1
|
Rahman MU, Ullah MW, Alabbosh KF, Shah JA, Muhammad N, Zahoor, Shah SWA, Nawab S, Sethupathy S, Abdikakharovich SA, Khan KA, Elboughdiri N, Zhu D. Lignin valorization through the oxidative activity of β-etherases: Recent advances and perspectives. Int J Biol Macromol 2024; 281:136383. [PMID: 39395522 DOI: 10.1016/j.ijbiomac.2024.136383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/10/2024] [Accepted: 10/05/2024] [Indexed: 10/14/2024]
Abstract
The increasing interest in lignin, a complex and abundant biopolymer, stems from its ability to produce environmentally beneficial biobased products. β-Etherases play a crucial role by breaking down the β-aryl ether bonds in lignin. This comprehensive review covers the latest advancements in β-etherase-mediated lignin valorization, focusing on substrate selectivity, enzymatic oxidative activity, and engineering methods. Research on the microbial origin, protein modification, and molecular structure determination of β-etherases has improved our understanding of their effectiveness. Furthermore, the use of these enzymes in biorefinery processes is promising for enhancing lignin breakdown and creating more valuable products. The review also discusses the challenges and future potential of β-etherases in advancing lignin valorization for biorefinery applications that are economically viable and environmentally sustainable.
Collapse
Affiliation(s)
- Mujeeb Ur Rahman
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Muhammad Wajid Ullah
- Department of Pulp & Paper Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, PR China.
| | | | - Junaid Ali Shah
- Department of Molecular Biology and Biochemistry, College of Life Sciences, China Normal University, Shanghai 200241, PR China
| | - Nizar Muhammad
- COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Zahoor
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Syed Waqas Ali Shah
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Said Nawab
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Sivasamy Sethupathy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | | | - Khalid Ali Khan
- Applied College & Center of Bee Research and its Products (CBRP), King Khalid University, Abha 61413, Saudi Arabia
| | - Noureddine Elboughdiri
- Chemical Engineering Department, College of Engineering, University of Ha'il, P.O. Box 2440, Ha'il 81441, Saudi Arabia
| | - Daochen Zhu
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| |
Collapse
|
2
|
Xu L, Nan J, Han S, Yu Z, Wu S, Fang Y, Dong S. High-Valence Mn MOF Inspired by Laccase Mediators Enables Versatile Nature-Mimicking Catalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405293. [PMID: 39363691 DOI: 10.1002/smll.202405293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/22/2024] [Indexed: 10/05/2024]
Abstract
In nature, active Mn3+ -ligand complexes produced by laccase catalyzed oxidation can act as the low-molecular mass, diffusible redox mediators to oxidize the phenolic substrates overcoming the limitations of natural enzymes. Learning from the metal-ligand coordination of natural functional units, high-valence Mn metal-organic framework (Mn MOF) is constructed to simulate the catalysis in natural mediator system. Benefiting from the characteristics of nanoscale size, rich metal coordination unsaturated sites, and mixed valence state dominated by Mn(III), Nano Mn(III)-TP exhibits superior laccase-mimicking activity, whose Vmax (maximal reaction rate) is much higher than that of natural laccase. Referring to natural systems, relevant free radical experiments prove that the material induces the production of active oxygen species with the assistance of carboxylic acid, and active oxygen species further oxidize phenolic substrates. Based on its robust performances, the primary oxidative degradation of an emerging pollutant triclosan (TCS) is creatively applied, an important antiasthmatic medicine terbutaline sulfate (TBT) detection, and the synthesis of non-toxic and black near-natural dyes for dyeing. By simulating the essential mediators of natural enzymatic catalysis, an Mn MOF-based material that demonstrates multiple novel applications is successfully developed, which introduces a new reliable strategy for achieving versatile nature-mimicking catalysis.
Collapse
Affiliation(s)
- Lili Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Jianli Nan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Songxue Han
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Zhixuan Yu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Shuangli Wu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Youxing Fang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
3
|
Chen J, Hong K, Ma L, Hao X. Effect of time series on the degradation of lignin by Trametes gibbosa: Products and pathways. Int J Biol Macromol 2024; 281:136236. [PMID: 39366598 DOI: 10.1016/j.ijbiomac.2024.136236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 08/27/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
Lignin is the third most abundant organic resource in nature. The utilization of white-rot fungi for wood degradation effectively circumvents environmental pollution associated with chemical treatments, facilitating the benign decomposition of lignin. Trametes gibbosa is a typical white-rot fungus with rapid growth and strong wood decomposition ability. The lignin content decreased from 23.62 mg/mL to 17.05 mg/mL, which decreased by 27 % in 30 days. The activity of manganese peroxidase increased steadily by 9.44 times. The activities of laccase and lignin peroxidase had the same trend of change and reached peaks of 49.88 U/L and 10.43 U/L on the 25th day, respectively. The change in H2O2 content in vivo was opposite to its trend. For FTIR and GC-MS analysis, the fungi attacked the side chain structure of lignin phenyl propane polymer and benzene ring to crack into low molecular weight aromatic compounds. The side chains of low molecular weight aromatic compounds are oxidized, and long-chain carboxylic acids are formed. Additionally, the absorption peak in the vibration region of the benzene ring skeleton became complex, and the structure of the benzene rings changed. In the beginning, fungal growth was inhibited. Fungal autophagy was aggravated. The metal cation binding proteins of fungi were active, and the genes related to detoxification metabolism were upregulated. The newly produced compounds are related to xenobiotic metabolism. The degradation peak focused on the redox process, and the biological function was enriched in the regulation of macromolecular metabolism, lignin metabolism, and oxidoreductase activity acting on diphenols and related substances as donors. Notably, genes encoding key degradation enzymes, including lcc3, lcc4, phenol-2-monooxygenase, 3-hydroxybenzoate-6-hydroxylase, oxalate decarboxylase, and acetyl-CoA oxidase were significantly upregulated. On the 30th day, the N-glycan biosynthesis pathway was significantly enriched in glycan biosynthesis and metabolism. Weighted correlation network analysis was performed. A total of 1452 genes were clustered in the coral1 module, which were most related to lignin degradation. The genes were significantly enriched in oxidoreductase activity, peptidase activity, cell response to stimulation, signal transduction, lignin metabolism, and phenylpropane metabolism, while the rest were concentrated in glucose metabolism. In this study, the lignin degradation process and products were revealed by T. gibbosa. The molecular mechanism of lignin degradation in different stages was explored. The selection of an efficient utilization time of lignin will help to increase the degradation rate of lignin. This study provides a theoretical basis for the biofuel and biochemical production of lignin. SYNOPSIS: Trametes gibbosa degrades lignin in a pollution-free way, improving the utilization of carbon resources in an environmentally friendly spontaneous cycle. The products are the new way towards sustainable development and low-carbon technology.
Collapse
Affiliation(s)
- Jie Chen
- The Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, College of Forestry, Southwest Forestry University, Kunming 650224, China
| | - Kai Hong
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Ling Ma
- College of Forestry, Northeast Forestry University, Harbin 150040, China.
| | - Xin Hao
- The Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, College of Forestry, Southwest Forestry University, Kunming 650224, China.
| |
Collapse
|
4
|
Prokisch J, Nguyen DHH, Muthu A, Ferroudj A, Singh A, Agrawal S, Rajput VD, Ghazaryan K, El-Ramady H, Rai M. Carbon Nanodot-Microbe-Plant Nexus in Agroecosystem and Antimicrobial Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1249. [PMID: 39120354 PMCID: PMC11314255 DOI: 10.3390/nano14151249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024]
Abstract
The intensive applications of nanomaterials in the agroecosystem led to the creation of several environmental problems. More efforts are needed to discover new insights in the nanomaterial-microbe-plant nexus. This relationship has several dimensions, which may include the transport of nanomaterials to different plant organs, the nanotoxicity to soil microbes and plants, and different possible regulations. This review focuses on the challenges and prospects of the nanomaterial-microbe-plant nexus under agroecosystem conditions. The previous nano-forms were selected in this study because of the rare, published articles on such nanomaterials. Under the study's nexus, more insights on the carbon nanodot-microbe-plant nexus were discussed along with the role of the new frontier in nano-tellurium-microbe nexus. Transport of nanomaterials to different plant organs under possible applications, and translocation of these nanoparticles besides their expected nanotoxicity to soil microbes will be also reported in the current study. Nanotoxicity to soil microbes and plants was investigated by taking account of morpho-physiological, molecular, and biochemical concerns. This study highlights the regulations of nanotoxicity with a focus on risk and challenges at the ecological level and their risks to human health, along with the scientific and organizational levels. This study opens many windows in such studies nexus which are needed in the near future.
Collapse
Affiliation(s)
- József Prokisch
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Animal Science, Biotechnology and Nature Conservation, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary; (D.H.H.N.); (A.M.); (A.F.); (M.R.)
| | - Duyen H. H. Nguyen
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Animal Science, Biotechnology and Nature Conservation, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary; (D.H.H.N.); (A.M.); (A.F.); (M.R.)
- Tay Nguyen Institute for Scientific Research, Vietnam Academy of Science and Technology (VAST), Dalat 66000, Vietnam
- Doctoral School of Nutrition and Food Science, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary
| | - Arjun Muthu
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Animal Science, Biotechnology and Nature Conservation, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary; (D.H.H.N.); (A.M.); (A.F.); (M.R.)
- Doctoral School of Nutrition and Food Science, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary
| | - Aya Ferroudj
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Animal Science, Biotechnology and Nature Conservation, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary; (D.H.H.N.); (A.M.); (A.F.); (M.R.)
- Doctoral School of Animal Husbandry, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary
| | - Abhishek Singh
- Faculty of Biology, Yerevan State University, Yerevan 0025, Armenia; (A.S.); (K.G.)
| | - Shreni Agrawal
- Department of Biotechnology, Parul Institute of Applied Science, Parul University, Vadodara 391760, Gujarat, India;
| | - Vishnu D. Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov on Don 344006, Russia;
| | - Karen Ghazaryan
- Faculty of Biology, Yerevan State University, Yerevan 0025, Armenia; (A.S.); (K.G.)
| | - Hassan El-Ramady
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Animal Science, Biotechnology and Nature Conservation, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary; (D.H.H.N.); (A.M.); (A.F.); (M.R.)
- Soil and Water Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Mahendra Rai
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Animal Science, Biotechnology and Nature Conservation, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary; (D.H.H.N.); (A.M.); (A.F.); (M.R.)
- Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati 444602, Maharashtra, India
| |
Collapse
|
5
|
Choreño-Parra EM, Treseder KK. Mycorrhizal fungi modify decomposition: a meta-analysis. THE NEW PHYTOLOGIST 2024; 242:2763-2774. [PMID: 38605488 DOI: 10.1111/nph.19748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 03/22/2024] [Indexed: 04/13/2024]
Abstract
It has been proposed that ectomycorrhizal fungi can reduce decomposition while arbuscular mycorrhizal fungi may enhance it. These phenomena are known as the 'Gadgil effect' and 'priming effect', respectively. However, it is unclear which one predominates globally. We evaluated whether mycorrhizal fungi decrease or increase decomposition, and identified conditions that mediate this effect. We obtained decomposition data from 43 studies (97 trials) conducted in field or laboratory settings that controlled the access of mycorrhizal fungi to substrates colonized by saprotrophs. Across studies, mycorrhizal fungi promoted decomposition of different substrates by 6.7% overall by favoring the priming effect over the Gadgil effect. However, we observed significant variation among studies. The substrate C : N ratio and absolute latitude influenced the effect of mycorrhizal fungi on decomposition and contributed to the variation. Specifically, mycorrhizal fungi increased decomposition at low substrate C : N and absolute latitude, but there was no discernable effect at high values. Unexpectedly, the effect of mycorrhizal fungi was not influenced by the mycorrhizal type. Our findings challenge previous assumptions about the universality of the Gadgil effect but highlight the potential of mycorrhizal fungi to negatively influence soil carbon storage by promoting the priming effect.
Collapse
Affiliation(s)
- Eduardo M Choreño-Parra
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, 92697, USA
| | - Kathleen K Treseder
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, 92697, USA
| |
Collapse
|
6
|
Sánchez-Ruiz MI, Santillana E, Linde D, Romero A, Martínez AT, Ruiz-Dueñas FJ. Structure-function characterization of two enzymes from novel subfamilies of manganese peroxidases secreted by the lignocellulose-degrading Agaricales fungi Agrocybe pediades and Cyathus striatus. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:74. [PMID: 38824538 PMCID: PMC11144326 DOI: 10.1186/s13068-024-02517-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 05/11/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND Manganese peroxidases (MnPs) are, together with lignin peroxidases and versatile peroxidases, key elements of the enzymatic machineries secreted by white-rot fungi to degrade lignin, thus providing access to cellulose and hemicellulose in plant cell walls. A recent genomic analysis of 52 Agaricomycetes species revealed the existence of novel MnP subfamilies differing in the amino-acid residues that constitute the manganese oxidation site. Following this in silico analysis, a comprehensive structure-function study is needed to understand how these enzymes work and contribute to transform the lignin macromolecule. RESULTS Two MnPs belonging to the subfamilies recently classified as MnP-DGD and MnP-ESD-referred to as Ape-MnP1 and Cst-MnP1, respectively-were identified as the primary peroxidases secreted by the Agaricales species Agrocybe pediades and Cyathus striatus when growing on lignocellulosic substrates. Following heterologous expression and in vitro activation, their biochemical characterization confirmed that these enzymes are active MnPs. However, crystal structure and mutagenesis studies revealed manganese coordination spheres different from those expected after their initial classification. Specifically, a glutamine residue (Gln333) in the C-terminal tail of Ape-MnP1 was found to be involved in manganese binding, along with Asp35 and Asp177, while Cst-MnP1 counts only two amino acids (Glu36 and Asp176), instead of three, to function as a MnP. These findings led to the renaming of these subfamilies as MnP-DDQ and MnP-ED and to re-evaluate their evolutionary origin. Both enzymes were also able to directly oxidize lignin-derived phenolic compounds, as seen for other short MnPs. Importantly, size-exclusion chromatography analyses showed that both enzymes cause changes in polymeric lignin in the presence of manganese, suggesting their relevance in lignocellulose transformation. CONCLUSIONS Understanding the mechanisms used by basidiomycetes to degrade lignin is of particular relevance to comprehend carbon cycle in nature and to design biotechnological tools for the industrial use of plant biomass. Here, we provide the first structure-function characterization of two novel MnP subfamilies present in Agaricales mushrooms, elucidating the main residues involved in catalysis and demonstrating their ability to modify the lignin macromolecule.
