour A, Simiyari D, Yousefzadeh A, Badragheh F, Rahmati M. Autophagy modulation in breast cancer utilizing nanomaterials and nanoparticles. Front Oncol 2023; 13:1150492. [PMID: 37213283 PMCID: PMC10196239 DOI: 10.3389/fonc.2023.1150492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/19/2023] [Indexed: 05/23/2023] Open
Abstract
Autophagy regenerates cellular nutrients, recycles metabolites, and maintains hemostasis through multistep signaling pathways, in conjunction with lysosomal degradation mechanisms. In tumor cells, autophagy has been shown to play a dual role as both tumor suppressor and tumor promoter, leading to the discovery of new therapeutic strategies for cancer. Therefore, regulation of autophagy is essential during cancer progression. In this regard, the use of nanoparticles (NPs) is a promising technique in the clinic to modulate autophagy pathways. Here, we summarized the importance of breast cancer worldwide, and we discussed its classification, current treatment strategies, and the strengths and weaknesses of available treatments. We have also described the application of NPs and nanocarriers (NCs) in breast cancer treatment and their capability to modulate autophagy. Then the advantages and disadvantaged of NPs in cancer therapy along with future applications will be disscussed. The purpose of this review is to provide up-to-date information on NPs used in breast cancer treatment and their impacts on autophagy pathways for researchers.
Collapse
|
9
|
Burnett GL, Yang YC, Aggen JB, Pitzen J, Gliedt MK, Semko CM, Marquez A, Evans JW, Wang G, Won WS, Tomlinson ACA, Kiss G, Tzitzilonis C, Thottumkara AP, Cregg J, Mellem KT, Choi JS, Lee JC, Zhao Y, Lee BJ, Meyerowitz JG, Knox JE, Jiang J, Wang Z, Wildes D, Wang Z, Singh M, Smith JA, Gill AL. Discovery of RMC-5552, a Selective Bi-Steric Inhibitor of mTORC1, for the Treatment of mTORC1-Activated Tumors. J Med Chem 2022; 66:149-169. [PMID: 36533617 PMCID: PMC9841523 DOI: 10.1021/acs.jmedchem.2c01658] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Hyperactivation of mTOR kinase by mutations in the PI3K/mTOR pathway or by crosstalk with other mutant cancer drivers, such as RAS, is a feature of many tumors. Multiple allosteric inhibitors of mTORC1 and orthosteric dual inhibitors of mTORC1 and mTORC2 have been developed as anticancer drugs, but their clinical utility has been limited. To address these limitations, we have developed a novel class of "bi-steric inhibitors" that interact with both the orthosteric and the allosteric binding sites in order to deepen the inhibition of mTORC1 while also preserving selectivity for mTORC1 over mTORC2. In this report, we describe the discovery and preclinical profile of the development candidate RMC-5552 and the in vivo preclinical tool compound RMC-6272. We also present evidence that selective inhibition of mTORC1 in combination with covalent inhibition of KRASG12C shows increased antitumor activity in a preclinical model of KRASG12C mutant NSCLC that exhibits resistance to KRASG12C inhibitor monotherapy.
Collapse
|
10
|
Jo HG, Adidjaja JJ, Kim DK, Park BS, Lee N, Cho BK, Kim HU, Oh MK. Comparative genomic analysis of Streptomyces rapamycinicus NRRL 5491 and its mutant overproducing rapamycin. Sci Rep 2022; 12:10302. [PMID: 35717543 PMCID: PMC9206652 DOI: 10.1038/s41598-022-14199-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 06/02/2022] [Indexed: 12/04/2022] Open
Abstract
Streptomyces rapamycinicus NRRL 5491 is a well-known producer of rapamycin, a secondary metabolite with useful bioactivities, including antifungal, antitumor, and immunosuppressive functions. For the enhanced rapamycin production, a rapamycin-overproducing strain SRMK07 was previously obtained as a result of random mutagenesis. To identify genomic changes that allowed the SRMK07 strain’s enhanced rapamycin production, genomes of the NRRL 5491 and SRMK07 strains were newly sequenced in this study. The resulting genome sequences of the wild-type and SRMK07 strains showed the size of 12.47 Mbp and 9.56 Mbp, respectively. Large deletions were observed at both end regions of the SRMK07 strain’s genome, which cover 17 biosynthetic gene clusters (BGCs) encoding secondary metabolites. Also, genes in a genomic region containing the rapamycin BGC were shown to be duplicated. Finally, comparative metabolic network analysis using these two strains’ genome-scale metabolic models revealed biochemical reactions with different metabolic fluxes, which were all associated with NADPH generation. Taken together, the genomic and computational approaches undertaken in this study suggest biological clues for the enhanced rapamycin production of the SRMK07 strain. These clues can also serve as a basis for systematic engineering of a production host for further enhanced rapamycin production.
Collapse
Affiliation(s)
- Hee-Geun Jo
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Joshua Julio Adidjaja
- Department of Chemical and Biomolecular Engineering (BK21 Four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Do-Kyung Kim
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Bu-Soo Park
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Namil Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hyun Uk Kim
- Department of Chemical and Biomolecular Engineering (BK21 Four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Min-Kyu Oh
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
11
|
Effect of FKBP12-Derived Intracellular Peptides on Rapamycin-Induced FKBP-FRB Interaction and Autophagy. Cells 2022; 11:cells11030385. [PMID: 35159195 PMCID: PMC8834644 DOI: 10.3390/cells11030385] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023] Open
Abstract
Intracellular peptides (InPeps) generated by proteasomes were previously suggested as putative natural regulators of protein-protein interactions (PPI). Here, the main aim was to investigate the intracellular effects of intracellular peptide VFDVELL (VFD7) and related peptides on PPI. The internalization of the peptides was achieved using a C-terminus covalently bound cell-penetrating peptide (cpp; YGRKKRRQRRR). The possible inhibition of PPI was investigated using a NanoBiT® luciferase structural complementation reporter system, with a pair of plasmids vectors each encoding, simultaneously, either FK506-binding protein (FKBP) or FKBP-binding domain (FRB) of mechanistic target of rapamycin complex 1 (mTORC1). The interaction of FKBP-FRB within cells occurs under rapamycin induction. Results shown that rapamycin-induced interaction between FKBP-FRB within human embryonic kidney 293 (HEK293) cells was inhibited by VFD7-cpp (10-500 nM) and FDVELLYGRKKRRQRRR (VFD6-cpp; 1-500 nM); additional VFD7-cpp derivatives were either less or not effective in inhibiting FKBP-FRB interaction induced by rapamycin. Molecular dynamics simulations suggested that selected peptides, such as VFD7-cpp, VFD6-cpp, VFAVELLYGRKKKRRQRRR (VFA7-cpp), and VFEVELLYGRKKKRRQRRR (VFA7-cpp), bind to FKBP and to FRB protein surfaces. However, only VFD7-cpp and VFD6-cpp induced changes on FKBP structure, which could help with understanding their mechanism of PPI inhibition. InPeps extracted from HEK293 cells were found mainly associated with macromolecular components (i.e., proteins and/or nucleic acids), contributing to understanding InPeps' intracellular proteolytic stability and mechanism of action-inhibiting PPI within cells. In a model of cell death induced by hypoxia-reoxygenation, VFD6-cpp (1 µM) increased the viability of mouse embryonic fibroblasts cells (MEF) expressing mTORC1-regulated autophagy-related gene 5 (Atg5), but not in autophagy-deficient MEF cells lacking the expression of Atg5. These data suggest that VFD6-cpp could have therapeutic applications reducing undesired side effects of rapamycin long-term treatments. In summary, the present report provides further evidence that InPeps have biological significance and could be valuable tools for the rational design of therapeutic molecules targeting intracellular PPI.
Collapse
|
12
|
Chang GR, Kuo CY, Tsai MY, Lin WL, Lin TC, Liao HJ, Chen CH, Wang YC. Anti-Cancer Effects of Zotarolimus Combined with 5-Fluorouracil Treatment in HCT-116 Colorectal Cancer-Bearing BALB/c Nude Mice. Molecules 2021; 26:molecules26154683. [PMID: 34361836 PMCID: PMC8347948 DOI: 10.3390/molecules26154683] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 01/05/2023] Open
Abstract
Zotarolimus is a semi-synthetic derivative of rapamycin and an inhibitor of mammalian target of rapamycin (mTOR) signaling. Currently, zotarolimus is used to prolong the survival time of organ grafts, but it is also a novel immunosuppressive agent with potent anti-proliferative activity. Here, we examine the anti-tumor effect of zotarolimus, alone and in combination with 5-fluorouracil, on HCT-116 colorectal adenocarcinoma cells implanted in BALB/c nude mice. Compared with the control mice, mice treated with zotarolimus or zotarolimus combined with 5-FU showed retarded tumor growth; increased tumor apoptosis through the enhanced expression of cleaved caspase 3 and extracellular signal-regulated kinase (ERK) phosphorylation; reduced inflammation-related factors such as IL-1β, TNF-α, and cyclooxygenase-2 (COX-2) protein; and inhibited metastasis-related factors such as CD44, epidermal growth factor receptor (EGFR), transforming growth factor β (TGF-β), and vascular endothelial growth factor (VEGF). Notably, mice treated with a combination of zotarolimus and 5-FU showed significantly retarded tumor growth, reduced tumor size, and increased tumor inhibition compared with mice treated with 5-FU or zotarolimus alone, indicating a strong synergistic effect. This in vivo study confirms that zotarolimus or zotarolimus combined with 5-FU can be used to retard colorectal adenocarcinoma growth and inhibit tumorigenesis. Our results suggest that zotarolimus may increase the chemo-sensitization of tumor cells. Therefore, zotarolimus alone and zotarolimus combined with 5-FU may be potential anti-tumor agents in the treatment of human colon adenocarcinoma. Future research on zotarolimus may lead to the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Geng-Ruei Chang
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 600023, Taiwan; (G.-R.C.); (T.-C.L.); (H.-J.L.)
| | - Chan-Yen Kuo
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, 289 Jianguo Road, Xindian District, New Taipei 231405, Taiwan;
- Department of Nursing, Cardinal Tien College of Healthcare and Management, 112 Minzu Road, Sindian District, New Taipei 231038, Taiwan
| | - Ming-Yang Tsai
- Animal Industry Division, Livestock Research Institute, Council of Agriculture, Executive Yuan, 112 Muchang, Xinhua Dist, Tainan 71246, Taiwan;
- Graduate Institute of Bioresources, National Pingtung University of Science and Technology, 1 Shuefu Road, Neipu, Pingtung 91201, Taiwan
| | - Wei-Li Lin
- Bachelor Degree Program in Animal Healthcare, Hungkuang University, 6 Section, 1018 Taiwan Boulevard, Shalu District, Taichung 433304, Taiwan;
- General Education Center, Chaoyang University of Technology, 168 Jifeng Eastern Road, Taichung 413310, Taiwan
| | - Tzu-Chun Lin
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 600023, Taiwan; (G.-R.C.); (T.-C.L.); (H.-J.L.)
| | - Huei-Jyuan Liao
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 600023, Taiwan; (G.-R.C.); (T.-C.L.); (H.-J.L.)
| | - Chung-Hung Chen
- Division of Gastroenterology, Department of Internal Medicine, Chang Bing Show Chwan Memorial Hospital, 6 Lugong Road, Lukang Township, Changhua 505029, Taiwan
- Correspondence: (C.-H.C.); (Y.-C.W.); Tel.: +886-975-617357 (C.-H.C.); +886-2332-3456 (Y.-C.W.)
