1
|
Yao Y, Zheng S, Chi S, Chen F, Cai N, Cai Z, Li Z, Ni H. Characterization of the off-flavor from Pichia pastoris GS115 during the overexpression of an α-l-rhamnosidase. J Ind Microbiol Biotechnol 2023; 50:kuad035. [PMID: 37942557 PMCID: PMC10696632 DOI: 10.1093/jimb/kuad035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/04/2023] [Indexed: 11/10/2023]
Abstract
The off-flavor of Pichia pastoris strains is a negative characteristic of proteins overexpressed with this yeast. In the present study, P. pastoris GS115 overexpressing an α-l-rhamnosidase was taken as the example to characterize the off-flavor via sensory evaluation, gas chromatography-mass spectrometer, gas chromatography-olfaction, and omission test. The result showed that the off-flavor was due to the strong sweaty note, and moderate metallic and plastic notes. Four volatile compounds, that is, tetramethylpyrazine, 2,4-di-tert-butylphenol, isovaleric acid, and 2-methylbutyric acid, were identified to be major contributors to the sweaty note. Dodecanol and 2-acetylbutyrolactone were identified to be contributors to the metallic and plastic notes, respectively. It is the first study on the off-flavor of P. pastoris strains, helping understand metabolites with off-flavor of this yeast. Interestingly, it is the first study illustrating 2-acetylbutyrolactone and dodecanol with plastic and metallic notes, providing new information about the aromatic contributors of biological products. IMPORTANCE The methylotrophic yeast Pichia pastoris is an important host for the industrial expression of functional proteins. In our previous studies, P. pastoris strains have been sniffed with a strong off-flavor during the overexpression of various functional proteins, limiting the application of these proteins. Although many yeast strains have been reported with off-flavor, no attention has been paid to characterize the off-flavor in P. pastoris so far. Considering that P. pastoris has advantages over other established expression systems of functional proteins, it is of interest to identify the compounds with off-flavor synthesized in the overexpression of functional proteins with P. pastoris strains. In this study, the off-flavor synthesized from P. pastoris GS115 was characterized during the overexpression of an α-l-rhamnosidase, which helps understand the aromatic metabolites with off-flavor of P. pastoris strains. In addition, 2-acetylbutyrolactone and dodecanol were newly revealed with plastic and metallic notes, enriching the aromatic contributors of biological products. Thus, this study is important for understanding the metabolites with off-flavor of P. pastoris strains and other organisms, providing important knowledge to improve the flavor of products yielding with P. pastoris strains and other organisms. ONE-SENTENCE SUMMARY Characterize the sensory and chemical profile of the off-flavor produced by one strain of P. pastoris in vitro.
Collapse
Affiliation(s)
- YuXuan Yao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, People's Republic of China
| | - ShengLan Zheng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, People's Republic of China
| | - ShiLin Chi
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, People's Republic of China
| | - Feng Chen
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29634, USA
| | - Ning Cai
- Xiamen Ocean Vocational College, Xiamen, Fujian 361021, People's Republic of China
| | - ZhenZhen Cai
- Xiamen Ocean Vocational College, Xiamen, Fujian 361021, People's Republic of China
| | - Zhipeng Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, People's Republic of China
- Key Laboratory of Food Microbiology and Enzyme Engineering Technology of Fujian Province, Xiamen, Fujian 361021, People's Republic of China
- Research Center of Food Biotechnology of Xiamen City, Xiamen, Fujian 361021, People's Republic of China
| | - Hui Ni
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, People's Republic of China
- Xiamen Ocean Vocational College, Xiamen, Fujian 361021, People's Republic of China
- Key Laboratory of Food Microbiology and Enzyme Engineering Technology of Fujian Province, Xiamen, Fujian 361021, People's Republic of China
- Research Center of Food Biotechnology of Xiamen City, Xiamen, Fujian 361021, People's Republic of China
| |
Collapse
|
2
|
Xie J, Zhao J, Zhang N, Xu H, Yang J, Ye J, Jiang J. Efficient Production of Isoquercitin, Icariin and Icariside II by A Novel Thermostable α-l-Rhamnosidase PodoRha from Paenibacillus odorifer with High α-1, 6- / α-1, 2- Glycoside Specificity. Enzyme Microb Technol 2022; 158:110039. [DOI: 10.1016/j.enzmictec.2022.110039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/30/2022] [Accepted: 04/04/2022] [Indexed: 11/03/2022]
|
3
|
Enzyme Immobilization and Co-Immobilization: Main Framework, Advances and Some Applications. Processes (Basel) 2022. [DOI: 10.3390/pr10030494] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Enzymes are outstanding (bio)catalysts, not solely on account of their ability to increase reaction rates by up to several orders of magnitude but also for the high degree of substrate specificity, regiospecificity and stereospecificity. The use and development of enzymes as robust biocatalysts is one of the main challenges in biotechnology. However, despite the high specificities and turnover of enzymes, there are also drawbacks. At the industrial level, these drawbacks are typically overcome by resorting to immobilized enzymes to enhance stability. Immobilization of biocatalysts allows their reuse, increases stability, facilitates process control, eases product recovery, and enhances product yield and quality. This is especially important for expensive enzymes, for those obtained in low fermentation yield and with relatively low activity. This review provides an integrated perspective on (multi)enzyme immobilization that abridges a critical evaluation of immobilization methods and carriers, biocatalyst metrics, impact of key carrier features on biocatalyst performance, trends towards miniaturization and detailed illustrative examples that are representative of biocatalytic applications promoting sustainability.