Collapse
Affiliation(s)
- María Isabel Sánchez-Ruiz
- Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Elena Santillana
- Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Dolores Linde
- Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Antonio Romero
- Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Angel T Martínez
- Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | | |
Collapse
|
7
|
Du S, Wang L, Yang H, Zhang Q. Tree phylogeny predicts more than litter chemical components in explaining enzyme activities in forest leaf litter decomposition. Microbiol Res 2024; 283:127658. [PMID: 38457993 DOI: 10.1016/j.micres.2024.127658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/15/2024] [Accepted: 02/18/2024] [Indexed: 03/10/2024]
Abstract
Litter decomposition is an important process in ecosystem and despite recent research elucidating the significant influence of plant phylogeny on plant-associated microbial communities, it remains uncertain whether a parallel correlation exists between plant phylogeny and the community of decomposers residing in forest litter. In this study, we conducted a controlled litterbag experiment using leaf litter from ten distinct tree species in a central subtropical forest ecosystem in a region characterized by subtropical humid monsoon climate in China. The litterbags were placed in situ using a random experimental design and were collected after 12 months of incubation. Then, the litter chemical properties, microbial community composition and activities of enzyme related to the decomposition of organic carbon (C) and nitrogen (N) were assessed. Across all ten tree species, Alphaproteobacteria, Gammaproteobacteria, and Actinobacteria were identified as the predominant bacterial classes, while the primary fungal classes were Dothideomycetes, Sordariomycetes and Eurotiomycetes. Mantel test revealed significant correlations between litter chemical component and microbial communities, as well as enzyme activities linked to N and C metabolism. However, after controlling for plant phylogenetic distance in partial Mantel test, the relationships between litter chemical component and microbial community structure and enzyme activities were not significant. Random forest and structural equation modeling indicated that plant phylogenetic distance exerted a more substantial influence than litter chemical components on microbial communities and enzyme activities associated with the decomposition of leaf litter. In summary, plant phylogenic divergence was found to be a more influential predictor of enzyme activity variations than microbial communities and litter traits, which were commonly considered reliable indicators of litter decomposition and ecosystem function, thereby highlighting the previously underestimated significance of plant phylogeny in shaping litter microbial communities and enzyme activities associated with degradation processes in forest litter.
Collapse
Affiliation(s)
- Shuhui Du
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi 030800, PR China
| | - Lujun Wang
- Anhui Academy of Forestry, No.618-1 Huangshan Road, Shushan District, Hefei 230031, PR China
| | - Haishui Yang
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Qian Zhang
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, PR China.
| |
Collapse
|
8
|
Kapich AN, Suzuki H, Hirth KC, Fernández-Fueyo E, Martínez AT, Houtman CJ, Hammel KE. The white rot basidiomycete Gelatoporia subvermispora produces fatty aldehydes that enable fungal manganese peroxidases to degrade recalcitrant lignin structures. Appl Environ Microbiol 2024; 90:e0204423. [PMID: 38483171 PMCID: PMC11022559 DOI: 10.1128/aem.02044-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/26/2024] [Indexed: 04/18/2024] Open
Abstract
The ability of some white rot basidiomycetes to remove lignin selectively from wood indicates that low molecular weight oxidants have a role in ligninolysis. These oxidants are likely free radicals generated by fungal peroxidases from compounds in the biodegrading wood. Past work supports a role for manganese peroxidases (MnPs) in the production of ligninolytic oxidants from fungal membrane lipids. However, the fatty acid alkylperoxyl radicals initially formed during this process are not reactive enough to attack the major structures in lignin. Here, we evaluate the hypothesis that the peroxidation of fatty aldehydes might provide a source of more reactive acylperoxyl radicals. We found that Gelatoporia subvermispora produced trans-2-nonenal, trans-2-octenal, and n-hexanal (a likely metabolite of trans-2,4-decadienal) during the incipient decay of aspen wood. Fungal fatty aldehydes supported the in vitro oxidation by MnPs of a nonphenolic lignin model dimer, and also of the monomeric model veratryl alcohol. Experiments with the latter compound showed that the reactions were partially inhibited by oxalate, the chelator that white rot fungi employ to detach Mn3+ from the MnP active site, but nevertheless proceeded at its physiological concentration of 1 mM. The addition of catalase was inhibitory, which suggests that the standard MnP catalytic cycle is involved in the oxidation of aldehydes. MnP oxidized trans-2-nonenal quantitatively to trans-2-nonenoic acid with the consumption of one O2 equivalent. The data suggest that when Mn3+ remains associated with MnP, it can oxidize aldehydes to their acyl radicals, and the latter subsequently add O2 to become ligninolytic acylperoxyl radicals.IMPORTANCEThe biodegradation of lignin by white rot fungi is essential for the natural recycling of plant biomass and has useful applications in lignocellulose bioprocessing. Although fungal peroxidases have a key role in ligninolysis, past work indicates that biodegradation is initiated by smaller, as yet unidentified oxidants that can infiltrate the substrate. Here, we present evidence that the peroxidase-catalyzed oxidation of naturally occurring fungal aldehydes may provide a source of ligninolytic free radical oxidants.
Collapse
Affiliation(s)
| | - Hideki Suzuki
- US Forest Products Laboratory, Madison, Wisconsin, USA
| | | | - Elena Fernández-Fueyo
- Centro de Investigaciones Biológicas "Margarita Salas", Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Angel T. Martínez
- Centro de Investigaciones Biológicas "Margarita Salas", Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | - Kenneth E. Hammel
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
9
|
Zhang Y, Hobbie SE, Schlesinger WH, Berg B, Sun T, Zhu J. Exchangeable manganese regulates carbon storage in the humus layer of the boreal forest. Proc Natl Acad Sci U S A 2024; 121:e2318382121. [PMID: 38502702 PMCID: PMC10990092 DOI: 10.1073/pnas.2318382121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/21/2024] [Indexed: 03/21/2024] Open
Abstract
The huge carbon stock in humus layers of the boreal forest plays a critical role in the global carbon cycle. However, there remains uncertainty about the factors that regulate below-ground carbon sequestration in this region. Notably, based on evidence from two independent but complementary methods, we identified that exchangeable manganese is a critical factor regulating carbon accumulation in boreal forests across both regional scales and the entire boreal latitudinal range. Moreover, in a novel fertilization experiment, manganese addition reduced soil carbon stocks, but only after 4 y of additions. Our results highlight an underappreciated mechanism influencing the humus carbon pool of boreal forests.
Collapse
Affiliation(s)
- Yunyu Zhang
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang110016, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing100049, China
| | - Sarah E. Hobbie
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN55108
| | - William H. Schlesinger
- Earth and Climate Sciences Division, The Nicholas School of the Environment, Duke University, Durham, NC27710
| | - Björn Berg
- Department of Forest Sciences, University of Helsinki, HelsinkiFIN-00014, Finland
| | - Tao Sun
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang110016, China
| | - Jiaojun Zhu
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang110016, China
- Qingyuan Forest Chinese Ecosystem Research Network, National Observation and Research Station, Liaoning Province, Shenyang110016, China
- Liaoning Key Laboratory for Management of Non-commercial Forests, Shenyang110016, China
- Key Laboratory of Terrestrial Ecosystem Carbon Neutrality, Liaoning Province, Shenyang110016, China
- Chinese Academy of Sciences-Campbell Scientific Inc. Joint Laboratory of Research and Development for Monitoring Forest Fluxes of Trace Gases and Isotope Elements, Shenyang110016, China
- Sino-USA Joint Laboratory of Forest Ecology and Silviculture, Shenyang110016, China
| |
Collapse
|
10
|
Su X, Wang S, Wang X, Ji W, Zhang H, Tu T, Hakulinen N, Luo H, Bin Yao, Zhang W, Huang H. Targeting deoxynivalenol for degradation by a chimeric manganese peroxidase/glutathione system. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116130. [PMID: 38394761 DOI: 10.1016/j.ecoenv.2024.116130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/07/2024] [Accepted: 02/18/2024] [Indexed: 02/25/2024]
Abstract
The manganese peroxidase (MnP) can degrade multiple mycotoxins including deoxynivalenol (DON) efficiently; however, the lignin components abundant in foods and feeds were discovered to interfere with DON catalysis. Herein, using MnP from Ceriporiopsis subvermispora (CsMnP) as a model, it was demonstrated that desired catalysis of DON, but not futile reactions with lignin, in the reaction systems containing feeds could be achieved by engineering MnP and supplementing with a boosting reactant. Specifically, two successive strategies (including the fusion of CsMnP to a DON-recognizing ScFv and identification of glutathione as a specific targeting enhancer) were combined to overcome the lignin competition, which together resulted into elevation of the degradation rate from 2.5% to as high as 82.7% in the feeds. The method to construct a targeting MnP and fortify it with an additional enhancer could be similarly applied to catalyze the many other mycotoxins with yet unknown responsive biocatalysts.
Collapse
Affiliation(s)
- Xiaoyun Su
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Haidian District, Beijing 100193, China.
| | - Shuai Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, No.12 South Zhongguancun St., Haidian District, Beijing 100081, China
| | - Xiaolu Wang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Haidian District, Beijing 100193, China
| | - Wangli Ji
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, No.12 South Zhongguancun St., Haidian District, Beijing 100081, China
| | - Honglian Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Haidian District, Beijing 100193, China
| | - Tao Tu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Haidian District, Beijing 100193, China
| | - Nina Hakulinen
- Department of Chemistry, University of Eastern Finland, Joensuu Campus, Joensuu FIN-80101, Finland
| | - Huiying Luo
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Haidian District, Beijing 100193, China
| | - Bin Yao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Haidian District, Beijing 100193, China
| | - Wei Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, No.12 South Zhongguancun St., Haidian District, Beijing 100081, China.
| | - Huoqing Huang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Haidian District, Beijing 100193, China.
| |
Collapse
|
11
|
Liu E, Mercado MIV, Segato F, Wilkins MR. A green pathway for lignin valorization: Enzymatic lignin depolymerization in biocompatible ionic liquids and deep eutectic solvents. Enzyme Microb Technol 2024; 174:110392. [PMID: 38171172 DOI: 10.1016/j.enzmictec.2023.110392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024]
Abstract
Lignin depolymerization, which enables the breakdown of a complex and heterogeneous aromatic polymer into relatively uniform derivatives, serves as a critical process in valorization of lignin. Enzymatic lignin depolymerization has become a promising biological strategy to overcome the heterogeneity of lignin, due to its mild reaction conditions and high specificity. However, the low solubility of lignin compounds in aqueous environments prevents efficient lignin depolymerization by lignin-degrading enzymes. The employment of biocompatible ionic liquids (ILs) and deep eutectic solvents (DESs) in lignin fractionation has created a promising pathway to enzymatically depolymerize lignin within these green solvents to increase lignin solubility. In this review, recent research progress on enzymatic lignin depolymerization, particularly in a consolidated process involving ILs/DESs is summarized. In addition, the interactions between lignin-degrading enzymes and solvent systems are explored, and potential protein engineering methodology to improve the performance of lignin-degrading enzymes is discussed. Consolidation of enzymatic lignin depolymerization and biocompatible ILs/DESs paves a sustainable, efficient, and synergistic way to convert lignin into value-added products.
Collapse
Affiliation(s)
- Enshi Liu
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | - Fernando Segato
- Department of Biotechnology, University of São Paulo, Lorena, SP, Brazil
| | - Mark R Wilkins
- Carl and Melinda Helwig Department of Biological and Agricultural Engineering, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|
12
|
Chen Y, Tian Q, Wang H, Ma R, Han R, Wang Y, Ge H, Ren Y, Yang R, Yang H, Chen Y, Duan X, Zhang L, Gao J, Gao L, Yan X, Qin Y. A Manganese-Based Metal-Organic Framework as a Cold-Adapted Nanozyme. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2206421. [PMID: 36329676 DOI: 10.1002/adma.202206421] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/01/2022] [Indexed: 06/16/2023]
Abstract
The development of cold-adapted enzymes with high efficiency and good stability is an advanced strategy to overcome the limitations of catalytic medicine in low and cryogenic temperatures. In this work, inspired by natural enzymes, a novel cold-adapted nanozyme based on a manganese-based nanosized metal-organic framework (nMnBTC) is designed and synthesized. The nMnBTC as an oxidase mimetic not only exhibits excellent activity at 0 °C, but also presents almost no observable activity loss as the temperature is increased to 45 °C. This breaks the traditional recognition that enzymes show maximum activity only under specific psychrophilic or thermophilic condition. The superior performance of nMnBTC as a cold-adapted nanozyme can be attributed to its high-catalytic efficiency at low temperature, good substrate affinity, and flexible conformation. Based on the robust performance of nMnBTC, a low-temperature antiviral strategy is developed to inactivate influenza virus H1N1 even at -20 °C. These results not only provide an important guide for the rational design of highly efficient artificial cold-adapted enzymes, but also pave a novel way for biomedical application in cryogenic fields.