| | - Yu-Chen Wang
- Division of Cardiology, Asia University Hospital, 222 Fuxin Road, Wufeng District, Taichung 413505, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, 500 Lioufeng Road, Wufeng District, Taichung 413305, Taiwan
- Division of Cardiovascular Medicine, China Medical University Hospital, 2 Yude Road, North District, Taichung 404332, Taiwan
- College of Medicine, China Medical University, 91 Hsueh-Shih Road, North District, Taichung 404333, Taiwan
- Correspondence: (C.-H.C.); (Y.-C.W.); Tel.: +886-975-617357 (C.-H.C.); +886-2332-3456 (Y.-C.W.)
| |
Collapse
|
13
|
A Rare Case of Tongue Neoplasia Treated Successfully in a Patient With B-Cell Acute Lymphoblastic Leukemia Following Allogeneic Hematopoietic Stem Cell Transplantation. J Craniofac Surg 2021; 32:e452-e454. [PMID: 33405438 DOI: 10.1097/scs.0000000000007290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
ABSTRACT Abnormal change on the tongue is a potential complication after allogeneic hematopoietic stem cell transplantation (allo-HSCT). The exact pathogenesis remains unclear and several risk factors include chemoradiotherapy, infection, graft-versus-host disease, disease relapse, and secondary malignancy. Our case described a 42-year-old woman with B-cell acute lymphoblastic leukemia treated by allo-HSCT 2 months later followed by a rare and atypical tongue neoplasia without oral pain, dysphagia, and dysgeusia. The biopsy was operated which showed granulation tissue with no evidence on typical graft-versus-host disease or malignancy, and no specific infection had been identified. Cyclosporine and mycophenolate mofetil, which were used for immunosuppression after allo-HSCT accompanying with the rapid growth of the tongue neoplasia, was then replaced by sirolimus. One month later, the patient underwent a complete remission unexpectedly.
Collapse
|
14
|
Macias SL, Keselowsky BG. Perspectives on immunometabolism at the biomaterials interface. Mol Aspects Med 2021; 83:100992. [PMID: 34332772 DOI: 10.1016/j.mam.2021.100992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 07/12/2021] [Indexed: 11/16/2022]
Abstract
Productive engagement of the immune system is a persistent challenge for biomaterials scientists. Immune engineering offers a new perspective on biomaterial design, with immune cell interaction to modulate effector functions at the center. The effector functions of these cells are intimately linked to their metabolic needs and programming. Immune cell metabolism has received renewed attention in recent years, and with each new discovery there is opportunity for biomaterials scientists. This prospectus aims to provide an overview of the most recent advances in biomaterial engagement of immune cells alongside interrogation of immunometabolism, while looking to future avenues of coalescence. Four cell types are highlighted here: neutrophils, macrophages, dendritic cells, and T cells. Consideration of these two fields, and the tools within each, with a forward-looking mindset is the key to a new era of biomaterials.
Collapse
Affiliation(s)
- Sabrina L Macias
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Benjamin G Keselowsky
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611, USA; Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
15
|
Ren CY, Liu Y, Wei WP, Dai J, Ye BC. Reconstruction of Secondary Metabolic Pathway to Synthesize Novel Metabolite in Saccharopolyspora erythraea. Front Bioeng Biotechnol 2021; 9:628569. [PMID: 34277577 PMCID: PMC8283810 DOI: 10.3389/fbioe.2021.628569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 04/16/2021] [Indexed: 12/31/2022] Open
Abstract
Natural polyketides play important roles in clinical treatment, agriculture, and animal husbandry. Compared to natural hosts, heterologous chassis (especially Actinomycetes) have many advantages in production of polyketide compounds. As a widely studied model Actinomycete, Saccharopolyspora erythraea is an excellent host to produce valuable heterologous polyketide compounds. However, many host factors affect the expression efficiency of heterologous genes, and it is necessary to modify the host to adapt heterologous production. In this study, the CRISPR-Cas9 system was used to knock out the erythromycin biosynthesis gene cluster of Ab (erythromycin high producing stain). A fragment of 49491 bp in genome (from SACE_0715 to SACE_0733) was deleted, generating the recombinant strain AbΔery in which erythromycin synthesis was blocked and synthetic substrates methylmalonyl-CoA and propionyl-CoA accumulated enormously. Based on AbΔery as heterologous host, three genes, AsCHS, RgTAL, and Sc4CL, driven by strong promoters Pj23119, PermE, and PkasO, respectively, were introduced to produce novel polyketide by L-tyrosine and methylmalonyl-CoA. The product (E)-4-hydroxy-6-(4-hydroxystyryl)-3,5-dimethyl-2H-pyrone was identified in fermentation by LC-MS. High performance liquid chromatography analysis showed that knocking out ery BGC resulted in an increase of methylmalonyl-CoA by 142% and propionyl-CoA by 57.9% in AbΔery compared to WT, and the yield of heterologous product in AbΔery:AsCHS-RgTAL-Sc4CL was higher than WT:AsCHS-RgTAL-Sc4CL. In summary, this study showed that AbΔery could potentially serve as a precious heterologous host to boost the synthesis of other valuable polyketone compounds using methylmalonyl-CoA and propionyl-CoA in the future.
Collapse
Affiliation(s)
- Chong-Yang Ren
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Yong Liu
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Key Laboratory of Synthetic Genomics and Center for Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wen-Ping Wei
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Junbiao Dai
- Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Key Laboratory of Synthetic Genomics and Center for Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Bang-Ce Ye
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China.,Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
16
|
Abstract
Lymphatic vessels maintain tissue fluid homeostasis by returning to blood circulation interstitial fluid that has extravasated from the blood capillaries. They provide a trafficking route for cells of the immune system, thus critically contributing to immune surveillance. Developmental or functional defects in the lymphatic vessels, their obstruction or damage, lead to accumulation of fluid in tissues, resulting in lymphedema. Here we discuss developmental lymphatic anomalies called lymphatic malformations and complex lymphatic anomalies that manifest as localized or multifocal lesions of the lymphatic vasculature, respectively. They are rare diseases that are caused mostly by somatic mutations and can present with variable symptoms based upon the size and location of the lesions composed of fluid-filled cisterns or channels. Substantial progress has been made recently in understanding the molecular basis of their pathogenesis through the identification of their genetic causes, combined with the elucidation of the underlying mechanisms in animal disease models and patient-derived lymphatic endothelial cells. Most of the solitary somatic mutations that cause lymphatic malformations and complex lymphatic anomalies occur in genes that encode components of oncogenic growth factor signal transduction pathways. This has led to successful repurposing of some targeted cancer therapeutics to the treatment of lymphatic malformations and complex lymphatic anomalies. Apart from the mutations that act as lymphatic endothelial cell-autonomous drivers of these anomalies, current evidence points to superimposed paracrine mechanisms that critically contribute to disease pathogenesis and thus provide additional targets for therapeutic intervention. Here, we review these advances and discuss new treatment strategies that are based on the recently identified molecular pathways.
Collapse
Affiliation(s)
- Taija Mäkinen
- Department of Immunology, Genetics and Pathology, Uppsala University, Sweden (T.M.)
| | - Laurence M Boon
- Division of Plastic Surgery, Center for Vascular Anomalies, Cliniques Universitaires Saint Luc, UCLouvain, Brussels, Belgium (L.M.B.).,Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium (L.M.B., M.V.)
| | - Miikka Vikkula
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium (L.M.B., M.V.).,Walloon Excellence in Lifesciences and Biotechnology, University of Louvain, Brussels, Belgium (M.V.)
| | - Kari Alitalo
- Wihuri Research Institute and Translational Cancer Medicine Program, Biomedicum, University of Helsinki, Finland (K.A.)
| |
Collapse
|
17
|
Autophagy Modulators in Cancer Therapy. Int J Mol Sci 2021; 22:ijms22115804. [PMID: 34071600 PMCID: PMC8199315 DOI: 10.3390/ijms22115804] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 05/24/2021] [Indexed: 02/06/2023] Open
Abstract
Autophagy is a process of self-degradation that plays an important role in removing damaged proteins, organelles or cellular fragments from the cell. Under stressful conditions such as hypoxia, nutrient deficiency or chemotherapy, this process can also become the strategy for cell survival. Autophagy can be nonselective or selective in removing specific organelles, ribosomes, and protein aggregates, although the complete mechanisms that regulate aspects of selective autophagy are not fully understood. This review summarizes the most recent research into understanding the different types and mechanisms of autophagy. The relationship between apoptosis and autophagy on the level of molecular regulation of the expression of selected proteins such as p53, Bcl-2/Beclin 1, p62, Atg proteins, and caspases was discussed. Intensive studies have revealed a whole range of novel compounds with an anticancer activity that inhibit or activate regulatory pathways involved in autophagy. We focused on the presentation of compounds strongly affecting the autophagy process, with particular emphasis on those that are undergoing clinical and preclinical cancer research. Moreover, the target points, adverse effects and therapeutic schemes of autophagy inhibitors and activators are presented.
Collapse
|
18
|
Werlen G, Jain R, Jacinto E. MTOR Signaling and Metabolism in Early T Cell Development. Genes (Basel) 2021; 12:genes12050728. [PMID: 34068092 PMCID: PMC8152735 DOI: 10.3390/genes12050728] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/10/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022] Open
Abstract
The mechanistic target of rapamycin (mTOR) controls cell fate and responses via its functions in regulating metabolism. Its role in controlling immunity was unraveled by early studies on the immunosuppressive properties of rapamycin. Recent studies have provided insights on how metabolic reprogramming and mTOR signaling impact peripheral T cell activation and fate. The contribution of mTOR and metabolism during early T-cell development in the thymus is also emerging and is the subject of this review. Two major T lineages with distinct immune functions and peripheral homing organs diverge during early thymic development; the αβ- and γδ-T cells, which are defined by their respective TCR subunits. Thymic T-regulatory cells, which have immunosuppressive functions, also develop in the thymus from positively selected αβ-T cells. Here, we review recent findings on how the two mTOR protein complexes, mTORC1 and mTORC2, and the signaling molecules involved in the mTOR pathway are involved in thymocyte differentiation. We discuss emerging views on how metabolic remodeling impacts early T cell development and how this can be mediated via mTOR signaling.