Collapse
|
4
|
Biotransformation of Flavonoids by Newly Isolated and Characterized Lactobacillus pentosus NGI01 Strain from Kimchi. Microorganisms 2021; 9:microorganisms9051075. [PMID: 34067804 PMCID: PMC8157076 DOI: 10.3390/microorganisms9051075] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 12/17/2022] Open
Abstract
Lactic acid bacteria (LAB) are generally recognized as safe (GRAS) microorganisms. This study aimed to identify novel LAB strains that can transform flavonoids into aglycones to improve bioavailability. We isolated 34 LAB strains from kimchi. The biotransformation activity of these 34 LAB strains was investigated based on α-L-rhamnosidase and β-D-glucosidase activities. Among them, 10 LAB strains with high activities were identified by 16S rRNA sequencing analysis. All tested LAB strains converted hesperidin to hesperetin (12.5–30.3%). Of these, only the Lactobacillus pentosus NGI01 strain produced quercetin from rutin (3.9%). The optimal biotransformation conditions for the L. pentosus NGI01 producing hesperetin and quercetin were investigated. The highest final product concentrations of hesperetin and quercetin were 207 and 78 μM, respectively. Thus, the L. pentosus NGI01 strain can be a biocatalyst for producing flavonoid aglycones in the chemical and food industries.
Collapse
|
5
|
Li L, Li W, Gong J, Xu Y, Wu Z, Jiang Z, Cheng YS, Li Q, Ni H. An effective computational-screening strategy for simultaneously improving both catalytic activity and thermostability of α-l-rhamnosidase. Biotechnol Bioeng 2021; 118:3409-3419. [PMID: 33742693 DOI: 10.1002/bit.27758] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/04/2021] [Accepted: 03/18/2021] [Indexed: 12/21/2022]
Abstract
Catalytic efficiency and thermostability are the two most important characteristics of enzymes. However, it is always tough to improve both catalytic efficiency and thermostability of enzymes simultaneously. In the present study, a computational strategy with double-screening steps was proposed to simultaneously improve both catalysis efficiency and thermostability of enzymes; and a fungal α-l-rhamnosidase was used to validate the strategy. As the result, by molecular docking and sequence alignment analysis within the binding pocket, seven mutant candidates were predicted with better catalytic efficiency. By energy variety analysis, A355N, S356Y, and D525N among the seven mutant candidates were predicted with better thermostability. The expression and characterization results showed the mutant D525N had significant improvements in both enzyme activity and thermostability. Molecular dynamics simulations indicated that the mutations located within the 5 Å range of the catalytic domain, which could improve root mean squared deviation, electrostatic, Van der Waal interaction, and polar salvation values, and formed water bridge between the substrate and the enzyme. The study indicated that the computational strategy based on the binding energy, conservation degree and mutation energy analyses was effective to develop enzymes with better catalysis and thermostability, providing practical approach for developing industrial enzymes.
Collapse
Affiliation(s)
- Lijun Li
- College of Food and Biological Engineering, Jimei University, Xiamen, China.,Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, China.,Research Center of Food Biotechnology of Xiamen City, Xiamen, China
| | - Wenjing Li
- College of Food and Biological Engineering, Jimei University, Xiamen, China
| | - Jianye Gong
- College of Food and Biological Engineering, Jimei University, Xiamen, China
| | - Yanyan Xu
- Tan Kah Kee College, Xiamen University, Zhangzhou, China
| | - Zheyu Wu
- College of Food and Biological Engineering, Jimei University, Xiamen, China
| | - Zedong Jiang
- College of Food and Biological Engineering, Jimei University, Xiamen, China
| | - Yi-Sheng Cheng
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Qingbiao Li
- College of Food and Biological Engineering, Jimei University, Xiamen, China.,Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, China.,Research Center of Food Biotechnology of Xiamen City, Xiamen, China
| | - Hui Ni
- College of Food and Biological Engineering, Jimei University, Xiamen, China.,Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, China.,Research Center of Food Biotechnology of Xiamen City, Xiamen, China
| |
Collapse
|
6
|
Biochemical characterization of a novel hyperthermophilic α-l-rhamnosidase from Thermotoga petrophila and its application in production of icaritin from epimedin C with a thermostable β-glucosidase. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.03.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
7
|
Li L, Gong J, Wang S, Li G, Gao T, Jiang Z, Cheng YS, Ni H, Li Q. Heterologous Expression and Characterization of a New Clade of Aspergillus α-L-Rhamnosidase Suitable for Citrus Juice Processing. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:2926-2935. [PMID: 30789260 DOI: 10.1021/acs.jafc.8b06932] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
α-L-Rhamnosidase is a glycoside hydrolase capable of removing naringin from citrus juice. However, α-L-rhamnosidases always have broad substrate spectra, causing negative effects on citrus juice. In this study, a α-L-rhamnosidase-expressing fungal strain, JMU-TS529, was identified, and its α-L-rhamnosidase was characterized. As a result, JMU-TS529 was identified as Aspergillus tubingensis via morphological and molecular characteristics. The predicted protein sequence shared an amino acid identity of less than 30% with previously characterized α-L-rhamnosidases. The optimal pH and temperature were 4.0 and 50-60 °C, respectively. Most importantly, the α-L-rhamnosidase showed a strong ability to hydrolyze naringin but scarcely acted on other substrates. Furthermore, the enzyme could efficiently remove naringin from pomelo juice without changing its attractive aroma. These results indicate that the present enzyme represents a new clade of Aspergillus α-L-rhamnosidase that is desirable for debittering citrus juice, providing a better alternative for improving the quality of citrus juice.