Collapse
Affiliation(s)
- Yao Chen
- School of Life Sciences, Northwestern Polytechnical University, 127 Youyi Road, 710072, Xi'an, P. R. China
| | - Qing Tian
- School of Life Sciences, Northwestern Polytechnical University, 127 Youyi Road, 710072, Xi'an, P. R. China
| | - Haoyu Wang
- School of Life Sciences, Northwestern Polytechnical University, 127 Youyi Road, 710072, Xi'an, P. R. China
| | - Ruonan Ma
- CAS Engineering Laboratory for Nanozyme, Institute of Biophysics Chinese Academy of Sciences, 15 Datun Road, 100101, Beijing, P. R. China
| | - Ruiting Han
- School of Life Sciences, Northwestern Polytechnical University, 127 Youyi Road, 710072, Xi'an, P. R. China
| | - Yu Wang
- School of Life Sciences, Northwestern Polytechnical University, 127 Youyi Road, 710072, Xi'an, P. R. China
| | - Huibin Ge
- School of Life Sciences, Northwestern Polytechnical University, 127 Youyi Road, 710072, Xi'an, P. R. China
| | - Yujing Ren
- School of Life Sciences, Northwestern Polytechnical University, 127 Youyi Road, 710072, Xi'an, P. R. China
| | - Rong Yang
- School of Life Sciences, Northwestern Polytechnical University, 127 Youyi Road, 710072, Xi'an, P. R. China
| | - Huimin Yang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, 27 Taoyuan Road, 030001, Taiyuan, P. R. China
| | - Yinjuan Chen
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, 21 Yinghu Road, 213164, Changzhou, P. R. China
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), 66 West Changjiang Road, 266580, Qingdao, P. R. China
| | - Xuezhi Duan
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 500 Dongchuan Road, 200237, Shanghai, P. R. China
| | - Lianbing Zhang
- School of Life Sciences, Northwestern Polytechnical University, 127 Youyi Road, 710072, Xi'an, P. R. China
| | - Jie Gao
- School of Life Sciences, Northwestern Polytechnical University, 127 Youyi Road, 710072, Xi'an, P. R. China
| | - Lizeng Gao
- CAS Engineering Laboratory for Nanozyme, Institute of Biophysics Chinese Academy of Sciences, 15 Datun Road, 100101, Beijing, P. R. China
| | - Xiyun Yan
- CAS Engineering Laboratory for Nanozyme, Institute of Biophysics Chinese Academy of Sciences, 15 Datun Road, 100101, Beijing, P. R. China
| | - Yong Qin
- School of Life Sciences, Northwestern Polytechnical University, 127 Youyi Road, 710072, Xi'an, P. R. China
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, 27 Taoyuan Road, 030001, Taiyuan, P. R. China
| |
Collapse
|
13
|
Xu X, Lin X, Ma W, Huo M, Tian X, Wang H, Huang L. Biodegradation strategies of veterinary medicines in the environment: Enzymatic degradation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169598. [PMID: 38157911 DOI: 10.1016/j.scitotenv.2023.169598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
One Health closely integrates healthy farming, human medicine, and environmental ecology. Due to the ecotoxicity and risk of transmission of drug resistance, veterinary medicines (VMs) are regarded as emerging environmental pollutants. To reduce or mitigate the environmental risk of VMs, developing friendly, safe, and effective removal technologies is an important means of environmental remediation for VMs. Many previous studies have proved that biodegradation has significant advantages in removing VMs, and biodegradation based on enzyme catalysis presents higher operability and specificity. This review focused on biodegradation strategies of environmental pollutants and reviewed the enzymatic degradation of VMs including antimicrobial drugs, insecticides, and disinfectants. We reviewed the sources and catalytic mechanisms of peroxidase, laccase, and organophosphorus hydrolases, and summarized the latest research status of immobilization methods and bioengineering techniques in improving the performance of degrading enzymes. The mechanism of enzymatic degradation for VMs was elucidated in the current research. Suggestions and prospects for researching and developing enzymatic degradation of VMs were also put forward. This review will offer new ideas for the biodegradation of VMs and have a guide significance for the risk mitigation and detoxification of VMs in the environment.
Collapse
Affiliation(s)
- Xiangyue Xu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China
| | - Xvdong Lin
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China
| | - Wenjin Ma
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China
| | - Meixia Huo
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China
| | - Xiaoyuan Tian
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China
| | - Hanyu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China; National Laboratory for Veterinary Drug Safety Evaluation, Huazhong Agriculture University, Wuhan 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China
| | - Lingli Huang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China; National Laboratory for Veterinary Drug Safety Evaluation, Huazhong Agriculture University, Wuhan 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China.
| |
Collapse
|
14
|
Bugg TDH. The chemical logic of enzymatic lignin degradation. Chem Commun (Camb) 2024; 60:804-814. [PMID: 38165282 PMCID: PMC10795516 DOI: 10.1039/d3cc05298b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Lignin is an aromatic heteropolymer, found in plant cell walls as 20-30% of lignocellulose. It represents the most abundant source of renewable aromatic carbon in the biosphere, hence, if it could be depolymerised efficiently, then it would be a highly valuable source of renewable aromatic chemicals. However, lignin presents a number of difficulties for biocatalytic or chemocatalytic breakdown. Research over the last 10 years has led to the identification of new bacterial enzymes for lignin degradation, and the use of metabolic engineering to generate useful bioproducts from microbial lignin degradation. The aim of this article is to discuss the chemical mechanisms used by lignin-degrading enzymes and microbes to break down lignin, and to describe current methods for generating aromatic bioproducts from lignin using enzymes and engineered microbes.
Collapse
Affiliation(s)
- Timothy D H Bugg
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
15
|
Kipping L, Jehmlich N, Moll J, Noll M, Gossner MM, Van Den Bossche T, Edelmann P, Borken W, Hofrichter M, Kellner H. Enzymatic machinery of wood-inhabiting fungi that degrade temperate tree species. THE ISME JOURNAL 2024; 18:wrae050. [PMID: 38519103 PMCID: PMC11022342 DOI: 10.1093/ismejo/wrae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/19/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Deadwood provides habitat for fungi and serves diverse ecological functions in forests. We already have profound knowledge of fungal assembly processes, physiological and enzymatic activities, and resulting physico-chemical changes during deadwood decay. However, in situ detection and identification methods, fungal origins, and a mechanistic understanding of the main lignocellulolytic enzymes are lacking. This study used metaproteomics to detect the main extracellular lignocellulolytic enzymes in 12 tree species in a temperate forest that have decomposed for 8 ½ years. Mainly white-rot (and few brown-rot) Basidiomycota were identified as the main wood decomposers, with Armillaria as the dominant genus; additionally, several soft-rot xylariaceous Ascomycota were identified. The key enzymes involved in lignocellulolysis included manganese peroxidase, peroxide-producing alcohol oxidases, laccase, diverse glycoside hydrolases (cellulase, glucosidase, xylanase), esterases, and lytic polysaccharide monooxygenases. The fungal community and enzyme composition differed among the 12 tree species. Ascomycota species were more prevalent in angiosperm logs than in gymnosperm logs. Regarding lignocellulolysis as a function, the extracellular enzyme toolbox acted simultaneously and was interrelated (e.g. peroxidases and peroxide-producing enzymes were strongly correlated), highly functionally redundant, and present in all logs. In summary, our in situ study provides comprehensive and detailed insight into the enzymatic machinery of wood-inhabiting fungi in temperate tree species. These findings will allow us to relate changes in environmental factors to lignocellulolysis as an ecosystem function in the future.
Collapse
Affiliation(s)
- Lydia Kipping
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research—UFZ GmbH, 04318 Leipzig, Germany
- Institute for Bioanalysis, University of Applied Sciences Coburg, 96450 Coburg, Germany
| | - Nico Jehmlich
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research—UFZ GmbH, 04318 Leipzig, Germany
| | - Julia Moll
- Department of Soil Ecology, Helmholtz Centre for Environmental Research—UFZ GmbH, 06120 Halle (Saale), Germany
| | - Matthias Noll
- Institute for Bioanalysis, University of Applied Sciences Coburg, 96450 Coburg, Germany
- Department of Soil Ecology, University of Bayreuth, 95448 Bayreuth, Germany
| | - Martin M Gossner
- Forest Entomology, Swiss Federal Research Institute WSL, 8903 Birmensdorf, Switzerland
- Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zürich, 8092 Zürich, Switzerland
| | - Tim Van Den Bossche
- VIB—UGent Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, 9052 Ghent, Belgium
| | - Pascal Edelmann
- Department of Ecology and Ecosystem Management, Center of School of Life and Food Sciences Weihenstephan, TU München, 85354 Freising, Germany
| | - Werner Borken
- Department of Soil Ecology, University of Bayreuth, 95448 Bayreuth, Germany
| | - Martin Hofrichter
- Department of Bio- and Environmental Sciences, International Institute Zittau, TU Dresden, 02763 Zittau, Germany
| | - Harald Kellner
- Department of Bio- and Environmental Sciences, International Institute Zittau, TU Dresden, 02763 Zittau, Germany
| |
Collapse
|
16
|
He H, Zhou J, Wang Y, Jiao S, Qian X, Liu Y, Liu J, Chen J, Delgado-Baquerizo M, Brangarí AC, Chen L, Cui Y, Pan H, Tian R, Liang Y, Tan W, Ochoa-Hueso R, Fang L. Deciphering microbiomes dozens of meters under our feet and their edaphoclimatic and spatial drivers. GLOBAL CHANGE BIOLOGY 2024; 30:e17028. [PMID: 37955302 DOI: 10.1111/gcb.17028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/14/2023]
Abstract
Microbes inhabiting deep soil layers are known to be different from their counterpart in topsoil yet remain under investigation in terms of their structure, function, and how their diversity is shaped. The microbiome of deep soils (>1 m) is expected to be relatively stable and highly independent from climatic conditions. Much less is known, however, on how these microbial communities vary along climate gradients. Here, we used amplicon sequencing to investigate bacteria, archaea, and fungi along fifteen 18-m depth profiles at 20-50-cm intervals across contrasting aridity conditions in semi-arid forest ecosystems of China's Loess Plateau. Our results showed that bacterial and fungal α diversity and bacterial and archaeal community similarity declined dramatically in topsoil and remained relatively stable in deep soil. Nevertheless, deep soil microbiome still showed the functional potential of N cycling, plant-derived organic matter degradation, resource exchange, and water coordination. The deep soil microbiome had closer taxa-taxa and bacteria-fungi associations and more influence of dispersal limitation than topsoil microbiome. Geographic distance was more influential in deep soil bacteria and archaea than in topsoil. We further showed that aridity was negatively correlated with deep-soil archaeal and fungal richness, archaeal community similarity, relative abundance of plant saprotroph, and bacteria-fungi associations, but increased the relative abundance of aerobic ammonia oxidation, manganese oxidation, and arbuscular mycorrhizal in the deep soils. Root depth, complexity, soil volumetric moisture, and clay play bridging roles in the indirect effects of aridity on microbes in deep soils. Our work indicates that, even microbial communities and nutrient cycling in deep soil are susceptible to changes in water availability, with consequences for understanding the sustainability of dryland ecosystems and the whole-soil in response to aridification. Moreover, we propose that neglecting soil depth may underestimate the role of soil moisture in dryland ecosystems under future climate scenarios.