Collapse
|
19
|
Wu CF, Wu CY, Chiou RYY, Yang WC, Lin CF, Wang CM, Hou PH, Lin TC, Kuo CY, Chang GR. The Anti-Cancer Effects of a Zotarolimus and 5-Fluorouracil Combination Treatment on A549 Cell-Derived Tumors in BALB/c Nude Mice. Int J Mol Sci 2021; 22:4562. [PMID: 33925400 PMCID: PMC8123799 DOI: 10.3390/ijms22094562] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 12/29/2022] Open
Abstract
Zotarolimus is a semi-synthetic derivative of rapamycin and a novel immunosuppressive agent used to prevent graft rejection. The pharmacological pathway of zotarolimus restricts the kinase activity of the mammalian target of rapamycin (mTOR), which potentially leads to reductions in cell division, cell growth, cell proliferation, and inflammation. These pathways have a critical influence on tumorigenesis. This study aims to examine the anti-tumor effect of zotarolimus or zotarolimus combined with 5-fluorouracil (5-FU) on A549 human lung adenocarcinoma cell line implanted in BALB/c nude mice by estimating tumor growth, apoptosis expression, inflammation, and metastasis. We established A549 xenografts in nude mice, following which we randomly divided the mice into four groups: control, 5-FU (100 mg/kg/week), zotarolimus (2 mg/kg/day), and zotarolimus combined with 5-FU. Compared the results with those for control mice, we found that mice treated with zotarolimus or zotarolimus combined with 5-FU retarded tumor growth; increased tumor apoptosis through the enhanced expression of cleaved caspase 3 and extracellular signal-regulated kinase (ERK) phosphorylation; decreased inflammation cytokines levels (e.g., IL-1β, TNF-α, and IL-6); reduced inflammation-related factors such as cyclooxygenase-2 (COX-2) protein and nuclear factor-κB (NF-κB) mRNA; enhanced anti-inflammation-related factors including IL-10 and inhibitor of NF-κB kinase α (IκBα) mRNA; and inhibited metastasis-related factors such as transforming growth factor β (TGF-β), CD44, epidermal growth factor receptor (EGFR), and vascular endothelial growth factor (VEGF). Notably, mice treated with zotarolimus combined with 5-FU had significantly retarded tumor growth, reduced tumor size, and increased tumor inhibition compared with the groups of mice treated with 5-FU or zotarolimus alone. The in vivo study confirmed that zotarolimus or zotarolimus combined with 5-FU could retard lung adenocarcinoma growth and inhibit tumorigenesis. Zotarolimus and 5-FU were found to have an obvious synergistic tumor-inhibiting effect on lung adenocarcinoma. Therefore, both zotarolimus alone and zotarolimus combined with 5-FU may be potential anti-tumor agents for treatment of human lung adenocarcinoma.
Collapse
Affiliation(s)
- Ching-Feng Wu
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Chang Gung Memorial Hospital, Chang Gung University, Linkou, 5 Fuxing Street, Guishan District, Taoyuan 33305, Taiwan; (C.-F.W.); (C.-Y.W.)
| | - Ching-Yang Wu
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Chang Gung Memorial Hospital, Chang Gung University, Linkou, 5 Fuxing Street, Guishan District, Taoyuan 33305, Taiwan; (C.-F.W.); (C.-Y.W.)
| | - Robin Y.-Y. Chiou
- Department of Food Science, National Chiayi University, 300 University Road, Chiayi 60004, Taiwan;
| | - Wei-Cheng Yang
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, 4 Section, 1 Roosevelt Road, Taipei 10617, Taiwan;
| | - Chuen-Fu Lin
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, 1 Shuefu Road, Neipu, Pingtung 912301, Taiwan;
| | - Chao-Min Wang
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 60054, Taiwan; (C.-M.W.); (T.-C.L.)
| | - Po-Hsun Hou
- Department of Psychiatry, Taichung Veterans General Hospital, 4 Section, 1650 Taiwan Boulevard, Taichung 40705, Taiwan;
- Faculty of Medicine, National Yang-Ming University, 2 Section, 155 Linong Street, Beitou District, Taipei 11221, Taiwan
| | - Tzu-Chun Lin
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 60054, Taiwan; (C.-M.W.); (T.-C.L.)
| | - Chan-Yen Kuo
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, 289 Jianguo Road, Xindian District, New Taipei City 231405, Taiwan
| | - Geng-Ruei Chang
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 60054, Taiwan; (C.-M.W.); (T.-C.L.)
| |
Collapse
|
20
|
Rapamycin Alleviates 2,3,7,8-Tetrachlorodibenzo-p-dioxin-Induced Aggravated Dermatitis in Mice with Imiquimod-Induced Psoriasis-Like Dermatitis by Inducing Autophagy. Int J Mol Sci 2021; 22:ijms22083968. [PMID: 33921372 PMCID: PMC8069848 DOI: 10.3390/ijms22083968] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/05/2021] [Accepted: 04/09/2021] [Indexed: 12/22/2022] Open
Abstract
Recently, the mTOR signaling has emerged as an important player in the pathogenesis of psoriasis. We previously found that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced psoriatic skin inflammation was related to the inhibition of autophagy in keratinocytes. However, the effects and detailed molecular mechanisms of the mTOR inhibitor rapamycin and TCDD on psoriasis in vivo remain to be elucidated. In this study, we aimed to evaluate the effects of rapamycin and TCDD on skin lesions in imiquimod (IMQ)-induced psoriasis using a mouse model. TCDD aggravated skin inflammation in an IMQ-induced psoriatic mouse model. Furthermore, TCDD increased the expression of aryl hydrocarbon receptor (AHR), CYP1A1, proinflammatory cytokines, oxidative stress markers (NADPH oxidase (Nox) 2, Nox4), and phosphorylated P65NF-ĸB, whereas the expression of autophagy-related factors and the antioxidant marker nuclear factor-erythroid 2-related factor 2 (NRF2) decreased. Rapamycin reduced the aggravated skin inflammation induced by TCDD and restored TCDD-induced autophagy suppression and the increase of AHR expression, oxidative stress, and inflammatory response in the skin lesions of a psoriatic mouse model. In conclusion, we demonstrated that rapamycin alleviates TCDD-induced aggravated dermatitis in mice with imiquimod-induced psoriasis-like dermatitis through AHR and autophagy modulation.
Collapse
|
21
|
Popova NV, Jücker M. The Role of mTOR Signaling as a Therapeutic Target in Cancer. Int J Mol Sci 2021; 22:ijms22041743. [PMID: 33572326 PMCID: PMC7916160 DOI: 10.3390/ijms22041743] [Citation(s) in RCA: 167] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 01/30/2021] [Accepted: 02/03/2021] [Indexed: 12/11/2022] Open
Abstract
The aim of this review was to summarize current available information about the role of phosphatidylinositol-3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling in cancer as a potential target for new therapy options. The mTOR and PI3K/AKT/mTORC1 (mTOR complex 1) signaling are critical for the regulation of many fundamental cell processes including protein synthesis, cell growth, metabolism, survival, catabolism, and autophagy, and deregulated mTOR signaling is implicated in cancer, metabolic dysregulation, and the aging process. In this review, we summarize the information about the structure and function of the mTOR pathway and discuss the mechanisms of its deregulation in human cancers including genetic alterations of PI3K/AKT/mTOR pathway components. We also present recent data regarding the PI3K/AKT/mTOR inhibitors in clinical studies and the treatment of cancer, as well the attendant problems of resistance and adverse effects.
Collapse
Affiliation(s)
- Nadezhda V. Popova
- Laboratory of Receptor Cell Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997 Moscow, Russia;
| | - Manfred Jücker
- Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
- Correspondence: ; Tel.: +49-(0)-40-7410-56339
| |
Collapse
|
22
|
Kim V, Lim YR, Lee I, Lee JH, Han S, Pham TV, Kim H, Lee R, Kang LW, Kim D. Structural insights into CYP107G1 from rapamycin-producing Streptomyces rapamycinicus. Arch Biochem Biophys 2020; 692:108544. [PMID: 32822639 DOI: 10.1016/j.abb.2020.108544] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 10/23/2022]
Abstract
Rapamycin is a clinically important macrolide agent with immunosuppressant and antiproliferative properties, produced by the actinobacterium, Streptomyces rapamycinicus. Two cytochrome P450 enzymes are involved in the biosynthesis of rapamycin. CYP107G1 and CYP122A2 catalyze the oxidation reactions of C27 and C9 of pre-rapamycin, respectively. To understand the structural and biochemical features of P450 enzymes in rapamycin biosynthesis, the CYP107G1 and CYP122A2 genes were cloned, their recombinant proteins were expressed in Escherichia coli, and the purified enzymes were characterized. Both enzymes displayed low spin states in the absolute spectra of ferric forms, and the titrations with rapamycin induced type I spectral changes with Kd values of 4.4 ± 0.4 and 3.0 ± 0.3 μM for CYP107G1 and CYP122A2, respectively. The X-ray crystal structures of CYP107G1 and its co-crystal complex with everolimus, a clinical rapamycin derivative, were determined at resolutions of 2.9 and 3.0 Å, respectively. The overall structure of CYP107G1 adopts the canonical scaffold of cytochrome P450 and possesses large substrate pocket. The distal face of the heme group is exposed to solvents to accommodate macrolide access. When the structure of the everolimus-bound CYP107G1 complex (CYP107G1-Eve) was compared to that of the ligand-free CYP107G1 form, no significant conformational change was observed. Hence, CYP107G1 has a relatively rigid structure with versatile loops to accommodate a bulky substrate. The everolimus molecule is bound to the substrate-binding pocket in the shape of a squeezed donut, and its elongated structure is bound perpendicular to a planar heme plane and I-helix.
Collapse
Affiliation(s)
- Vitchan Kim
- Department of Biological Sciences, Konkuk University, Seoul, 05025, Republic of Korea
| | - Young-Ran Lim
- Department of Biological Sciences, Konkuk University, Seoul, 05025, Republic of Korea
| | - Inho Lee
- Department of Biological Sciences, Konkuk University, Seoul, 05025, Republic of Korea
| | - Jong-Ha Lee
- Department of Biological Sciences, Konkuk University, Seoul, 05025, Republic of Korea
| | - Sangjun Han
- Department of Biological Sciences, Konkuk University, Seoul, 05025, Republic of Korea
| | - Tan-Viet Pham
- Department of Biological Sciences, Konkuk University, Seoul, 05025, Republic of Korea
| | - Harim Kim
- Department of Biological Sciences, Konkuk University, Seoul, 05025, Republic of Korea
| | - Rowoon Lee
- Department of Biological Sciences, Konkuk University, Seoul, 05025, Republic of Korea
| | - Lin-Woo Kang
- Department of Biological Sciences, Konkuk University, Seoul, 05025, Republic of Korea
| | - Donghak Kim
- Department of Biological Sciences, Konkuk University, Seoul, 05025, Republic of Korea.
| |
Collapse
|
23
|
Vasuri F, Degiovanni A, Gargiulo M, Thilly WG, Gostjeva EV, Pasquinelli G, Fittipaldi S. Sirolimus-eluting stents: opposite in vitro effects on the clonogenic cell potential on a long-term exposure. Oncotarget 2020; 11:2973-2981. [PMID: 32821343 PMCID: PMC7415404 DOI: 10.18632/oncotarget.27554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 03/19/2020] [Indexed: 11/30/2022] Open
Abstract
We evaluated the long-term effects of sirolimus on three different cell in vitro models, cultured in physiological conditions mimicking sirolimus-eluted stent, in order to clarify the effectiveness of sirolimus in blocking cell proliferation and survival. Three cells lines (WPMY-1 myofibroblasts, HT-29 colorectal adenocarcinoma, and U2OS osteosarcoma) were selected and growth in 10 ml of Minimum Essential Medium for 5 weeks with serial dilutions of sirolimus. The number of colonies and the number of cells per colony were counted. As main result, the number of WPMY-1 surviving colonies increased in a dose-dependent manner when treated with sirolimus (p = 0.0011), while the number of U2OS colonies progressively decreased (p = 0.0011). The clonal capacity of HT-29 was not modified by the exposure to sirolimus (p = 0.6679). In conclusion sirolimus showed the well-known cytostatic effect, but with an effect on clonogenic potential different among the different cell types. In the practice, the plaque typology and composition may influence the response to sirolimus and thus the effectiveness of eluted stent.