Collapse
Affiliation(s)
- Lijun Li
- College of Food and Biological Engineering , Jimei University , Xiamen , Fujian Province 361021 , China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering , Xiamen , Fujian Province 361021 , China
- Research Center of Food Biotechnology of Xiamen City , Xiamen , Fujian Province 361021 , China
| | - Jianye Gong
- College of Food and Biological Engineering , Jimei University , Xiamen , Fujian Province 361021 , China
| | - Song Wang
- College of Food and Biological Engineering , Jimei University , Xiamen , Fujian Province 361021 , China
| | - Guiling Li
- College of Food and Biological Engineering , Jimei University , Xiamen , Fujian Province 361021 , China
| | - Ting Gao
- College of Food and Biological Engineering , Jimei University , Xiamen , Fujian Province 361021 , China
| | - Zedong Jiang
- College of Food and Biological Engineering , Jimei University , Xiamen , Fujian Province 361021 , China
| | - Yi-Sheng Cheng
- Department of Life Science , National Taiwan University , Taipei 10617 , Taiwan
- Institute of Plant Biology , National Taiwan University , Taipei 10617 , Taiwan
| | - Hui Ni
- College of Food and Biological Engineering , Jimei University , Xiamen , Fujian Province 361021 , China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering , Xiamen , Fujian Province 361021 , China
- Research Center of Food Biotechnology of Xiamen City , Xiamen , Fujian Province 361021 , China
| | - Qingbiao Li
- College of Food and Biological Engineering , Jimei University , Xiamen , Fujian Province 361021 , China
| |
Collapse
|
8
|
Pachl P, Škerlová J, Šimčíková D, Kotik M, Křenková A, Mader P, Brynda J, Kapešová J, Křen V, Otwinowski Z, Řezáčová P. Crystal structure of native α-L-rhamnosidase from Aspergillus terreus. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2018; 74:1078-1084. [DOI: 10.1107/s2059798318013049] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 09/14/2018] [Indexed: 11/10/2022]
Abstract
α-L-Rhamnosidases cleave terminal nonreducing α-L-rhamnosyl residues from many natural rhamnoglycosides. This makes them catalysts of interest for various biotechnological applications. The X-ray structure of the GH78 family α-L-rhamnosidase from Aspergillus terreus has been determined at 1.38 Å resolution using the sulfur single-wavelength anomalous dispersion phasing method. The protein was isolated from its natural source in the native glycosylated form, and the active site contained a glucose molecule, probably from the growth medium. In addition to its catalytic domain, the α-L-rhamnosidase from A. terreus contains four accessory domains of unknown function. The structural data suggest that two of these accessory domains, E and F, might play a role in stabilizing the aglycon portion of the bound substrate.
Collapse
|
9
|
Thongekkaew J, Fujii T, Masaki K, Koyama K. Evaluation of Candida easanensis JK8 β-glucosidase with potentially hydrolyse non-volatile glycosides of wine aroma precursors. Nat Prod Res 2018; 33:3563-3567. [PMID: 29873255 DOI: 10.1080/14786419.2018.1481845] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Important 'floral' aromas naturally occur in grapes predominantly as flavourless glycoconjugate precursors. Since these aroma compounds can be released by hydrolysis, different glycosidase enzymes can potentially contribute different aromas to wines. In this paper, the effects of crude and purified Candida easanensis JK8 β-glucosidases on wine aroma precursors of Muscat of Alexandria grape powder were investigated by GC/MS combined with stir bar sorptive extraction (SBSE). A total of 19 bound volatile compounds were identified, including phenols, terpenes, aldehyde, ester and alcohols. The concentrations of terpenes especially nerol and geraniol, and β-Damascenone, a C13-norisoprenoid, contributes flowery and slightly fruity aromas were significantly increased in enzyme treated. These results suggest the potential application of this yeast β-glucosidase as an aroma-enhancing enzyme in winemaking.
Collapse
Affiliation(s)
- Jantaporn Thongekkaew
- Faculty of Science, Department of Biological Science, Ubon-Ratchathani University , Ubon-Ratchathani , Thailand
| | - Tsutomu Fujii
- Quality and Evaluation Research Division, National Research Institute of Brewing , Hiroshima , Japan.,Graduate School of Biosphere Sciences, Hiroshima University , Higashi-hiroshima , Japan
| | - Kazuo Masaki
- Industrial Technology Center, Gifu Prefectural Government , Gifu , Japan
| | - Kazuya Koyama
- Analytical Research Division, National Research Institute of Brewing , Hiroshima , Japan
| |
Collapse
|
10
|
Mueller M, Zartl B, Schleritzko A, Stenzl M, Viernstein H, Unger FM. Rhamnosidase activity of selected probiotics and their ability to hydrolyse flavonoid rhamnoglucosides. Bioprocess Biosyst Eng 2017; 41:221-228. [PMID: 29124335 PMCID: PMC5773629 DOI: 10.1007/s00449-017-1860-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 10/24/2017] [Indexed: 11/29/2022]
Abstract
Bioavailability of flavonoids is low, especially when occurring as rhamnoglucosides. Thus, the hydrolysis of rutin, hesperidin, naringin and a mixture of narcissin and rutin (from Cyrtosperma johnstonii) by 14 selected probiotics was tested. All strains showed rhamnosidase activity as shown using 4-nitrophenyl α-l-rhamnopyranoside as a substrate. Hesperidin was hydrolysed by 8–27% after 4 and up to 80% after 10 days and narcissin to 14–56% after 4 and 25–97% after 10 days. Rutin was hardly hydrolysed with a conversion rate ranging from 0 to 5% after 10 days. In the presence of narcissin, the hydrolysis of rutin was increased indicating that narcissin acts as an inducer. The rhamnosidase activity as well as the ability to hydrolyse flavonoid rhamnoglucosides was highly strain specific. Naringin was not hydrolysed by rhamnosidase from probiotics, not even by the purified recombinant enzyme, only by fungal rhamnosidase. In conclusion, rhamnosidases from the tested probiotics are substrate specific cleaving hesperidin, narcissin and to a small extent rutin, but not naringin.