Collapse
Affiliation(s)
- Haoran He
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, China
| | - Jingxiong Zhou
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
| | - Yunqiang Wang
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
- Department of Earth and Environmental Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Shuo Jiao
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Xun Qian
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
| | - Yurong Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Ji Liu
- Hubei Province Key Laboratory for Geographical Process Analysis and Simulation, Central China Normal University, Wuhan, China
| | - Ji Chen
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
- Department of Agroecology, Aarhus University, Tjele, Denmark
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Sevilla, Spain
| | - Albert C Brangarí
- Institute for Physical Geography and Ecosystem Science, Lund University, Lund, Sweden
| | - Li Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, China
| | - Yongxing Cui
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Haibo Pan
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Renmao Tian
- Institute for Food Safety and Health (IFSH), Illinois Institute of Technology, Bedford Park, Illinois, USA
| | - Yuting Liang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Wenfeng Tan
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Raúl Ochoa-Hueso
- Department of Biology, IVAGRO, University of Cádiz, Campus de Excelencia Internacional Agroalimentario (CeiA3), Campus del Rio San Pedro, Cádiz, Spain
| | - Linchuan Fang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Green Utilization of Critical Non-Metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan, China
| |
Collapse
|
17
|
Kumar V, Pallavi P, Sen SK, Raut S. Harnessing the potential of white rot fungi and ligninolytic enzymes for efficient textile dye degradation: A comprehensive review. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e10959. [PMID: 38204323 DOI: 10.1002/wer.10959] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/27/2023] [Accepted: 11/17/2023] [Indexed: 01/12/2024]
Abstract
The contamination of wastewater with textile dyes has emerged as a pressing environmental concern due to its persistent nature and harmful effects on ecosystems. Conventional dye treatment methods have proven inadequate in effectively breaking down complex dye molecules. However, a promising alternative for textile dye degradation lies in the utilization of white rot fungi, renowned for their remarkable lignin-degrading capabilities. This review provides a comprehensive analysis of the potential of white rot fungi in degrading textile dyes, with a particular focus on their ligninolytic enzymes, specifically examining the roles of lignin peroxidase (LiP), manganese peroxidase (MnP), and laccase in the degradation of lignin and their applications in textile dye degradation. The primary objective of this paper is to elucidate the enzymatic mechanisms involved in dye degradation, with a spotlight on recent research advancements in this field. Additionally, the review explores factors influencing enzyme production, including culture conditions and genetic engineering approaches. The challenges associated with implementing white rot fungi and their ligninolytic enzymes in textile dye degradation processes are also thoroughly examined. Textile dye contamination poses a significant environmental threat due to its resistance to conventional treatment methods. White rot fungi, known for their ligninolytic capabilities, offer an innovative approach to address this issue. The review delves into the intricate mechanisms through which white rot fungi and their enzymes, including LiP, MnP, and laccase, break down complex dye molecules. These enzymes play a pivotal role in lignin degradation, a process that can be adapted for textile dye removal. The review also emphasizes recent developments in this field, shedding light on the latest findings and innovations. It discusses how culture conditions and genetic engineering techniques can influence the production of these crucial enzymes, potentially enhancing their efficiency in textile dye degradation. This highlights the potential for tailored enzyme production to address specific dye contaminants effectively. The paper also confronts the challenges associated with integrating white rot fungi and their ligninolytic enzymes into practical textile dye degradation processes. These challenges encompass issues like scalability, cost-effectiveness, and regulatory hurdles. By acknowledging these obstacles, the review aims to pave the way for practical and sustainable applications of white rot fungi in wastewater treatment. In conclusion, this comprehensive review offers valuable insights into how white rot fungi and their ligninolytic enzymes can provide a sustainable solution to the urgent problem of textile dye-contaminated wastewater. It underscores the enzymatic mechanisms at play, recent research breakthroughs, and the potential of genetic engineering to optimize enzyme production. By addressing the challenges of implementation, this review contributes to the ongoing efforts to mitigate the environmental impact of textile dye pollution. PRACTITIONER POINTS: Ligninolytic enzymes from white rot fungi, like LiP, MnP, and laccase, are crucial for degrading textile dyes. Different dyes and enzymatic mechanisms is vital for effective wastewater treatment. Combine white rot fungi-based strategies with mediator systems, co-culturing, or sequential treatment approaches to enhance overall degradation efficiency. Emphasize the broader environmental impact of textile dye pollution and position white rot fungi as a promising avenue for contributing to mitigation efforts. This aligns with the overarching goal of sustainable wastewater treatment practices and environmental conservation. Consider scalability, cost-effectiveness, and regulatory compliance to pave the way for sustainable applications that can effectively mitigate the environmental impact of textile dye pollution.
Collapse
Affiliation(s)
- Vikas Kumar
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Preeti Pallavi
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| | | | - Sangeeta Raut
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| |
Collapse
|
18
|
Jiménez Vizcarra MJ, Mahendra S, Wang M. A Co-Immobilized Enzyme-Mediator System for Facilitating Manganese Peroxidase Catalysis in Solution Free of Divalent Manganese Ions. BIORESOURCE TECHNOLOGY 2023; 390:129897. [PMID: 37863333 DOI: 10.1016/j.biortech.2023.129897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
Manganese peroxidase (MnP) offers significant potential in various environmental and industrial applications; however, its reliance on Mn2+ ions for electron shuttling limits its use in Mn2+-deficient systems. Herein, a novel approach is presented to address this limitation by co-immobilizing MnP and Mn2+ in silica gels. These gels were synthesized following the standard sol-gel method and found to effectively immobilize Mn2+ ions, primarily through electrostatic interactions. The MnP co-immobilized with Mn2+ ions in the silica gel exhibited 4-5 times higher activity than the MnP immobilized alone in activity assays, and generated Mn3+ within the gel, indicating the immobilized Mn2+ ions remain capable of shuttling electrons to the co-immobilized MnP. In decolorization tests with two organic dyes, the co-immobilized system also outperformed the MnP immobilized without Mn2+ ions, resulting in 2-4 times higher dye removals. This study will enable a broader application of MnP enzymes in sustainable environmental remediation and industrial catalysis.
Collapse
Affiliation(s)
- María J Jiménez Vizcarra
- Department of Civil and Environmental Engineering, University of Pittsburgh, 709 Benedum Hall, 3700 O'Hara St., Pittsburgh, PA 15261, USA
| | - Shaily Mahendra
- Department of Civil and Environmental Engineering, University of California, Los Angeles, 580 Portola Plaza, Los Angeles, CA 90095, USA
| | - Meng Wang
- Department of Civil and Environmental Engineering, University of Pittsburgh, 709 Benedum Hall, 3700 O'Hara St., Pittsburgh, PA 15261, USA.
| |
Collapse
|
19
|
Liu Y, Harnden KA, Van Stappen C, Dikanov SA, Lu Y. A designed Copper Histidine-brace enzyme for oxidative depolymerization of polysaccharides as a model of lytic polysaccharide monooxygenase. Proc Natl Acad Sci U S A 2023; 120:e2308286120. [PMID: 37844252 PMCID: PMC10614608 DOI: 10.1073/pnas.2308286120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/03/2023] [Indexed: 10/18/2023] Open
Abstract
The "Histidine-brace" (His-brace) copper-binding site, composed of Cu(His)2 with a backbone amine, is found in metalloproteins with diverse functions. A primary example is lytic polysaccharide monooxygenase (LPMO), a class of enzymes that catalyze the oxidative depolymerization of polysaccharides, providing not only an energy source for native microorganisms but also a route to more effective industrial biomass conversion. Despite its importance, how the Cu His-brace site performs this unique and challenging oxidative depolymerization reaction remains to be understood. To answer this question, we have designed a biosynthetic model of LPMO by incorporating the Cu His-brace motif into azurin, an electron transfer protein. Spectroscopic studies, including ultraviolet-visible (UV-Vis) absorption and electron paramagnetic resonance, confirm copper binding at the designed His-brace site. Moreover, the designed protein is catalytically active towards both cellulose and starch, the native substrates of LPMO, generating degraded oligosaccharides with multiturnovers by C1 oxidation. It also performs oxidative cleavage of the model substrate 4-nitrophenyl-D-glucopyranoside, achieving a turnover number ~9% of that of a native LPMO assayed under identical conditions. This work presents a rationally designed artificial metalloenzyme that acts as a structural and functional mimic of LPMO, which provides a promising system for understanding the role of the Cu His-brace site in LPMO activity and potential application in polysaccharide degradation.
Collapse
Affiliation(s)
- Yiwei Liu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Department of Chemistry, University of Texas at Austin, Austin, TX78712
| | - Kevin A. Harnden
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Casey Van Stappen
- Department of Chemistry, University of Texas at Austin, Austin, TX78712
| | - Sergei A. Dikanov
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Department of Chemistry, University of Texas at Austin, Austin, TX78712
| |
Collapse
|
20
|
Nakazawa T, Yamaguchi I, Zhang Y, Saka C, Wu H, Kayama K, Kawauchi M, Sakamoto M, Honda Y. Experimental evidence that lignin-modifying enzymes are essential for degrading plant cell wall lignin by Pleurotus ostreatus using CRISPR/Cas9. Environ Microbiol 2023; 25:1909-1924. [PMID: 37218079 DOI: 10.1111/1462-2920.16427] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/10/2023] [Indexed: 05/24/2023]
Abstract
Lignin-modifying enzymes (LMEs), which include laccases (Lacs), manganese peroxidases (MnPs), versatile peroxidases (VPs), and lignin peroxidases (LiPs), have been considered key factors in lignin degradation by white-rot fungi because they oxidize lignin model compounds and depolymerize synthetic lignin in vitro. However, it remains unclear whether these enzymes are essential/important in the actual degradation of natural lignin in plant cell walls. To address this long-standing issue, we examined the lignin-degrading abilities of multiple mnp/vp/lac mutants of Pleurotus ostreatus. One vp2/vp3/mnp3/mnp6 quadruple-gene mutant was generated from a monokaryotic wild-type strain PC9 using plasmid-based CRISPR/Cas9. Also, two vp2/vp3/mnp2/mnp3/mnp6, two vp2/vp3/mnp3/mnp6/lac2 quintuple-gene mutants, and two vp2/vp3/mnp2/mnp3/mnp6/lac2 sextuple-gene mutants were generated. The lignin-degrading abilities of the sextuple and vp2/vp3/mnp2/mnp3/mnp6 quintuple-gene mutants on the Beech wood sawdust medium reduced drastically, but not so much for those of the vp2/vp3/mnp3/mnp6/lac2 mutants and the quadruple mutant strain. The sextuple-gene mutants also barely degraded lignin in Japanese Cedar wood sawdust and milled rice straw. Thus, this study presented evidence that the LMEs, especially MnPs and VPs, play a crucial role in the degradation of natural lignin by P. ostreatus for the first time.
Collapse
Affiliation(s)
| | - Iori Yamaguchi
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yufan Zhang
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Chinami Saka
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Hongli Wu
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Keita Kayama
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | | | | - Yoichi Honda
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
21
|
Hoque RA, Yadav M, Yadava U, Rai N, Negi S, Yadav HS. Active site determination of novel plant versatile peroxidase extracted from Citrus sinensis and bioconversion of β-naphthol. 3 Biotech 2023; 13:345. [PMID: 37719748 PMCID: PMC10501043 DOI: 10.1007/s13205-023-03758-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/20/2023] [Indexed: 09/19/2023] Open
Abstract
A ligninolytic peroxidase called versatile peroxidase, VP, (EC 1.11.1.16) is an iron-containing metalloenzyme. The most distinctive feature of this enzyme is its composite molecular framework, which combines lignin peroxidase's capacity to oxidize compounds with high-redox potential with manganese peroxidase's capacity to oxidize Mn2+ to Mn3+. In this study, we have extracted amino acid sequences from the Citrus sinensis source and subjected them to various computation tools to visualize the insight secondary and 3D structure, physicochemical properties, and validation of the structure which have not been studied so far to further investigate the catalytic efficiency and effectiveness of VP. The binding energies of HEME and HEME C (HEC) ligands with produced PDB (6rqf.1. A) have been also assessed, analyzed, and confirmed utilizing AutoDock. Binding energies were calculated using the AutoDock and validated by MD simulation using SCHRODINGER DESMOND. Most stable confirmation was achieved through a protein-ligand interaction study. Bio-technological use of VP in the biotransformation of β-naphthol has also been studied. The findings in the current study will have a substantial impact on proteomics, biochemistry, biotechnology, and possible uses of versatile peroxidase in the bio-remediation of different toxic organic compounds. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03758-x.
Collapse
Affiliation(s)
- Rohida Amin Hoque
- Department of Chemistry, North Eastern Regional Institute of Science and Technology, Nirjuli, Itanagar, AP 791109 India
| | - Meera Yadav
- Department of Chemistry, North Eastern Regional Institute of Science and Technology, Nirjuli, Itanagar, AP 791109 India
| | - Umesh Yadava
- Department of Physics, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, 273009 India
| | - Nivedita Rai
- Department of Chemistry, North Eastern Regional Institute of Science and Technology, Nirjuli, Itanagar, AP 791109 India
| | - Shivani Negi
- Department of Physics, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, 273009 India
| | - Hardeo Singh Yadav
- Department of Chemistry, North Eastern Regional Institute of Science and Technology, Nirjuli, Itanagar, AP 791109 India
| |
Collapse
|
22
|
Gómez D, Acosta J, López-Sandoval H, Torres-Palma RA, Ávila-Torres Y. Enantioselective Biomimetic Structures Inspired by Oxi-Dase-Type Metalloenzymes, Utilizing Polynuclear Compounds Containing Copper (II) and Manganese (II) Ions as Building Blocks. Biomimetics (Basel) 2023; 8:423. [PMID: 37754174 PMCID: PMC10527443 DOI: 10.3390/biomimetics8050423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/11/2023] [Accepted: 08/18/2023] [Indexed: 09/28/2023] Open
Abstract
This study focuses on developing and evaluating two novel enantioselective biomimetic models for the active centers of oxidases (ascorbate oxidase and catalase). These models aim to serve as alternatives to enzymes, which often have limited action and a delicate nature. For the ascorbate oxidase (AO) model (compound 1), two enantiomers, S,S(+)cpse and R,R(-)cpse, were combined in a crystalline structure, resulting in a racemic compound. The analysis of their magnetic properties and electrochemical behavior revealed electronic transfer between six metal centers. Compound 1 effectively catalyzed the oxidation of ascorbic to dehydroascorbic acid, showing a 45.5% yield for the racemic form. This was notably higher than the enantiopure compounds synthesized previously and tested in the current report, which exhibited yields of 32% and 28% for the S,S(+)cpse and R,R(-)cpse enantiomers, respectively. This outcome highlights the influence of electronic interactions between metal ions in the racemic compound compared to pure enantiomers. On the other hand, for the catalase model (compound 2), both the compound and its enantiomer displayed polymeric properties and dimeric behavior in the solid and solution states, respectively. Compound 2 proved to be effective in catalyzing the oxidation of hydrogen peroxide to oxygen with a yield of 64.7%. In contrast, its enantiomer (with R,R(-)cpse) achieved only a 27% yield. This further validates the functional nature of the prepared biomimetic models for oxidases. This research underscores the importance of understanding and designing biomimetic models of metalloenzyme active centers for both biological and industrial applications. These models show promising potential as viable alternatives to natural enzymes in various processes.