Collapse
Affiliation(s)
- Francesco Vasuri
- Pathology Unit, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Bologna University, Bologna, Italy
| | - Alessio Degiovanni
- Pathology Unit, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Bologna University, Bologna, Italy
| | - Mauro Gargiulo
- Vascular Surgery Unit, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Bologna University, Bologna, Italy
| | - William G Thilly
- Laboratory in Metakaryotic Biology (LIMB), Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Elena V Gostjeva
- Laboratory in Metakaryotic Biology (LIMB), Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Gianandrea Pasquinelli
- Pathology Unit, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Bologna University, Bologna, Italy
| | - Silvia Fittipaldi
- Pathology Unit, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Bologna University, Bologna, Italy.,Laboratory in Metakaryotic Biology (LIMB), Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
24
|
Shigdel UK, Lee SJ, Sowa ME, Bowman BR, Robison K, Zhou M, Pua KH, Stiles DT, Blodgett JAV, Udwary DW, Rajczewski AT, Mann AS, Mostafavi S, Hardy T, Arya S, Weng Z, Stewart M, Kenyon K, Morgenstern JP, Pan E, Gray DC, Pollock RM, Fry AM, Klausner RD, Townson SA, Verdine GL. Genomic discovery of an evolutionarily programmed modality for small-molecule targeting of an intractable protein surface. Proc Natl Acad Sci U S A 2020; 117:17195-17203. [PMID: 32606248 PMCID: PMC7382241 DOI: 10.1073/pnas.2006560117] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The vast majority of intracellular protein targets are refractory toward small-molecule therapeutic engagement, and additional therapeutic modalities are needed to overcome this deficiency. Here, the identification and characterization of a natural product, WDB002, reveals a therapeutic modality that dramatically expands the currently accepted limits of druggability. WDB002, in complex with the FK506-binding protein (FKBP12), potently and selectively binds the human centrosomal protein 250 (CEP250), resulting in disruption of CEP250 function in cells. The recognition mode is unprecedented in that the targeted domain of CEP250 is a coiled coil and is topologically featureless, embodying both a structural motif and surface topology previously considered on the extreme limits of "undruggability" for an intracellular target. Structural studies reveal extensive protein-WDB002 and protein-protein contacts, with the latter being distinct from those seen in FKBP12 ternary complexes formed by FK506 and rapamycin. Outward-facing structural changes in a bound small molecule can thus reprogram FKBP12 to engage diverse, otherwise "undruggable" targets. The flat-targeting modality demonstrated here has the potential to expand the druggable target range of small-molecule therapeutics. As CEP250 was recently found to be an interaction partner with the Nsp13 protein of the SARS-CoV-2 virus that causes COVID-19 disease, it is possible that WDB002 or an analog may exert useful antiviral activity through its ability to form high-affinity ternary complexes containing CEP250 and FKBP12.
Collapse
Affiliation(s)
| | | | | | | | | | - Minyun Zhou
- Warp Drive Bio, Inc., Redwood City, CA 94063
| | | | | | | | | | | | - Alan S Mann
- Warp Drive Bio, Inc., Redwood City, CA 94063
| | | | - Tara Hardy
- Department of Molecular and Cell Biology, University of Leicester, LE1 7RH Leicester, United Kingdom
| | - Sukrat Arya
- Department of Molecular and Cell Biology, University of Leicester, LE1 7RH Leicester, United Kingdom
| | | | | | - Kyle Kenyon
- Warp Drive Bio, Inc., Redwood City, CA 94063
| | | | - Ende Pan
- Warp Drive Bio, Inc., Redwood City, CA 94063
| | | | | | - Andrew M Fry
- Department of Molecular and Cell Biology, University of Leicester, LE1 7RH Leicester, United Kingdom
| | | | | | - Gregory L Verdine
- Warp Drive Bio, Inc., Redwood City, CA 94063;
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| |
Collapse
|
25
|
Ji L, Xie W, Zhang Z. Efficacy and safety of sirolimus in patients with systemic lupus erythematosus: A systematic review and meta-analysis. Semin Arthritis Rheum 2020; 50:1073-1080. [PMID: 32911286 DOI: 10.1016/j.semarthrit.2020.07.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/04/2020] [Accepted: 07/08/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Emerging evidence suggested a potential therapeutic role of targeting mTOR in the treatment of SLE. But most studies were observational studies with limited sample size or case reports. OBJECTIVE To evaluate the efficacy and safety of sirolimus in treatment of SLE by systematic review and meta-analysis. METHODS Systematic searches of Medline/PubMed, EMBASE, the Cochrane library and Scopus were performed. Original case reports, case series, observational studies and clinical trials reporting the efficacy or safety data on SLE patients treated with sirolimus were included. A random-effects meta-analysis was performed to calculate the pooled efficacy, when possible. RESULTS A total of 9 studies comprising 145 patients were identified. The exposure of sirolimus was 245.8 patient-years, with 1-3 mg/day adopted in majority studies. In 111 clinical active patients, the pooled decrease of SLEDAI, BILAG and prednisone dosage was 4.85 (95% CI 3.44-6.25), 1.98 (95% CI 0.23-3.74) and 13.17 mg/day (95% CI 0.71-25.63) respectively. 23 patients initiating sirolimus for active SLE yielded remission in 17 (73.9%) patients. In 22 quiescent lupus nephritis patients, 21 (95.5%) patients sustained remission. Hematological, mucocutaneous abnormalities and dyslipidemia were the most common adverse events. Early cessation due to side effects was reported in 9.28% (13/140) patients, most of the side effects were mild and recovered quickly after cessation. CONCLUSIONS Summary of the available datasets indicated sirolimus was promising and well-tolerated in the treatment of SLE. Further randomized controlled trials evaluating the potential benefits and risk of sirolimus in SLE are warranted.
Collapse
Affiliation(s)
- Lanlan Ji
- Department of Rheumatology and Clinical Immunology, Peking University First Hospital, Beijing 100034, China.
| | - Wenhui Xie
- Department of Rheumatology and Clinical Immunology, Peking University First Hospital, Beijing 100034, China.
| | - Zhuoli Zhang
- Department of Rheumatology and Clinical Immunology, Peking University First Hospital, Beijing 100034, China.
| |
Collapse
|
26
|
Hwang S, Namgoong JM, Oh SH, Kim KM, Ahn CS, Kwon H, Cho YJ, Kwon YJ. Effect of everolimus rescue therapy for acute cellular rejection following pediatric living donor liver transplantation: Report of one case. Ann Hepatobiliary Pancreat Surg 2020; 24:216-220. [PMID: 32457270 PMCID: PMC7271111 DOI: 10.14701/ahbps.2020.24.2.216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 03/22/2020] [Accepted: 03/23/2020] [Indexed: 12/11/2022] Open
Abstract
Acute cellular rejection (ACR) after pediatric living donor liver transplantation (LDLT) is often curable with steroid pulse therapy, but a few pediatric patients show steroid-resistant ACR, which is difficult to control. We report the effect of everolimus as a rescue therapy for ACR in a case of pediatric LDLT. The patient was a 11-year-old girl who was admitted due to subacute liver failure of unknown cause. LDLT operation using a modified right liver graft from her mother was performed. The graft-recipient weight ratio was 1.30. The explant liver showed massive hepatic necrosis. The patient recovered uneventfully with immunosuppression using tacrolimus and low-dose steroid. However, at postoperative day (POD) 20, the liver enzyme levels began to increase. The first liver biopsy taken at POD 25 showed moderate ACR with rejection activity index (RAI) score of 7. At that time, steroid pulse therapy was performed, but the patient did not respond and the liver enzyme levels increased further. The second liver biopsy taken at POD 40 showed moderate ACR with RAI score of 7. At this time, everolimus was administered, and soon after that, liver enzyme levels had gradually improved. Currently, the patient is doing well for 44 months to date without any abnormal findings. The maintenance target trough concentrations were tacrolimus 5 ng/ml and everolimus 3 ng/ml. Our case demonstrated the effect of rescue therapy using everolimus for ACR following pediatric LDLT. Further studies are needed to assess the role of everolimus in pediatric liver transplant recipients suffering from ACR.
Collapse
Affiliation(s)
- Shin Hwang
- Division of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jung-Man Namgoong
- Division of Pediatric Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Seak Hee Oh
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Kyung Mo Kim
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Chul-Soo Ahn
- Division of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyunhee Kwon
- Division of Pediatric Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yu Jeong Cho
- Division of Pediatric Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yong Jae Kwon
- Division of Pediatric Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
27
|
Wu Y, Li Z, Zhang L, Liu G. Tivantinib Hampers the Proliferation of Glioblastoma Cells via PI3K/Akt/Mammalian Target of Rapamycin (mTOR) Signaling. Med Sci Monit 2019; 25:7383-7390. [PMID: 31575848 PMCID: PMC6790099 DOI: 10.12659/msm.919319] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background Glioblastoma, the most common and malignant glial tumor, often has poor prognosis. Tivantinib has shown its potential in treating c-Met-high carcinoma. No studies have explored whether tivantinib inhibits the development of glioblastoma. Material/Methods The correlation between c-Met expression and clinicopathological characteristics of glioblastoma was investigated. U251 and T98MG glioblastoma cells treated with tivantinib, PI3K inhibitor (LY294002), PI3K activator (740 Y-P), and/or mammalian target of rapamycin (mTOR) inhibitor were subjected to MTT assay or colony formation assay to evaluate cell proliferation. The expression of mTOR signaling and caspase-3 in tivantinib-treated glioblastoma cells was differentially measured by western blotting. Results In a group of Chinese patients, expression of c-Met was elevated with the size of glioblastoma, but not with the other clinicopathological characteristics, including gender, age, grade, IDH status, 1p/19q status, and Ki67 status. High dose of tivantinib (1 μmol/L) obviously repressed the proliferation and colony formation of U251 and T98MG glioblastoma cells, but low dose (0.1 μmol/L) of tivantinib failed to retard cell proliferation. Tivantinib blocked PI3K/Akt/mTOR signaling but did not change the expression of cleaved caspase-3. PI3K activator 740 Y-P (20 μmol/L) significantly rescued tivantinib-induced decrease of cell proliferation. Tivantinib (1 μmol/L) in combination with PI3K inhibitor LY294002 (0.5 μmol/L) and mTOR inhibitor rapamycin (0.1 nmol/L) largely inhibited the proliferation of glioblastoma cells. Conclusions c-MET inhibitor tivantinib blocks PIKE/Akt/mTOR signaling and hampers the proliferation of glioblastoma cells, which endows the drug a therapeutic effect.