Collapse
Affiliation(s)
- Monika Mueller
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria.
| | - Barbara Zartl
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Agnes Schleritzko
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Margit Stenzl
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Helmut Viernstein
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Frank M Unger
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| |
Collapse
|
11
|
Matsumoto S, Yamada H, Kunishige Y, Takenaka S, Nakazawa M, Ueda M, Sakamoto T. Identification of a novel Penicillium chrysogenum rhamnogalacturonan rhamnohydrolase and the first report of a rhamnogalacturonan rhamnohydrolase gene. Enzyme Microb Technol 2017; 98:76-85. [DOI: 10.1016/j.enzmictec.2016.12.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/04/2016] [Accepted: 12/26/2016] [Indexed: 01/29/2023]
|
12
|
Cristóbal HA, Poma HR, Abate CM, Rajal VB. Quantification of the Genetic Expression of bgl-A, bgl, and CspA and Enzymatic Characterization of β-Glucosidases from Shewanella sp. G5. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2016; 18:396-408. [PMID: 27164864 DOI: 10.1007/s10126-016-9702-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 03/26/2016] [Indexed: 06/05/2023]
Abstract
Shewanella sp. G5, a psychrotolerant marine bacterium, has a cold-shock protein (CspA) and three β-glucosidases, two of which were classified in the glycosyl hydrolase families 1 and 3 and are encoded by bgl-A and bgl genes, respectively. Shewanella sp. G5 was cultured on Luria-Bertani (LB) and Mineral Medium Brunner (MMB) media with glucose and cellobiose at various temperatures and pH 6 and 8. Relative quantification of the expression levels of all three genes was studied by real-time PCR with the comparative Ct method (2(-ΔΔCt)) using the gyrB housekeeping gene as a normalizer. Results showed that the genes had remarkably different genetic expression levels under the conditions evaluated, with increased expression of all genes obtained on MMB with cellobiose at 30 °C. Specific growth rate and specific β-glucosidase activity were also determined for all the culture conditions. Shewanella sp. G5 was able to grow on both media at 4 °C, showing the maximum specific growth rate on LB with cellobiose at 37 °C. The specific β-glucosidase activity obtained on MMB with cellobiose at 30 °C was 25 to 50 % higher than for all other conditions. At pH 8, relative activity was 34, 60, and 63 % higher at 30 °C than at 10 °C, with three peaks at 10, 25, and 37 °C on both media. Enzyme activity increased by 61 and 47 % in the presence of Ca(2+) and by 24 and 31 % in the presence of Mg(2+) on LB and MMB at 30 °C, respectively, but it was totally inhibited by Hg(2+), Cu(2+), and EDTA. Moreover, this activity was slightly decreased by SDS, Zn(2+), and DTT, all at 5 mM. Ethanol (14 % v/v) and glucose (100 mM) also reduced the activity by 63 and 60 %, respectively.
Collapse
Affiliation(s)
- Héctor Antonio Cristóbal
- Instituto de Investigaciones para la Industria Química, Universidad Nacional de Salta (INIQUI - CONICET-UNSa), Av. Bolivia 5150, 4400, Salta, Argentina.
- Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI - CONICET), Av. Belgrano y Pje. Caseros, 4000, Tucumán, Argentina.
| | - Hugo Ramiro Poma
- Instituto de Investigaciones para la Industria Química, Universidad Nacional de Salta (INIQUI - CONICET-UNSa), Av. Bolivia 5150, 4400, Salta, Argentina
| | - Carlos Mauricio Abate
- Instituto de Investigaciones para la Industria Química, Universidad Nacional de Salta (INIQUI - CONICET-UNSa), Av. Bolivia 5150, 4400, Salta, Argentina
| | - Verónica Beatriz Rajal
- Instituto de Investigaciones para la Industria Química, Universidad Nacional de Salta (INIQUI - CONICET-UNSa), Av. Bolivia 5150, 4400, Salta, Argentina
- Facultad de Ingeniería, Universidad Nacional de Salta, Avda. Bolivia 5150, 4400, Salta, Argentina
| |
Collapse
|
13
|
Li L, Yu Y, Zhang X, Jiang Z, Zhu Y, Xiao A, Ni H, Chen F. Expression and biochemical characterization of recombinant α-l-rhamnosidase r-Rha1 from Aspergillus niger JMU-TS528. Int J Biol Macromol 2016; 85:391-9. [DOI: 10.1016/j.ijbiomac.2015.12.093] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 12/31/2015] [Accepted: 12/31/2015] [Indexed: 11/26/2022]
|
14
|
Ferner MJ, Müller G, Schumann C, Kampeis P, Ulber R, Raddatz H. Immobilisation of glycosidases from commercial preparation on magnetic beads. Part 1. Characterisation of immobilised glycosidases with a particular emphasis on β-glucosidase. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2015.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
15
|
Spohner SC, Zahn D, Schaum V, Quitmann H, Czermak P. Recombinant α- l -rhamnosidase from Aspergillus terreus in selective trimming of α- l -rhamnose from steviol glycosides. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.09.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
Wang Y, Zhang C, Xu Y, Li J. Evaluating potential applications of indigenous yeasts and theirβ-glucosidases. JOURNAL OF THE INSTITUTE OF BREWING 2015. [DOI: 10.1002/jib.256] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yuxia Wang
- Yibin University; School of Life science and Food Engineering; 8 Jiusheng Road, Wuliangye Ave Yibin Sichuan 644007 China
| | - Chao Zhang
- 8 Jiusheng Road, Wuliangye Ave Yibin Sichuan 644007 China
| | - Yan Xu
- 1800 Lihu Ave Wuxi Jiangsu 214122 China
| | - Jiming Li
- Changyu Group Company Ltd; Center of Science and Technology; 1 Jichang Rd Yantai Shantong 264000 China
| |
Collapse
|
17
|
Zhang R, Zhang BL, Xie T, Li GC, Tuo Y, Xiang YT. Biotransformation of rutin to isoquercitrin using recombinant α-l-rhamnosidase from Bifidobacterium breve. Biotechnol Lett 2015; 37:1257-64. [DOI: 10.1007/s10529-015-1792-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 02/09/2015] [Indexed: 11/24/2022]
|
18
|
De Winter K, Šimčíková D, Schalck B, Weignerová L, Pelantova H, Soetaert W, Desmet T, Křen V. Chemoenzymatic synthesis of α-L-rhamnosides using recombinant α-L-rhamnosidase from Aspergillus terreus. BIORESOURCE TECHNOLOGY 2013; 147:640-644. [PMID: 24012095 DOI: 10.1016/j.biortech.2013.08.083] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 08/12/2013] [Accepted: 08/13/2013] [Indexed: 06/02/2023]