Collapse
Affiliation(s)
- Didier Gómez
- Facultad de Tecnologías, Universidad Tecnológica de Pereira, Pereira 660003, Colombia; (D.G.); (J.A.)
| | - Jorge Acosta
- Facultad de Tecnologías, Universidad Tecnológica de Pereira, Pereira 660003, Colombia; (D.G.); (J.A.)
| | - Horacio López-Sandoval
- Departamento de Química Inorgánica, Facultad de Química, Universidad Nacional Autónoma de México, C.U., Coyoacán, México City 04510, Mexico;
| | - Ricardo A. Torres-Palma
- Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín 50010, Colombia;
| | - Yenny Ávila-Torres
- Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín 50010, Colombia;
| |
Collapse
|
23
|
Pradeep Kumar V, Sridhar M, Ashis Kumar S, Bhatta R. Elucidating the role of media nitrogen in augmenting the production of lignin-depolymerizing enzymes by white-rot fungi. Microbiol Spectr 2023; 11:e0141923. [PMID: 37655898 PMCID: PMC10581151 DOI: 10.1128/spectrum.01419-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/28/2023] [Indexed: 09/02/2023] Open
Abstract
Indigenous white-rot fungal isolates Schizophyllum commune, Phanerochaete chrysosporium, Ganoderma racenaceum, and Lentinus squarrosulus, demonstrating the ability to depolymerize lignin of the crop residues, were studied for their potential to produce ligninolytic enzymes using modified production media under conditions of limiting and excess nitrogen for higher enzymatic expressions. Secretome-rich media on the investigation confirmed the successful production of lignin-depolymerizing enzymes, viz. laccase, lignin peroxidase, manganese peroxidase, and versatile peroxidase. Production of laccases and peroxidases was statistically significant in nitrogen-limiting media with and without the substrate, across all white-rot fungal cultures at 95% confidence interval. Nitrogen-limiting media with the substrate on analysis extracellularly expressed 99.27 U of laccase and 68.48 U of manganese peroxidase in Schizophyllum commune, while 195.14 U of lignin peroxidase was produced by Phanerochaete chrysosporium. Lentinus squarrosulus expressed 455.34 U of laccase and 357.13 U of versatile peroxidase with 250.09 U of laccase and 206.95 U of manganese peroxidase produced by Ganoderma racenaceum for every milliliter of the media used. Nitrogen-limiting media triggered the production of laccase during the initial stages of growth while the expression of peroxidases was predominant at a later stage. Also, this media evinced increased enzymatic yields with low biomass content compared to nitrogen-excess conditions. The extant study confirmed the positive influence of nitrogen-limiting media in the efficient production of ligninolytic enzymes and their suggestive degradation potential for environmental pollutants, making these enzymes a safe, clean alternative to the use of chemicals and the media to be effective for large-scale production of ligninolytic enzymes. IMPORTANCE Lignin on account of its high abundance, complex polymeric structure, and biochemical properties is identified as a promising candidate in renewable energy and bioproduct manufacturing. However, depolymerization of lignin remains a major challenge in lignin utilization, entailing the employment of harsh treatments representing not only an environmental concern but also a waste of economic potential. Developing an alternative green technology to minimize this impact is imperative. Methods using enzymes to depolymerize lignin are the focus of recent studies. Current research work emphasized the efficient expression of the major lignin-depolymerizing enzymes: laccases, lignin peroxidases, manganese peroxidases, and versatile peroxidases from native isolates of white-rot fungus for several biotechnological applications as well as treatment of crop residues for use as ruminant feed in improving productivity. The importance of nitrogen in augmenting the expression of lignin-depolymerizing enzymes and providing a media recipe for the cost-effective production of ligninolytic enzymes is highlighted.
Collapse
Affiliation(s)
- Vidya Pradeep Kumar
- National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore, Karnataka, India
| | - Manpal Sridhar
- National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore, Karnataka, India
| | - Samanta Ashis Kumar
- National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore, Karnataka, India
| | - Raghavendra Bhatta
- National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore, Karnataka, India
| |
Collapse
|
24
|
Peng Z, Jiang X, Si C, Joao Cárdenas-Oscanoa A, Huang C. Advances of Modified Lignin as Substitute to Develop Lignin-Based Phenol-Formaldehyde Resin Adhesives. CHEMSUSCHEM 2023; 16:e202300174. [PMID: 37338272 DOI: 10.1002/cssc.202300174] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/06/2023] [Indexed: 06/21/2023]
Abstract
Traditionally, phenols used to prepare phenol-formaldehyde (PF) resin adhesives are obtained from phenolic compounds and various chemicals, which are extracted from petroleum-based raw materials. Lignin, a sustainable phenolic macromolecule in the cell wall of biomass with an aromatic ring and a phenolic hydroxyl group similar to those of phenol, can be an ideal substitute for phenol in PF resin adhesives. However, only a few lignin-based adhesives are produced on a large scale in industry, mainly because of the low activity of lignin. Preparing lignin-based PF resin adhesives with exceptional achievements by modifying lignin instead of phenol is an efficient method to improve the economic benefits and protect the environment. In this review, the latest progress in the preparation of PF resin adhesives via lignin modification, including chemical, physical, and biological modifications, is discussed. In addition, the advantages and disadvantages of different lignin modification methods for adhesives are compared and discussed, and future research directions for the synthesis of lignin-based PF resin adhesives are proposed.
Collapse
Affiliation(s)
- Zhenwen Peng
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Xiao Jiang
- Department of Forestry Biomaterials, North Carolina State University Campus Box 8005, Raleigh, NC 27695-8005, USA
| | - Chuanling Si
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, P. R. China
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Aldo Joao Cárdenas-Oscanoa
- Forest Industry Department, Faculty of Forest Science, Universidad Nacional Agraria La Molina, Lima, 15024, Perú
| | - Caoxing Huang
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, P. R. China
| |
Collapse
|
25
|
Kumar N, He J, Rusling JF. Electrochemical transformations catalyzed by cytochrome P450s and peroxidases. Chem Soc Rev 2023; 52:5135-5171. [PMID: 37458261 DOI: 10.1039/d3cs00461a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Cytochrome P450s (Cyt P450s) and peroxidases are enzymes featuring iron heme cofactors that have wide applicability as biocatalysts in chemical syntheses. Cyt P450s are a family of monooxygenases that oxidize fatty acids, steroids, and xenobiotics, synthesize hormones, and convert drugs and other chemicals to metabolites. Peroxidases are involved in breaking down hydrogen peroxide and can oxidize organic compounds during this process. Both heme-containing enzymes utilize active FeIVO intermediates to oxidize reactants. By incorporating these enzymes in stable thin films on electrodes, Cyt P450s and peroxidases can accept electrons from an electrode, albeit by different mechanisms, and catalyze organic transformations in a feasible and cost-effective way. This is an advantageous approach, often called bioelectrocatalysis, compared to their biological pathways in solution that require expensive biochemical reductants such as NADPH or additional enzymes to recycle NADPH for Cyt P450s. Bioelectrocatalysis also serves as an ex situ platform to investigate metabolism of drugs and bio-relevant chemicals. In this paper we review biocatalytic electrochemical reactions using Cyt P450s including C-H activation, S-oxidation, epoxidation, N-hydroxylation, and oxidative N-, and O-dealkylation; as well as reactions catalyzed by peroxidases including synthetically important oxidations of organic compounds. Design aspects of these bioelectrocatalytic reactions are presented and discussed, including enzyme film formation on electrodes, temperature, pH, solvents, and activation of the enzymes. Finally, we discuss challenges and future perspective of these two important bioelectrocatalytic systems.
Collapse
Affiliation(s)
- Neeraj Kumar
- Department of Chemistry, University of Connecticut, Storrs, CT 06269-3136, USA.
| | - Jie He
- Department of Chemistry, University of Connecticut, Storrs, CT 06269-3136, USA.
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269-3136, USA
| | - James F Rusling
- Department of Chemistry, University of Connecticut, Storrs, CT 06269-3136, USA.
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269-3136, USA
- Department of Surgery and Neag Cancer Center, Uconn Health, Farmington, CT 06030, USA
- School of Chemistry, National University of Ireland at Galway, Galway, Ireland
| |
Collapse
|
26
|
Sobol MS, Hoshino T, Delgado V, Futagami T, Kadooka C, Inagaki F, Kiel Reese B. Genome characterization of two novel deep-sea sediment fungi, Penicillium pacificagyrus sp. nov. and Penicillium pacificasedimenti sp. nov., from South Pacific Gyre subseafloor sediments, highlights survivability. BMC Genomics 2023; 24:249. [PMID: 37165355 PMCID: PMC10173653 DOI: 10.1186/s12864-023-09320-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 04/18/2023] [Indexed: 05/12/2023] Open
Abstract
BACKGROUND Marine deep subsurface sediments were once thought to be devoid of eukaryotic life, but advances in molecular technology have unlocked the presence and activity of well-known closely related terrestrial and marine fungi. Commonly detected fungi in deep marine sediment environments includes Penicillium, Aspergillus, Cladosporium, Fusarium, and Schizophyllum, which could have important implications in carbon and nitrogen cycling in this isolated environment. In order to determine the diversity and unknown metabolic capabilities of fungi in deep-sea sediments, their genomes need to be fully analyzed. In this study, two Penicillium species were isolated from South Pacific Gyre sediment enrichments during Integrated Ocean Drilling Program Expedition 329. The inner gyre has very limited productivity, organic carbon, and nutrients. RESULTS Here, we present high-quality genomes of two proposed novel Penicillium species using Illumina HiSeq and PacBio sequencing technologies. Single-copy homologues within the genomes were compared to other closely related genomes using OrthoMCL and maximum-likelihood estimation, which showed that these genomes were novel species within the genus Penicillium. We propose to name isolate SPG-F1 as Penicillium pacificasedimenti sp. nov. and SPG-F15 as Penicillium pacificagyrus sp. nov. The resulting genome sizes were 32.6 Mbp and 36.4 Mbp, respectively, and both genomes were greater than 98% complete as determined by the presence of complete single-copy orthologs. The transposable elements for each genome were 4.87% for P. pacificasedimenti and 10.68% for P. pacificagyrus. A total of 12,271 genes were predicted in the P. pacificasedimenti genome and 12,568 genes in P. pacificagyrus. Both isolates contained genes known to be involved in the degradation of recalcitrant carbon, amino acids, and lignin-derived carbon. CONCLUSIONS Our results provide the first constructed genomes of novel Penicillium isolates from deep marine sediments, which will be useful for future studies of marine subsurface fungal diversity and function. Furthermore, these genomes shed light on the potential impact fungi in marine sediments and the subseafloor could have on global carbon and nitrogen biogeochemical cycles and how they may be persisting in the most energy-limited sedimentary biosphere.
Collapse
Affiliation(s)
- Morgan S Sobol
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Baden-Württemberg, Germany
| | - Tatsuhiko Hoshino
- Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Nankoku, Kochi, 783-8502, Japan
| | - Victor Delgado
- Department of Life Sciences, TX A&M University, Corpus Christi, Texas, USA
| | - Taiki Futagami
- Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
- United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan
| | - Chihiro Kadooka
- Department of Biotechnology and Life Science, Faculty of Biotechnology and Life Science, Sojo University, Ikeda, Nishiku, Kumamoto, 860-0082, Japan
| | - Fumio Inagaki
- Mantle Drilling Promotion Office, Institute for Marine Earth Exploration and Engineering (MarE3), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokohama, 236- 0001, Japan
- Department of Earth Sciences, Graduate School of Science, Tohoku University, Sendai, 980-8574, Japan
| | - Brandi Kiel Reese
- Dauphin Island Sea Lab, Dauphin Island, Alabama, USA.
- Stokes School of Marine and Environmental Sciences, University of South Alabama, Mobile, AL, USA.
| |
Collapse
|
27
|
Huang W, Yu W, Yi B, Raman E, Yang J, Hammel KE, Timokhin VI, Lu C, Howe A, Weintraub-Leff SR, Hall SJ. Contrasting geochemical and fungal controls on decomposition of lignin and soil carbon at continental scale. Nat Commun 2023; 14:2227. [PMID: 37076534 PMCID: PMC10115774 DOI: 10.1038/s41467-023-37862-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 04/03/2023] [Indexed: 04/21/2023] Open
Abstract
Lignin is an abundant and complex plant polymer that may limit litter decomposition, yet lignin is sometimes a minor constituent of soil organic carbon (SOC). Accounting for diversity in soil characteristics might reconcile this apparent contradiction. Tracking decomposition of a lignin/litter mixture and SOC across different North American mineral soils using lab and field incubations, here we show that cumulative lignin decomposition varies 18-fold among soils and is strongly correlated with bulk litter decomposition, but not SOC decomposition. Climate legacy predicts decomposition in the lab, and impacts of nitrogen availability are minor compared with geochemical and microbial properties. Lignin decomposition increases with some metals and fungal taxa, whereas SOC decomposition decreases with metals and is weakly related with fungi. Decoupling of lignin and SOC decomposition and their contrasting biogeochemical drivers indicate that lignin is not necessarily a bottleneck for SOC decomposition and can explain variable contributions of lignin to SOC among ecosystems.