Collapse
Affiliation(s)
- Yukun Wu
- Department of General Practice, Linyi Central Hospital, Yishui, Shandong, China (mainland)
| | - Zhizhang Li
- Department of General Practice, Linyi Central Hospital, Yishui, Shandong, China (mainland)
| | - Lijuan Zhang
- Department of Cardiovascular Medicine, Linyi Central Hospital, Yishui, Shandong, China (mainland)
| | - Guiyang Liu
- Department of Neurosurgery, Jinan Fourth People's Hospital, Jinan, Shandong, China (mainland)
| |
Collapse
|
28
|
Off-Label Use of Sirolimus and Everolimus in a Pediatric Center: A Case Series and Review of the Literature. Paediatr Drugs 2019; 21:185-193. [PMID: 31124053 DOI: 10.1007/s40272-019-00337-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND It has been 15 years since sirolimus, an mTOR inhibitor, received Food and Drug Administration approval to prevent acute rejection in kidney transplantation, and 8 years since its analog everolimus acquired the same status. Since then, these drugs have become more and more utilized and their immunosuppressive and antiproliferative properties have been tested in a great variety of clinical conditions, often achieving excellent results. Despite such positive evidence, the on-label indications for these rapalogs are still very restrictive, especially in children. AIMS The aims of this study were to describe our center's experience with sirolimus and everolimus in managing rare pediatric conditions for which mTOR inhibitors have been reported as a therapeutic option, although without conclusive approval from regulatory agencies, and to evaluate safety and tolerability of the treatment at the prescribed doses. METHODS All the subjects who received off-label sirolimus or everolimus at the Pediatric Department of the IRCCS Burlo Garofolo in the last 13 years were included. For each disease found in our case series, we reviewed the current scientific literature. RESULTS Off-label treatment with rapalogs was prescribed in 16 children (11 males, 5 females, median age of 9.5 years, range 1-16 years). Seven had immunologic disorders: four autoimmune lymphoproliferative syndrome (ALPS), one multicentric Castleman disease (mCD), one activated PI3K delta kinase syndrome (APDS), and one immunodysregulation with polyendocrinopathy enteropathy X-linked (IPEX). Eight had proliferative disorders or vascular anomalies: one cystic lymphangioma, two Bannayan-Riley-Ruvalcaba syndrome (BRRS), one blue rubber bleb nevus syndrome (BRBNS), two tuberous sclerosis complex (TSC), and one low-flow mixed arterial and venous malformation. One case had congenital hyperinsulinism (CHI). The average dosage administered was 1 mg/m2 for sirolimus and 7 mg/m2 for everolimus. We experienced a good measurable clinical improvement in 14 patients. Nobody experienced serious adverse events (SAEs). The therapy was interrupted in two cases, for lack of efficacy and poor tolerance in one case and for occurrence of bacterial pneumonia in the other one. A review of the literature identified 101 published reports that met our inclusion criteria. CONCLUSIONS Although use of mTOR inhibitors has been considered to be complicated, our experience shows that, using low dosages, it is possible to obtain relevant clinical improvements, with a good profile of safety and tolerability.
Collapse
|
29
|
Liu Y, Li X, Jin A. Rapamycin Inhibits Nf-ΚB Activation by Autophagy to Reduce Catabolism in Human Chondrocytes. J INVEST SURG 2019; 33:861-873. [PMID: 30945580 DOI: 10.1080/08941939.2019.1574321] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Yibin Liu
- General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Xiaojun Li
- General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Aunhua Jin
- Department of Orthopedic Surgery, General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
30
|
Dutta S, Bhunia B, Raju A, Maity N, Dey A. Enhanced rapamycin production through kinetic and purification studies by mutant strain of Streptomyces hygroscopicus NTG-30-27. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-00767-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
31
|
Grinnan D, Trankle C, Andruska A, Bloom B, Spiekerkoetter E. Drug repositioning in pulmonary arterial hypertension: challenges and opportunities. Pulm Circ 2019; 9:2045894019832226. [PMID: 30729869 PMCID: PMC6852366 DOI: 10.1177/2045894019832226] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Despite many advances in medical therapy for pulmonary arterial hypertension (PAH) over the past 20 years, long-term survival is still poor. Novel therapies which target the underlying pathology of PAH and which could be added to current vasodilatory therapies to halt disease progression and potentially reverse pulmonary vascular remodeling are highly sought after. Given the high attrition rates, substantial costs, and slow pace of new drug development, repositioning of “old” drugs is increasingly becoming an attractive path to identify novel treatment options, especially for a rare disease such as PAH. We here summarize the limitations of current PAH therapy, the general concept of repurposing and repositioning, success stories of approved repositioned drugs in PAH as well as novel repositioned drugs that show promise in preclinical models of pulmonary hypertension (PH) and are currently tested in clinical trials. We furthermore discuss various data-driven as well as experimental approaches currently used to identify repurposed drug candidates and review challenges for the “repositioning community” with regards to funding and patent and regulatory considerations, and to illustrate opportunities for collaborative solutions for drug repositioning relevant to PAH.
Collapse
Affiliation(s)
- Daniel Grinnan
- 1 Department of Medicine, Division of Pulmonary and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Cory Trankle
- 2 Department of Medicine, Division of Cardiology, Virginia Commonwealth University, Richmond, VA, USA
| | - Adam Andruska
- 3 Department of Medicine, Division of Pulmonary and Critical Care Medicine, Stanford University, Stanford, CA, USA.,4 Wall Center for Pulmonary Vascular Disease, Stanford, CA, USA
| | | | - Edda Spiekerkoetter
- 3 Department of Medicine, Division of Pulmonary and Critical Care Medicine, Stanford University, Stanford, CA, USA.,4 Wall Center for Pulmonary Vascular Disease, Stanford, CA, USA
| |
Collapse
|
32
|
van Montfort T, van der Sluis R, Darcis G, Beaty D, Groen K, Pasternak AO, Pollakis G, Vink M, Westerhout EM, Hamdi M, Bakker M, van der Putten B, Jurriaans S, Prins JH, Jeeninga R, Thomas AAM, Speijer D, Berkhout B. Dendritic cells potently purge latent HIV-1 beyond TCR-stimulation, activating the PI3K-Akt-mTOR pathway. EBioMedicine 2019; 42:97-108. [PMID: 30824386 PMCID: PMC6491380 DOI: 10.1016/j.ebiom.2019.02.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 02/01/2019] [Accepted: 02/06/2019] [Indexed: 02/06/2023] Open
Abstract
Background The latent HIV-1 reservoir in treated patients primarily consists of resting memory CD4+ T cells. Stimulating the T-cell receptor (TCR), which facilitates transition of resting into effector T cells, is the most effective strategy to purge these latently infected cells. Here we supply evidence that TCR-stimulated effector T cells still frequently harbor latent HIV-1. Methods Primary HIV-1 infected cells were used in a latency assay with or without dendritic cells (DCs) and reversion of HIV-1 latency was determined, in the presence or absence of specific pathway inhibitors. Findings Renewed TCR-stimulation or subsequent activation with latency reversing agents (LRAs) did not overcome latency. However, interaction of infected effector cells with DCs triggered further activation of latent HIV-1. When compared to TCR-stimulation only, CD4+ T cells from aviremic patients receiving TCR + DC-stimulation reversed latency more frequently. Such a “one-two punch” strategy seems ideal for purging the reservoir. We determined that DC contact activates the PI3K-Akt-mTOR pathway in CD4+ T cells. Interpretation This insight could facilitate the development of a novel class of potent LRAs that purge latent HIV beyond levels reached by T-cell activation.
Collapse
Affiliation(s)
- Thijs van Montfort
- Department of Medical Microbiology, Laboratory of Experimental Virology, Amsterdam University Medical Centers, Amsterdam, Meibergdreef 15, 1105AZ, the Netherlands.
| | - Renée van der Sluis
- Department of Medical Microbiology, Laboratory of Experimental Virology, Amsterdam University Medical Centers, Amsterdam, Meibergdreef 15, 1105AZ, the Netherlands
| | - Gilles Darcis
- Department of Medical Microbiology, Laboratory of Experimental Virology, Amsterdam University Medical Centers, Amsterdam, Meibergdreef 15, 1105AZ, the Netherlands; Department of Infectious Diseases, Liege University Hospital, Liege, Belgium
| | - Doyle Beaty
- Department of Medical Microbiology, Laboratory of Experimental Virology, Amsterdam University Medical Centers, Amsterdam, Meibergdreef 15, 1105AZ, the Netherlands
| | - Kevin Groen
- Department of Medical Microbiology, Laboratory of Experimental Virology, Amsterdam University Medical Centers, Amsterdam, Meibergdreef 15, 1105AZ, the Netherlands
| | - Alexander O Pasternak
- Department of Medical Microbiology, Laboratory of Experimental Virology, Amsterdam University Medical Centers, Amsterdam, Meibergdreef 15, 1105AZ, the Netherlands
| | - Georgios Pollakis
- Department of Clinical Infection, Microbiology and Immunology (CIMI), University of Liverpool, Liverpool, 8 West Derby Street, United Kingdom
| | - Monique Vink
- Department of Medical Microbiology, Laboratory of Experimental Virology, Amsterdam University Medical Centers, Amsterdam, Meibergdreef 15, 1105AZ, the Netherlands
| | - Ellen M Westerhout
- Department of Oncogenomics, Amsterdam University Medical Centers, Amsterdam, Meibergdreef 15, 1105AZ, the Netherlands
| | - Mohamed Hamdi
- Department of Oncogenomics, Amsterdam University Medical Centers, Amsterdam, Meibergdreef 15, 1105AZ, the Netherlands
| | - Margreet Bakker
- Department of Medical Microbiology, Laboratory of Experimental Virology, Amsterdam University Medical Centers, Amsterdam, Meibergdreef 15, 1105AZ, the Netherlands
| | - Boas van der Putten
- Department of Medical Microbiology, Laboratory of Experimental Virology, Amsterdam University Medical Centers, Amsterdam, Meibergdreef 15, 1105AZ, the Netherlands
| | - Suzanne Jurriaans
- Department of Medical Microbiology, Laboratory of Experimental Virology, Amsterdam University Medical Centers, Amsterdam, Meibergdreef 15, 1105AZ, the Netherlands
| | - Jan H Prins
- Department of Internal Medicine, Amsterdam University Medical Centers, Amsterdam, Meibergdreef 15, 1105AZ, the Netherlands
| | - Rienk Jeeninga
- Department of Medical Microbiology, Laboratory of Experimental Virology, Amsterdam University Medical Centers, Amsterdam, Meibergdreef 15, 1105AZ, the Netherlands
| | - Adri A M Thomas
- Department Developmental Biology, Faculty Beta-Science, Utrecht, Padualaan 8, 3584, CH, the Netherlands
| | - Dave Speijer
- Department of Medical Biochemistry, Amsterdam University Medical Centers, Amsterdam, Meibergdreef 15, 1105AZ, the Netherlands
| | - Ben Berkhout
- Department of Medical Microbiology, Laboratory of Experimental Virology, Amsterdam University Medical Centers, Amsterdam, Meibergdreef 15, 1105AZ, the Netherlands
| |
Collapse
|
33
|
Yang C, Chen FF, Long ZB, Du YL, Li HM, Chen M, Han B. [Effect of sirolimus on erythropoiesis of K562 cell line and patients with pure red cell aplasia in vitro]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2019; 39:310-313. [PMID: 29779328 PMCID: PMC7342129 DOI: 10.3760/cma.j.issn.0253-2727.2018.04.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Objective: To understand the effect of sirolimus on the erythropoiesis of K562 cell line and bone marrow cells from pure red cell aplasia (PRCA) patients and normal controls. Methods: Different concentrations (10, 100, 1 000 nmol/L) of sirolimus were added to the K562 cell line or bone marrow cells from PRCA patients or normal controls and cultured 14 days for BFU-E formation. Meanwhile, sirolimus was also added to the serum treated PRCA bone marrow cells to cultivate for the same priod of time. Results: Neither K562 cells, bone marrow cells from PRCA patients or normal controls showed any difference when sirolimus was added to the culture system for BFU-E. However, BFU-E formation decreased after serum was added in PRCA patients (76.40±22.48 vs 136.33±12.58, t=-4.329, P=0.001) and this suppression of BFU-E was partly corrected by 1 000 nmol/L sirolimus treatment (97.14±15.83 vs 76.40±22.48, P=0.038). Conclusions: Sirolimus may modulate the suppression of erythropoiesis by serum instead of directly stimulate the growth of red blood cells in PRCA patients.