Abstract
This study describes an efficient, large scale fermentation of a recombinant α-L-rhamnosidase originating from Aspergillus terreus. High-cell-density Pichia pastoris fermentation resulted in yields up to 627 U/L/h. The recombinant enzyme was used for the reverse rhamnosylation of various small organic compounds. A full factorial experimental design setup was applied to identify the importance of temperature, substrate concentrations, solvent type and concentration as well as the acidity of the reaction mixture. Careful optimization of these parameters allowed the synthesis of a range of α-L-rhamnosides among which cyclohexyl α-L-rhamnopyranoside, anisyl α-L-rhamnopyranoside and 2-phenylethyl α-L-rhamnopyranoside. In addition, α-L-rhamnosylation of phenolic hydroxyls in phenols such as hydroquinone, resorcinol, catechol and phenol was observed, which is a rather unique reaction catalyzed by glycosidases.
Collapse
Affiliation(s)
- Karel De Winter
- Centre for Industrial Biotechnology and Biocatalysis, Department of Biochemical and Microbial Technology, Faculty of Biosciences Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| | - Daniela Šimčíková
- Laboratory of Biotransformation, Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ 142 20 Prague, Czech Republic.
| | - Bram Schalck
- Centre for Industrial Biotechnology and Biocatalysis, Department of Biochemical and Microbial Technology, Faculty of Biosciences Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| | - Lenka Weignerová
- Laboratory of Biotransformation, Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ 142 20 Prague, Czech Republic.
| | - Helena Pelantova
- Laboratory of Molecular Structure Characterization, Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ 142 20 Prague, Czech Republic.
| | - Wim Soetaert
- Centre for Industrial Biotechnology and Biocatalysis, Department of Biochemical and Microbial Technology, Faculty of Biosciences Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| | - Tom Desmet
- Centre for Industrial Biotechnology and Biocatalysis, Department of Biochemical and Microbial Technology, Faculty of Biosciences Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| | - Vladimír Křen
- Laboratory of Biotransformation, Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ 142 20 Prague, Czech Republic.
| |
Collapse
|
19
|
Ni H, Xiao AF, Wang YQ, Chen F, Cai HN, Su WJ. Development and evaluation of an HPLC method for accurate determinations of enzyme activities of naringinase complex. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:10026-10032. [PMID: 24070201 DOI: 10.1021/jf402711h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
An HPLC method that can separate naringin, prunin, and naringenin was used to help accurately measure the activities of naringinase and its subunits (α-L-rhamnosidase and β-D-glucosidase). The activities of the naringinase and β-d-glucosidase were determined through an indirect calculation of the naringenin concentration to avoid interference from its poor solubility. The measured enzymatic activities of the naringinase complex, α-L-rhamnosidase, and β-D-glucosidase were the as same as their theoretical activities when the substrates' (i.e., naringin or prunin) concentrations were 200 μg/mL, and the enzyme concentrations were within the range of 0.06-0.43, 0.067-0.53, and 0.15-1.13 U/mL, respectively. The β-D-glucosidase had a much higher Vmax than either naringinase or α-L-rhamnosidase, implying the hydrolysis of naringin to prunin was the limiting step of the enzyme reaction. The reliability of the method was finally validated through the repeatability test, indicating its feasibility for the determinations of the naringinase complex.
Collapse
Affiliation(s)
- Hui Ni
- College of Bioengineering, Jimei University , Xiamen, Fujian Province 361021, People's Republic of China
| | | | | | | | | | | |
Collapse
|
20
|
Yadav S, Yadava S, Yadav K. Purification and characterization of α-l-rhamnosidase from Penicillium corylopholum MTCC-2011. Process Biochem 2013. [DOI: 10.1016/j.procbio.2013.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
21
|
da Silva CMG, Contesini FJ, Sawaya ACF, Cabral EC, da Silva Cunha IB, Eberlin MN, de Oliveira Carvalho P. Enhancement of the antioxidant activity of orange and lime juices by flavonoid enzymatic de-glycosylation. Food Res Int 2013. [DOI: 10.1016/j.foodres.2013.03.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Different influences of β-glucosidases on volatile compounds and anthocyanins of Cabernet Gernischt and possible reason. Food Chem 2013; 140:245-54. [PMID: 23578640 DOI: 10.1016/j.foodchem.2013.02.044] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 02/04/2013] [Accepted: 02/11/2013] [Indexed: 11/23/2022]
Abstract
The effects of three β-glucosidases (BG1, BG2 from Trichosporon asahii, AS from Aspergillus Niger) on the aroma profiles of Cabernet Gernischt (CG) were investigated, coupled with an exploration of the possible reasons for the different performances of β-glucosidases under the two different conditions (hydrolysis of grape glycoside extract and wine-making). The analysis of headspace solid-phase micro-extraction and gas chromatography-mass spectrometry revealed that volatile flavour compounds in the β-glucosidase-treated samples were significantly increased. Specially, the wines treated with β-glucosidase BG1 occupied the highest concentrations of 19 out of 23 volatile compounds that exhibited significant differences. The investigation of the effects of pH or glucose on β-glucosidases showed that low pH is the main factor that exerts a more critical and irreversible influence on the activities and structures of β-glucosidase proteins. The stronger resistances to pH and glucose provided β-glucosidase BG1 a better ability in hydrolysing aromatic precursors than other enzymes under winemaking conditions. With the HPLC analysis, eight anthocyanins were identified from CG wine. Among the three β-glucosidases, BG1 showed the lowest influence on the main anthocyanin glycosides. These results suggested that the β-glucosidase BG1 may have some potential values to complement wine quality during the winemaking process.