Collapse
Affiliation(s)
- Wenjuan Huang
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Wenjuan Yu
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA.
| | - Bo Yi
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Erik Raman
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA, USA
| | - Jihoon Yang
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA, USA
| | - Kenneth E Hammel
- U.S. Forest Products Laboratory, Madison, WI, USA
- Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| | - Vitaliy I Timokhin
- Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, WI, USA
| | - Chaoqun Lu
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Adina Howe
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA, USA
| | | | - Steven J Hall
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| |
Collapse
|
28
|
Bilal M, Zdarta J, Jesionowski T, Iqbal HMN. Manganese peroxidases as robust biocatalytic tool - An overview of sources, immobilization, and biotechnological applications. Int J Biol Macromol 2023; 234:123531. [PMID: 36754266 DOI: 10.1016/j.ijbiomac.2023.123531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023]
Abstract
With robust catalytic features, manganese peroxidases (MnPs) from various sources, including fungi and bacteria, have gained much consideration in many biotechnological applications with particular emphasis on environmental remediation. MnP is a heme-containing enzyme that belongs to the oxidoreductases that can catalyze the degradation of various organic pollutants, such as chlorophenols, nitroaromatic compounds, industrial dyes, and polycyclic aromatic hydrocarbons. To spotlight the MnP as biocatalytic tool, an effort has been put forward to cover the four major compartments. For instance, following a brief introduction, first, various microbial sources of MnP are discussed with examples. Second, structural attributes and biocatalytic features of MnP are given with examples. Third, different MnP immobilization strategies, including adsorption, covalent linking, entrapment, and cross-linking, are discussed with a significant motive to strengthen the enzyme's stability against diverse deactivation agents by restricting the conformational mobility of molecules. Compared to free counterparts, immobilized MnP fractions perform well in hostile environments. Finally, various biotechnological applications, such as fuel ethanol production, de-lignification, textile industry, pulp and paper industry, degradation of phenolic and non-phenolic compounds, and pharmaceutical and pesticide degradation, are briefly discussed.
Collapse
Affiliation(s)
- Muhammad Bilal
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland.
| | - Jakub Zdarta
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico; Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico.
| |
Collapse
|
29
|
Lankiewicz TS, Choudhary H, Gao Y, Amer B, Lillington SP, Leggieri PA, Brown JL, Swift CL, Lipzen A, Na H, Amirebrahimi M, Theodorou MK, Baidoo EEK, Barry K, Grigoriev IV, Timokhin VI, Gladden J, Singh S, Mortimer JC, Ralph J, Simmons BA, Singer SW, O'Malley MA. Lignin deconstruction by anaerobic fungi. Nat Microbiol 2023; 8:596-610. [PMID: 36894634 PMCID: PMC10066034 DOI: 10.1038/s41564-023-01336-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 01/31/2023] [Indexed: 03/11/2023]
Abstract
Lignocellulose forms plant cell walls, and its three constituent polymers, cellulose, hemicellulose and lignin, represent the largest renewable organic carbon pool in the terrestrial biosphere. Insights into biological lignocellulose deconstruction inform understandings of global carbon sequestration dynamics and provide inspiration for biotechnologies seeking to address the current climate crisis by producing renewable chemicals from plant biomass. Organisms in diverse environments disassemble lignocellulose, and carbohydrate degradation processes are well defined, but biological lignin deconstruction is described only in aerobic systems. It is currently unclear whether anaerobic lignin deconstruction is impossible because of biochemical constraints or, alternatively, has not yet been measured. We applied whole cell-wall nuclear magnetic resonance, gel-permeation chromatography and transcriptome sequencing to interrogate the apparent paradox that anaerobic fungi (Neocallimastigomycetes), well-documented lignocellulose degradation specialists, are unable to modify lignin. We find that Neocallimastigomycetes anaerobically break chemical bonds in grass and hardwood lignins, and we further associate upregulated gene products with the observed lignocellulose deconstruction. These findings alter perceptions of lignin deconstruction by anaerobes and provide opportunities to advance decarbonization biotechnologies that depend on depolymerizing lignocellulose.
Collapse
Affiliation(s)
- Thomas S Lankiewicz
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA, USA
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, USA
- Joint BioEnergy Institute, Emeryville, CA, USA
| | - Hemant Choudhary
- Joint BioEnergy Institute, Emeryville, CA, USA
- Department of Biomaterials and Biomanufacturing, Sandia National Laboratories, Livermore, CA, USA
| | - Yu Gao
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Bashar Amer
- Joint BioEnergy Institute, Emeryville, CA, USA
| | - Stephen P Lillington
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Patrick A Leggieri
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Jennifer L Brown
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Candice L Swift
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA, USA
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, USA
| | - Anna Lipzen
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Hyunsoo Na
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Mojgan Amirebrahimi
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Michael K Theodorou
- Department of Agriculture and Environment, Harper Adams University, Newport, UK
| | - Edward E K Baidoo
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Kerrie Barry
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Igor V Grigoriev
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
| | | | - John Gladden
- Joint BioEnergy Institute, Emeryville, CA, USA
- Department of Biomaterials and Biomanufacturing, Sandia National Laboratories, Livermore, CA, USA
| | - Seema Singh
- Joint BioEnergy Institute, Emeryville, CA, USA
- Department of Biomaterials and Biomanufacturing, Sandia National Laboratories, Livermore, CA, USA
| | - Jenny C Mortimer
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, South Australia, Australia
| | - John Ralph
- Great Lakes Bioenergy Research Center, Madison, WI, USA
- Department of Biochemistry, University of Wisconsin Madison, Madison, WI, USA
| | - Blake A Simmons
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Steven W Singer
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Michelle A O'Malley
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA, USA.
- Joint BioEnergy Institute, Emeryville, CA, USA.
| |
Collapse
|
30
|
Umar A, Smółka Ł, Gancarz M. The Role of Fungal Fuel Cells in Energy Production and the Removal of Pollutants from Wastewater. Catalysts 2023. [DOI: 10.3390/catal13040687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
Pure water, i.e., a sign of life, continuously circulates and is contaminated by different discharges. This emerging environmental problem has been attracting the attention of scientists searching for methods for the treatment of wastewater contaminated by multiple recalcitrant compounds. Various physical and chemical methods are used to degrade contaminants from water bodies. Traditional methods have certain limitations and complexities for bioenergy production, which motivates the search for new ways of sustainable bioenergy production and wastewater treatment. Biological strategies have opened new avenues to the treatment of wastewater using oxidoreductase enzymes for the degradation of pollutants. Fungal-based fuel cells (FFCs), with their catalysts, have gained considerable attention among scientists worldwide. They are a new, ecofriendly, and alternative approach to nonchemical methods due to easy handling. FFCs are efficiently used in wastewater treatment and the production of electricity for power generation. This article also highlights the construction of fungal catalytic cells and the enzymatic performance of different fungal species in energy production and the treatment of wastewater.
Collapse
Affiliation(s)
- Aisha Umar
- Institute of the Botany, University of the Punjab, Lahore 54590, Pakistan
| | - Łukasz Smółka
- Faculty of Production and Power Engineering, University of Agriculture in Krakow, Balicka 116B, 30-149 Krakow, Poland
| | - Marek Gancarz
- Faculty of Production and Power Engineering, University of Agriculture in Krakow, Balicka 116B, 30-149 Krakow, Poland
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| |
Collapse
|
31
|
Fabbri F, Bischof S, Mayr S, Gritsch S, Jimenez Bartolome M, Schwaiger N, Guebitz GM, Weiss R. The Biomodified Lignin Platform: A Review. Polymers (Basel) 2023; 15:polym15071694. [PMID: 37050308 PMCID: PMC10096731 DOI: 10.3390/polym15071694] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
A reliance on fossil fuel has led to the increased emission of greenhouse gases (GHGs). The excessive consumption of raw materials today makes the search for sustainable resources more pressing than ever. Technical lignins are mainly used in low-value applications such as heat and electricity generation. Green enzyme-based modifications of technical lignin have generated a number of functional lignin-based polymers, fillers, coatings, and many other applications and materials. These bio-modified technical lignins often display similar properties in terms of their durability and elasticity as fossil-based materials while also being biodegradable. Therefore, it is possible to replace a wide range of environmentally damaging materials with lignin-based ones. By researching publications from the last 20 years focusing on the latest findings utilizing databases, a comprehensive collection on this topic was crafted. This review summarizes the recent progress made in enzymatically modifying technical lignins utilizing laccases, peroxidases, and lipases. The underlying enzymatic reaction mechanisms and processes are being elucidated and the application possibilities discussed. In addition, the environmental assessment of novel technical lignin-based products as well as the developments, opportunities, and challenges are highlighted.
Collapse
|
32
|
Rovaletti A, De Gioia L, Fantucci P, Greco C, Vertemara J, Zampella G, Arrigoni F, Bertini L. Recent Theoretical Insights into the Oxidative Degradation of Biopolymers and Plastics by Metalloenzymes. Int J Mol Sci 2023; 24:6368. [PMID: 37047341 PMCID: PMC10094197 DOI: 10.3390/ijms24076368] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
Molecular modeling techniques have become indispensable in many fields of molecular sciences in which the details related to mechanisms and reactivity need to be studied at an atomistic level. This review article provides a collection of computational modeling works on a topic of enormous interest and urgent relevance: the properties of metalloenzymes involved in the degradation and valorization of natural biopolymers and synthetic plastics on the basis of both circular biofuel production and bioremediation strategies. In particular, we will focus on lytic polysaccharide monooxygenase, laccases, and various heme peroxidases involved in the processing of polysaccharides, lignins, rubbers, and some synthetic polymers. Special attention will be dedicated to the interaction between these enzymes and their substrate studied at different levels of theory, starting from classical molecular docking and molecular dynamics techniques up to techniques based on quantum chemistry.
Collapse
Affiliation(s)
- Anna Rovaletti
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Luca De Gioia
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Piercarlo Fantucci
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Claudio Greco
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Jacopo Vertemara
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Giuseppe Zampella
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Federica Arrigoni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Luca Bertini
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| |
Collapse
|
33
|
Nadhilah D, Andriani A, Agustriana E, Nuryana I, Mubarik NR, Dewi KS, Rahmani N, Yanto DHY, Ismayati M, Perwitasari U, Laksmi FA, Wijaya H. Co-catalysis of melanin degradation by laccase-manganese peroxidase complex from Trametes hirsuta OK271075 for application in whitening cosmetics. BIOCATAL BIOTRANSFOR 2023. [DOI: 10.1080/10242422.2023.2188995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Dini Nadhilah
- Research Centre for Applied Microbiology, National Agency for Research and Innovation, Cibinong, Bogor, Indonesia
- Department of Biology, Bogor Agricultural University, Bogor, Indonesia
| | - Ade Andriani
- Research Centre for Applied Microbiology, National Agency for Research and Innovation, Cibinong, Bogor, Indonesia
- Research Collaboration Center for Biomass-Based nano Cosmetics, Samarinda, Indonesia
| | - Eva Agustriana
- Research Centre for Applied Microbiology, National Agency for Research and Innovation, Cibinong, Bogor, Indonesia
| | - Isa Nuryana
- Research Centre for Applied Microbiology, National Agency for Research and Innovation, Cibinong, Bogor, Indonesia
| | | | - Kartika Sari Dewi
- Research Centre for Applied Microbiology, National Agency for Research and Innovation, Cibinong, Bogor, Indonesia
| | - Nanik Rahmani
- Research Centre for Applied Microbiology, National Agency for Research and Innovation, Cibinong, Bogor, Indonesia
| | - Dede Heri Yuli Yanto
- Research Centre for Applied Microbiology, National Agency for Research and Innovation, Cibinong, Bogor, Indonesia
- Research Collaboration Center for Biomass-Based nano Cosmetics, Samarinda, Indonesia
| | - Maya Ismayati
- Research Center for Biomass and Bioproducts, National Agency for Research and Innovation, Cibinong, Bogor, Indonesia
| | - Urip Perwitasari
- Research Centre for Applied Microbiology, National Agency for Research and Innovation, Cibinong, Bogor, Indonesia
| | - Fina Amreta Laksmi
- Research Centre for Applied Microbiology, National Agency for Research and Innovation, Cibinong, Bogor, Indonesia
| | - Hans Wijaya
- Research Centre for Applied Microbiology, National Agency for Research and Innovation, Cibinong, Bogor, Indonesia
| |
Collapse
|
34
|
Fang W, Feng S, Jiang Z, Liang W, Li P, Wang B. Understanding the Key Roles of pH Buffer in Accelerating Lignin Degradation by Lignin Peroxidase. JACS AU 2023; 3:536-549. [PMID: 36873691 PMCID: PMC9976348 DOI: 10.1021/jacsau.2c00649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 06/18/2023]
Abstract
pH buffer plays versatile roles in both biology and chemistry. In this study, we unravel the critical role of pH buffer in accelerating degradation of the lignin substrate in lignin peroxidase (LiP) using QM/MM MD simulations and the nonadiabatic electron transfer (ET) and proton-coupled electron transfer (PCET) theories. As a key enzyme involved in lignin degradation, LiP accomplishes the oxidation of lignin via two consecutive ET reactions and the subsequent C-C cleavage of the lignin cation radical. The first one involves ET from Trp171 to the active species of Compound I, while the second one involves ET from the lignin substrate to the Trp171 radical. Differing from the common view that pH = 3 may enhance the oxidizing power of Cpd I via protonation of the protein environment, our study shows that the intrinsic electric fields have minor effects on the first ET step. Instead, our study shows that the pH buffer of tartaric acid plays key roles during the second ET step. Our study shows that the pH buffer of tartaric acid can form a strong H-bond with Glu250, which can prevent the proton transfer from the Trp171-H•+ cation radical to Glu250, thereby stabilizing the Trp171-H•+ cation radical for the lignin oxidation. In addition, the pH buffer of tartaric acid can enhance the oxidizing power of the Trp171-H•+ cation radical via both the protonation of the proximal Asp264 and the second-sphere H-bond with Glu250. Such synergistic effects of pH buffer facilitate the thermodynamics of the second ET step and reduce the overall barrier of lignin degradation by ∼4.3 kcal/mol, which corresponds to a rate acceleration of 103-fold that agrees with experiments. These findings not only expand our understanding on pH-dependent redox reactions in both biology and chemistry but also provide valuable insights into tryptophan-mediated biological ET reactions.