Collapse
Affiliation(s)
- C Yang
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | | | | | | | | | | | | |
Collapse
|
34
|
Buerger C. Epidermal mTORC1 Signaling Contributes to the Pathogenesis of Psoriasis and Could Serve as a Therapeutic Target. Front Immunol 2018; 9:2786. [PMID: 30555471 PMCID: PMC6284005 DOI: 10.3389/fimmu.2018.02786] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/12/2018] [Indexed: 01/26/2023] Open
Abstract
Although modern biologics targeting different inflammatory mediators show promising therapeutic success, comprehensive knowledge about the molecular events in psoriatic keratinocytes that contribute to the pathogenesis and could serve as therapeutic targets is still scarce. However, recent efforts to understand the deregulated signal transduction pathways have led to the development of small molecule inhibitors e.g., tofacitinib targeting the Jak/Stat cascade that opens additional therapeutic options. Recently, the PI3-K/Akt/mTOR signaling pathway has emerged as an important player in the control of epidermal homeostasis. This review summarizes the current knowledge on the role of this pathway in the pathogenesis of psoriasis, especially the epidermal manifestation of the disease and discusses current approaches to target the pathway therapeutically.
Collapse
Affiliation(s)
- Claudia Buerger
- Department of Dermatology, Venerology and Allergology, Clinic of the Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
35
|
Everolimus Rescue Treatment for Chronic Rejection After Pediatric Living Donor Liver Transplantation: 2 Case Reports. Transplant Proc 2018; 50:2872-2876. [PMID: 30318104 DOI: 10.1016/j.transproceed.2018.03.079] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/02/2018] [Indexed: 11/20/2022]
Abstract
Chronic rejection (CR) remains a challenging complication after liver transplantation. Everolimus, which is a mammalian target of rapamycin inhibitor, has an anti-fibrosis effect. We report here the effect of everolimus on CR. Case 1 was a 7-year-old girl who underwent living donor liver transplantation (LDLT) shortly after developing fulminant hepatitis at 10 months of age. Liver function tests (LFTs) did not improve after transplantation despite treatment with tacrolimus + mycophenolate mofetil (MMF). Antithymoglobulin (ATG) and steroid pulse therapy were also ineffective. The patient was diagnosed with CR, and everolimus was started with a target trough level of about 5 ng/mL. LFTs improved and pathological examination showed no progression of hepatic fibrosis. Case 2 was a 10-year-old girl with Alagille syndrome who underwent LDLT at 1 year of age. She had biopsy-proven acute cellular rejection with prolonged LFT abnormalities beginning 3 years after transplantation. She was treated with steroid pulse therapy, followed by MMF, tacrolimus, and prednisolone. Her condition did not improve, even after subsequent ATG administration. CR was suspected based on liver biopsy in the fourth postoperative year, and everolimus was introduced. The target trough level was around 5 ng/mL, but was reduced to 3 ng/mL due to stomatitis. Four years have passed since the initiation of everolimus, and LFTs are stable with no progression of liver biopsy fibrosis. We describe 2 cases in which everolimus was administered for CR. In both cases, LFTs improved and fibrosis did not progress, suggesting that everolimus is an effective treatment for CR after LDLT.
Collapse
|
36
|
Lim YP, Go MK, Raida M, Inoue T, Wenk MR, Keasling JD, Chang MW, Yew WS. Synthetic Enzymology and the Fountain of Youth: Repurposing Biology for Longevity. ACS OMEGA 2018; 3:11050-11061. [PMID: 30320257 PMCID: PMC6173508 DOI: 10.1021/acsomega.8b01620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 08/30/2018] [Indexed: 06/08/2023]
Abstract
Caloric restriction (CR) is an intervention that can increase maximal lifespan in organisms, but its application to humans remains challenging. A more feasible approach to achieve lifespan extension is to develop CR mimetics that target biochemical pathways affected by CR. Recent studies in the engineering and structural characterization of polyketide synthases (PKSs) have facilitated their use as biocatalysts to produce novel polyketides. Here, we show that by establishing a combinatorial biosynthetic route in Escherichia coli and exploring the substrate promiscuity of a mutant PKS from alfalfa, 413 potential anti-ageing polyketides were biosynthesized. In this approach, novel acyl-coenzyme A (CoA) precursors generated by promiscuous acid-CoA ligases were utilized by PKS to generate polyketides which were then fed to Caenorhabditis elegans to study their potential efficacy in lifespan extension. It was found that CR mimetics like resveratrol can counter the age-associated decline in mitochondrial function and increase the lifespan of C. elegans. Using the mitochondrial respiration profile of C. elegans supplemented for 8 days with 50 μM resveratrol as a blueprint, we can screen our novel polyketides for potential CR mimetics with improved potency. This study highlights the utility of synthetic enzymology in the development of novel anti-ageing therapeutics.
Collapse
Affiliation(s)
- Yan Ping Lim
- Department
of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, 117597, Singapore
- NUS
Synthetic Biology for Clinical and Technological Innovation,
Centre for Life Sciences, and Singapore Lipidomics Incubator, Life Sciences
Institute, National University of Singapore, 28 Medical Drive, 117456, Singapore
| | - Maybelle K. Go
- Department
of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, 117597, Singapore
- NUS
Synthetic Biology for Clinical and Technological Innovation,
Centre for Life Sciences, and Singapore Lipidomics Incubator, Life Sciences
Institute, National University of Singapore, 28 Medical Drive, 117456, Singapore
| | - Manfred Raida
- Department
of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, 117597, Singapore
- NUS
Synthetic Biology for Clinical and Technological Innovation,
Centre for Life Sciences, and Singapore Lipidomics Incubator, Life Sciences
Institute, National University of Singapore, 28 Medical Drive, 117456, Singapore
| | - Takao Inoue
- Department
of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, 117597, Singapore
| | - Markus R. Wenk
- Department
of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, 117597, Singapore
- NUS
Synthetic Biology for Clinical and Technological Innovation,
Centre for Life Sciences, and Singapore Lipidomics Incubator, Life Sciences
Institute, National University of Singapore, 28 Medical Drive, 117456, Singapore
| | - Jay D. Keasling
- Department
of Chemical & Biomolecular Engineering, University of California at Berkeley, 5885 Hollis Street, Emeryville, California 94608, United States
| | - Matthew W. Chang
- Department
of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, 117597, Singapore
- NUS
Synthetic Biology for Clinical and Technological Innovation,
Centre for Life Sciences, and Singapore Lipidomics Incubator, Life Sciences
Institute, National University of Singapore, 28 Medical Drive, 117456, Singapore
| | - Wen Shan Yew
- Department
of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, 117597, Singapore
- NUS
Synthetic Biology for Clinical and Technological Innovation,
Centre for Life Sciences, and Singapore Lipidomics Incubator, Life Sciences
Institute, National University of Singapore, 28 Medical Drive, 117456, Singapore
| |
Collapse
|
37
|
Emerging Role of mTOR Signaling-Related miRNAs in Cardiovascular Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6141902. [PMID: 30305865 PMCID: PMC6165581 DOI: 10.1155/2018/6141902] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 07/04/2018] [Indexed: 12/21/2022]
Abstract
Mechanistic/mammalian target of rapamycin (mTOR), an atypical serine/threonine kinase of the phosphoinositide 3-kinase- (PI3K-) related kinase family, elicits a vital role in diverse cellular processes, including cellular growth, proliferation, survival, protein synthesis, autophagy, and metabolism. In the cardiovascular system, the mTOR signaling pathway integrates both intracellular and extracellular signals and serves as a central regulator of both physiological and pathological processes. MicroRNAs (miRs), a class of short noncoding RNA, are an emerging intricate posttranscriptional modulator of critical gene expression for the development and maintenance of homeostasis across a wide array of tissues, including the cardiovascular system. Over the last decade, numerous studies have revealed an interplay between miRNAs and the mTOR signaling circuit in the different cardiovascular pathophysiology, like myocardial infarction, hypertrophy, fibrosis, heart failure, arrhythmia, inflammation, and atherosclerosis. In this review, we provide a comprehensive state of the current knowledge regarding the mechanisms of interactions between the mTOR signaling pathway and miRs. We have also highlighted the latest advances on mTOR-targeted therapy in clinical trials and the new perspective therapeutic strategies with mTOR-targeting miRs in cardiovascular diseases.
Collapse
|
38
|
Ryskalin L, Limanaqi F, Frati A, Busceti CL, Fornai F. mTOR-Related Brain Dysfunctions in Neuropsychiatric Disorders. Int J Mol Sci 2018; 19:ijms19082226. [PMID: 30061532 PMCID: PMC6121884 DOI: 10.3390/ijms19082226] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 12/12/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) is an ubiquitously expressed serine-threonine kinase, which senses and integrates several intracellular and environmental cues to orchestrate major processes such as cell growth and metabolism. Altered mTOR signalling is associated with brain malformation and neurological disorders. Emerging evidence indicates that even subtle defects in the mTOR pathway may produce severe effects, which are evident as neurological and psychiatric disorders. On the other hand, administration of mTOR inhibitors may be beneficial for a variety of neuropsychiatric alterations encompassing neurodegeneration, brain tumors, brain ischemia, epilepsy, autism, mood disorders, drugs of abuse, and schizophrenia. mTOR has been widely implicated in synaptic plasticity and autophagy activation. This review addresses the role of mTOR-dependent autophagy dysfunction in a variety of neuropsychiatric disorders, to focus mainly on psychiatric syndromes including schizophrenia and drug addiction. For instance, amphetamines-induced addiction fairly overlaps with some neuropsychiatric disorders including neurodegeneration and schizophrenia. For this reason, in the present review, a special emphasis is placed on the role of mTOR on methamphetamine-induced brain alterations.
Collapse
Affiliation(s)
- Larisa Ryskalin
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy.
| | - Fiona Limanaqi
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy.
| | | | | | - Francesco Fornai
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy.
- I.R.C.C.S. Neuromed, Via Atinense 18, 86077 Isernia, Italy.
| |
Collapse
|
39
|
Shen G, Ren H, Qiu T, Zhang Z, Zhao W, Yu X, Huang J, Tang J, Liang D, Yao Z, Yang Z, Jiang X. Mammalian target of rapamycin as a therapeutic target in osteoporosis. J Cell Physiol 2017; 233:3929-3944. [PMID: 28834576 DOI: 10.1002/jcp.26161] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/21/2017] [Indexed: 12/19/2022]
Abstract
The mechanistic target of rapamycin (mTOR) plays a key role in sensing and integrating large amounts of environmental cues to regulate organismal growth, homeostasis, and many major cellular processes. Recently, mounting evidences highlight its roles in regulating bone homeostasis, which sheds light on the pathogenesis of osteoporosis. The activation/inhibition of mTOR signaling is reported to positively/negatively regulate bone marrow mesenchymal stem cells (BMSCs)/osteoblasts-mediated bone formation, adipogenic differentiation, osteocytes homeostasis, and osteoclasts-mediated bone resorption, which result in the changes of bone homeostasis, thereby resulting in or protect against osteoporosis. Given the likely importance of mTOR signaling in the pathogenesis of osteoporosis, here we discuss the detailed mechanisms in mTOR machinery and its association with osteoporosis therapy.