Collapse
|
23
|
DiCosimo R, McAuliffe J, Poulose AJ, Bohlmann G. Industrial use of immobilized enzymes. Chem Soc Rev 2013; 42:6437-74. [DOI: 10.1039/c3cs35506c] [Citation(s) in RCA: 897] [Impact Index Per Article: 81.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Yadav S, Yadav RSS, Yadav KDS. An α-l-rhamnosidase fromAspergillus awamoriMTCC-2879 and its role in debittering of orange juice. Int J Food Sci Technol 2012. [DOI: 10.1111/ijfs.12043] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sarita Yadav
- Department of Chemistry; DDU Gorakhpur University; Gorakhpur; 273009; India
| | - Rama S. S. Yadav
- Department of Chemistry; DDU Gorakhpur University; Gorakhpur; 273009; India
| | - Kapil D. S. Yadav
- Department of Chemistry; DDU Gorakhpur University; Gorakhpur; 273009; India
| |
Collapse
|
25
|
Wang Y, Kang W, Xu Y, Li J. Effect of Different Indigenous Yeast β-Glucosidases on the Liberation of Bound Aroma Compounds. JOURNAL OF THE INSTITUTE OF BREWING 2012. [DOI: 10.1002/j.2050-0416.2011.tb00466.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
26
|
Gerstorferová D, Fliedrová B, Halada P, Marhol P, Křen V, Weignerová L. Recombinant α-l-rhamnosidase from Aspergillus terreus in selective trimming of rutin. Process Biochem 2012. [DOI: 10.1016/j.procbio.2012.02.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
27
|
Aspergillus niger DLFCC-90 rhamnoside hydrolase, a new type of flavonoid glycoside hydrolase. Appl Environ Microbiol 2012; 78:4752-4. [PMID: 22544243 DOI: 10.1128/aem.00054-12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A novel rutin-α-L-rhamnosidase hydrolyzing α-L-rhamnoside of rutin, naringin, and hesperidin was purified and characterized from Aspergillus niger DLFCC-90, and the gene encoding this enzyme, which is highly homologous to the α-amylase gene, was cloned and expressed in Pichia pastoris GS115. The novel enzyme was classified in glycoside-hydrolase (GH) family 13.
Collapse
|
28
|
Yadav S, Yadav V, Yadava S, Yadav KD. Purification and functional characterisation of an α-l-rhamnosidase fromPenicillium citrinumMTCC-3565. Int J Food Sci Technol 2012. [DOI: 10.1111/j.1365-2621.2012.02987.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Yadav S, Yadav V, Yadav S, Yadav KD. Purification, characterisation and application of α-l-rhamnosidase from Penicillium citrinum MTCC-8897. Int J Food Sci Technol 2011. [DOI: 10.1111/j.1365-2621.2011.02838.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
30
|
Characterization of two distinct glycosyl hydrolase family 78 alpha-L-rhamnosidases from Pediococcus acidilactici. Appl Environ Microbiol 2011; 77:6524-30. [PMID: 21784921 DOI: 10.1128/aem.05317-11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
α-L-Rhamnosidases play an important role in the hydrolysis of glycosylated aroma compounds (especially terpenes) from wine. Although several authors have demonstrated the enological importance of fungal rhamnosidases, the information on bacterial enzymes in this context is still limited. In order to fill this important gap, two putative rhamnosidase genes (ram and ram2) from Pediococcus acidilactici DSM 20284 were heterologously expressed, and the respective gene products were characterized. In combination with a bacterial β-glucosidase, both enzymes released the monoterpenes linalool and cis-linalool oxide from a muscat wine extract under ideal conditions. Additionally, Ram could release significant amounts of geraniol and citronellol/nerol. Nevertheless, the potential enological value of these enzymes is limited by the strong negative effects of acidity and ethanol on the activities of Ram and Ram2. Therefore, a direct application in winemaking seems unlikely. Although both enzymes are members of the same glycosyl hydrolase family (GH 78), our results clearly suggest the distinct functionalities of Ram and Ram2, probably representing two subclasses within GH 78: Ram could efficiently hydrolyze only the synthetic substrate p-nitrophenyl-α-L-rhamnopyranoside (V(max) = 243 U mg(-1)). In contrast, Ram2 displayed considerable specificity toward hesperidin (V(max) = 34 U mg(-1)) and, especially, rutinose (V(max) = 1,200 U mg(-1)), a disaccharide composed of glucose and rhamnose. Both enzymes were unable to hydrolyze the flavanone glycoside naringin. Interestingly, both enzymes displayed indications of positive substrate cooperativity. This study presents detailed kinetic data on two novel rhamnosidases, which could be relevant for the further study of bacterial glycosidases.