Collapse
Affiliation(s)
- Wenhan Fang
- State
Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian
Provincial Key Laboratory of Theoretical and Computational Chemistry,
College of Chemistry and Chemical Engineering and Innovation Laboratory
for Sciences and Technologies of Energy Materials of Fujian Province
(IKKEM), Xiamen University, Xiamen361005, P. R. China
| | - Shishi Feng
- State
Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian
Provincial Key Laboratory of Theoretical and Computational Chemistry,
College of Chemistry and Chemical Engineering and Innovation Laboratory
for Sciences and Technologies of Energy Materials of Fujian Province
(IKKEM), Xiamen University, Xiamen361005, P. R. China
| | - Zhihui Jiang
- State
Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian
Provincial Key Laboratory of Theoretical and Computational Chemistry,
College of Chemistry and Chemical Engineering and Innovation Laboratory
for Sciences and Technologies of Energy Materials of Fujian Province
(IKKEM), Xiamen University, Xiamen361005, P. R. China
| | - Wanzhen Liang
- State
Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian
Provincial Key Laboratory of Theoretical and Computational Chemistry,
College of Chemistry and Chemical Engineering and Innovation Laboratory
for Sciences and Technologies of Energy Materials of Fujian Province
(IKKEM), Xiamen University, Xiamen361005, P. R. China
| | - Pengfei Li
- Department
of Chemistry and Biochemistry, Loyola University
Chicago, 1068 W. Sheridan Rd., Chicago, Illinois60660, United States
| | - Binju Wang
- State
Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian
Provincial Key Laboratory of Theoretical and Computational Chemistry,
College of Chemistry and Chemical Engineering and Innovation Laboratory
for Sciences and Technologies of Energy Materials of Fujian Province
(IKKEM), Xiamen University, Xiamen361005, P. R. China
| |
Collapse
|
35
|
Grąz M, Ruminowicz-Stefaniuk M, Jarosz-Wilkołazka A. Oxalic acid degradation in wood-rotting fungi. Searching for a new source of oxalate oxidase. World J Microbiol Biotechnol 2023; 39:13. [PMID: 36380124 PMCID: PMC9666339 DOI: 10.1007/s11274-022-03449-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/27/2022] [Indexed: 11/17/2022]
Abstract
Oxalate oxidase (EC 1.2.3.4) is an oxalate-decomposing enzyme predominantly found in plants but also described in basidiomycete fungi. In this study, we investigated 23 fungi to determine their capability of oxalic acid degradation. After analyzing their secretomes for the products of the oxalic acid-degrading enzyme activity, three groups were distinguished among the fungi studied. The first group comprised nine fungi classified as oxalate oxidase producers, as their secretome pattern revealed an increase in the hydrogen peroxide concentration, no formic acid, and a reduction in the oxalic acid content. The second group of fungi comprised eight fungi described as oxalate decarboxylase producers characterized by an increase in the formic acid level associated with a decrease in the oxalate content in their secretomes. In the secretomes of the third group of six fungi, no increase in formic acid or hydrogen peroxide contents was observed but a decline in the oxalate level was found. The intracellular activity of OXO in the mycelia of Schizophyllum commune, Trametes hirsuta, Gloeophyllum trabeum, Abortiporus biennis, Cerrena unicolor, Ceriosporopsis mediosetigera, Trametes sanguinea, Ceriporiopsis subvermispora, and Laetiporus sulphureus was confirmed by a spectrophotometric assay.
Collapse
Affiliation(s)
- Marcin Grąz
- grid.29328.320000 0004 1937 1303Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 20-033 Lublin, Poland
| | - Marta Ruminowicz-Stefaniuk
- grid.29328.320000 0004 1937 1303Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 20-033 Lublin, Poland
| | - Anna Jarosz-Wilkołazka
- grid.29328.320000 0004 1937 1303Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 20-033 Lublin, Poland
| |
Collapse
|
36
|
Enzyme Discovery in Anaerobic Fungi (Neocallimastigomycetes) Enables Lignocellulosic Biorefinery Innovation. Microbiol Mol Biol Rev 2022; 86:e0004122. [PMID: 35852448 PMCID: PMC9769567 DOI: 10.1128/mmbr.00041-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Lignocellulosic biorefineries require innovative solutions to realize their full potential, and the discovery of novel lignocellulose-active enzymes could improve biorefinery deconstruction processes. Enzymatic deconstruction of plant cell walls is challenging, as noncarbohydrate linkages in hemicellulosic sidechains and lignin protect labile carbohydrates from hydrolysis. Highly specialized microbes that degrade plant biomass are attractive sources of enzymes for improving lignocellulose deconstruction, and the anaerobic gut fungi (Neocallimastigomycetes) stand out as having great potential for harboring novel lignocellulose-active enzymes. We discuss the known aspects of Neocallimastigomycetes lignocellulose deconstruction, including their extensive carbohydrate-active enzyme content, proficiency at deconstructing complex lignocellulose, unique physiology, synergistic enzyme complexes, and sizeable uncharacterized gene content. Progress describing Neocallimastigomycetes and their enzymes has been rapid in recent years, and it will only continue to expand. In particular, direct manipulation of anaerobic fungal genomes, effective heterologous expression of anaerobic fungal enzymes, and the ability to directly relate chemical changes in lignocellulose to fungal gene regulation will accelerate the discovery and subsequent deployment of Neocallimastigomycetes lignocellulose-active enzymes.
Collapse
|
37
|
Sharma S, Kumawat KC, Kaur S. Potential of indigenous ligno-cellulolytic microbial consortium to accelerate degradation of heterogenous crop residues. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:88331-88346. [PMID: 35834084 DOI: 10.1007/s11356-022-21809-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Indigenous microbial diversity has potential for rapid decomposition of residue through enzyme activities that is alternative, effective, and environment friendly strategy to accelerate degradation of lignocellulose in agricultural residues and make composting process economically viable. Keeping this view, the main objective of the present study was isolation and characterization of lignocellulosic degrading microbial diversity from long-term residue management practice experiments and to develop potential microbial consortium for rapid degradation of lignocellulosic biomass. In this study, twenty-five bacteria, nine fungi, and four actinomycetes isolates were obtained from the soil samples of different residue management fields from Ludhiana, Punjab, India. All isolates were qualitatively and quantitatively screened for enzyme activities, i.e., cellulase, xylanase, laccase, and lignin peroxidase. On the basis of quantitative estimation of enzyme activities, 3 fungal (S1F1, S2F4, and S6F9), 2 actinomycetes (S1A1 and S6A4), and 2 bacterial strains (S6B16 and S6B17) were further selected for in vitro bio-compatibility assay. Selected bio-compatible microbial strains were identified as Streptomyces flavomacrosporus (S6A4), Aspergillus terreus (S2F4), and Bacillus altitudinis (S6B16) through 16S rRNA and 18S rRNA sequencing. Furthermore, single and developed microbial consortium (S6B16 + S6A4 + S2F4) were screened for quantitative estimation of cellulase, xylanase, laccase, and lignin peroxidase enzymes with 23 biochemically different cereal, legume, and oil seed crop residues for optimization of enzyme activities at different time intervals. Results revealed that Vigna radiata followed by Cajanus cajan and Arachis hypogaea straw residue powder @ 1% in culture broth are a promising carbon source for B. altitudinis, S. flavomacrosporus, and A. terreus to produce higher ligno-cellulolytic microbial degrading enzymes due to variable range of carbon (C):nitrogen (N) ratio and higher ligno-cellulolytic content in the studied crop residues. Thus, the application of indigenous microbial consortium with efficient lignocellulose hydrolysis enzyme machinery might be an attractive alternative for ex situ crop residue management practices under sustainable manners.
Collapse
Affiliation(s)
- Sandeep Sharma
- Department of Soil Science, Punjab Agricultural University, Ludhiana, 141004, Punjab, India.
| | - Kailash Chand Kumawat
- Department of Soil Science, Punjab Agricultural University, Ludhiana, 141004, Punjab, India
| | - Sukhjinder Kaur
- Department of Soil Science, Punjab Agricultural University, Ludhiana, 141004, Punjab, India
| |
Collapse
|
38
|
A thermostable bacterial catalase-peroxidase oxidizes phenolic compounds derived from lignins. Appl Microbiol Biotechnol 2022; 107:201-217. [DOI: 10.1007/s00253-022-12263-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/19/2022] [Accepted: 10/23/2022] [Indexed: 11/27/2022]
|
39
|
Kravchenko AN, Richardson JA, Lee JH, Guber AK. Distribution of Mn Oxidation States in Grassland Soils and Their Relationships with Soil Pores. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:16462-16472. [PMID: 36268932 DOI: 10.1021/acs.est.2c05403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Manganese (Mn) is known to be an active contributor to processing and cycling of soil organic carbon (C), yet the exact mechanisms behind its interactions with C are poorly understood. Plant diversity in terrestrial ecosystems drives feedback links between plant C inputs and soil pores, where the latter, in turn, impact the redox environment and Mn. This study examined associations between soil pores (>36 μm Ø) and Mn within intact soils from two grassland ecosystems, after their >6-year implementation in a replicated field experiment. We used μ-XRF imaging and XANES spectroscopy to explore spatial distribution patterns of Mn oxidation states, combined with X-ray computed microtomography and 2D zymography. A high plant diversity system (restored prairie) increased soil C and modified spatial distribution patterns of soil pores as compared to a single species system (monoculture switchgrass). In switchgrass, the abundance of oxidized and reduced Mn oxidation states varied with distance from pores consistently with anticipated O2 diffusion, while in the soil from restored prairie, the spatial patterns suggested that biological activity played a greater role in influencing Mn distributions. Based on the findings, we propose a hypothesis that Mn transformations promote C gains in soils of high plant diversity grasslands.
Collapse
Affiliation(s)
- Alexandra N Kravchenko
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan 48823, United States
| | - Jocelyn A Richardson
- SLAC National Accelerator Laboratory, Stanford Synchrotron Radiation Lightsource, Menlo Park, California 94025, United States
| | - Jin Ho Lee
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan 48823, United States
| | - Andrey K Guber
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan 48823, United States
| |
Collapse
|
40
|
Wu X, Amanze C, Wang J, Yu Z, Shen L, Wu X, Li J, Yu R, Liu Y, Zeng W. Isolation and characterization of a novel thermotolerant alkali lignin-degrading bacterium Aneurinibacillus sp. LD3 and its application in food waste composting. CHEMOSPHERE 2022; 307:135859. [PMID: 35987270 DOI: 10.1016/j.chemosphere.2022.135859] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/16/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
The aim of this study was to isolate thermotolerant alkali lignin-degrading bacteria and to investigate their degradation characteristics and application in food waste composting. Two thermotolerant alkali lignin-degrading bacteria isolates were identified as Bacillus sp. LD2 (LD2) and a novel species Aneurinibacillus sp. LD3 (LD3). Compared with strain LD2, LD3 had a higher alkali lignin degradation rate (61.28%) and ligninolytic enzyme activities, and the maximum lignin peroxidase, laccase, and manganese peroxidase activities were 3117.25, 1484.5, and 1770.75 U L-1, respectively. GC-MS analysis revealed that low-molecular-weight compounds such as 4'-hydroxy-3'-methoxy acetophenone, vanillic acid, 1-(4-hydroxy-3,5-dimethoxyphenyl), benzoic acid, and octadecanoic acid were formed in the degradation of alkali lignin by LD3, indicating the cleavage of β-aryl ether, Cα-Cβ bonds, and aromatic rings in lignin. Composting results showed that inoculating LD3 improved the degradation of organic matter by 20.11% and reduced the carbon-to-nitrogen (C/N) ratio (15.66). Additionally, a higher decrease in the content of lignocellulose was observed in the LD treatment. FTIR and 3D-EEM spectra analysis indicated that inoculating LD3 promoted the decomposition of easily available organic substances and lignocellulose and the formation of aromatic structures and humic acid-like substances. In brief, the thermotolerant lignin-degrading bacterium Aneurinibacillus sp. LD3 is effective in degrading lignin and improving the quality of composting.
Collapse
Affiliation(s)
- Xiaoyan Wu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Charles Amanze
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China
| | - Jingshu Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Zhaojing Yu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Li Shen
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China
| | - Xueling Wu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China
| | - Jiaokun Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China
| | - Runlan Yu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China
| | - Yuandong Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China
| | - Weimin Zeng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China.
| |
Collapse
|
41
|
Wu X, Liu P, Zhao X, Wang J, Teng M, Gao S. Critical effect of biodegradation on long-term microplastic weathering in sediment environments: A systematic review. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129287. [PMID: 35714544 DOI: 10.1016/j.jhazmat.2022.129287] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Microplastic (MP) pollution in global sediment has been intensely studied and recognized as the ultimate sink for residual MPs in terrestrial and aquatic ecosystems. During MP long-term retention in sediments, plastic-degrading bacteria (i.e., Flavobacteriaceae, Bacillus, Rhodobacteraceae, and Desulfobacteraceae) can utilize those MPs as their carbon and energy sources through enzyme (hydrolase and oxidoreductase) reactions, which further alter or transform high molecular weight MP polymers into lower molecular weight biodegradation byproducts (i.e., monomers and oligomers) and release toxic additives. In other words, MPs can act as durable substrates for plastic-degrading bacteria in sediments. However, to date, the biodegradation rates of MPs in sediment environments are still poorly understood due to their limited degradation efficiency. Herein, we review the enzyme-induced biodegradation processes of MPs in sediment environments, which is important for accessing the alteration of MP properties and their potential ecological risks after undergoing long-term weathering processes. In addition, the factors associated with the MP properties (polymer type, molecular weight, crystallinity, and hydrophobicity) and sediment conditions (sediment type, temperature, pH, salinity, and oxygen content) that influence plastic degradation processes are also reviewed. The mechanisms may relate to the MP properties and sediment conditions that can influence microbial abundance, enzyme concentrations, and enzyme activities, thus altering MP biodegradation ratios. We anticipate that the observations reviewed in this study will pose a new issue to better understand the formation process, fate, and potential ecological risks associated with aged MPs in sediment environments.