Collapse
Affiliation(s)
- Gengyang Shen
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hui Ren
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ting Qiu
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhida Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenhua Zhao
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiang Yu
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinjing Huang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingjing Tang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - De Liang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhensong Yao
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhidong Yang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaobing Jiang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Laboratory Affiliated to National Key Discipline of Orthopaedic and Traumatology of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
40
|
Li Z, Gu J, Zhu Q, Liu J, Lu H, Lu Y, Wang X. Obese donor mice splenocytes aggravated the pathogenesis of acute graft-versus-host disease via regulating differentiation of Tregs and CD4 + T cell induced-type I inflammation. Oncotarget 2017; 8:74880-74896. [PMID: 29088831 PMCID: PMC5650386 DOI: 10.18632/oncotarget.20425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/04/2017] [Indexed: 02/07/2023] Open
Abstract
Acute graft-versus-host disease (aGVHD) remains one of the most severe complications in organ and bone marrow transplantation, leading to much morbidity and mortality. Obesity has been associated with increased risk of development of various inflammatory diseases. Here, we investigated the in vitro and in vivo effects of obese donor splenocytes on the development of acute graft-versus-host disease (aGVHD). In this study, mixed lymphocyte reactions (MLR) in vitro showed that obese donor mouse CD4+ T cell promoted the production of interleukin-2 (IL-2), interferon (IFN)-γ and tumor necrosis factor (TNF)-α. Meanwhile, the inducible Tregs population decreased greatly in obese donor mouse CD4+ T cells' induction group, compared with normal group. Then in the murine aGVHD model, we found that obese donor splenocytes dramatically increased the severity of aGVHD through down-regulating immune tolerance while enhancing systemic and local immunity. Moreover, we showed that aGVHD induced by obese donors resulted in massive expansion of donor CD3+ T cells, release of Th1-related cytokines, interleukin-17 (IL-17) and chemokines, significant increase of Th17 cells and inhibition of CD4+CD25+Foxp3+ regulatory T cells (Tregs) and impaired suppressive ability of donor Tregs. Expression of sphingosine-1-phosphate receptor 1 (S1PR1), phosphorylated Akt, mammalian target of rapamycin (mTOR) and Raptor increased, while the phosphorylation level of SMAD3 was decreased in the skin, intestine, lung and liver from obese donor splenocytes-treated aGVHD mice. Furthermore, at mRNA and protein levels, we defined several molecules that may account for the enhanced ability of obese donor splenocytes to migrate into target organs, such as IL-2, IL-17, IFN-γ, TNF-α, CXCR3, CXCL9, CXCL10, CXCL11 and CCL3. Therefore, these results imply that obese donor cells may be related to the risk of aGVHD and helping obese donor individuals lose weight represent a compulsory clinical strategy before implementing transplantation to control aGVHD of recipients.
Collapse
Affiliation(s)
- Zengyao Li
- Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Jian Gu
- Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Qin Zhu
- Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Jing Liu
- Department of Radiotherapy, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Hao Lu
- Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Yunjie Lu
- Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Xuehao Wang
- Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
41
|
In-vitro assessment of antimicrobial properties and lymphocytotoxicity assay of benzoisochromanequinones polyketide from Streptomyces sp JRG-04. Microb Pathog 2017; 110:117-127. [DOI: 10.1016/j.micpath.2017.06.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 05/11/2017] [Accepted: 06/22/2017] [Indexed: 11/21/2022]
|
42
|
De Luna-Preitschopf A, Zwickl H, Nehrer S, Hengstschläger M, Mikula M. Rapamycin Maintains the Chondrocytic Phenotype and Interferes with Inflammatory Cytokine Induced Processes. Int J Mol Sci 2017; 18:ijms18071494. [PMID: 28696356 PMCID: PMC5535984 DOI: 10.3390/ijms18071494] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 06/29/2017] [Accepted: 07/06/2017] [Indexed: 12/20/2022] Open
Abstract
Osteoarthritis (OA) is hallmarked by a progressive degradation of articular cartilage. Besides risk factors including trauma, obesity or genetic predisposition, inflammation has a major impact on the development of this chronic disease. During the course of inflammation, cytokines such as tumor necrosis factor-alpha(TNF-α) and interleukin (IL)-1β are secreted by activated chondrocytes as well as synovial cells and stimulate the production of other inflammatory cytokines and matrix degrading enzymes. The mTORC1 inhibitor rapamycin is a clinical approved immunosuppressant and several studies also verified its chondroprotective effects in OA. However, the effect of blocking the mechanistic target of rapamycin complex (mTORC)1 on the inflammatory status within OA is not well studied. Therefore, we aimed to investigate if inhibition of mTORC1 by rapamycin can preserve and sustain chondrocytes in an inflammatory environment. Patient-derived chondrocytes were cultured in media supplemented with or without the mTORC1 inhibitor rapamycin. To establish an inflammatory environment, either TNF-α or IL-1β was added to the media (=OA-model). The chondroprotective and anti-inflammatory effects of rapamycin were evaluated using sulfated glycosaminoglycan (sGAG) release assay, Caspase 3/7 activity assay, lactate dehydrogenase (LDH) assay and quantitative real time polymerase chain reaction (PCR). Blocking mTORC1 by rapamycin reduced the release and therefore degradation of sGAGs, which are components of the extracellular matrix secreted by chondrocytes. Furthermore, blocking mTORC1 in OA chondrocytes resulted in an enhanced expression of the main chondrogenic markers. Rapamycin was able to protect chondrocytes from cell death in an OA-model shown by reduced Caspase 3/7 activity and diminished LDH release. Furthermore, inhibition of mTORC1 preserved the chondrogenic phenotype of OA chondrocytes, but also reduced inflammatory processes within the OA-model. This study highlights that blocking mTORC1 is a new and promising approach for treating OA. Low side effects make rapamycin an attractive implementation to existing therapeutic strategies. We showed that rapamycin's chondroprotective property might be due to an interference with IL-1β triggered inflammatory processes.
Collapse
Affiliation(s)
| | - Hannes Zwickl
- Department of Internal Medicine 2, University Hospital Krems, Karl Landsteiner University of Health Sciences, 3500 Krems, Austria.
| | - Stefan Nehrer
- Center for Regenerative Medicine and Orthopedics, Danube University Krems, 3500 Krems, Austria.
| | - Markus Hengstschläger
- Center for Pathobiochemistry and Genetics, Medical University of Vienna, 1090 Vienna, Austria.
| | - Mario Mikula
- Center for Pathobiochemistry and Genetics, Medical University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
43
|
Pharmacological modulation of autophagy: therapeutic potential and persisting obstacles. Nat Rev Drug Discov 2017; 16:487-511. [PMID: 28529316 DOI: 10.1038/nrd.2017.22] [Citation(s) in RCA: 636] [Impact Index Per Article: 79.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Autophagy is central to the maintenance of organismal homeostasis in both physiological and pathological situations. Accordingly, alterations in autophagy have been linked to clinically relevant conditions as diverse as cancer, neurodegeneration and cardiac disorders. Throughout the past decade, autophagy has attracted considerable attention as a target for the development of novel therapeutics. However, such efforts have not yet generated clinically viable interventions. In this Review, we discuss the therapeutic potential of autophagy modulators, analyse the obstacles that have limited their development and propose strategies that may unlock the full therapeutic potential of autophagy modulation in the clinic.
Collapse
|
44
|
Ye J, Jiang Z, Chen X, Liu M, Li J, Liu N. The role of autophagy in pro-inflammatory responses of microglia activation via mitochondrial reactive oxygen species in vitro. J Neurochem 2017; 142:215-230. [PMID: 28407242 DOI: 10.1111/jnc.14042] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 03/26/2017] [Accepted: 03/31/2017] [Indexed: 12/11/2022]
Abstract
Microglia over-activation contributes to neurodegenerative processes by neurotoxin factors and pro-inflammatory molecules of pro-inflammatory processes. Mitochondrial reactive oxygen species (ROS) and autophagy pathway might be involved in microglial activation, but the underlying mechanism is unclear. Here, we regulated autophagy pathway of microglia in vitro by autophagy inhibition (3-methyladenine treatment, siRNA-Beclin 1 or siRNA-ATG5 transfection) or induction (rapamycin treatment) in murine microglial BV-2 cells or cultured primary mouse microglial cells. And we found that autophagy inhibition could sensitize mitochondrial profile and microglial activation of cultured microglial cells, demonstrated by significant production of mitochondrial ROS, loss of mitochondrial membrane potential, secretion of pro-inflammatory cytokines including interleukin 1β (IL-1β), interleukin 6 (IL-6), interleukin 12 (IL-12) and tumor necrosis factor α and marked activation of mitogen-activated proteinkinases (MAPKs) and nuclear factor κB (NF-κB). These effects could be blocked by specific inhibitors of MAPK and NF-κB or mitochondrial antioxidants, Mito-TEMPO. Meanwhile, induction of autophagy with rapamycin treatment could significantly suppress microglial inflammatory responses, mitochondrial ROS production, activation of MAPKs and NF-κB. Taken together, our in vitro results from primary cultured microglia and BV-2 cell lines indicated that autophagy inhibition might participate in brain macrophage or microglia over-activation and mitochondrial ROS generation might be involved in the regulatory microglial pro-inflammatory responses.
Collapse
Affiliation(s)
- Junli Ye
- Department of Pathophysiology, Medical College, Qingdao University, Qingdao, Shandong, China
| | - Zhongxin Jiang
- Department of Clinical Laboratory, the Affiliated Hospital of Medical College Qingdao University, Qingdao, China
| | - Xuehong Chen
- Department of Pharmacology, Medical College, Qingdao University, Qingdao, China
| | - Mengyang Liu
- Department of Clinical Laboratory, the Affiliated Hospital of Medical College Qingdao University, Qingdao, China
| | - Jing Li
- Department of Clinical Laboratory, the Affiliated Hospital of Medical College Qingdao University, Qingdao, China
| | - Na Liu
- Department of Clinical Laboratory, the Affiliated Hospital of Medical College Qingdao University, Qingdao, China
| |
Collapse
|
45
|
Insights into the metabolic mechanism of rapamycin overproduction in the shikimate-resistant Streptomyces hygroscopicus strain UV-II using comparative metabolomics. World J Microbiol Biotechnol 2017; 33:101. [DOI: 10.1007/s11274-017-2266-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 04/12/2017] [Indexed: 01/27/2023]
|
46
|
Whang MI, Tavares RM, Benjamin DI, Kattah MG, Advincula R, Nomura DK, Debnath J, Malynn BA, Ma A. The Ubiquitin Binding Protein TAX1BP1 Mediates Autophagasome Induction and the Metabolic Transition of Activated T Cells. Immunity 2017; 46:405-420. [PMID: 28314591 DOI: 10.1016/j.immuni.2017.02.018] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 11/09/2016] [Accepted: 01/10/2017] [Indexed: 01/18/2023]
Abstract
During immune responses, naive T cells transition from small quiescent cells to rapidly cycling cells. We have found that T cells lacking TAX1BP1 exhibit delays in growth of cell size and cell cycling. TAX1BP1-deficient T cells exited G0 but stalled in S phase, due to both bioenergetic and biosynthetic defects. These defects were due to deficiencies in mTOR complex formation and activation. These mTOR defects in turn resulted from defective autophagy induction. TAX1BP1 binding of LC3 and GABARAP via its LC3-interacting region (LIR), but not its ubiquitin-binding domain, supported T cell proliferation. Supplementation of TAX1BP1-deficient T cells with metabolically active L-cysteine rescued mTOR activation and proliferation but not autophagy. These studies reveal that TAX1BP1 drives a specialized form of autophagy, providing critical amino acids that activate mTOR and enable the metabolic transition of activated T cells.