Collapse
|
31
|
Naringinases: occurrence, characteristics, and applications. Appl Microbiol Biotechnol 2011; 90:1883-95. [DOI: 10.1007/s00253-011-3176-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 02/08/2011] [Accepted: 02/09/2011] [Indexed: 12/26/2022]
|
32
|
Improved purification of α-L-rhamnosidase from Aspergillus niger naringinase. World J Microbiol Biotechnol 2011. [DOI: 10.1007/s11274-011-0723-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
33
|
Yadav V, Yadav S, Yadava S, Yadav KD. α-l-Rhamnosidase from Aspergillus flavus MTCC-9606 isolated from lemon fruit peel. Int J Food Sci Technol 2011. [DOI: 10.1111/j.1365-2621.2010.02498.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
34
|
Purification and characterization of a novel alkaline α-L-rhamnosidase produced by Acrostalagmus luteo albus. J Ind Microbiol Biotechnol 2011; 38:1515-22. [DOI: 10.1007/s10295-010-0938-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 12/27/2010] [Indexed: 10/18/2022]
|
35
|
Rodríguez M, Lopes C, Valles S, Caballero A. Characterization of α-rhamnosidase activity from a Patagonian Pichia guilliermondii wine strain. J Appl Microbiol 2010; 109:2206-13. [DOI: 10.1111/j.1365-2672.2010.04854.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
|
37
|
Cristóbal HA, Schmidt A, Kothe E, Breccia J, Abate CM. Characterization of inducible cold-active β-glucosidases from the psychrotolerant bacterium Shewanella sp. G5 isolated from a sub-Antarctic ecosystem. Enzyme Microb Technol 2009. [DOI: 10.1016/j.enzmictec.2009.06.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
38
|
Production, partial purification and characterization of α-l-rhamnosidase from Penicillium ulaiense. World J Microbiol Biotechnol 2009. [DOI: 10.1007/s11274-009-9979-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
39
|
Dose-dependent significance of monosaccharides on intracellular α-l-rhamnosidase activity from Pseudoalteromonas sp. Biotechnol Lett 2008; 30:2147-50. [DOI: 10.1007/s10529-008-9810-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Revised: 07/08/2008] [Accepted: 07/08/2008] [Indexed: 10/21/2022]
|
40
|
Cristóbal HA, Breccia JD, Abate CM. Isolation and molecular characterization of Shewanella sp. G5, a producer of cold-active beta-D-glucosidases. J Basic Microbiol 2008; 48:16-24. [PMID: 18247390 DOI: 10.1002/jobm.200700146] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
beta -Glucosidase is a highly desired glycosidase, especially for hydrolysis of glycoconjugated precursors in musts and wines for the release of active aromatic compounds. A Shewanella sp. G5 strain was isolated from the intestinal content of benthonic organism (Munida subrrugosa) from different coastal areas of the Beagle Channel, Tierra del Fuego (Argentina). This marine bacterium was able to grow at a temperature range between 4 to 20 degrees C using different beta-glycoside substrates, such as cellobiose, as carbon source. In this work, the Shewanella sp. G5 strain exhibited high beta-glucosidase activity on plate at low temperature (4 and 20 degrees C). Two genes encoding different cold-active beta-glucosidases were amplified and sequenced and the nucleotide sequences were submitted to the GenBank. 16S rDNA and gyrB gene sequences were used for the molecular characterization of Shewanella sp. G5.
Collapse
Affiliation(s)
- Héctor Antonio Cristóbal
- Planta Piloto de Procesos Industriales y Microbiológicos, CONICET, Av. Belgrano y Pje, Caseros, Tucumán, Argentina
| | | | | |
Collapse
|
41
|
Immobilization of a recombinant Escherichia coli producing a thermostable α-l-rhamnosidase: Creation of a bioreactor for hydrolyses of naringin. Enzyme Microb Technol 2007. [DOI: 10.1016/j.enzmictec.2006.08.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
42
|
Turner P, Mamo G, Karlsson EN. Potential and utilization of thermophiles and thermostable enzymes in biorefining. Microb Cell Fact 2007; 6:9. [PMID: 17359551 PMCID: PMC1851020 DOI: 10.1186/1475-2859-6-9] [Citation(s) in RCA: 317] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Accepted: 03/15/2007] [Indexed: 11/10/2022] Open
Abstract
In today's world, there is an increasing trend towards the use of renewable, cheap and readily available biomass in the production of a wide variety of fine and bulk chemicals in different biorefineries. Biorefineries utilize the activities of microbial cells and their enzymes to convert biomass into target products. Many of these processes require enzymes which are operationally stable at high temperature thus allowing e.g. easy mixing, better substrate solubility, high mass transfer rate, and lowered risk of contamination. Thermophiles have often been proposed as sources of industrially relevant thermostable enzymes. Here we discuss existing and potential applications of thermophiles and thermostable enzymes with focus on conversion of carbohydrate containing raw materials. Their importance in biorefineries is explained using examples of lignocellulose and starch conversions to desired products. Strategies that enhance thermostablity of enzymes both in vivo and in vitro are also assessed. Moreover, this review deals with efforts made on developing vectors for expressing recombinant enzymes in thermophilic hosts.