Collapse
Affiliation(s)
- Xiaowei Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Peng Liu
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, Xianyang 712100, China
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Junyu Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Miaomiao Teng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Shixiang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| |
Collapse
|
42
|
Differential Activity of the Extracellular Phenoloxidases in Different Strains of the Phytopathogenic Fungus, Microdochium nivale. J Fungi (Basel) 2022; 8:jof8090918. [PMID: 36135643 PMCID: PMC9502619 DOI: 10.3390/jof8090918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/25/2022] [Accepted: 08/27/2022] [Indexed: 11/17/2022] Open
Abstract
To cause plant diseases, phytopathogenic fungi use numerous extracellular enzymes, among which, the phenoloxidases (POs) seem underestimated for the pathogens of non-woody plants. Our study aimed to (1) compare extracellular PO activities (lignin peroxidase, Mn peroxidase, laccase, and tyrosinase) in differentially virulent strains (inhabiting winter rye in a single field) of the phytopathogenic species, Microdochium nivale; (2) check whether these activities are responsive to host plant metabolites; and (3) search for correlations between the activities, lignin-decomposing capacity, and virulence. All strains displayed all four enzymatic activities, but their levels and dynamics depended on the particular strain. The activities displayed the hallmarks of co-regulation and responsiveness to the host plant extract. No relationships between the virulence of strains and levels of their extracellular PO activities or lignin-degrading capacity were revealed. We consider that different strains may rely on different POs for plant colonization, and that different POs contribute to the “uniqueness” of the enzymatic cocktails that are delivered into host plant tissues by different virulent strains of M. nivale. Our study supports the hypothesis of the differential behavior of closely related M. nivale strains, and discusses an important role of POs in the interactions of phytopathogens with herbaceous plants.
Collapse
|
43
|
Kumar A, Singh AK, Bilal M, Chandra R. Extremophilic Ligninolytic Enzymes: Versatile Biocatalytic Tools with Impressive Biotechnological Potential. Catal Letters 2022. [DOI: 10.1007/s10562-021-03800-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
44
|
Abstract
Lignin, a rigid polymer composed of phenolic subunits with high molecular weight and complex structure, ranks behind only cellulose in the contribution to the biomass of plants. Therefore, lignin can be used as a new environmentally friendly resource for the industrial production of a variety of polymers, dyes and adhesives. Since laccase was found to be able to degrade lignin, increasing attention had been paid to the valorization of lignin. Research has mainly focused on the identification of lignin-degrading enzymes, which play a key role in lignin biodegradation, and the potential application of lignin degradation products. In this review, we describe the source, catalytic specificity and enzyme reaction mechanism of the four classes of the lignin-degrading enzymes so far discovered. In addition, the major pathways of lignin biodegradation and the applications of the degradative products are also discussed. Lignin-degrading bacteria or enzymes can be used in combination with chemical pretreatment for the production of value-added chemicals from lignin, providing a promising strategy for lignin valorization.
Collapse
|
45
|
Barcoto MO, Rodrigues A. Lessons From Insect Fungiculture: From Microbial Ecology to Plastics Degradation. Front Microbiol 2022; 13:812143. [PMID: 35685924 PMCID: PMC9171207 DOI: 10.3389/fmicb.2022.812143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Anthropogenic activities have extensively transformed the biosphere by extracting and disposing of resources, crossing boundaries of planetary threat while causing a global crisis of waste overload. Despite fundamental differences regarding structure and recalcitrance, lignocellulose and plastic polymers share physical-chemical properties to some extent, that include carbon skeletons with similar chemical bonds, hydrophobic properties, amorphous and crystalline regions. Microbial strategies for metabolizing recalcitrant polymers have been selected and optimized through evolution, thus understanding natural processes for lignocellulose modification could aid the challenge of dealing with the recalcitrant human-made polymers spread worldwide. We propose to look for inspiration in the charismatic fungal-growing insects to understand multipartite degradation of plant polymers. Independently evolved in diverse insect lineages, fungiculture embraces passive or active fungal cultivation for food, protection, and structural purposes. We consider there is much to learn from these symbioses, in special from the community-level degradation of recalcitrant biomass and defensive metabolites. Microbial plant-degrading systems at the core of insect fungicultures could be promising candidates for degrading synthetic plastics. Here, we first compare the degradation of lignocellulose and plastic polymers, with emphasis in the overlapping microbial players and enzymatic activities between these processes. Second, we review the literature on diverse insect fungiculture systems, focusing on features that, while supporting insects' ecology and evolution, could also be applied in biotechnological processes. Third, taking lessons from these microbial communities, we suggest multidisciplinary strategies to identify microbial degraders, degrading enzymes and pathways, as well as microbial interactions and interdependencies. Spanning from multiomics to spectroscopy, microscopy, stable isotopes probing, enrichment microcosmos, and synthetic communities, these strategies would allow for a systemic understanding of the fungiculture ecology, driving to application possibilities. Detailing how the metabolic landscape is entangled to achieve ecological success could inspire sustainable efforts for mitigating the current environmental crisis.
Collapse
Affiliation(s)
- Mariana O. Barcoto
- Center for the Study of Social Insects, São Paulo State University (UNESP), Rio Claro, Brazil
- Department of General and Applied Biology, São Paulo State University (UNESP), Rio Claro, Brazil
| | - Andre Rodrigues
- Center for the Study of Social Insects, São Paulo State University (UNESP), Rio Claro, Brazil
- Department of General and Applied Biology, São Paulo State University (UNESP), Rio Claro, Brazil
| |
Collapse
|
46
|
Microbial Degradation of Azo Dyes: Approaches and Prospects for a Hazard-Free Conversion by Microorganisms. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19084740. [PMID: 35457607 PMCID: PMC9026373 DOI: 10.3390/ijerph19084740] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 11/16/2022]
Abstract
Azo dyes have become a staple in various industries, as colors play an important role in consumer choices. However, these dyes pose various health and environmental risks. Although different wastewater treatments are available, the search for more eco-friendly options persists. Bioremediation utilizing microorganisms has been of great interest to researchers and industries, as the transition toward greener solutions has become more in demand through the years. This review tackles the health and environmental repercussions of azo dyes and its metabolites, available biological approaches to eliminate such dyes from the environment with a focus on the use of different microorganisms, enzymes that are involved in the degradation of azo dyes, and recent trends that could be applied for the treatment of azo dyes.
Collapse
|
47
|
Zhu D, Qaria MA, Zhu B, Sun J, Yang B. Extremophiles and extremozymes in lignin bioprocessing. RENEWABLE AND SUSTAINABLE ENERGY REVIEWS 2022; 157:112069. [DOI: 10.1016/j.rser.2021.112069] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
48
|
Evaluation of Original and Enzyme-Modified Fique Fibers as an Azo Dye Biosorbent Material. WATER 2022. [DOI: 10.3390/w14071035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
As natural fibers, low-cost biosorbents have proven to be an effective and clean tool to remove textile dyes from wastewater. In this research, the Reactive Black 5 removal ability of original and enzyme-modified natural fibers were assessed. A fiber extracted from a Colombian fique plant (Furcraea sp.) was employed. The effects of fique fiber protonation with different solvents and dye solution pH on RB5 removal were evaluated. The biosorbent chemical composition was modified using the commercial enzymes pectinase, ligninase, and xylanase. The point of zero charge (PZC) of the original and modified material was measured, and the dye removal capacity of the three enzyme-modified fibers was determined. Fiber protonation with 0.1 M HCl and a dye solution with pH of 2.4 increased the RB5 elimination to 49.1%. The change in the fiber chemical composition led to a reduction in the PZC from 5.5 to a 4.7–4.9 range. Pectinase-pretreated fique fibers presented the highest dye removal of 66.29%, representing a 36% increase in RB5 dye removal. Although the original fique fiber showed RB5 dye removal ability, its enzymatic modification changed the charge distribution on the fiber surface, improving the capture of dye molecules. Enzyme modification can be applied to obtain new functionalities for plant fibers as biosorbent materials.
Collapse
|
49
|
Kim B, Lingappa UF, Magyar J, Monteverde D, Valentine JS, Cho J, Fischer W. Challenges of Measuring Soluble Mn(III) Species in Natural Samples. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27051661. [PMID: 35268761 PMCID: PMC8911613 DOI: 10.3390/molecules27051661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/31/2022] [Accepted: 02/19/2022] [Indexed: 11/16/2022]
Abstract
Soluble Mn(III)-L complexes appear to constitute a substantial portion of manganese (Mn) in many environments and serve as critical high-potential species for biogeochemical processes. However, the inherent reactivity and lability of these complexes-the same chemical characteristics that make them uniquely important in biogeochemistry-also make them incredibly difficult to measure. Here we present experimental results demonstrating the limits of common analytical methods used to quantify these complexes. The leucoberbelin-blue method is extremely useful for detecting many high-valent Mn species, but it is incompatible with the subset of Mn(III) complexes that rapidly decompose under low-pH conditions-a methodological requirement for the assay. The Cd-porphyrin method works well for measuring Mn(II) species, but it does not work for measuring Mn(III) species, because additional chemistry occurs that is inconsistent with the proposed reaction mechanism. In both cases, the behavior of Mn(III) species in these methods ultimately stems from inter- and intramolecular redox chemistry that curtails the use of these approaches as a reflection of ligand-binding strength. With growing appreciation for the importance of high-valent Mn species and their cycling in the environment, these results underscore the need for additional method development to enable quantifying such species rapidly and accurately in nature.
Collapse
Affiliation(s)
- Bohee Kim
- Department of Emerging Materials Science, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea;
| | - Usha Farey Lingappa
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA; (U.F.L.); (J.M.); (D.M.); (J.S.V.)
| | - John Magyar
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA; (U.F.L.); (J.M.); (D.M.); (J.S.V.)
| | - Danielle Monteverde
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA; (U.F.L.); (J.M.); (D.M.); (J.S.V.)
| | - Joan Selverstone Valentine
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA; (U.F.L.); (J.M.); (D.M.); (J.S.V.)
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Jaeheung Cho
- Department of Emerging Materials Science, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea;
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
- Correspondence: (J.C.); (W.F.)
| | - Woodward Fischer
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA; (U.F.L.); (J.M.); (D.M.); (J.S.V.)
- Correspondence: (J.C.); (W.F.)
| |
Collapse
|
50
|
Akermann A, Weiermüller J, Chodorski JN, Nestriepke MJ, Baclig MT, Ulber R. Optimization of bioprocesses with Brewers' spent grain and Cellulomonas uda. Eng Life Sci 2022; 22:132-151. [PMID: 35382540 PMCID: PMC8961044 DOI: 10.1002/elsc.202100053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/05/2021] [Accepted: 07/29/2021] [Indexed: 01/09/2023] Open
Abstract
Brewers' spent grain (BSG) is a low-value by-product of the brewing process, which is produced in large quantities every year. In this study, the lignocellulosic feedstock (solid BSG) was used to optimize fermentations with Cellulomonas uda. Under aerobic conditions, maximum cellulase activities of 0.98 nkat∙mL-1, maximum xylanase activities of 5.00 nkat∙mL-1 and cell yields of 0.22 gCells∙gBSG -1 were achieved. Under anaerobic conditions, enzyme activities and cell yields were lower, but valuable liquid products (organic acids, ethanol) were produced with a yield of 0.41 gProd∙gBSG -1. The growth phase of the organisms was monitored by measuring extracellular concentrations of two fluorophores pyridoxin (aerobic) and tryptophan (anaerobic) and by cell count. By combining reductive with anaerobic conditions, the ratio of ethanol to acetate was increased from 1.08 to 1.59 molEtOH∙molAc -1. This ratio was further improved to 9.2 molEtOH∙molAc -1 by lowering the pH from 7.4 to 5.0 without decreasing the final ethanol concentration. A fermentation in a bioreactor with 15 w% BSG instead of 5 w% BSG quadrupled the acetate concentration, whilst ethanol was removed by gas stripping. This study provides various ideas for optimizing and monitoring fermentations with solid substrates, which can support feasibility and incorporation into holistic biorefining approaches in the future.
Collapse
Affiliation(s)
- Alexander Akermann
- TU KaiserslauternDepartment of Mechanical and Process EngineeringKaiserslauternGermany
| | - Jens Weiermüller
- TU KaiserslauternDepartment of Mechanical and Process EngineeringKaiserslauternGermany
| | | | | | - Maria Teresa Baclig
- TU KaiserslauternDepartment of Mechanical and Process EngineeringKaiserslauternGermany
| | - Roland Ulber
- TU KaiserslauternDepartment of Mechanical and Process EngineeringKaiserslauternGermany
| |
Collapse
|