Collapse
Affiliation(s)
- Michael I Whang
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143-0358, USA
| | - Rita M Tavares
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143-0358, USA
| | - Daniel I Benjamin
- Departments of Chemistry, Molecular and Cell Biology, and Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Michael G Kattah
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143-0358, USA
| | - Rommel Advincula
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143-0358, USA
| | - Daniel K Nomura
- Departments of Chemistry, Molecular and Cell Biology, and Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jayanta Debnath
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143-0505, USA
| | - Barbara A Malynn
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143-0358, USA
| | - Averil Ma
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143-0358, USA.
| |
Collapse
|
47
|
Dang L, Liu J, Wang C, Liu H, Wen J. Enhancement of rapamycin production by metabolic engineering in Streptomyces hygroscopicus based on genome-scale metabolic model. ACTA ACUST UNITED AC 2017; 44:259-270. [DOI: 10.1007/s10295-016-1880-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 11/26/2016] [Indexed: 12/18/2022]
Abstract
Abstract
Rapamycin, as a macrocyclic polyketide with immunosuppressive, antifungal, and anti-tumor activity produced by Streptomyces hygroscopicus, is receiving considerable attention for its significant contribution in medical field. However, the production capacity of the wild strain is very low. Hereby, a computational guided engineering approach was proposed to improve the capability of rapamycin production. First, a genome-scale metabolic model of Streptomyces hygroscopicus ATCC 29253 was constructed based on its annotated genome and biochemical information. The model consists of 1003 reactions, 711 metabolites after manual refinement. Subsequently, several potential genetic targets that likely guaranteed an improved yield of rapamycin were identified by flux balance analysis and minimization of metabolic adjustment algorithm. Furthermore, according to the results of model prediction, target gene pfk (encoding 6-phosphofructokinase) was knocked out, and target genes dahP (encoding 3-deoxy-d-arabino-heptulosonate-7-phosphate synthase) and rapK (encoding chorismatase) were overexpressed in the parent strain ATCC 29253. The yield of rapamycin increased by 30.8% by knocking out gene pfk and increased by 36.2 and 44.8% by overexpression of rapK and dahP, respectively, compared with parent strain. Finally, the combined effect of the genetic modifications was evaluated. The titer of rapamycin reached 250.8 mg/l by knockout of pfk and co-expression of genes dahP and rapK, corresponding to a 142.3% increase relative to that of the parent strain. The relationship between model prediction and experimental results demonstrates the validity and rationality of this approach for target identification and rapamycin production improvement.
Collapse
Affiliation(s)
- Lanqing Dang
- grid.419897.a 0000 0004 0369 313X Key Laboratory of System Bioengineering (Tianjin University), Ministry of Education 300072 Tianjin People’s Republic of China
- grid.33763.32 0000000417612484 School of Chemical Engineering and Technology Tianjin University 300072 Tianjin People’s Republic of China
- grid.33763.32 0000000417612484 SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) 300072 Tianjin People’s Republic of China
| | - Jiao Liu
- grid.419897.a 0000 0004 0369 313X Key Laboratory of System Bioengineering (Tianjin University), Ministry of Education 300072 Tianjin People’s Republic of China
- grid.33763.32 0000000417612484 School of Chemical Engineering and Technology Tianjin University 300072 Tianjin People’s Republic of China
- grid.33763.32 0000000417612484 SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) 300072 Tianjin People’s Republic of China
| | - Cheng Wang
- grid.419897.a 0000 0004 0369 313X Key Laboratory of System Bioengineering (Tianjin University), Ministry of Education 300072 Tianjin People’s Republic of China
- grid.33763.32 0000000417612484 School of Chemical Engineering and Technology Tianjin University 300072 Tianjin People’s Republic of China
- grid.33763.32 0000000417612484 SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) 300072 Tianjin People’s Republic of China
| | - Huanhuan Liu
- grid.419897.a 0000 0004 0369 313X Key Laboratory of System Bioengineering (Tianjin University), Ministry of Education 300072 Tianjin People’s Republic of China
- grid.33763.32 0000000417612484 School of Chemical Engineering and Technology Tianjin University 300072 Tianjin People’s Republic of China
- grid.33763.32 0000000417612484 SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) 300072 Tianjin People’s Republic of China
| | - Jianping Wen
- grid.419897.a 0000 0004 0369 313X Key Laboratory of System Bioengineering (Tianjin University), Ministry of Education 300072 Tianjin People’s Republic of China
- grid.33763.32 0000000417612484 School of Chemical Engineering and Technology Tianjin University 300072 Tianjin People’s Republic of China
- grid.33763.32 0000000417612484 SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) 300072 Tianjin People’s Republic of China
| |
Collapse
|
48
|
Zhang Y, Stefanovic B. mTORC1 phosphorylates LARP6 to stimulate type I collagen expression. Sci Rep 2017; 7:41173. [PMID: 28112218 PMCID: PMC5255556 DOI: 10.1038/srep41173] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 12/16/2016] [Indexed: 11/09/2022] Open
Abstract
Excessive deposition of type I collagen causes fibrotic diseases. Binding of La ribonucleoprotein domain family, member 6 (LARP6) to collagen mRNAs regulates their translation and is necessary for high type I collagen expression. Here we show that mTORC1 phosphorylates LARP6 on S348 and S409. The S348A/S409A mutant of LARP6 acts as a dominant negative protein in collagen biosynthesis, which retards secretion of type I collagen and causes excessive posttranslational modifications. Similar effects are seen using mTORC1 inhibitor rapamycin or by knocking down raptor. The S348A/S409A mutant weakly interacts with the accessory protein STRAP, needed for coordinated translation of collagen mRNAs. The interaction of wt LARP6 and STRAP is also attenuated by rapamycin and by raptor knockdown. Additionally, in the absence of S348/S409 phosphorylation LARP6 is sequestered in increasing amounts at the ER membrane. We postulate that phosphorylation of S348/S409 by mTORC1 stimulates the interaction of LARP6 and STRAP to coordinate translation of collagen mRNAs and to release LARP6 from the ER for new round of translation. These mechanisms contribute to high level of collagen expression in fibrosis.
Collapse
Affiliation(s)
- Yujie Zhang
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida 32306, USA
| | - Branko Stefanovic
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida 32306, USA
| |
Collapse
|
49
|
Park H, Garrido-Laguna I, Naing A, Fu S, Falchook GS, Piha-Paul SA, Wheler JJ, Hong DS, Tsimberidou AM, Subbiah V, Zinner RG, Kaseb AO, Patel S, Fanale MA, Velez-Bravo VM, Meric-Bernstam F, Kurzrock R, Janku F. Phase I dose-escalation study of the mTOR inhibitor sirolimus and the HDAC inhibitor vorinostat in patients with advanced malignancy. Oncotarget 2016; 7:67521-67531. [PMID: 27589687 PMCID: PMC5341894 DOI: 10.18632/oncotarget.11750] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/02/2016] [Indexed: 01/16/2023] Open
Abstract
Preclinical models suggest that histone deacetylase (HDAC) and mammalian target of rapamycin (mTOR) inhibitors have synergistic anticancer activity. We designed a phase I study to determine the safety, maximum tolerated dose (MTD), recommended phase II dose (RP2D), and dose-limiting toxicities (DLTs) of combined mTOR inhibitor sirolimus (1 mg-5 mg PO daily) and HDAC inhibitor vorinostat (100 mg-400 mg PO daily) in patients with advanced cancer. Seventy patients were enrolled and 46 (66%) were evaluable for DLT assessment since they completed cycle 1 without dose modification unless they had DLT. DLTs comprised grade 4 thrombocytopenia (n = 6) and grade 3 mucositis (n = 1). Sirolimus 4 mg and vorinostat 300 mg was declared RP2D because MTD with sirolimus 5 mg caused significant thrombocytopenia. The grade 3 and 4 drug-related toxic effects (including DLTs) were thrombocytopenia (31%), neutropenia (8%), anemia (7%), fatigue (3%), mucositis (1%), diarrhea (1%), and hyperglycemia (1%). Of the 70 patients, 35 (50%) required dose interruption or modification and 61 were evaluable for response. Partial responses were observed in refractory Hodgkin lymphoma (-78%) and perivascular epithelioid tumor (-54%), and stable disease in hepatocellular carcinoma and fibromyxoid sarcoma. In conclusion, the combination of sirolimus and vorinostat was feasible, with thrombocytopenia as the main DLT. Preliminary anticancer activity was observed in patients with refractory Hodgkin lymphoma, perivascular epithelioid tumor, and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Haeseong Park
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Internal Medicine (Division of Oncology), Washington University School of Medicine, St. Louis, MO, USA
| | - Ignacio Garrido-Laguna
- Department of Internal Medicine (Division of Oncology), Huntsman Cancer Institute and University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Aung Naing
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Siqing Fu
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gerald S. Falchook
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Sarah Cannon Research Institute at HealthONE, Denver, CO, USA
| | - Sarina A. Piha-Paul
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer J. Wheler
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David S. Hong
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Apostolia M. Tsimberidou
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vivek Subbiah
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ralph G. Zinner
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Medical Oncology, Thomas Jefferson University and Jefferson University Hospitals, Philadelphia, PA, USA
| | - Ahmed O. Kaseb
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shreyaskumar Patel
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michelle A. Fanale
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vivianne M. Velez-Bravo
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Razelle Kurzrock
- Center for Personalized Cancer Therapy, University of California San Diego Moores Cancer Center, San Diego, CA, USA
| | - Filip Janku
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
50
|
Kleinclauss F, Frontczak A, Terrier N, Thuret R, Timsit MO. [Immunology and immunosuppression in kidney transplantation. ABO and HLA incompatible kidney transplantation]. Prog Urol 2016; 26:977-992. [PMID: 27670824 DOI: 10.1016/j.purol.2016.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/19/2016] [Accepted: 08/22/2016] [Indexed: 11/17/2022]
Abstract
OBJECTIVES To perform a state of the art about immunological features in renal transplantation, immunosuppressive drugs and their mechanisms of action and immunologically high risk transplantations such as ABO and HLA-incompatible transplantation. MATERIAL AND METHODS An exhaustive systematic review of the scientific literature was performed in the Medline database (http://www.ncbi.nlm.nih.gov) and Embase (http://www.embase.com) using different associations of the following keywords (MESH): "allogenic response; allograft; immunosuppression; ABO incompatible transplantation; donor specific antibodies; HLA incompatible; desensitization; kidney transplantation". Publications obtained were selected based on methodology, language, date of publication (last 10 years) and relevance. Prospective and retrospective studies, in English or French, review articles; meta-analysis and guidelines were selected and analyzed. This search found 4717 articles. After reading titles and abstracts, 141 were included in the text, based on their relevance. RESULTS The considerable step in comprehension and knowledge allogeneic response this last few years allowed a better used of immunosuppression and the discover of news immunosuppressive drugs. In the first part of this article, the allogeneic response will be described. The different classes of immunosuppressive drugs will be presented and the actual management of immunosuppression will be discussed. Eventually, the modalities and results of immunologically high-risk transplantations such as ABO and HLA incompatible transplantations will be reported. CONCLUSIONS The knowledge and the control of allogeneic response to allogeneic graft allowed the development of renal transplantation.
Collapse
Affiliation(s)
- F Kleinclauss
- Service d'urologie et transplantation rénale, CHRU de Besançon, 3, boulevard A.-Fleming, 25000 Besançon, France; Université de Franche-Comté, 25000 Besançon, France; Inserm UMR 1098, 25000 Besançon, France.
| | - A Frontczak
- Service d'urologie et transplantation rénale, CHRU de Besançon, 3, boulevard A.-Fleming, 25000 Besançon, France; Université de Franche-Comté, 25000 Besançon, France
| | - N Terrier
- Service d'urologie et transplantation rénale, CHU de Grenoble, 38700 Grenoble, France
| | - R Thuret
- Service d'urologie et transplantation rénale, CHU de Montpellier, 34090 Montpellier, France; Université de Montpellier, 34000 Montpellier, France
| | - M-O Timsit
- Service d'urologie, hôpital européen Georges-Pompidou, AP-HP, 75015 Paris, France; Université Paris Descartes, 75006 Paris, France
| |
Collapse
|