Collapse
Affiliation(s)
- Pernilla Turner
- Dept Biotechnology, Center for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Gashaw Mamo
- Dept Biotechnology, Center for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Eva Nordberg Karlsson
- Dept Biotechnology, Center for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| |
Collapse
|
43
|
Wan CF, Chen WH, Chen CT, Chang MT, Lo LC, Li YK. Mutagenesis and mechanistic study of a glycoside hydrolase family 54 alpha-L-arabinofuranosidase from Trichoderma koningii. Biochem J 2007; 401:551-8. [PMID: 17002602 PMCID: PMC1820808 DOI: 10.1042/bj20060717] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Revised: 09/27/2006] [Accepted: 09/27/2006] [Indexed: 11/17/2022]
Abstract
A GH (glycoside hydrolase) family 54 alpha-L-arabinofuranosidase from Trichoderma koningii G-39 (termed Abf) was successfully expressed in Pichia pastoris and purified to near homogeneity by cation-exchange chromatography. To determine the amino acid residues essential for the catalytic activity of Abf, extensive mutagenesis of 24 conserved glutamate and aspartate residues was performed. Among the mutants, D221N, E223Q and D299N were found to decrease catalytic activity significantly. The kcat values of the D221N and D299N mutants were 7000- and 1300-fold lower respectively, than that of the wild-type Abf. E223Q was nearly inactive. These results are consistent with observations obtained from the Aspergillus kawachii alpha-L-arabinofuranosidase three-dimensional structure. This structure indicates that Asp221 of T. koningii Abf is significant for substrate binding and that Glu223 as well as Asp299 function as a nucleophile and a general acid/base catalyst for the enzymatic reaction respectively. The catalytic mechanism of wild-type Abf was further investigated by NMR spectroscopy and kinetic analysis. The results showed that Abf is a retaining enzyme. It catalyses the hydrolysis of various substrates via the formation of a common intermediate that is probably an arabinosyl-enzyme intermediate. A two-step, double-displacement mechanism involving first the formation, and then the breakdown, of an arabinosyl-enzyme intermediate was proposed. Based on the kcat values of a series of aryl-alpha-L-arabinofuranosides catalytically hydrolysed by wild-type Abf, a relatively small Brønsted constant, beta(lg)=-0.18, was obtained, suggesting that the rate-limiting step of the enzymatic reaction is the dearabinosylation step. Further kinetic studies with the D299G mutant revealed that the catalytic activity of this mutant depended largely on the pK(a) values (>6) of leaving phenols, with beta(lg)=-1.3, indicating that the rate-limiting step of the reaction becomes the arabinosylation step. This kinetic outcome supports the idea that Asp299 is the general acid/base residue. The pH activity profile of D299N provided further evidence strengthening this suggestion.
Collapse
Key Words
- α-l-arabinofuranosidase
- brønsted plot
- catalytic mechanism
- glycoside hydrolase
- site-directed mutagenesis
- trichoderma koningii
- abf, glycoside hydrolase family 54 α-l-arabinofuranosidase from trichoderma koningii g-39
- gh, glycoside hydrolase
- cnpaf, 4-chloro-2-nitrophenyl-α-l-arabinofuranoside
- 2,5-dnpaf, 2,5-dinitrophenyl-α-l-arabinofuranoside
- maf, methyl-α-l-arabinofuranoside
- mnpaf, m-nitrophenyl-α-l-arabinofuranoside
- paf, phenyl-α-l-arabinofuranoside
- pcpaf, p-cyanophenyl-α-l-arabinofuranoside
- pnpaf, p-nitrophenyl-α-l-arabinofuranoside
- p.p.m., parts per million
Collapse
Affiliation(s)
- Chin-Feng Wan
- *Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan
| | - Wei-Hong Chen
- *Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan
| | - Cheng-Ta Chen
- *Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan
| | | | - Lee-Chiang Lo
- ‡Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Yaw-Kuen Li
- *Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
44
|
Cold-active α-l-rhamnosidase from psychrotolerant bacteria isolated from a sub-Antarctic ecosystem. Enzyme Microb Technol 2007. [DOI: 10.1016/j.enzmictec.2006.04.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
45
|
Şekeroğlu G, Fadıloğlu S, Göğüş F. Immobilization and characterization of naringinase for the hydrolysis of naringin. Eur Food Res Technol 2006. [DOI: 10.1007/s00217-006-0288-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
46
|
Matthews A, Grimaldi A, Walker M, Bartowsky E, Grbin P, Jiranek V. Lactic acid bacteria as a potential source of enzymes for use in vinification. Appl Environ Microbiol 2004; 70:5715-31. [PMID: 15466506 PMCID: PMC522065 DOI: 10.1128/aem.70.10.5715-5731.2004] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Angela Matthews
- School of Agriculture and Wine, The University of Adelaide, PMB1, Glen Osmond, SA 5064, Australia
| | | | | | | | | | | |
Collapse
|
47
|
Barbagallo RN, Spagna G, Palmeri R, Restuccia C, Giudici P. Selection, characterization and comparison of β-glucosidase from mould and yeasts employable for enological applications. Enzyme Microb Technol 2004. [DOI: 10.1016/j.enzmictec.2004.03.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
48
|
Birgisson H, Hreggvidsson GO, Fridjónsson OH, Mort A, Kristjánsson JK, Mattiasson B. Two new thermostable α-l-rhamnosidases from a novel thermophilic bacterium. Enzyme Microb Technol 2004. [DOI: 10.1016/j.enzmictec.2003.12.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
49
|
Manzanares P, Orejas M, Gil JV, De Graaff LH, Visser J, Ramón D. Construction of a genetically modified wine yeast strain expressing the Aspergillus aculeatus rhaA gene, encoding an alpha-L-rhamnosidase of enological interest. Appl Environ Microbiol 2004; 69:7558-62. [PMID: 14660415 PMCID: PMC309916 DOI: 10.1128/aem.69.12.7558-7562.2003] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Aspergillus aculeatus rhaA gene encoding an alpha-L-rhamnosidase has been expressed in both laboratory and industrial wine yeast strains. Wines produced in microvinifications, conducted using a combination of the genetically modified industrial strain expressing rhaA and another strain expressing a beta-glucosidase, show increased content mainly of the aromatic compound linalool.
Collapse
Affiliation(s)
- Paloma Manzanares
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Burjassot, 46100 Valencia, Spain
| | | | | | | | | | | |
Collapse
|
50
|
Assessment of β-glucosidase activity in selected wild strains of Oenococcus oeni for malolactic fermentation. Enzyme Microb Technol 2004. [DOI: 10.1016/j.enzmictec.2003.11.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|